• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "VelocityTracker"
18 //#define LOG_NDEBUG 0
19 
20 // Log debug messages about velocity tracking.
21 #define DEBUG_VELOCITY 0
22 
23 // Log debug messages about the progress of the algorithm itself.
24 #define DEBUG_STRATEGY 0
25 
26 #include <inttypes.h>
27 #include <limits.h>
28 #include <math.h>
29 
30 #include <android-base/stringprintf.h>
31 #include <cutils/properties.h>
32 #include <input/VelocityTracker.h>
33 #include <utils/BitSet.h>
34 #include <utils/Timers.h>
35 
36 namespace android {
37 
38 // Nanoseconds per milliseconds.
39 static const nsecs_t NANOS_PER_MS = 1000000;
40 
41 // Threshold for determining that a pointer has stopped moving.
42 // Some input devices do not send ACTION_MOVE events in the case where a pointer has
43 // stopped.  We need to detect this case so that we can accurately predict the
44 // velocity after the pointer starts moving again.
45 static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;
46 
47 
vectorDot(const float * a,const float * b,uint32_t m)48 static float vectorDot(const float* a, const float* b, uint32_t m) {
49     float r = 0;
50     for (size_t i = 0; i < m; i++) {
51         r += *(a++) * *(b++);
52     }
53     return r;
54 }
55 
vectorNorm(const float * a,uint32_t m)56 static float vectorNorm(const float* a, uint32_t m) {
57     float r = 0;
58     for (size_t i = 0; i < m; i++) {
59         float t = *(a++);
60         r += t * t;
61     }
62     return sqrtf(r);
63 }
64 
65 #if DEBUG_STRATEGY || DEBUG_VELOCITY
vectorToString(const float * a,uint32_t m)66 static std::string vectorToString(const float* a, uint32_t m) {
67     std::string str;
68     str += "[";
69     for (size_t i = 0; i < m; i++) {
70         if (i) {
71             str += ",";
72         }
73         str += android::base::StringPrintf(" %f", *(a++));
74     }
75     str += " ]";
76     return str;
77 }
78 
matrixToString(const float * a,uint32_t m,uint32_t n,bool rowMajor)79 static std::string matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
80     std::string str;
81     str = "[";
82     for (size_t i = 0; i < m; i++) {
83         if (i) {
84             str += ",";
85         }
86         str += " [";
87         for (size_t j = 0; j < n; j++) {
88             if (j) {
89                 str += ",";
90             }
91             str += android::base::StringPrintf(" %f", a[rowMajor ? i * n + j : j * m + i]);
92         }
93         str += " ]";
94     }
95     str += " ]";
96     return str;
97 }
98 #endif
99 
100 
101 // --- VelocityTracker ---
102 
103 // The default velocity tracker strategy.
104 // Although other strategies are available for testing and comparison purposes,
105 // this is the strategy that applications will actually use.  Be very careful
106 // when adjusting the default strategy because it can dramatically affect
107 // (often in a bad way) the user experience.
108 const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2";
109 
VelocityTracker(const char * strategy)110 VelocityTracker::VelocityTracker(const char* strategy) :
111         mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
112     char value[PROPERTY_VALUE_MAX];
113 
114     // Allow the default strategy to be overridden using a system property for debugging.
115     if (!strategy) {
116         int length = property_get("debug.velocitytracker.strategy", value, NULL);
117         if (length > 0) {
118             strategy = value;
119         } else {
120             strategy = DEFAULT_STRATEGY;
121         }
122     }
123 
124     // Configure the strategy.
125     if (!configureStrategy(strategy)) {
126         ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy);
127         if (!configureStrategy(DEFAULT_STRATEGY)) {
128             LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!",
129                     strategy);
130         }
131     }
132 }
133 
~VelocityTracker()134 VelocityTracker::~VelocityTracker() {
135     delete mStrategy;
136 }
137 
configureStrategy(const char * strategy)138 bool VelocityTracker::configureStrategy(const char* strategy) {
139     mStrategy = createStrategy(strategy);
140     return mStrategy != NULL;
141 }
142 
createStrategy(const char * strategy)143 VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
144     if (!strcmp("lsq1", strategy)) {
145         // 1st order least squares.  Quality: POOR.
