1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "VelocityTracker"
18 //#define LOG_NDEBUG 0
19
20 // Log debug messages about velocity tracking.
21 #define DEBUG_VELOCITY 0
22
23 // Log debug messages about the progress of the algorithm itself.
24 #define DEBUG_STRATEGY 0
25
26 #include <inttypes.h>
27 #include <limits.h>
28 #include <math.h>
29
30 #include <android-base/stringprintf.h>
31 #include <cutils/properties.h>
32 #include <input/VelocityTracker.h>
33 #include <utils/BitSet.h>
34 #include <utils/Timers.h>
35
36 namespace android {
37
38 // Nanoseconds per milliseconds.
39 static const nsecs_t NANOS_PER_MS = 1000000;
40
41 // Threshold for determining that a pointer has stopped moving.
42 // Some input devices do not send ACTION_MOVE events in the case where a pointer has
43 // stopped. We need to detect this case so that we can accurately predict the
44 // velocity after the pointer starts moving again.
45 static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;
46
47
vectorDot(const float * a,const float * b,uint32_t m)48 static float vectorDot(const float* a, const float* b, uint32_t m) {
49 float r = 0;
50 for (size_t i = 0; i < m; i++) {
51 r += *(a++) * *(b++);
52 }
53 return r;
54 }
55
vectorNorm(const float * a,uint32_t m)56 static float vectorNorm(const float* a, uint32_t m) {
57 float r = 0;
58 for (size_t i = 0; i < m; i++) {
59 float t = *(a++);
60 r += t * t;
61 }
62 return sqrtf(r);
63 }
64
65 #if DEBUG_STRATEGY || DEBUG_VELOCITY
vectorToString(const float * a,uint32_t m)66 static std::string vectorToString(const float* a, uint32_t m) {
67 std::string str;
68 str += "[";
69 for (size_t i = 0; i < m; i++) {
70 if (i) {
71 str += ",";
72 }
73 str += android::base::StringPrintf(" %f", *(a++));
74 }
75 str += " ]";
76 return str;
77 }
78
matrixToString(const float * a,uint32_t m,uint32_t n,bool rowMajor)79 static std::string matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
80 std::string str;
81 str = "[";
82 for (size_t i = 0; i < m; i++) {
83 if (i) {
84 str += ",";
85 }
86 str += " [";
87 for (size_t j = 0; j < n; j++) {
88 if (j) {
89 str += ",";
90 }
91 str += android::base::StringPrintf(" %f", a[rowMajor ? i * n + j : j * m + i]);
92 }
93 str += " ]";
94 }
95 str += " ]";
96 return str;
97 }
98 #endif
99
100
101 // --- VelocityTracker ---
102
103 // The default velocity tracker strategy.
104 // Although other strategies are available for testing and comparison purposes,
105 // this is the strategy that applications will actually use. Be very careful
106 // when adjusting the default strategy because it can dramatically affect
107 // (often in a bad way) the user experience.
108 const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2";
109
VelocityTracker(const char * strategy)110 VelocityTracker::VelocityTracker(const char* strategy) :
111 mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
112 char value[PROPERTY_VALUE_MAX];
113
114 // Allow the default strategy to be overridden using a system property for debugging.
115 if (!strategy) {
116 int length = property_get("debug.velocitytracker.strategy", value, NULL);
117 if (length > 0) {
118 strategy = value;
119 } else {
120 strategy = DEFAULT_STRATEGY;
121 }
122 }
123
124 // Configure the strategy.
125 if (!configureStrategy(strategy)) {
126 ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy);
127 if (!configureStrategy(DEFAULT_STRATEGY)) {
128 LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!",
129 strategy);
130 }
131 }
132 }
133
~VelocityTracker()134 VelocityTracker::~VelocityTracker() {
135 delete mStrategy;
136 }
137
configureStrategy(const char * strategy)138 bool VelocityTracker::configureStrategy(const char* strategy) {
139 mStrategy = createStrategy(strategy);
140 return mStrategy != NULL;
141 }
142
createStrategy(const char * strategy)143 VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
144 if (!strcmp("lsq1", strategy)) {
145 // 1st order least squares. Quality: POOR.
