• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  *
16  * Implementation file of the dexlayout utility.
17  *
18  * This is a tool to read dex files into an internal representation,
19  * reorganize the representation, and emit dex files with a better
20  * file layout.
21  */
22 
23 #include "dexlayout.h"
24 
25 #include <inttypes.h>
26 #include <stdio.h>
27 #include <sys/mman.h>  // For the PROT_* and MAP_* constants.
28 
29 #include <iostream>
30 #include <memory>
31 #include <sstream>
32 #include <vector>
33 
34 #include "android-base/stringprintf.h"
35 
36 #include "base/logging.h"  // For VLOG_IS_ON.
37 #include "base/os.h"
38 #include "base/utils.h"
39 #include "dex/art_dex_file_loader.h"
40 #include "dex/descriptors_names.h"
41 #include "dex/dex_file-inl.h"
42 #include "dex/dex_file_layout.h"
43 #include "dex/dex_file_loader.h"
44 #include "dex/dex_file_types.h"
45 #include "dex/dex_file_verifier.h"
46 #include "dex/dex_instruction-inl.h"
47 #include "dex_ir_builder.h"
48 #include "dex_verify.h"
49 #include "dex_visualize.h"
50 #include "dex_writer.h"
51 #include "jit/profile_compilation_info.h"
52 #include "mem_map.h"
53 
54 namespace art {
55 
56 using android::base::StringPrintf;
57 
58 /*
59  * Flags for use with createAccessFlagStr().
60  */
61 enum AccessFor {
62   kAccessForClass = 0, kAccessForMethod = 1, kAccessForField = 2, kAccessForMAX
63 };
64 const int kNumFlags = 18;
65 
66 /*
67  * Gets 2 little-endian bytes.
68  */
Get2LE(unsigned char const * src)69 static inline uint16_t Get2LE(unsigned char const* src) {
70   return src[0] | (src[1] << 8);
71 }
72 
73 /*
74  * Converts a type descriptor to human-readable "dotted" form.  For
75  * example, "Ljava/lang/String;" becomes "java.lang.String", and
76  * "[I" becomes "int[]".  Also converts '$' to '.', which means this
77  * form can't be converted back to a descriptor.
78  */
DescriptorToDotWrapper(const char * descriptor)79 static std::string DescriptorToDotWrapper(const char* descriptor) {
80   std::string result = DescriptorToDot(descriptor);
81   size_t found = result.find('$');
82   while (found != std::string::npos) {
83     result[found] = '.';
84     found = result.find('$', found);
85   }
86   return result;
87 }
88 
89 /*
90  * Converts the class name portion of a type descriptor to human-readable
91  * "dotted" form. For example, "Ljava/lang/String;" becomes "String".
92  */
DescriptorClassToDot(const char * str)93 static std::string DescriptorClassToDot(const char* str) {
94   std::string descriptor(str);
95   // Reduce to just the class name prefix.
96   size_t last_slash = descriptor.rfind('/');
97   if (last_slash == std::string::npos) {
98     last_slash = 0;
99   }
100   // Start past the '/' or 'L'.
101   last_slash++;
102 
103   // Copy class name over, trimming trailing ';'.
104   size_t size = descriptor.size() - 1 - last_slash;
105   std::string result(descriptor.substr(last_slash, size));
106 
107   // Replace '$' with '.'.
108   size_t dollar_sign = result.find('$');
109   while (dollar_sign != std::string::npos) {
110     result[dollar_sign] = '.';
111     dollar_sign = result.find('$', dollar_sign);
112   }
113 
114   return result;
115 }
116 
117 /*
118  * Returns string representing the boolean value.
119  */
StrBool(bool val)120 static const char* StrBool(bool val) {
121   return val ? "true" : "false";
122 }
123 
124 /*
125  * Returns a quoted string representing the boolean value.
126  */
QuotedBool(bool val)127 static const char* QuotedBool(bool val) {
128   return val ? "\"true\"" : "\"false\"";
129 }
130 
131 /*
132  * Returns a quoted string representing the access flags.
133  */
QuotedVisibility(uint32_t access_flags)134 static const char* QuotedVisibility(uint32_t access_flags) {
135   if (access_flags & kAccPublic) {
136     return "\"public\"";
137   } else if (access_flags & kAccProtected) {
138     return "\"protected\"";
139   } else if (access_flags & kAccPrivate) {
140     return "\"private\"";
141   } else {
142     return "\"package\"";
143   }
144 }
145 
146 /*
147  * Counts the number of '1' bits in a word.
148  */
CountOnes(uint32_t val)149 static int CountOnes(uint32_t val) {
150   val = val - ((val >> 1) & 0x55555555);
151   val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
152   return (((val + (val >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
153 }
154 
155 /*
156  * Creates a new string with human-readable access flags.
157  *
158  * In the base language the access_flags fields are type uint16_t; in Dalvik they're uint32_t.