146         // Frequently underfits the touch data especially when the finger accelerates
147         // or changes direction.  Often underestimates velocity.  The direction
148         // is overly influenced by historical touch points.
149         return new LeastSquaresVelocityTrackerStrategy(1);
150     }
151     if (!strcmp("lsq2", strategy)) {
152         // 2nd order least squares.  Quality: VERY GOOD.
153         // Pretty much ideal, but can be confused by certain kinds of touch data,
154         // particularly if the panel has a tendency to generate delayed,
155         // duplicate or jittery touch coordinates when the finger is released.
156         return new LeastSquaresVelocityTrackerStrategy(2);
157     }
158     if (!strcmp("lsq3", strategy)) {
159         // 3rd order least squares.  Quality: UNUSABLE.
160         // Frequently overfits the touch data yielding wildly divergent estimates
161         // of the velocity when the finger is released.
162         return new LeastSquaresVelocityTrackerStrategy(3);
163     }
164     if (!strcmp("wlsq2-delta", strategy)) {
165         // 2nd order weighted least squares, delta weighting.  Quality: EXPERIMENTAL
166         return new LeastSquaresVelocityTrackerStrategy(2,
167                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA);
168     }
169     if (!strcmp("wlsq2-central", strategy)) {
170         // 2nd order weighted least squares, central weighting.  Quality: EXPERIMENTAL
171         return new LeastSquaresVelocityTrackerStrategy(2,
172                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL);
173     }
174     if (!strcmp("wlsq2-recent", strategy)) {
175         // 2nd order weighted least squares, recent weighting.  Quality: EXPERIMENTAL
176         return new LeastSquaresVelocityTrackerStrategy(2,
177                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT);
178     }
179     if (!strcmp("int1", strategy)) {
180         // 1st order integrating filter.  Quality: GOOD.
181         // Not as good as 'lsq2' because it cannot estimate acceleration but it is
182         // more tolerant of errors.  Like 'lsq1', this strategy tends to underestimate
183         // the velocity of a fling but this strategy tends to respond to changes in
184         // direction more quickly and accurately.
185         return new IntegratingVelocityTrackerStrategy(1);
186     }
187     if (!strcmp("int2", strategy)) {
188         // 2nd order integrating filter.  Quality: EXPERIMENTAL.
189         // For comparison purposes only.  Unlike 'int1' this strategy can compensate
190         // for acceleration but it typically overestimates the effect.
191         return new IntegratingVelocityTrackerStrategy(2);
192     }
193     if (!strcmp("legacy", strategy)) {
194         // Legacy velocity tracker algorithm.  Quality: POOR.
195         // For comparison purposes only.  This algorithm is strongly influenced by
196         // old data points, consistently underestimates velocity and takes a very long
197         // time to adjust to changes in direction.
198         return new LegacyVelocityTrackerStrategy();
199     }
200     return NULL;
201 }
202 
clear()203 void VelocityTracker::clear() {
204     mCurrentPointerIdBits.clear();
205     mActivePointerId = -1;
206 
207     mStrategy->clear();
208 }
209 
clearPointers(BitSet32 idBits)210 void VelocityTracker::clearPointers(BitSet32 idBits) {
211     BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
212     mCurrentPointerIdBits = remainingIdBits;
213 
214     if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
215         mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
216     }
217 
218     mStrategy->clearPointers(idBits);
219 }
220 
addMovement(nsecs_t eventTime,BitSet32 idBits,const Position * positions)221 void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
222     while (idBits.count() > MAX_POINTERS) {
223         idBits.clearLastMarkedBit();
224     }
225 
226     if ((mCurrentPointerIdBits.value & idBits.value)
227             && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
228 #if DEBUG_VELOCITY
229         ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
230                 (eventTime - mLastEventTime) * 0.000001f);
231 #endif
232         // We have not received any movements for too long.  Assume that all pointers
233         // have stopped.