146 // Frequently underfits the touch data especially when the finger accelerates
147 // or changes direction. Often underestimates velocity. The direction
148 // is overly influenced by historical touch points.
149 return new LeastSquaresVelocityTrackerStrategy(1);
150 }
151 if (!strcmp("lsq2", strategy)) {
152 // 2nd order least squares. Quality: VERY GOOD.
153 // Pretty much ideal, but can be confused by certain kinds of touch data,
154 // particularly if the panel has a tendency to generate delayed,
155 // duplicate or jittery touch coordinates when the finger is released.
156 return new LeastSquaresVelocityTrackerStrategy(2);
157 }
158 if (!strcmp("lsq3", strategy)) {
159 // 3rd order least squares. Quality: UNUSABLE.
160 // Frequently overfits the touch data yielding wildly divergent estimates
161 // of the velocity when the finger is released.
162 return new LeastSquaresVelocityTrackerStrategy(3);
163 }
164 if (!strcmp("wlsq2-delta", strategy)) {
165 // 2nd order weighted least squares, delta weighting. Quality: EXPERIMENTAL
166 return new LeastSquaresVelocityTrackerStrategy(2,
167 LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA);
168 }
169 if (!strcmp("wlsq2-central", strategy)) {
170 // 2nd order weighted least squares, central weighting. Quality: EXPERIMENTAL
171 return new LeastSquaresVelocityTrackerStrategy(2,
172 LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL);
173 }
174 if (!strcmp("wlsq2-recent", strategy)) {
175 // 2nd order weighted least squares, recent weighting. Quality: EXPERIMENTAL
176 return new LeastSquaresVelocityTrackerStrategy(2,
177 LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT);
178 }
179 if (!strcmp("int1", strategy)) {
180 // 1st order integrating filter. Quality: GOOD.
181 // Not as good as 'lsq2' because it cannot estimate acceleration but it is
182 // more tolerant of errors. Like 'lsq1', this strategy tends to underestimate
183 // the velocity of a fling but this strategy tends to respond to changes in
184 // direction more quickly and accurately.
185 return new IntegratingVelocityTrackerStrategy(1);
186 }
187 if (!strcmp("int2", strategy)) {
188 // 2nd order integrating filter. Quality: EXPERIMENTAL.
189 // For comparison purposes only. Unlike 'int1' this strategy can compensate
190 // for acceleration but it typically overestimates the effect.
191 return new IntegratingVelocityTrackerStrategy(2);
192 }
193 if (!strcmp("legacy", strategy)) {
194 // Legacy velocity tracker algorithm. Quality: POOR.
195 // For comparison purposes only. This algorithm is strongly influenced by
196 // old data points, consistently underestimates velocity and takes a very long
197 // time to adjust to changes in direction.
198 return new LegacyVelocityTrackerStrategy();
199 }
200 return NULL;
201 }
202
clear()203 void VelocityTracker::clear() {
204 mCurrentPointerIdBits.clear();
205 mActivePointerId = -1;
206
207 mStrategy->clear();
208 }
209
clearPointers(BitSet32 idBits)210 void VelocityTracker::clearPointers(BitSet32 idBits) {
211 BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
212 mCurrentPointerIdBits = remainingIdBits;
213
214 if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
215 mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
216 }
217
218 mStrategy->clearPointers(idBits);
219 }
220
addMovement(nsecs_t eventTime,BitSet32 idBits,const Position * positions)221 void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
222 while (idBits.count() > MAX_POINTERS) {
223 idBits.clearLastMarkedBit();
224 }
225
226 if ((mCurrentPointerIdBits.value & idBits.value)
227 && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
228 #if DEBUG_VELOCITY
229 ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
230 (eventTime - mLastEventTime) * 0.000001f);
231 #endif
232 // We have not received any movements for too long. Assume that all pointers
233 // have stopped.