159  */
CreateAccessFlagStr(uint32_t flags,AccessFor for_what)160 static char* CreateAccessFlagStr(uint32_t flags, AccessFor for_what) {
161   static const char* kAccessStrings[kAccessForMAX][kNumFlags] = {
162     {
163       "PUBLIC",                /* 0x00001 */
164       "PRIVATE",               /* 0x00002 */
165       "PROTECTED",             /* 0x00004 */
166       "STATIC",                /* 0x00008 */
167       "FINAL",                 /* 0x00010 */
168       "?",                     /* 0x00020 */
169       "?",                     /* 0x00040 */
170       "?",                     /* 0x00080 */
171       "?",                     /* 0x00100 */
172       "INTERFACE",             /* 0x00200 */
173       "ABSTRACT",              /* 0x00400 */
174       "?",                     /* 0x00800 */
175       "SYNTHETIC",             /* 0x01000 */
176       "ANNOTATION",            /* 0x02000 */
177       "ENUM",                  /* 0x04000 */
178       "?",                     /* 0x08000 */
179       "VERIFIED",              /* 0x10000 */
180       "OPTIMIZED",             /* 0x20000 */
181     }, {
182       "PUBLIC",                /* 0x00001 */
183       "PRIVATE",               /* 0x00002 */
184       "PROTECTED",             /* 0x00004 */
185       "STATIC",                /* 0x00008 */
186       "FINAL",                 /* 0x00010 */
187       "SYNCHRONIZED",          /* 0x00020 */
188       "BRIDGE",                /* 0x00040 */
189       "VARARGS",               /* 0x00080 */
190       "NATIVE",                /* 0x00100 */
191       "?",                     /* 0x00200 */
192       "ABSTRACT",              /* 0x00400 */
193       "STRICT",                /* 0x00800 */
194       "SYNTHETIC",             /* 0x01000 */
195       "?",                     /* 0x02000 */
196       "?",                     /* 0x04000 */
197       "MIRANDA",               /* 0x08000 */
198       "CONSTRUCTOR",           /* 0x10000 */
199       "DECLARED_SYNCHRONIZED", /* 0x20000 */
200     }, {
201       "PUBLIC",                /* 0x00001 */
202       "PRIVATE",               /* 0x00002 */
203       "PROTECTED",             /* 0x00004 */
204       "STATIC",                /* 0x00008 */
205       "FINAL",                 /* 0x00010 */
206       "?",                     /* 0x00020 */
207       "VOLATILE",              /* 0x00040 */
208       "TRANSIENT",             /* 0x00080 */
209       "?",                     /* 0x00100 */
210       "?",                     /* 0x00200 */
211       "?",                     /* 0x00400 */
212       "?",                     /* 0x00800 */
213       "SYNTHETIC",             /* 0x01000 */
214       "?",                     /* 0x02000 */
215       "ENUM",                  /* 0x04000 */
216       "?",                     /* 0x08000 */
217       "?",                     /* 0x10000 */
218       "?",                     /* 0x20000 */
219     },
220   };
221 
222   // Allocate enough storage to hold the expected number of strings,
223   // plus a space between each.  We over-allocate, using the longest
224   // string above as the base metric.
225   const int kLongest = 21;  // The strlen of longest string above.
226   const int count = CountOnes(flags);
227   char* str;
228   char* cp;
229   cp = str = reinterpret_cast<char*>(malloc(count * (kLongest + 1) + 1));
230 
231   for (int i = 0; i < kNumFlags; i++) {
232     if (flags & 0x01) {
233       const char* accessStr = kAccessStrings[for_what][i];
234       const int len = strlen(accessStr);
235       if (cp != str) {
236         *cp++ = ' ';
237       }
238       memcpy(cp, accessStr, len);
239       cp += len;
240     }
241     flags >>= 1;
242   }  // for
243 
244   *cp = '\0';
245   return str;
246 }
247 
GetSignatureForProtoId(const dex_ir::ProtoId * proto)248 static std::string GetSignatureForProtoId(const dex_ir::ProtoId* proto) {
249   if (proto == nullptr) {
250     return "<no signature>";
251   }
252 
253   std::string result("(");
254   const dex_ir::TypeList* type_list = proto->Parameters();
255   if (type_list != nullptr) {
256     for (const dex_ir::TypeId* type_id : *type_list->GetTypeList()) {
257       result += type_id->GetStringId()->Data();
258     }
259   }
260   result += ")";
261   result += proto->ReturnType()->GetStringId()->Data();
262   return result;
263 }
264 
265 /*
266  * Copies character data from "data" to "out", converting non-ASCII values
267  * to fprintf format chars or an ASCII filler ('.' or '?').
268  *
269  * The output buffer must be able to hold (2*len)+1 bytes.  The result is
270  * NULL-terminated.