234         mStrategy->clear();
235     }
236     mLastEventTime = eventTime;
237 
238     mCurrentPointerIdBits = idBits;
239     if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
240         mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
241     }
242 
243     mStrategy->addMovement(eventTime, idBits, positions);
244 
245 #if DEBUG_VELOCITY
246     ALOGD("VelocityTracker: addMovement eventTime=%" PRId64 ", idBits=0x%08x, activePointerId=%d",
247             eventTime, idBits.value, mActivePointerId);
248     for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
249         uint32_t id = iterBits.firstMarkedBit();
250         uint32_t index = idBits.getIndexOfBit(id);
251         iterBits.clearBit(id);
252         Estimator estimator;
253         getEstimator(id, &estimator);
254         ALOGD("  %d: position (%0.3f, %0.3f), "
255                 "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
256                 id, positions[index].x, positions[index].y,
257                 int(estimator.degree),
258                 vectorToString(estimator.xCoeff, estimator.degree + 1).c_str(),
259                 vectorToString(estimator.yCoeff, estimator.degree + 1).c_str(),
260                 estimator.confidence);
261     }
262 #endif
263 }
264 
addMovement(const MotionEvent * event)265 void VelocityTracker::addMovement(const MotionEvent* event) {
266     int32_t actionMasked = event->getActionMasked();
267 
268     switch (actionMasked) {
269     case AMOTION_EVENT_ACTION_DOWN:
270     case AMOTION_EVENT_ACTION_HOVER_ENTER:
271         // Clear all pointers on down before adding the new movement.
272         clear();
273         break;
274     case AMOTION_EVENT_ACTION_POINTER_DOWN: {
275         // Start a new movement trace for a pointer that just went down.
276         // We do this on down instead of on up because the client may want to query the
277         // final velocity for a pointer that just went up.
278         BitSet32 downIdBits;
279         downIdBits.markBit(event->getPointerId(event->getActionIndex()));
280         clearPointers(downIdBits);
281         break;
282     }
283     case AMOTION_EVENT_ACTION_MOVE:
284     case AMOTION_EVENT_ACTION_HOVER_MOVE:
285         break;
286     default:
287         // Ignore all other actions because they do not convey any new information about
288         // pointer movement.  We also want to preserve the last known velocity of the pointers.
289         // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
290         // of the pointers that went up.  ACTION_POINTER_UP does include the new position of
291         // pointers that remained down but we will also receive an ACTION_MOVE with this
292         // information if any of them actually moved.  Since we don't know how many pointers
293         // will be going up at once it makes sense to just wait for the following ACTION_MOVE
294         // before adding the movement.
295         return;
296     }
297 
298     size_t pointerCount = event->getPointerCount();
299     if (pointerCount > MAX_POINTERS) {
300         pointerCount = MAX_POINTERS;
301     }
302 
303     BitSet32 idBits;
304     for (size_t i = 0; i < pointerCount; i++) {
305         idBits.markBit(event->getPointerId(i));
306     }
307 
308     uint32_t pointerIndex[MAX_POINTERS];
309     for (size_t i = 0; i < pointerCount; i++) {
310         pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
311     }
312 
313     nsecs_t eventTime;
314     Position positions[pointerCount];
315 
316     size_t historySize = event->getHistorySize();
317     for (size_t h = 0; h < historySize; h++) {
318         eventTime = event->getHistoricalEventTime(h);
319         for (size_t i = 0; i < pointerCount; i++) {
320             uint32_t index = pointerIndex[i];
321             positions[index].x = event->getHistoricalX(i, h);
322             positions[index].y = event->getHistoricalY(i, h);
323         }
324         addMovement(eventTime, idBits, positions);
325     }
326 
327     eventTime = event->getEventTime();
328     for (size_t i = 0; i < pointerCount; i++) {
329         uint32_t index = pointerIndex[i];
330         positions[index].x = event->getX(i);
331         positions[index].y = event->getY(i);
332     }
333     addMovement(eventTime, idBits, positions);
334 }
335 
getVelocity(uint32_t id,float * outVx,float * outVy) const336 bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
337     Estimator estimator;
338     if (getEstimator(id, &estimator) && estimator.degree >= 1) {
339         *outVx = estimator.xCoeff[1];
340         *outVy = estimator.yCoeff[1];
341         return true;
342     }
343     *outVx = 0;
344     *outVy = 0;
345     return false;
346 }
347 