234 mStrategy->clear();
235 }
236 mLastEventTime = eventTime;
237
238 mCurrentPointerIdBits = idBits;
239 if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
240 mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
241 }
242
243 mStrategy->addMovement(eventTime, idBits, positions);
244
245 #if DEBUG_VELOCITY
246 ALOGD("VelocityTracker: addMovement eventTime=%" PRId64 ", idBits=0x%08x, activePointerId=%d",
247 eventTime, idBits.value, mActivePointerId);
248 for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
249 uint32_t id = iterBits.firstMarkedBit();
250 uint32_t index = idBits.getIndexOfBit(id);
251 iterBits.clearBit(id);
252 Estimator estimator;
253 getEstimator(id, &estimator);
254 ALOGD(" %d: position (%0.3f, %0.3f), "
255 "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
256 id, positions[index].x, positions[index].y,
257 int(estimator.degree),
258 vectorToString(estimator.xCoeff, estimator.degree + 1).c_str(),
259 vectorToString(estimator.yCoeff, estimator.degree + 1).c_str(),
260 estimator.confidence);
261 }
262 #endif
263 }
264
addMovement(const MotionEvent * event)265 void VelocityTracker::addMovement(const MotionEvent* event) {
266 int32_t actionMasked = event->getActionMasked();
267
268 switch (actionMasked) {
269 case AMOTION_EVENT_ACTION_DOWN:
270 case AMOTION_EVENT_ACTION_HOVER_ENTER:
271 // Clear all pointers on down before adding the new movement.
272 clear();
273 break;
274 case AMOTION_EVENT_ACTION_POINTER_DOWN: {
275 // Start a new movement trace for a pointer that just went down.
276 // We do this on down instead of on up because the client may want to query the
277 // final velocity for a pointer that just went up.
278 BitSet32 downIdBits;
279 downIdBits.markBit(event->getPointerId(event->getActionIndex()));
280 clearPointers(downIdBits);
281 break;
282 }
283 case AMOTION_EVENT_ACTION_MOVE:
284 case AMOTION_EVENT_ACTION_HOVER_MOVE:
285 break;
286 default:
287 // Ignore all other actions because they do not convey any new information about
288 // pointer movement. We also want to preserve the last known velocity of the pointers.
289 // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
290 // of the pointers that went up. ACTION_POINTER_UP does include the new position of
291 // pointers that remained down but we will also receive an ACTION_MOVE with this
292 // information if any of them actually moved. Since we don't know how many pointers
293 // will be going up at once it makes sense to just wait for the following ACTION_MOVE
294 // before adding the movement.
295 return;
296 }
297
298 size_t pointerCount = event->getPointerCount();
299 if (pointerCount > MAX_POINTERS) {
300 pointerCount = MAX_POINTERS;
301 }
302
303 BitSet32 idBits;
304 for (size_t i = 0; i < pointerCount; i++) {
305 idBits.markBit(event->getPointerId(i));
306 }
307
308 uint32_t pointerIndex[MAX_POINTERS];
309 for (size_t i = 0; i < pointerCount; i++) {
310 pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
311 }
312
313 nsecs_t eventTime;
314 Position positions[pointerCount];
315
316 size_t historySize = event->getHistorySize();
317 for (size_t h = 0; h < historySize; h++) {
318 eventTime = event->getHistoricalEventTime(h);
319 for (size_t i = 0; i < pointerCount; i++) {
320 uint32_t index = pointerIndex[i];
321 positions[index].x = event->getHistoricalX(i, h);
322 positions[index].y = event->getHistoricalY(i, h);
323 }
324 addMovement(eventTime, idBits, positions);
325 }
326
327 eventTime = event->getEventTime();
328 for (size_t i = 0; i < pointerCount; i++) {
329 uint32_t index = pointerIndex[i];
330 positions[index].x = event->getX(i);
331 positions[index].y = event->getY(i);
332 }
333 addMovement(eventTime, idBits, positions);
334 }
335
getVelocity(uint32_t id,float * outVx,float * outVy) const336 bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
337 Estimator estimator;
338 if (getEstimator(id, &estimator) && estimator.degree >= 1) {
339 *outVx = estimator.xCoeff[1];
340 *outVy = estimator.yCoeff[1];
341 return true;
342 }
343 *outVx = 0;
344 *outVy = 0;
345 return false;
346 }
347
getEstimator(uint32_t id,Estimator * outEstimator) const348 bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
349 return mStrategy->getEstimator(id, outEstimator);
350 }
351
352
353 // --- LeastSquaresVelocityTrackerStrategy ---