271  */
Asciify(char * out,const unsigned char * data,size_t len)272 static void Asciify(char* out, const unsigned char* data, size_t len) {
273   while (len--) {
274     if (*data < 0x20) {
275       // Could do more here, but we don't need them yet.
276       switch (*data) {
277         case '\0':
278           *out++ = '\\';
279           *out++ = '0';
280           break;
281         case '\n':
282           *out++ = '\\';
283           *out++ = 'n';
284           break;
285         default:
286           *out++ = '.';
287           break;
288       }  // switch
289     } else if (*data >= 0x80) {
290       *out++ = '?';
291     } else {
292       *out++ = *data;
293     }
294     data++;
295   }  // while
296   *out = '\0';
297 }
298 
299 /*
300  * Dumps a string value with some escape characters.
301  */
DumpEscapedString(const char * p,FILE * out_file)302 static void DumpEscapedString(const char* p, FILE* out_file) {
303   fputs("\"", out_file);
304   for (; *p; p++) {
305     switch (*p) {
306       case '\\':
307         fputs("\\\\", out_file);
308         break;
309       case '\"':
310         fputs("\\\"", out_file);
311         break;
312       case '\t':
313         fputs("\\t", out_file);
314         break;
315       case '\n':
316         fputs("\\n", out_file);
317         break;
318       case '\r':
319         fputs("\\r", out_file);
320         break;
321       default:
322         putc(*p, out_file);
323     }  // switch
324   }  // for
325   fputs("\"", out_file);
326 }
327 
328 /*
329  * Dumps a string as an XML attribute value.
330  */
DumpXmlAttribute(const char * p,FILE * out_file)331 static void DumpXmlAttribute(const char* p, FILE* out_file) {
332   for (; *p; p++) {
333     switch (*p) {
334       case '&':
335         fputs("&amp;", out_file);
336         break;
337       case '<':
338         fputs("&lt;", out_file);
339         break;
340       case '>':
341         fputs("&gt;", out_file);
342         break;
343       case '"':
344         fputs("&quot;", out_file);
345         break;
346       case '\t':
347         fputs("&#x9;", out_file);
348         break;
349       case '\n':
350         fputs("&#xA;", out_file);
351         break;
352       case '\r':
353         fputs("&#xD;", out_file);
354         break;
355       default:
356         putc(*p, out_file);
357     }  // switch
358   }  // for
359 }
360 
361 /*
362  * Helper for dumpInstruction(), which builds the string
363  * representation for the index in the given instruction.
364  * Returns a pointer to a buffer of sufficient size.
365  */
IndexString(dex_ir::Header * header,const Instruction * dec_insn,size_t buf_size)366 static std::unique_ptr<char[]> IndexString(dex_ir::Header* header,
367                                            const Instruction* dec_insn,
368                                            size_t buf_size) {
369   std::unique_ptr<char[]> buf(new char[buf_size]);
370   // Determine index and width of the string.
371   uint32_t index = 0;
372   uint32_t secondary_index = dex::kDexNoIndex;
373   uint32_t width = 4;
374   switch (Instruction::FormatOf(dec_insn->Opcode())) {
375     // SOME NOT SUPPORTED:
376     // case Instruction::k20bc:
377     case Instruction::k21c:
378     case Instruction::k35c:
379     // case Instruction::k35ms:
380     case Instruction::k3rc:
381     // case Instruction::k3rms:
382     // case Instruction::k35mi:
383     // case Instruction::k3rmi:
384       index = dec_insn->VRegB();
385       width = 4;
386       break;
387     case Instruction::k31c:
388       index = dec_insn->VRegB();
389       width = 8;
390       break;
391     case Instruction::k22c:
392     // case Instruction::k22cs:
393       index = dec_insn->VRegC();
394       width = 4;
395       break;
396     case Instruction::k45cc:
397     case Instruction::k4rcc:
398       index = dec_insn->VRegB();
399       secondary_index = dec_insn->VRegH();
400       width = 4;
401       break;
402     default:
403       break;
404   }  // switch
405 
406   // Determine index type.
407   size_t outSize = 0;
408   switch (Instruction::IndexTypeOf(dec_insn->Opcode())) {
409     case Instruction::kIndexUnknown:
410       // This function should never get called for this type, but do
411       // something sensible here, just to help with debugging.
412       outSize = snprintf(buf.get(), buf_size, "<unknown-index>");
413       break;
414     case Instruction::kIndexNone:
415       // This function should never get called for this type, but do
416       // something sensible here, just to help with debugging.