getEstimator(uint32_t id,Estimator * outEstimator) const348 bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
349     return mStrategy->getEstimator(id, outEstimator);
350 }
351 
352 
353 // --- LeastSquaresVelocityTrackerStrategy ---
354 
355 const nsecs_t LeastSquaresVelocityTrackerStrategy::HORIZON;
356 const uint32_t LeastSquaresVelocityTrackerStrategy::HISTORY_SIZE;
357 
LeastSquaresVelocityTrackerStrategy(uint32_t degree,Weighting weighting)358 LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
359         uint32_t degree, Weighting weighting) :
360         mDegree(degree), mWeighting(weighting) {
361     clear();
362 }
363 
~LeastSquaresVelocityTrackerStrategy()364 LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
365 }
366 
clear()367 void LeastSquaresVelocityTrackerStrategy::clear() {
368     mIndex = 0;
369     mMovements[0].idBits.clear();
370 }
371 
clearPointers(BitSet32 idBits)372 void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
373     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
374     mMovements[mIndex].idBits = remainingIdBits;
375 }
376 
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)377 void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
378         const VelocityTracker::Position* positions) {
379     if (++mIndex == HISTORY_SIZE) {
380         mIndex = 0;
381     }
382 
383     Movement& movement = mMovements[mIndex];
384     movement.eventTime = eventTime;
385     movement.idBits = idBits;
386     uint32_t count = idBits.count();
387     for (uint32_t i = 0; i < count; i++) {
388         movement.positions[i] = positions[i];
389     }
390 }
391 
392 /**
393  * Solves a linear least squares problem to obtain a N degree polynomial that fits
394  * the specified input data as nearly as possible.
395  *
396  * Returns true if a solution is found, false otherwise.
397  *
398  * The input consists of two vectors of data points X and Y with indices 0..m-1
399  * along with a weight vector W of the same size.
400  *
401  * The output is a vector B with indices 0..n that describes a polynomial
402  * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
403  * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
404  *
405  * Accordingly, the weight vector W should be initialized by the caller with the
406  * reciprocal square root of the variance of the error in each input data point.
407  * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
408  * The weights express the relative importance of each data point.  If the weights are
409  * all 1, then the data points are considered to be of equal importance when fitting
410  * the polynomial.  It is a good idea to choose weights that diminish the importance
411  * of data points that may have higher than usual error margins.
412  *
413  * Errors among data points are assumed to be independent.  W is represented here
414  * as a vector although in the literature it is typically taken to be a diagonal matrix.
415  *
416  * That is to say, the function that generated the input data can be approximated
417  * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
418  *
419  * The coefficient of determination (R^2) is also returned to describe the goodness
420  * of fit of the model for the given data.  It is a value between 0 and 1, where 1
421  * indicates perfect correspondence.
422  *
423  * This function first expands the X vector to a m by n matrix A such that
424  * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
425  * multiplies it by w[i]./
426  *
427  * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
428  * and an m by n upper triangular matrix R.  Because R is upper triangular (lower
429  * part is all zeroes), we can simplify the decomposition into an m by n matrix
430  * Q1 and a n by n matrix R1 such that A = Q1 R1.
431  *
432  * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
433  * to find B.
434  *
435  * For efficiency, we lay out A and Q column-wise in memory because we frequently
436  * operate on the column vectors.  Conversely, we lay out R row-wise.
437  *
438  * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
439  * http://en.wikipedia.org/wiki/Gram-Schmidt
440  */
solveLeastSquares(const float * x,const float * y,const float * w,uint32_t m,uint32_t n,float * outB,float * outDet)441 static bool solveLeastSquares(const float* x, const float* y,
442         const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) {
443 #if DEBUG_STRATEGY
444     ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
445             vectorToString(x, m).c_str(), vectorToString(y, m).c_str(),
446             vectorToString(w, m).c_str());
447 #endif
448 
449     // Expand the X vector to a matrix A, pre-multiplied by the weights.