354
355 const nsecs_t LeastSquaresVelocityTrackerStrategy::HORIZON;
356 const uint32_t LeastSquaresVelocityTrackerStrategy::HISTORY_SIZE;
357
LeastSquaresVelocityTrackerStrategy(uint32_t degree,Weighting weighting)358 LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
359 uint32_t degree, Weighting weighting) :
360 mDegree(degree), mWeighting(weighting) {
361 clear();
362 }
363
~LeastSquaresVelocityTrackerStrategy()364 LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
365 }
366
clear()367 void LeastSquaresVelocityTrackerStrategy::clear() {
368 mIndex = 0;
369 mMovements[0].idBits.clear();
370 }
371
clearPointers(BitSet32 idBits)372 void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
373 BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
374 mMovements[mIndex].idBits = remainingIdBits;
375 }
376
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)377 void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
378 const VelocityTracker::Position* positions) {
379 if (++mIndex == HISTORY_SIZE) {
380 mIndex = 0;
381 }
382
383 Movement& movement = mMovements[mIndex];
384 movement.eventTime = eventTime;
385 movement.idBits = idBits;
386 uint32_t count = idBits.count();
387 for (uint32_t i = 0; i < count; i++) {
388 movement.positions[i] = positions[i];
389 }
390 }
391
392 /**
393 * Solves a linear least squares problem to obtain a N degree polynomial that fits
394 * the specified input data as nearly as possible.
395 *
396 * Returns true if a solution is found, false otherwise.
397 *
398 * The input consists of two vectors of data points X and Y with indices 0..m-1
399 * along with a weight vector W of the same size.
400 *
401 * The output is a vector B with indices 0..n that describes a polynomial
402 * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
403 * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
404 *
405 * Accordingly, the weight vector W should be initialized by the caller with the
406 * reciprocal square root of the variance of the error in each input data point.
407 * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
408 * The weights express the relative importance of each data point. If the weights are
409 * all 1, then the data points are considered to be of equal importance when fitting
410 * the polynomial. It is a good idea to choose weights that diminish the importance
411 * of data points that may have higher than usual error margins.
412 *
413 * Errors among data points are assumed to be independent. W is represented here
414 * as a vector although in the literature it is typically taken to be a diagonal matrix.
415 *
416 * That is to say, the function that generated the input data can be approximated
417 * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
418 *
419 * The coefficient of determination (R^2) is also returned to describe the goodness
420 * of fit of the model for the given data. It is a value between 0 and 1, where 1
421 * indicates perfect correspondence.
422 *
423 * This function first expands the X vector to a m by n matrix A such that
424 * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
425 * multiplies it by w[i]./
426 *
427 * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
428 * and an m by n upper triangular matrix R. Because R is upper triangular (lower
429 * part is all zeroes), we can simplify the decomposition into an m by n matrix
430 * Q1 and a n by n matrix R1 such that A = Q1 R1.
431 *
432 * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
433 * to find B.
434 *
435 * For efficiency, we lay out A and Q column-wise in memory because we frequently
436 * operate on the column vectors. Conversely, we lay out R row-wise.
437 *
438 * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
439 * http://en.wikipedia.org/wiki/Gram-Schmidt
440 */
solveLeastSquares(const float * x,const float * y,const float * w,uint32_t m,uint32_t n,float * outB,float * outDet)441 static bool solveLeastSquares(const float* x, const float* y,
442 const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) {
443 #if DEBUG_STRATEGY
444 ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
445 vectorToString(x, m).c_str(), vectorToString(y, m).c_str(),
446 vectorToString(w, m).c_str());
447 #endif
448
449 // Expand the X vector to a matrix A, pre-multiplied by the weights.