417       outSize = snprintf(buf.get(), buf_size, "<no-index>");
418       break;
419     case Instruction::kIndexTypeRef:
420       if (index < header->GetCollections().TypeIdsSize()) {
421         const char* tp = header->GetCollections().GetTypeId(index)->GetStringId()->Data();
422         outSize = snprintf(buf.get(), buf_size, "%s // type@%0*x", tp, width, index);
423       } else {
424         outSize = snprintf(buf.get(), buf_size, "<type?> // type@%0*x", width, index);
425       }
426       break;
427     case Instruction::kIndexStringRef:
428       if (index < header->GetCollections().StringIdsSize()) {
429         const char* st = header->GetCollections().GetStringId(index)->Data();
430         outSize = snprintf(buf.get(), buf_size, "\"%s\" // string@%0*x", st, width, index);
431       } else {
432         outSize = snprintf(buf.get(), buf_size, "<string?> // string@%0*x", width, index);
433       }
434       break;
435     case Instruction::kIndexMethodRef:
436       if (index < header->GetCollections().MethodIdsSize()) {
437         dex_ir::MethodId* method_id = header->GetCollections().GetMethodId(index);
438         const char* name = method_id->Name()->Data();
439         std::string type_descriptor = GetSignatureForProtoId(method_id->Proto());
440         const char* back_descriptor = method_id->Class()->GetStringId()->Data();
441         outSize = snprintf(buf.get(), buf_size, "%s.%s:%s // method@%0*x",
442                            back_descriptor, name, type_descriptor.c_str(), width, index);
443       } else {
444         outSize = snprintf(buf.get(), buf_size, "<method?> // method@%0*x", width, index);
445       }
446       break;
447     case Instruction::kIndexFieldRef:
448       if (index < header->GetCollections().FieldIdsSize()) {
449         dex_ir::FieldId* field_id = header->GetCollections().GetFieldId(index);
450         const char* name = field_id->Name()->Data();
451         const char* type_descriptor = field_id->Type()->GetStringId()->Data();
452         const char* back_descriptor = field_id->Class()->GetStringId()->Data();
453         outSize = snprintf(buf.get(), buf_size, "%s.%s:%s // field@%0*x",
454                            back_descriptor, name, type_descriptor, width, index);
455       } else {
456         outSize = snprintf(buf.get(), buf_size, "<field?> // field@%0*x", width, index);
457       }
458       break;
459     case Instruction::kIndexVtableOffset:
460       outSize = snprintf(buf.get(), buf_size, "[%0*x] // vtable #%0*x",
461                          width, index, width, index);
462       break;
463     case Instruction::kIndexFieldOffset:
464       outSize = snprintf(buf.get(), buf_size, "[obj+%0*x]", width, index);
465       break;
466     case Instruction::kIndexMethodAndProtoRef: {
467       std::string method("<method?>");
468       std::string proto("<proto?>");
469       if (index < header->GetCollections().MethodIdsSize()) {
470         dex_ir::MethodId* method_id = header->GetCollections().GetMethodId(index);
471         const char* name = method_id->Name()->Data();
472         std::string type_descriptor = GetSignatureForProtoId(method_id->Proto());
473         const char* back_descriptor = method_id->Class()->GetStringId()->Data();
474         method = StringPrintf("%s.%s:%s", back_descriptor, name, type_descriptor.c_str());
475       }
476       if (secondary_index < header->GetCollections().ProtoIdsSize()) {
477         dex_ir::ProtoId* proto_id = header->GetCollections().GetProtoId(secondary_index);
478         proto = GetSignatureForProtoId(proto_id);
479       }
480       outSize = snprintf(buf.get(), buf_size, "%s, %s // method@%0*x, proto@%0*x",
481                          method.c_str(), proto.c_str(), width, index, width, secondary_index);
482     }
483     break;
484     // SOME NOT SUPPORTED:
485     // case Instruction::kIndexVaries:
486     // case Instruction::kIndexInlineMethod:
487     default:
488       outSize = snprintf(buf.get(), buf_size, "<?>");
489       break;
490   }  // switch
491 
492   // Determine success of string construction.
493   if (outSize >= buf_size) {
494     // The buffer wasn't big enough; retry with computed size. Note: snprintf()
495     // doesn't count/ the '\0' as part of its returned size, so we add explicit
496     // space for it here.
497     return IndexString(header, dec_insn, outSize + 1);
498   }
499   return buf;
500 }
501 
502 /*
503  * Dumps encoded annotation.
504  */
DumpEncodedAnnotation(dex_ir::EncodedAnnotation * annotation)505 void DexLayout::DumpEncodedAnnotation(dex_ir::EncodedAnnotation* annotation) {
506   fputs(annotation->GetType()->GetStringId()->Data(), out_file_);
507   // Display all name=value pairs.
508   for (auto& subannotation : *annotation->GetAnnotationElements()) {
509     fputc(' ', out_file_);
510     fputs(subannotation->GetName()->Data(), out_file_);
511     fputc('=', out_file_);
512     DumpEncodedValue(subannotation->GetValue());
513   }
514 }
515 /*
516  * Dumps encoded value.