450     float a[n][m]; // column-major order
451     for (uint32_t h = 0; h < m; h++) {
452         a[0][h] = w[h];
453         for (uint32_t i = 1; i < n; i++) {
454             a[i][h] = a[i - 1][h] * x[h];
455         }
456     }
457 #if DEBUG_STRATEGY
458     ALOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).c_str());
459 #endif
460 
461     // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
462     float q[n][m]; // orthonormal basis, column-major order
463     float r[n][n]; // upper triangular matrix, row-major order
464     for (uint32_t j = 0; j < n; j++) {
465         for (uint32_t h = 0; h < m; h++) {
466             q[j][h] = a[j][h];
467         }
468         for (uint32_t i = 0; i < j; i++) {
469             float dot = vectorDot(&q[j][0], &q[i][0], m);
470             for (uint32_t h = 0; h < m; h++) {
471                 q[j][h] -= dot * q[i][h];
472             }
473         }
474 
475         float norm = vectorNorm(&q[j][0], m);
476         if (norm < 0.000001f) {
477             // vectors are linearly dependent or zero so no solution
478 #if DEBUG_STRATEGY
479             ALOGD("  - no solution, norm=%f", norm);
480 #endif
481             return false;
482         }
483 
484         float invNorm = 1.0f / norm;
485         for (uint32_t h = 0; h < m; h++) {
486             q[j][h] *= invNorm;
487         }
488         for (uint32_t i = 0; i < n; i++) {
489             r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
490         }
491     }
492 #if DEBUG_STRATEGY
493     ALOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).c_str());
494     ALOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).c_str());
495 
496     // calculate QR, if we factored A correctly then QR should equal A
497     float qr[n][m];
498     for (uint32_t h = 0; h < m; h++) {
499         for (uint32_t i = 0; i < n; i++) {
500             qr[i][h] = 0;
501             for (uint32_t j = 0; j < n; j++) {
502                 qr[i][h] += q[j][h] * r[j][i];
503             }
504         }
505     }
506     ALOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).c_str());
507 #endif
508 
509     // Solve R B = Qt W Y to find B.  This is easy because R is upper triangular.
510     // We just work from bottom-right to top-left calculating B's coefficients.
511     float wy[m];
512     for (uint32_t h = 0; h < m; h++) {
513         wy[h] = y[h] * w[h];
514     }
515     for (uint32_t i = n; i != 0; ) {
516         i--;
517         outB[i] = vectorDot(&q[i][0], wy, m);
518         for (uint32_t j = n - 1; j > i; j--) {
519             outB[i] -= r[i][j] * outB[j];
520         }
521         outB[i] /= r[i][i];
522     }
523 #if DEBUG_STRATEGY
524     ALOGD("  - b=%s", vectorToString(outB, n).c_str());
525 #endif
526 
527     // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
528     // SSerr is the residual sum of squares (variance of the error),
529     // and SStot is the total sum of squares (variance of the data) where each
530     // has been weighted.
531     float ymean = 0;
532     for (uint32_t h = 0; h < m; h++) {
533         ymean += y[h];
534     }
535     ymean /= m;
536 
537     float sserr = 0;
538     float sstot = 0;
539     for (uint32_t h = 0; h < m; h++) {
540         float err = y[h] - outB[0];
541         float term = 1;
542         for (uint32_t i = 1; i < n; i++) {
543             term *= x[h];
544             err -= term * outB[i];
545         }
546         sserr += w[h] * w[h] * err * err;
547         float var = y[h] - ymean;
548         sstot += w[h] * w[h] * var * var;
549     }
550     *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
551 #if DEBUG_STRATEGY
552     ALOGD("  - sserr=%f", sserr);
553     ALOGD("  - sstot=%f", sstot);
554     ALOGD("  - det=%f", *outDet);
555 #endif
556     return true;
557 }
558 
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const559 bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
560         VelocityTracker::Estimator* outEstimator) const {
561     outEstimator->clear();
562 
563     // Iterate over movement samples in reverse time order and collect samples.
