1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ANDROID_MAT_H
18 #define ANDROID_MAT_H
19
20 #include "vec.h"
21 #include "traits.h"
22
23 // -----------------------------------------------------------------------
24
25 namespace android {
26
27 template <typename TYPE, size_t C, size_t R>
28 class mat;
29
30 namespace helpers {
31
32 template <typename TYPE, size_t C, size_t R>
doAssign(mat<TYPE,C,R> & lhs,typename TypeTraits<TYPE>::ParameterType rhs)33 mat<TYPE, C, R>& doAssign(
34 mat<TYPE, C, R>& lhs,
35 typename TypeTraits<TYPE>::ParameterType rhs) {
36 for (size_t i=0 ; i<C ; i++)
37 for (size_t j=0 ; j<R ; j++)
38 lhs[i][j] = (i==j) ? rhs : 0;
39 return lhs;
40 }
41
42 template <typename TYPE, size_t C, size_t R, size_t D>
doMul(const mat<TYPE,D,R> & lhs,const mat<TYPE,C,D> & rhs)43 mat<TYPE, C, R> PURE doMul(
44 const mat<TYPE, D, R>& lhs,
45 const mat<TYPE, C, D>& rhs)
46 {
47 mat<TYPE, C, R> res;
48 for (size_t c=0 ; c<C ; c++) {
49 for (size_t r=0 ; r<R ; r++) {
50 TYPE v(0);
51 for (size_t k=0 ; k<D ; k++) {
52 v += lhs[k][r] * rhs[c][k];
53 }
54 res[c][r] = v;
55 }
56 }
57 return res;
58 }
59
60 template <typename TYPE, size_t R, size_t D>
doMul(const mat<TYPE,D,R> & lhs,const vec<TYPE,D> & rhs)61 vec<TYPE, R> PURE doMul(
62 const mat<TYPE, D, R>& lhs,
63 const vec<TYPE, D>& rhs)
64 {
65 vec<TYPE, R> res;
66 for (size_t r=0 ; r<R ; r++) {
67 TYPE v(0);
68 for (size_t k=0 ; k<D ; k++) {
69 v += lhs[k][r] * rhs[k];
70 }
71 res[r] = v;
72 }
73 return res;
74 }
75
76 template <typename TYPE, size_t C, size_t R>
doMul(const vec<TYPE,R> & lhs,const mat<TYPE,C,1> & rhs)77 mat<TYPE, C, R> PURE doMul(
78 const vec<TYPE, R>& lhs,
79 const mat<TYPE, C, 1>& rhs)
80 {
81 mat<TYPE, C, R> res;
82 for (size_t c=0 ; c<C ; c++) {
83 for (size_t r=0 ; r<R ; r++) {
84 res[c][r] = lhs[r] * rhs[c][0];
85 }
86 }
87 return res;
88 }
89
90 template <typename TYPE, size_t C, size_t R>
doMul(const mat<TYPE,C,R> & rhs,typename TypeTraits<TYPE>::ParameterType v)91 mat<TYPE, C, R> PURE doMul(
92 const mat<TYPE, C, R>& rhs,
93 typename TypeTraits<TYPE>::ParameterType v)
94 {
95 mat<TYPE, C, R> res;
96 for (size_t c=0 ; c<C ; c++) {
97 for (size_t r=0 ; r<R ; r++) {
98 res[c][r] = rhs[c][r] * v;
99 }
100 }
101 return res;
102 }
103
104 template <typename TYPE, size_t C, size_t R>
doMul(typename TypeTraits<TYPE>::ParameterType v,const mat<TYPE,C,R> & rhs)105 mat<TYPE, C, R> PURE doMul(
106 typename TypeTraits<TYPE>::ParameterType v,
107 const mat<TYPE, C, R>& rhs)
108 {
109 mat<TYPE, C, R> res;
110 for (size_t c=0 ; c<C ; c++) {
111 for (size_t r=0 ; r<R ; r++) {
112 res[c][r] = v * rhs[c][r];
113 }
114 }
115 return res;
116 }
117
118
119 }; // namespace helpers
120
121 // -----------------------------------------------------------------------
122
123 template <typename TYPE, size_t C, size_t R>
124 class mat : public vec< vec<TYPE, R>, C > {
125 typedef typename TypeTraits<TYPE>::ParameterType pTYPE;
126 typedef vec< vec<TYPE, R>, C > base;
127 public:
128 // STL-like interface.