517  */
DumpEncodedValue(const dex_ir::EncodedValue * data)518 void DexLayout::DumpEncodedValue(const dex_ir::EncodedValue* data) {
519   switch (data->Type()) {
520     case DexFile::kDexAnnotationByte:
521       fprintf(out_file_, "%" PRId8, data->GetByte());
522       break;
523     case DexFile::kDexAnnotationShort:
524       fprintf(out_file_, "%" PRId16, data->GetShort());
525       break;
526     case DexFile::kDexAnnotationChar:
527       fprintf(out_file_, "%" PRIu16, data->GetChar());
528       break;
529     case DexFile::kDexAnnotationInt:
530       fprintf(out_file_, "%" PRId32, data->GetInt());
531       break;
532     case DexFile::kDexAnnotationLong:
533       fprintf(out_file_, "%" PRId64, data->GetLong());
534       break;
535     case DexFile::kDexAnnotationFloat: {
536       fprintf(out_file_, "%g", data->GetFloat());
537       break;
538     }
539     case DexFile::kDexAnnotationDouble: {
540       fprintf(out_file_, "%g", data->GetDouble());
541       break;
542     }
543     case DexFile::kDexAnnotationString: {
544       dex_ir::StringId* string_id = data->GetStringId();
545       if (options_.output_format_ == kOutputPlain) {
546         DumpEscapedString(string_id->Data(), out_file_);
547       } else {
548         DumpXmlAttribute(string_id->Data(), out_file_);
549       }
550       break;
551     }
552     case DexFile::kDexAnnotationType: {
553       dex_ir::TypeId* type_id = data->GetTypeId();
554       fputs(type_id->GetStringId()->Data(), out_file_);
555       break;
556     }
557     case DexFile::kDexAnnotationField:
558     case DexFile::kDexAnnotationEnum: {
559       dex_ir::FieldId* field_id = data->GetFieldId();
560       fputs(field_id->Name()->Data(), out_file_);
561       break;
562     }
563     case DexFile::kDexAnnotationMethod: {
564       dex_ir::MethodId* method_id = data->GetMethodId();
565       fputs(method_id->Name()->Data(), out_file_);
566       break;
567     }
568     case DexFile::kDexAnnotationArray: {
569       fputc('{', out_file_);
570       // Display all elements.
571       for (auto& value : *data->GetEncodedArray()->GetEncodedValues()) {
572         fputc(' ', out_file_);
573         DumpEncodedValue(value.get());
574       }
575       fputs(" }", out_file_);
576       break;
577     }
578     case DexFile::kDexAnnotationAnnotation: {
579       DumpEncodedAnnotation(data->GetEncodedAnnotation());
580       break;
581     }
582     case DexFile::kDexAnnotationNull:
583       fputs("null", out_file_);
584       break;
585     case DexFile::kDexAnnotationBoolean:
586       fputs(StrBool(data->GetBoolean()), out_file_);
587       break;
588     default:
589       fputs("????", out_file_);
590       break;
591   }  // switch
592 }
593 
594 /*
595  * Dumps the file header.
596  */
DumpFileHeader()597 void DexLayout::DumpFileHeader() {
598   char sanitized[8 * 2 + 1];
599   dex_ir::Collections& collections = header_->GetCollections();
600   fprintf(out_file_, "DEX file header:\n");
601   Asciify(sanitized, header_->Magic(), 8);
602   fprintf(out_file_, "magic               : '%s'\n", sanitized);
603   fprintf(out_file_, "checksum            : %08x\n", header_->Checksum());
604   fprintf(out_file_, "signature           : %02x%02x...%02x%02x\n",
605           header_->Signature()[0], header_->Signature()[1],
606           header_->Signature()[DexFile::kSha1DigestSize - 2],
607           header_->Signature()[DexFile::kSha1DigestSize - 1]);
608   fprintf(out_file_, "file_size           : %d\n", header_->FileSize());
609   fprintf(out_file_, "header_size         : %d\n", header_->HeaderSize());
610   fprintf(out_file_, "link_size           : %d\n", header_->LinkSize());
611   fprintf(out_file_, "link_off            : %d (0x%06x)\n",
612           header_->LinkOffset(), header_->LinkOffset());
613   fprintf(out_file_, "string_ids_size     : %d\n", collections.StringIdsSize());
614   fprintf(out_file_, "string_ids_off      : %d (0x%06x)\n",
615           collections.StringIdsOffset(), collections.StringIdsOffset());
616   fprintf(out_file_, "type_ids_size       : %d\n", collections.TypeIdsSize());
617   fprintf(out_file_, "type_ids_off        : %d (0x%06x)\n",
618           collections.TypeIdsOffset(), collections.TypeIdsOffset());
619   fprintf(out_file_, "proto_ids_size      : %d\n", collections.ProtoIdsSize());
620   fprintf(out_file_, "proto_ids_off       : %d (0x%06x)\n",
621           collections.ProtoIdsOffset(), collections.ProtoIdsOffset());
622   fprintf(out_file_, "field_ids_size      : %d\n", collections.FieldIdsSize());
623   fprintf(out_file_, "field_ids_off       : %d (0x%06x)\n",
624           collections.FieldIdsOffset(), collections.FieldIdsOffset());
625   fprintf(out_file_, "method_ids_size     : %d\n", collections.MethodIdsSize());
626   fprintf(out_file_, "method_ids_off      : %d (0x%06x)\n",
627           collections.MethodIdsOffset(), collections.MethodIdsOffset());
628   fprintf(out_file_, "class_defs_size     : %d\n", collections.ClassDefsSize());
629   fprintf(out_file_, "class_defs_off      : %d (0x%06x)\n",
630           collections.ClassDefsOffset(), collections.ClassDefsOffset());
631   fprintf(out_file_, "data_size           : %d\n", header_->DataSize());
632   fprintf(out_file_, "data_off            : %d (0x%06x)\n\n",
633           header_->DataOffset(), header_->DataOffset());
634 }
635 
636 /*
637  * Dumps a class_def_item.