564     float x[HISTORY_SIZE];
565     float y[HISTORY_SIZE];
566     float w[HISTORY_SIZE];
567     float time[HISTORY_SIZE];
568     uint32_t m = 0;
569     uint32_t index = mIndex;
570     const Movement& newestMovement = mMovements[mIndex];
571     do {
572         const Movement& movement = mMovements[index];
573         if (!movement.idBits.hasBit(id)) {
574             break;
575         }
576 
577         nsecs_t age = newestMovement.eventTime - movement.eventTime;
578         if (age > HORIZON) {
579             break;
580         }
581 
582         const VelocityTracker::Position& position = movement.getPosition(id);
583         x[m] = position.x;
584         y[m] = position.y;
585         w[m] = chooseWeight(index);
586         time[m] = -age * 0.000000001f;
587         index = (index == 0 ? HISTORY_SIZE : index) - 1;
588     } while (++m < HISTORY_SIZE);
589 
590     if (m == 0) {
591         return false; // no data
592     }
593 
594     // Calculate a least squares polynomial fit.
595     uint32_t degree = mDegree;
596     if (degree > m - 1) {
597         degree = m - 1;
598     }
599     if (degree >= 1) {
600         float xdet, ydet;
601         uint32_t n = degree + 1;
602         if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
603                 && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
604             outEstimator->time = newestMovement.eventTime;
605             outEstimator->degree = degree;
606             outEstimator->confidence = xdet * ydet;
607 #if DEBUG_STRATEGY
608             ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
609                     int(outEstimator->degree),
610                     vectorToString(outEstimator->xCoeff, n).c_str(),
611                     vectorToString(outEstimator->yCoeff, n).c_str(),
612                     outEstimator->confidence);
613 #endif
614             return true;
615         }
616     }
617 
618     // No velocity data available for this pointer, but we do have its current position.
619     outEstimator->xCoeff[0] = x[0];
620     outEstimator->yCoeff[0] = y[0];
621     outEstimator->time = newestMovement.eventTime;
622     outEstimator->degree = 0;
623     outEstimator->confidence = 1;
624     return true;
625 }
626 
chooseWeight(uint32_t index) const627 float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
628     switch (mWeighting) {
629     case WEIGHTING_DELTA: {
630         // Weight points based on how much time elapsed between them and the next
631         // point so that points that "cover" a shorter time span are weighed less.
632         //   delta  0ms: 0.5
633         //   delta 10ms: 1.0
634         if (index == mIndex) {
635             return 1.0f;
636         }
637         uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
638         float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
639                 * 0.000001f;
640         if (deltaMillis < 0) {
641             return 0.5f;
642         }
643         if (deltaMillis < 10) {
644             return 0.5f + deltaMillis * 0.05;
645         }
646         return 1.0f;
647     }
648 
649     case WEIGHTING_CENTRAL: {
650         // Weight points based on their age, weighing very recent and very old points less.
651         //   age  0ms: 0.5
652         //   age 10ms: 1.0
653         //   age 50ms: 1.0
654         //   age 60ms: 0.5
655         float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
656                 * 0.000001f;
657         if (ageMillis < 0) {
658             return 0.5f;
659         }
660         if (ageMillis < 10) {
661             return 0.5f + ageMillis * 0.05;
662         }
663         if (ageMillis < 50) {
664             return 1.0f;
665         }
666         if (ageMillis < 60) {
667             return 0.5f + (60 - ageMillis) * 0.05;
668         }
669         return 0.5f;
670     }
671 
672     case WEIGHTING_RECENT: {
673         // Weight points based on their age, weighing older points less.