450 float a[n][m]; // column-major order
451 for (uint32_t h = 0; h < m; h++) {
452 a[0][h] = w[h];
453 for (uint32_t i = 1; i < n; i++) {
454 a[i][h] = a[i - 1][h] * x[h];
455 }
456 }
457 #if DEBUG_STRATEGY
458 ALOGD(" - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).c_str());
459 #endif
460
461 // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
462 float q[n][m]; // orthonormal basis, column-major order
463 float r[n][n]; // upper triangular matrix, row-major order
464 for (uint32_t j = 0; j < n; j++) {
465 for (uint32_t h = 0; h < m; h++) {
466 q[j][h] = a[j][h];
467 }
468 for (uint32_t i = 0; i < j; i++) {
469 float dot = vectorDot(&q[j][0], &q[i][0], m);
470 for (uint32_t h = 0; h < m; h++) {
471 q[j][h] -= dot * q[i][h];
472 }
473 }
474
475 float norm = vectorNorm(&q[j][0], m);
476 if (norm < 0.000001f) {
477 // vectors are linearly dependent or zero so no solution
478 #if DEBUG_STRATEGY
479 ALOGD(" - no solution, norm=%f", norm);
480 #endif
481 return false;
482 }
483
484 float invNorm = 1.0f / norm;
485 for (uint32_t h = 0; h < m; h++) {
486 q[j][h] *= invNorm;
487 }
488 for (uint32_t i = 0; i < n; i++) {
489 r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
490 }
491 }
492 #if DEBUG_STRATEGY
493 ALOGD(" - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).c_str());
494 ALOGD(" - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).c_str());
495
496 // calculate QR, if we factored A correctly then QR should equal A
497 float qr[n][m];
498 for (uint32_t h = 0; h < m; h++) {
499 for (uint32_t i = 0; i < n; i++) {
500 qr[i][h] = 0;
501 for (uint32_t j = 0; j < n; j++) {
502 qr[i][h] += q[j][h] * r[j][i];
503 }
504 }
505 }
506 ALOGD(" - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).c_str());
507 #endif
508
509 // Solve R B = Qt W Y to find B. This is easy because R is upper triangular.
510 // We just work from bottom-right to top-left calculating B's coefficients.
511 float wy[m];
512 for (uint32_t h = 0; h < m; h++) {
513 wy[h] = y[h] * w[h];
514 }
515 for (uint32_t i = n; i != 0; ) {
516 i--;
517 outB[i] = vectorDot(&q[i][0], wy, m);
518 for (uint32_t j = n - 1; j > i; j--) {
519 outB[i] -= r[i][j] * outB[j];
520 }
521 outB[i] /= r[i][i];
522 }
523 #if DEBUG_STRATEGY
524 ALOGD(" - b=%s", vectorToString(outB, n).c_str());
525 #endif
526
527 // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
528 // SSerr is the residual sum of squares (variance of the error),
529 // and SStot is the total sum of squares (variance of the data) where each
530 // has been weighted.
531 float ymean = 0;
532 for (uint32_t h = 0; h < m; h++) {
533 ymean += y[h];
534 }
535 ymean /= m;
536
537 float sserr = 0;
538 float sstot = 0;
539 for (uint32_t h = 0; h < m; h++) {
540 float err = y[h] - outB[0];
541 float term = 1;
542 for (uint32_t i = 1; i < n; i++) {
543 term *= x[h];
544 err -= term * outB[i];
545 }
546 sserr += w[h] * w[h] * err * err;
547 float var = y[h] - ymean;
548 sstot += w[h] * w[h] * var * var;
549 }
550 *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
551 #if DEBUG_STRATEGY
552 ALOGD(" - sserr=%f", sserr);
553 ALOGD(" - sstot=%f", sstot);
554 ALOGD(" - det=%f", *outDet);
555 #endif
556 return true;
557 }
558
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const559 bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
560 VelocityTracker::Estimator* outEstimator) const {
561 outEstimator->clear();
562
563 // Iterate over movement samples in reverse time order and collect samples.