129 typedef TYPE value_type;
130 typedef TYPE& reference;
131 typedef TYPE const& const_reference;
132 typedef size_t size_type;
size()133 size_type size() const { return R*C; }
134 enum { ROWS = R, COLS = C };
135
136
137 // -----------------------------------------------------------------------
138 // default constructors
139
mat()140 mat() { }
mat(const mat & rhs)141 mat(const mat& rhs) : base(rhs) { }
mat(const base & rhs)142 mat(const base& rhs) : base(rhs) { } // NOLINT(implicit)
143
144 // -----------------------------------------------------------------------
145 // conversion constructors
146
147 // sets the diagonal to the value, off-diagonal to zero
mat(pTYPE rhs)148 mat(pTYPE rhs) { // NOLINT(implicit)
149 helpers::doAssign(*this, rhs);
150 }
151
152 // -----------------------------------------------------------------------
153 // Assignment
154
155 mat& operator=(const mat& rhs) {
156 base::operator=(rhs);
157 return *this;
158 }
159
160 mat& operator=(const base& rhs) {
161 base::operator=(rhs);
162 return *this;
163 }
164
165 mat& operator=(pTYPE rhs) {
166 return helpers::doAssign(*this, rhs);
167 }
168
169 // -----------------------------------------------------------------------
170 // non-member function declaration and definition
171
172 friend inline mat PURE operator + (const mat& lhs, const mat& rhs) {
173 return helpers::doAdd(
174 static_cast<const base&>(lhs),
175 static_cast<const base&>(rhs));
176 }
177 friend inline mat PURE operator - (const mat& lhs, const mat& rhs) {
178 return helpers::doSub(
179 static_cast<const base&>(lhs),
180 static_cast<const base&>(rhs));
181 }
182
183 // matrix*matrix
184 template <size_t D>
185 friend mat PURE operator * (
186 const mat<TYPE, D, R>& lhs,
187 const mat<TYPE, C, D>& rhs) {
188 return helpers::doMul(lhs, rhs);
189 }
190
191 // matrix*vector
192 friend vec<TYPE, R> PURE operator * (
193 const mat& lhs, const vec<TYPE, C>& rhs) {
194 return helpers::doMul(lhs, rhs);
195 }
196
197 // vector*matrix
198 friend mat PURE operator * (
199 const vec<TYPE, R>& lhs, const mat<TYPE, C, 1>& rhs) {
200 return helpers::doMul(lhs, rhs);
201 }
202
203 // matrix*scalar
204 friend inline mat PURE operator * (const mat& lhs, pTYPE v) {
205 return helpers::doMul(lhs, v);
206 }
207
208 // scalar*matrix
209 friend inline mat PURE operator * (pTYPE v, const mat& rhs) {
210 return helpers::doMul(v, rhs);
211 }
212
213 // -----------------------------------------------------------------------
214 // streaming operator to set the columns of the matrix:
215 // example:
216 // mat33_t m;
217 // m << v0 << v1 << v2;
218
219 // column_builder<> stores the matrix and knows which column to set
220 template<size_t PREV_COLUMN>
221 struct column_builder {
222 mat& matrix;
column_buildercolumn_builder223 explicit column_builder(mat& matrix) : matrix(matrix) { }
224 };
225
226 // operator << is not a method of column_builder<> so we can
227 // overload it for unauthorized values (partial specialization
228 // not allowed in class-scope).
229 // we just set the column and return the next column_builder<>
230 template<size_t PREV_COLUMN>
231 friend column_builder<PREV_COLUMN+1> operator << (
232 const column_builder<PREV_COLUMN>& lhs,
233 const vec<TYPE, R>& rhs) {
234 lhs.matrix[PREV_COLUMN+1] = rhs;
235 return column_builder<PREV_COLUMN+1>(lhs.matrix);
236 }
237
238 // we return void here so we get a compile-time error if the
239 // user tries to set too many columns
240 friend void operator << (
241 const column_builder<C-2>& lhs,
242 const vec<TYPE, R>& rhs) {
243 lhs.matrix[C-1] = rhs;
244 }
245
246 // this is where the process starts. we set the first columns and
247 // return the next column_builder<>
248 column_builder<0> operator << (const vec<TYPE, R>& rhs) {
249 (*this)[0] = rhs;
250 return column_builder<0>(*this);
251 }
252 };
253
254 // Specialize column matrix so they're exactly equivalent to a vector
255 template <typename TYPE, size_t R>
256 class mat<TYPE, 1, R> : public vec<TYPE, R> {
257 typedef vec<TYPE, R> base;
258 public:
259 // STL-like interface.