674         //   age   0ms: 1.0
675         //   age  50ms: 1.0
676         //   age 100ms: 0.5
677         float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
678                 * 0.000001f;
679         if (ageMillis < 50) {
680             return 1.0f;
681         }
682         if (ageMillis < 100) {
683             return 0.5f + (100 - ageMillis) * 0.01f;
684         }
685         return 0.5f;
686     }
687 
688     case WEIGHTING_NONE:
689     default:
690         return 1.0f;
691     }
692 }
693 
694 
695 // --- IntegratingVelocityTrackerStrategy ---
696 
IntegratingVelocityTrackerStrategy(uint32_t degree)697 IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
698         mDegree(degree) {
699 }
700 
~IntegratingVelocityTrackerStrategy()701 IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
702 }
703 
clear()704 void IntegratingVelocityTrackerStrategy::clear() {
705     mPointerIdBits.clear();
706 }
707 
clearPointers(BitSet32 idBits)708 void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
709     mPointerIdBits.value &= ~idBits.value;
710 }
711 
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)712 void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
713         const VelocityTracker::Position* positions) {
714     uint32_t index = 0;
715     for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
716         uint32_t id = iterIdBits.clearFirstMarkedBit();
717         State& state = mPointerState[id];
718         const VelocityTracker::Position& position = positions[index++];
719         if (mPointerIdBits.hasBit(id)) {
720             updateState(state, eventTime, position.x, position.y);
721         } else {
722             initState(state, eventTime, position.x, position.y);
723         }
724     }
725 
726     mPointerIdBits = idBits;
727 }
728 
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const729 bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
730         VelocityTracker::Estimator* outEstimator) const {
731     outEstimator->clear();
732 
733     if (mPointerIdBits.hasBit(id)) {
734         const State& state = mPointerState[id];
735         populateEstimator(state, outEstimator);
736         return true;
737     }
738 
739     return false;
740 }
741 
initState(State & state,nsecs_t eventTime,float xpos,float ypos) const742 void IntegratingVelocityTrackerStrategy::initState(State& state,
743         nsecs_t eventTime, float xpos, float ypos) const {
744     state.updateTime = eventTime;
745     state.degree = 0;
746 
747     state.xpos = xpos;
748     state.xvel = 0;
749     state.xaccel = 0;
750     state.ypos = ypos;
751     state.yvel = 0;
752     state.yaccel = 0;
753 }
754 
updateState(State & state,nsecs_t eventTime,float xpos,float ypos) const755 void IntegratingVelocityTrackerStrategy::updateState(State& state,
756         nsecs_t eventTime, float xpos, float ypos) const {
757     const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
758     const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
759 
760     if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
761         return;
762     }
763 
764     float dt = (eventTime - state.updateTime) * 0.000000001f;
765     state.updateTime = eventTime;
766 
767     float xvel = (xpos - state.xpos) / dt;
768     float yvel = (ypos - state.ypos) / dt;
769     if (state.degree == 0) {
770         state.xvel = xvel;
771         state.yvel = yvel;
772         state.degree = 1;
773     } else {
774         float alpha = dt / (FILTER_TIME_CONSTANT + dt);
775         if (mDegree == 1) {
776             state.xvel += (xvel - state.xvel) * alpha;
777             state.yvel += (yvel - state.yvel) * alpha;
778         } else {
779             float xaccel = (xvel - state.xvel) / dt;
780             float yaccel = (yvel - state.yvel) / dt;
781             if (state.degree == 1) {
782                 state.xaccel = xaccel;
783                 state.yaccel = yaccel;
784                 state.degree = 2;
785             } else {
786                 state.xaccel += (xaccel - state.xaccel) * alpha;
787                 state.yaccel += (yaccel - state.yaccel) * alpha;
788             }
789             state.xvel += (state.xaccel * dt) * alpha;
790             state.yvel += (state.yaccel * dt) * alpha;
791         }
792     }
793     state.xpos = xpos;
794     state.ypos = ypos;
795 }
796 
populateEstimator(const State & state,VelocityTracker::Estimator * outEstimator) const797 void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
798         VelocityTracker::Estimator* outEstimator) const {
799     outEstimator->time = state.updateTime;
800     outEstimator->confidence = 1.0f;
801     outEstimator->degree = state.degree;
802     outEstimator->xCoeff[0] = state.xpos;
803     outEstimator->xCoeff[1] = state.xvel;
804     outEstimator->xCoeff[2] = state.xaccel / 2;
805     outEstimator->yCoeff[0] = state.ypos;
806     outEstimator->yCoeff[1] = state.yvel;
807     outEstimator->yCoeff[2] = state.yaccel / 2;
808 }
809 
810 
811 // --- LegacyVelocityTrackerStrategy ---
812 