638  */
DumpClassDef(int idx)639 void DexLayout::DumpClassDef(int idx) {
640   // General class information.
641   dex_ir::ClassDef* class_def = header_->GetCollections().GetClassDef(idx);
642   fprintf(out_file_, "Class #%d header:\n", idx);
643   fprintf(out_file_, "class_idx           : %d\n", class_def->ClassType()->GetIndex());
644   fprintf(out_file_, "access_flags        : %d (0x%04x)\n",
645           class_def->GetAccessFlags(), class_def->GetAccessFlags());
646   uint32_t superclass_idx =  class_def->Superclass() == nullptr ?
647       DexFile::kDexNoIndex16 : class_def->Superclass()->GetIndex();
648   fprintf(out_file_, "superclass_idx      : %d\n", superclass_idx);
649   fprintf(out_file_, "interfaces_off      : %d (0x%06x)\n",
650           class_def->InterfacesOffset(), class_def->InterfacesOffset());
651   uint32_t source_file_offset = 0xffffffffU;
652   if (class_def->SourceFile() != nullptr) {
653     source_file_offset = class_def->SourceFile()->GetIndex();
654   }
655   fprintf(out_file_, "source_file_idx     : %d\n", source_file_offset);
656   uint32_t annotations_offset = 0;
657   if (class_def->Annotations() != nullptr) {
658     annotations_offset = class_def->Annotations()->GetOffset();
659   }
660   fprintf(out_file_, "annotations_off     : %d (0x%06x)\n",
661           annotations_offset, annotations_offset);
662   if (class_def->GetClassData() == nullptr) {
663     fprintf(out_file_, "class_data_off      : %d (0x%06x)\n", 0, 0);
664   } else {
665     fprintf(out_file_, "class_data_off      : %d (0x%06x)\n",
666             class_def->GetClassData()->GetOffset(), class_def->GetClassData()->GetOffset());
667   }
668 
669   // Fields and methods.
670   dex_ir::ClassData* class_data = class_def->GetClassData();
671   if (class_data != nullptr && class_data->StaticFields() != nullptr) {
672     fprintf(out_file_, "static_fields_size  : %zu\n", class_data->StaticFields()->size());
673   } else {
674     fprintf(out_file_, "static_fields_size  : 0\n");
675   }
676   if (class_data != nullptr && class_data->InstanceFields() != nullptr) {
677     fprintf(out_file_, "instance_fields_size: %zu\n", class_data->InstanceFields()->size());
678   } else {
679     fprintf(out_file_, "instance_fields_size: 0\n");
680   }
681   if (class_data != nullptr && class_data->DirectMethods() != nullptr) {
682     fprintf(out_file_, "direct_methods_size : %zu\n", class_data->DirectMethods()->size());
683   } else {
684     fprintf(out_file_, "direct_methods_size : 0\n");
685   }
686   if (class_data != nullptr && class_data->VirtualMethods() != nullptr) {
687     fprintf(out_file_, "virtual_methods_size: %zu\n", class_data->VirtualMethods()->size());
688   } else {
689     fprintf(out_file_, "virtual_methods_size: 0\n");
690   }
691   fprintf(out_file_, "\n");
692 }
693 
694 /**
695  * Dumps an annotation set item.