564 float x[HISTORY_SIZE];
565 float y[HISTORY_SIZE];
566 float w[HISTORY_SIZE];
567 float time[HISTORY_SIZE];
568 uint32_t m = 0;
569 uint32_t index = mIndex;
570 const Movement& newestMovement = mMovements[mIndex];
571 do {
572 const Movement& movement = mMovements[index];
573 if (!movement.idBits.hasBit(id)) {
574 break;
575 }
576
577 nsecs_t age = newestMovement.eventTime - movement.eventTime;
578 if (age > HORIZON) {
579 break;
580 }
581
582 const VelocityTracker::Position& position = movement.getPosition(id);
583 x[m] = position.x;
584 y[m] = position.y;
585 w[m] = chooseWeight(index);
586 time[m] = -age * 0.000000001f;
587 index = (index == 0 ? HISTORY_SIZE : index) - 1;
588 } while (++m < HISTORY_SIZE);
589
590 if (m == 0) {
591 return false; // no data
592 }
593
594 // Calculate a least squares polynomial fit.
595 uint32_t degree = mDegree;
596 if (degree > m - 1) {
597 degree = m - 1;
598 }
599 if (degree >= 1) {
600 float xdet, ydet;
601 uint32_t n = degree + 1;
602 if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
603 && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
604 outEstimator->time = newestMovement.eventTime;
605 outEstimator->degree = degree;
606 outEstimator->confidence = xdet * ydet;
607 #if DEBUG_STRATEGY
608 ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
609 int(outEstimator->degree),
610 vectorToString(outEstimator->xCoeff, n).c_str(),
611 vectorToString(outEstimator->yCoeff, n).c_str(),
612 outEstimator->confidence);
613 #endif
614 return true;
615 }
616 }
617
618 // No velocity data available for this pointer, but we do have its current position.
619 outEstimator->xCoeff[0] = x[0];
620 outEstimator->yCoeff[0] = y[0];
621 outEstimator->time = newestMovement.eventTime;
622 outEstimator->degree = 0;
623 outEstimator->confidence = 1;
624 return true;
625 }
626
chooseWeight(uint32_t index) const627 float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
628 switch (mWeighting) {
629 case WEIGHTING_DELTA: {
630 // Weight points based on how much time elapsed between them and the next
631 // point so that points that "cover" a shorter time span are weighed less.
632 // delta 0ms: 0.5
633 // delta 10ms: 1.0
634 if (index == mIndex) {
635 return 1.0f;
636 }
637 uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
638 float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
639 * 0.000001f;
640 if (deltaMillis < 0) {
641 return 0.5f;
642 }
643 if (deltaMillis < 10) {
644 return 0.5f + deltaMillis * 0.05;
645 }
646 return 1.0f;
647 }
648
649 case WEIGHTING_CENTRAL: {
650 // Weight points based on their age, weighing very recent and very old points less.
651 // age 0ms: 0.5
652 // age 10ms: 1.0
653 // age 50ms: 1.0
654 // age 60ms: 0.5
655 float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
656 * 0.000001f;
657 if (ageMillis < 0) {
658 return 0.5f;
659 }
660 if (ageMillis < 10) {
661 return 0.5f + ageMillis * 0.05;
662 }
663 if (ageMillis < 50) {
664 return 1.0f;
665 }
666 if (ageMillis < 60) {
667 return 0.5f + (60 - ageMillis) * 0.05;
668 }
669 return 0.5f;
670 }
671
672 case WEIGHTING_RECENT: {
673 // Weight points based on their age, weighing older points less.