260 typedef TYPE value_type;
261 typedef TYPE& reference;
262 typedef TYPE const& const_reference;
263 typedef size_t size_type;
size()264 size_type size() const { return R; }
265 enum { ROWS = R, COLS = 1 };
266
mat()267 mat() { }
mat(const base & rhs)268 explicit mat(const base& rhs) : base(rhs) { }
mat(const mat & rhs)269 mat(const mat& rhs) : base(rhs) { }
mat(const TYPE & rhs)270 explicit mat(const TYPE& rhs) { helpers::doAssign(*this, rhs); }
271 mat& operator=(const mat& rhs) { base::operator=(rhs); return *this; }
272 mat& operator=(const base& rhs) { base::operator=(rhs); return *this; }
273 mat& operator=(const TYPE& rhs) { return helpers::doAssign(*this, rhs); }
274 // we only have one column, so ignore the index
275 const base& operator[](size_t) const { return *this; }
276 base& operator[](size_t) { return *this; }
277 void operator << (const vec<TYPE, R>& rhs) { base::operator[](0) = rhs; }
278 };
279
280 // -----------------------------------------------------------------------
281 // matrix functions
282
283 // transpose. this handles matrices of matrices
transpose(int v)284 inline int PURE transpose(int v) { return v; }
transpose(float v)285 inline float PURE transpose(float v) { return v; }
transpose(double v)286 inline double PURE transpose(double v) { return v; }
287
288 // Transpose a matrix
289 template <typename TYPE, size_t C, size_t R>
transpose(const mat<TYPE,C,R> & m)290 mat<TYPE, R, C> PURE transpose(const mat<TYPE, C, R>& m) {
291 mat<TYPE, R, C> r;
292 for (size_t i=0 ; i<R ; i++)
293 for (size_t j=0 ; j<C ; j++)
294 r[i][j] = transpose(m[j][i]);
295 return r;
296 }
297
298 // Calculate the trace of a matrix
trace(const mat<TYPE,C,C> & m)299 template <typename TYPE, size_t C> static TYPE trace(const mat<TYPE, C, C>& m) {
300 TYPE t;
301 for (size_t i=0 ; i<C ; i++)
302 t += m[i][i];
303 return t;
304 }
305
306 // Test positive-semidefiniteness of a matrix
307 template <typename TYPE, size_t C>
isPositiveSemidefinite(const mat<TYPE,C,C> & m,TYPE tolerance)308 static bool isPositiveSemidefinite(const mat<TYPE, C, C>& m, TYPE tolerance) {
309 for (size_t i=0 ; i<C ; i++)
310 if (m[i][i] < 0)
311 return false;
312
313 for (size_t i=0 ; i<C ; i++)
314 for (size_t j=i+1 ; j<C ; j++)
315 if (fabs(m[i][j] - m[j][i]) > tolerance)
316 return false;
317
318 return true;
319 }
320
321 // Transpose a vector
322 template <
323 template<typename T, size_t S> class VEC,
324 typename TYPE,
325 size_t SIZE
326 >
transpose(const VEC<TYPE,SIZE> & v)327 mat<TYPE, SIZE, 1> PURE transpose(const VEC<TYPE, SIZE>& v) {
328 mat<TYPE, SIZE, 1> r;
329 for (size_t i=0 ; i<SIZE ; i++)
330 r[i][0] = transpose(v[i]);
331 return r;
332 }
333
334 // -----------------------------------------------------------------------
335 // "dumb" matrix inversion
336 template<typename T, size_t N>
invert(const mat<T,N,N> & src)337 mat<T, N, N> PURE invert(const mat<T, N, N>& src) {
338 T t;
339 size_t swap;
340 mat<T, N, N> tmp(src);
341 mat<T, N, N> inverse(1);
342
343 for (size_t i=0 ; i<N ; i++) {
344 // look for largest element in column
345 swap = i;
346 for (size_t j=i+1 ; j<N ; j++) {
347 if (fabs(tmp[j][i]) > fabs(tmp[i][i])) {
348 swap = j;
349 }
350 }
351
352 if (swap != i) {
353 /* swap rows. */
354 for (size_t k=0 ; k<N ; k++) {
355 t = tmp[i][k];
356 tmp[i][k] = tmp[swap][k];
357 tmp[swap][k] = t;
358
359 t = inverse[i][k];
360 inverse[i][k] = inverse[swap][k];
361 inverse[swap][k] = t;
362 }
363 }
364
365 t = 1 / tmp[i][i];
366 for (size_t k=0 ; k<N ; k++) {
367 tmp[i][k] *= t;
368 inverse[i][k] *= t;
369 }
370 for (size_t j=0 ; j<N ; j++) {
371 if (j != i) {
372 t = tmp[j][i];
373 for (size_t k=0 ; k<N ; k++) {
374 tmp[j][k] -= tmp[i][k] * t;
375 inverse[j][k] -= inverse[i][k] * t;
376 }
377 }
378 }
379 }
380 return inverse;
381 }
382
383 // -----------------------------------------------------------------------
384
385 typedef mat<float, 2, 2> mat22_t;
386 typedef mat<float, 3, 3> mat33_t;
387 typedef mat<float, 4, 4> mat44_t;
388
389 // -----------------------------------------------------------------------
390
391 }; // namespace android
392
393 #endif /* ANDROID_MAT_H */
394