696  */
DumpAnnotationSetItem(dex_ir::AnnotationSetItem * set_item)697 void DexLayout::DumpAnnotationSetItem(dex_ir::AnnotationSetItem* set_item) {
698   if (set_item == nullptr || set_item->GetItems()->size() == 0) {
699     fputs("  empty-annotation-set\n", out_file_);
700     return;
701   }
702   for (dex_ir::AnnotationItem* annotation : *set_item->GetItems()) {
703     if (annotation == nullptr) {
704       continue;
705     }
706     fputs("  ", out_file_);
707     switch (annotation->GetVisibility()) {
708       case DexFile::kDexVisibilityBuild:   fputs("VISIBILITY_BUILD ",   out_file_); break;
709       case DexFile::kDexVisibilityRuntime: fputs("VISIBILITY_RUNTIME ", out_file_); break;
710       case DexFile::kDexVisibilitySystem:  fputs("VISIBILITY_SYSTEM ",  out_file_); break;
711       default:                             fputs("VISIBILITY_UNKNOWN ", out_file_); break;
712     }  // switch
713     DumpEncodedAnnotation(annotation->GetAnnotation());
714     fputc('\n', out_file_);
715   }
716 }
717 
718 /*
719  * Dumps class annotations.
720  */
DumpClassAnnotations(int idx)721 void DexLayout::DumpClassAnnotations(int idx) {
722   dex_ir::ClassDef* class_def = header_->GetCollections().GetClassDef(idx);
723   dex_ir::AnnotationsDirectoryItem* annotations_directory = class_def->Annotations();
724   if (annotations_directory == nullptr) {
725     return;  // none
726   }
727 
728   fprintf(out_file_, "Class #%d annotations:\n", idx);
729 
730   dex_ir::AnnotationSetItem* class_set_item = annotations_directory->GetClassAnnotation();
731   dex_ir::FieldAnnotationVector* fields = annotations_directory->GetFieldAnnotations();
732   dex_ir::MethodAnnotationVector* methods = annotations_directory->GetMethodAnnotations();
733   dex_ir::ParameterAnnotationVector* parameters = annotations_directory->GetParameterAnnotations();
734 
735   // Annotations on the class itself.
736   if (class_set_item != nullptr) {
737     fprintf(out_file_, "Annotations on class\n");
738     DumpAnnotationSetItem(class_set_item);
739   }
740 
741   // Annotations on fields.
742   if (fields != nullptr) {
743     for (auto& field : *fields) {
744       const dex_ir::FieldId* field_id = field->GetFieldId();
745       const uint32_t field_idx = field_id->GetIndex();
746       const char* field_name = field_id->Name()->Data();
747       fprintf(out_file_, "Annotations on field #%u '%s'\n", field_idx, field_name);
748       DumpAnnotationSetItem(field->GetAnnotationSetItem());
749     }
750   }
751 
752   // Annotations on methods.
753   if (methods != nullptr) {
754     for (auto& method : *methods) {
755       const dex_ir::MethodId* method_id = method->GetMethodId();
756       const uint32_t method_idx = method_id->GetIndex();
757       const char* method_name = method_id->Name()->Data();
758       fprintf(out_file_, "Annotations on method #%u '%s'\n", method_idx, method_name);
759       DumpAnnotationSetItem(method->GetAnnotationSetItem());
760     }
761   }
762 
763   // Annotations on method parameters.
764   if (parameters != nullptr) {
765     for (auto& parameter : *parameters) {
766       const dex_ir::MethodId* method_id = parameter->GetMethodId();
767       const uint32_t method_idx = method_id->GetIndex();
768       const char* method_name = method_id->Name()->Data();
769       fprintf(out_file_, "Annotations on method #%u '%s' parameters\n", method_idx, method_name);
770       uint32_t j = 0;
771       for (dex_ir::AnnotationSetItem* annotation : *parameter->GetAnnotations()->GetItems()) {
772         fprintf(out_file_, "#%u\n", j);
773         DumpAnnotationSetItem(annotation);
774         ++j;
775       }
776     }
777   }
778 
779   fputc('\n', out_file_);
780 }
781 
782 /*
783  * Dumps an interface that a class declares to implement.
784  */
DumpInterface(const dex_ir::TypeId * type_item,int i)785 void DexLayout::DumpInterface(const dex_ir::TypeId* type_item, int i) {
786   const char* interface_name = type_item->GetStringId()->Data();
787   if (options_.output_format_ == kOutputPlain) {
788     fprintf(out_file_, "    #%d              : '%s'\n", i, interface_name);
789   } else {
790     std::string dot(DescriptorToDotWrapper(interface_name));
791     fprintf(out_file_, "<implements name=\"%s\">\n</implements>\n", dot.c_str());
792   }
793 }
794 
795 /*
796  * Dumps the catches table associated with the code.
797  */
DumpCatches(const dex_ir::CodeItem * code)798 void DexLayout::DumpCatches(const dex_ir::CodeItem* code) {
799   const uint16_t tries_size = code->TriesSize();
800 
801   // No catch table.
802   if (tries_size == 0) {
803     fprintf(out_file_, "      catches       : (none)\n");
804     return;
805   }
806 
807   // Dump all table entries.