674 // age 0ms: 1.0
675 // age 50ms: 1.0
676 // age 100ms: 0.5
677 float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
678 * 0.000001f;
679 if (ageMillis < 50) {
680 return 1.0f;
681 }
682 if (ageMillis < 100) {
683 return 0.5f + (100 - ageMillis) * 0.01f;
684 }
685 return 0.5f;
686 }
687
688 case WEIGHTING_NONE:
689 default:
690 return 1.0f;
691 }
692 }
693
694
695 // --- IntegratingVelocityTrackerStrategy ---
696
IntegratingVelocityTrackerStrategy(uint32_t degree)697 IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
698 mDegree(degree) {
699 }
700
~IntegratingVelocityTrackerStrategy()701 IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
702 }
703
clear()704 void IntegratingVelocityTrackerStrategy::clear() {
705 mPointerIdBits.clear();
706 }
707
clearPointers(BitSet32 idBits)708 void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
709 mPointerIdBits.value &= ~idBits.value;
710 }
711
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)712 void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
713 const VelocityTracker::Position* positions) {
714 uint32_t index = 0;
715 for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
716 uint32_t id = iterIdBits.clearFirstMarkedBit();
717 State& state = mPointerState[id];
718 const VelocityTracker::Position& position = positions[index++];
719 if (mPointerIdBits.hasBit(id)) {
720 updateState(state, eventTime, position.x, position.y);
721 } else {
722 initState(state, eventTime, position.x, position.y);
723 }
724 }
725
726 mPointerIdBits = idBits;
727 }
728
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const729 bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
730 VelocityTracker::Estimator* outEstimator) const {
731 outEstimator->clear();
732
733 if (mPointerIdBits.hasBit(id)) {
734 const State& state = mPointerState[id];
735 populateEstimator(state, outEstimator);
736 return true;
737 }
738
739 return false;
740 }
741
initState(State & state,nsecs_t eventTime,float xpos,float ypos) const742 void IntegratingVelocityTrackerStrategy::initState(State& state,
743 nsecs_t eventTime, float xpos, float ypos) const {
744 state.updateTime = eventTime;
745 state.degree = 0;
746
747 state.xpos = xpos;
748 state.xvel = 0;
749 state.xaccel = 0;
750 state.ypos = ypos;
751 state.yvel = 0;
752 state.yaccel = 0;
753 }
754
updateState(State & state,nsecs_t eventTime,float xpos,float ypos) const755 void IntegratingVelocityTrackerStrategy::updateState(State& state,
756 nsecs_t eventTime, float xpos, float ypos) const {
757 const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
758 const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
759
760 if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
761 return;
762 }
763
764 float dt = (eventTime - state.updateTime) * 0.000000001f;
765 state.updateTime = eventTime;
766
767 float xvel = (xpos - state.xpos) / dt;
768 float yvel = (ypos - state.ypos) / dt;
769 if (state.degree == 0) {
770 state.xvel = xvel;
771 state.yvel = yvel;
772 state.degree = 1;
773 } else {
774 float alpha = dt / (FILTER_TIME_CONSTANT + dt);
775 if (mDegree == 1) {
776 state.xvel += (xvel - state.xvel) * alpha;
777 state.yvel += (yvel - state.yvel) * alpha;
778 } else {
779 float xaccel = (xvel - state.xvel) / dt;
780 float yaccel = (yvel - state.yvel) / dt;
781 if (state.degree == 1) {
782 state.xaccel = xaccel;
783 state.yaccel = yaccel;
784 state.degree = 2;
785 } else {
786 state.xaccel += (xaccel - state.xaccel) * alpha;
787 state.yaccel += (yaccel - state.yaccel) * alpha;
788 }
789 state.xvel += (state.xaccel * dt) * alpha;
790 state.yvel += (state.yaccel * dt) * alpha;
791 }
792 }
793 state.xpos = xpos;
794 state.ypos = ypos;
795 }
796
populateEstimator(const State & state,VelocityTracker::Estimator * outEstimator) const797 void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
798 VelocityTracker::Estimator* outEstimator) const {
799 outEstimator->time = state.updateTime;
800 outEstimator->confidence = 1.0f;
801 outEstimator->degree = state.degree;
802 outEstimator->xCoeff[0] = state.xpos;
803 outEstimator->xCoeff[1] = state.xvel;
804 outEstimator->xCoeff[2] = state.xaccel / 2;
805 outEstimator->yCoeff[0] = state.ypos;
806 outEstimator->yCoeff[1] = state.yvel;
807 outEstimator->yCoeff[2] = state.yaccel / 2;
808 }
809
810
811 // --- LegacyVelocityTrackerStrategy ---
812
813 const nsecs_t LegacyVelocityTrackerStrategy::HORIZON;
814 const uint32_t LegacyVelocityTrackerStrategy::HISTORY_SIZE;