813 const nsecs_t LegacyVelocityTrackerStrategy::HORIZON;
814 const uint32_t LegacyVelocityTrackerStrategy::HISTORY_SIZE;
815 const nsecs_t LegacyVelocityTrackerStrategy::MIN_DURATION;
816 
LegacyVelocityTrackerStrategy()817 LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {
818     clear();
819 }
820 
~LegacyVelocityTrackerStrategy()821 LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
822 }
823 
clear()824 void LegacyVelocityTrackerStrategy::clear() {
825     mIndex = 0;
826     mMovements[0].idBits.clear();
827 }
828 
clearPointers(BitSet32 idBits)829 void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
830     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
831     mMovements[mIndex].idBits = remainingIdBits;
832 }
833 
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)834 void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
835         const VelocityTracker::Position* positions) {
836     if (++mIndex == HISTORY_SIZE) {
837         mIndex = 0;
838     }
839 
840     Movement& movement = mMovements[mIndex];
841     movement.eventTime = eventTime;
842     movement.idBits = idBits;
843     uint32_t count = idBits.count();
844     for (uint32_t i = 0; i < count; i++) {
845         movement.positions[i] = positions[i];
846     }
847 }
848 
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const849 bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id,
850         VelocityTracker::Estimator* outEstimator) const {
851     outEstimator->clear();
852 
853     const Movement& newestMovement = mMovements[mIndex];
854     if (!newestMovement.idBits.hasBit(id)) {
855         return false; // no data
856     }
857 
858     // Find the oldest sample that contains the pointer and that is not older than HORIZON.
859     nsecs_t minTime = newestMovement.eventTime - HORIZON;
860     uint32_t oldestIndex = mIndex;
861     uint32_t numTouches = 1;
862     do {
863         uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
864         const Movement& nextOldestMovement = mMovements[nextOldestIndex];
865         if (!nextOldestMovement.idBits.hasBit(id)
866                 || nextOldestMovement.eventTime < minTime) {
867             break;
868         }
869         oldestIndex = nextOldestIndex;
870     } while (++numTouches < HISTORY_SIZE);
871 
872     // Calculate an exponentially weighted moving average of the velocity estimate
873     // at different points in time measured relative to the oldest sample.
874     // This is essentially an IIR filter.  Newer samples are weighted more heavily
875     // than older samples.  Samples at equal time points are weighted more or less
876     // equally.
877     //
878     // One tricky problem is that the sample data may be poorly conditioned.
879     // Sometimes samples arrive very close together in time which can cause us to
880     // overestimate the velocity at that time point.  Most samples might be measured
881     // 16ms apart but some consecutive samples could be only 0.5sm apart because
882     // the hardware or driver reports them irregularly or in bursts.
883     float accumVx = 0;
884     float accumVy = 0;
885     uint32_t index = oldestIndex;
886     uint32_t samplesUsed = 0;
887     const Movement& oldestMovement = mMovements[oldestIndex];
888     const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id);
889     nsecs_t lastDuration = 0;
890 
891     while (numTouches-- > 1) {
892         if (++index == HISTORY_SIZE) {
893             index = 0;
894         }
895         const Movement& movement = mMovements[index];
896         nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
897 
898         // If the duration between samples is small, we may significantly overestimate
899         // the velocity.  Consequently, we impose a minimum duration constraint on the
900         // samples that we include in the calculation.
901         if (duration >= MIN_DURATION) {
902             const VelocityTracker::Position& position = movement.getPosition(id);
903             float scale = 1000000000.0f / duration; // one over time delta in seconds
904             float vx = (position.x - oldestPosition.x) * scale;
905             float vy = (position.y - oldestPosition.y) * scale;
906             accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration);
907             accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration);
908             lastDuration = duration;
909             samplesUsed += 1;
910         }
911     }
912 
913     // Report velocity.
914     const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id);
915     outEstimator->time = newestMovement.eventTime;
916     outEstimator->confidence = 1;
917     outEstimator->xCoeff[0] = newestPosition.x;
918     outEstimator->yCoeff[0] = newestPosition.y;
919     if (samplesUsed) {
920         outEstimator->xCoeff[1] = accumVx;
921         outEstimator->yCoeff[1] = accumVy;
922         outEstimator->degree = 1;
923     } else {
924         outEstimator->degree = 0;
925     }
926     return true;
927 }
928 
929 } // namespace android
930