815 const nsecs_t LegacyVelocityTrackerStrategy::MIN_DURATION;
816
LegacyVelocityTrackerStrategy()817 LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {
818 clear();
819 }
820
~LegacyVelocityTrackerStrategy()821 LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
822 }
823
clear()824 void LegacyVelocityTrackerStrategy::clear() {
825 mIndex = 0;
826 mMovements[0].idBits.clear();
827 }
828
clearPointers(BitSet32 idBits)829 void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
830 BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
831 mMovements[mIndex].idBits = remainingIdBits;
832 }
833
addMovement(nsecs_t eventTime,BitSet32 idBits,const VelocityTracker::Position * positions)834 void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
835 const VelocityTracker::Position* positions) {
836 if (++mIndex == HISTORY_SIZE) {
837 mIndex = 0;
838 }
839
840 Movement& movement = mMovements[mIndex];
841 movement.eventTime = eventTime;
842 movement.idBits = idBits;
843 uint32_t count = idBits.count();
844 for (uint32_t i = 0; i < count; i++) {
845 movement.positions[i] = positions[i];
846 }
847 }
848
getEstimator(uint32_t id,VelocityTracker::Estimator * outEstimator) const849 bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id,
850 VelocityTracker::Estimator* outEstimator) const {
851 outEstimator->clear();
852
853 const Movement& newestMovement = mMovements[mIndex];
854 if (!newestMovement.idBits.hasBit(id)) {
855 return false; // no data
856 }
857
858 // Find the oldest sample that contains the pointer and that is not older than HORIZON.
859 nsecs_t minTime = newestMovement.eventTime - HORIZON;
860 uint32_t oldestIndex = mIndex;
861 uint32_t numTouches = 1;
862 do {
863 uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
864 const Movement& nextOldestMovement = mMovements[nextOldestIndex];
865 if (!nextOldestMovement.idBits.hasBit(id)
866 || nextOldestMovement.eventTime < minTime) {
867 break;
868 }
869 oldestIndex = nextOldestIndex;
870 } while (++numTouches < HISTORY_SIZE);
871
872 // Calculate an exponentially weighted moving average of the velocity estimate
873 // at different points in time measured relative to the oldest sample.
874 // This is essentially an IIR filter. Newer samples are weighted more heavily
875 // than older samples. Samples at equal time points are weighted more or less
876 // equally.
877 //
878 // One tricky problem is that the sample data may be poorly conditioned.
879 // Sometimes samples arrive very close together in time which can cause us to
880 // overestimate the velocity at that time point. Most samples might be measured
881 // 16ms apart but some consecutive samples could be only 0.5sm apart because
882 // the hardware or driver reports them irregularly or in bursts.
883 float accumVx = 0;
884 float accumVy = 0;
885 uint32_t index = oldestIndex;
886 uint32_t samplesUsed = 0;
887 const Movement& oldestMovement = mMovements[oldestIndex];
888 const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id);
889 nsecs_t lastDuration = 0;
890
891 while (numTouches-- > 1) {
892 if (++index == HISTORY_SIZE) {
893 index = 0;
894 }
895 const Movement& movement = mMovements[index];
896 nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
897
898 // If the duration between samples is small, we may significantly overestimate
899 // the velocity. Consequently, we impose a minimum duration constraint on the
900 // samples that we include in the calculation.
901 if (duration >= MIN_DURATION) {
902 const VelocityTracker::Position& position = movement.getPosition(id);
903 float scale = 1000000000.0f / duration; // one over time delta in seconds
904 float vx = (position.x - oldestPosition.x) * scale;
905 float vy = (position.y - oldestPosition.y) * scale;
906 accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration);
907 accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration);
908 lastDuration = duration;
909 samplesUsed += 1;
910 }
911 }
912
913 // Report velocity.
914 const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id);
915 outEstimator->time = newestMovement.eventTime;
916 outEstimator->confidence = 1;
917 outEstimator->xCoeff[0] = newestPosition.x;
918 outEstimator->yCoeff[0] = newestPosition.y;
919 if (samplesUsed) {
920 outEstimator->xCoeff[1] = accumVx;
921 outEstimator->yCoeff[1] = accumVy;
922 outEstimator->degree = 1;
923 } else {
924 outEstimator->degree = 0;
925 }
926 return true;
927 }
928
929 } // namespace android
930