808   fprintf(out_file_, "      catches       : %d\n", tries_size);
809   std::vector<std::unique_ptr<const dex_ir::TryItem>>* tries = code->Tries();
810   for (uint32_t i = 0; i < tries_size; i++) {
811     const dex_ir::TryItem* try_item = (*tries)[i].get();
812     const uint32_t start = try_item->StartAddr();
813     const uint32_t end = start + try_item->InsnCount();
814     fprintf(out_file_, "        0x%04x - 0x%04x\n", start, end);
815     for (auto& handler : *try_item->GetHandlers()->GetHandlers()) {
816       const dex_ir::TypeId* type_id = handler->GetTypeId();
817       const char* descriptor = (type_id == nullptr) ? "<any>" : type_id->GetStringId()->Data();
818       fprintf(out_file_, "          %s -> 0x%04x\n", descriptor, handler->GetAddress());
819     }  // for
820   }  // for
821 }
822 
823 /*
824  * Dumps a single instruction.
825  */
DumpInstruction(const dex_ir::CodeItem * code,uint32_t code_offset,uint32_t insn_idx,uint32_t insn_width,const Instruction * dec_insn)826 void DexLayout::DumpInstruction(const dex_ir::CodeItem* code,
827                                 uint32_t code_offset,
828                                 uint32_t insn_idx,
829                                 uint32_t insn_width,
830                                 const Instruction* dec_insn) {
831   // Address of instruction (expressed as byte offset).
832   fprintf(out_file_, "%06x:", code_offset + 0x10 + insn_idx * 2);
833 
834   // Dump (part of) raw bytes.
835   const uint16_t* insns = code->Insns();
836   for (uint32_t i = 0; i < 8; i++) {
837     if (i < insn_width) {
838       if (i == 7) {
839         fprintf(out_file_, " ... ");
840       } else {
841         // Print 16-bit value in little-endian order.
842         const uint8_t* bytePtr = (const uint8_t*) &insns[insn_idx + i];
843         fprintf(out_file_, " %02x%02x", bytePtr[0], bytePtr[1]);
844       }
845     } else {
846       fputs("     ", out_file_);
847     }
848   }  // for
849 
850   // Dump pseudo-instruction or opcode.
851   if (dec_insn->Opcode() == Instruction::NOP) {
852     const uint16_t instr = Get2LE((const uint8_t*) &insns[insn_idx]);
853     if (instr == Instruction::kPackedSwitchSignature) {
854       fprintf(out_file_, "|%04x: packed-switch-data (%d units)", insn_idx, insn_width);
855     } else if (instr == Instruction::kSparseSwitchSignature) {
856       fprintf(out_file_, "|%04x: sparse-switch-data (%d units)", insn_idx, insn_width);
857     } else if (instr == Instruction::kArrayDataSignature) {
858       fprintf(out_file_, "|%04x: array-data (%d units)", insn_idx, insn_width);
859     } else {
860       fprintf(out_file_, "|%04x: nop // spacer", insn_idx);
861     }
862   } else {
863     fprintf(out_file_, "|%04x: %s", insn_idx, dec_insn->Name());
864   }
865 
866   // Set up additional argument.
867   std::unique_ptr<char[]> index_buf;
868   if (Instruction::IndexTypeOf(dec_insn->Opcode()) != Instruction::kIndexNone) {
869     index_buf = IndexString(header_, dec_insn, 200);
870   }
871 
872   // Dump the instruction.
873   //
874   // NOTE: pDecInsn->DumpString(pDexFile) differs too much from original.
875   //
876   switch (Instruction::FormatOf(dec_insn->Opcode())) {
877     case Instruction::k10x:        // op
878       break;
879     case Instruction::k12x:        // op vA, vB
880       fprintf(out_file_, " v%d, v%d", dec_insn->VRegA(), dec_insn->VRegB());
881       break;
882     case Instruction::k11n:        // op vA, #+B
883       fprintf(out_file_, " v%d, #int %d // #%x",
884               dec_insn->VRegA(), (int32_t) dec_insn->VRegB(), (uint8_t)dec_insn->VRegB());
885       break;
886     case Instruction::k11x:        // op vAA
887       fprintf(out_file_, " v%d", dec_insn->VRegA());
888       break;
889     case Instruction::k10t:        // op +AA
890     case Instruction::k20t: {      // op +AAAA
891       const int32_t targ = (int32_t) dec_insn->VRegA();
892       fprintf(out_file_, " %04x // %c%04x",
893               insn_idx + targ,
894               (targ < 0) ? '-' : '+',
895               (targ < 0) ? -targ : targ);
896       break;
897     }
898     case Instruction::k22x:        // op vAA, vBBBB
899       fprintf(out_file_, " v%d, v%d", dec_insn->VRegA(), dec_insn->VRegB());
900       break;
901     case Instruction::k21t: {     // op vAA, +BBBB
902       const int32_t targ = (int32_t) dec_insn->VRegB();
903       fprintf(out_file_, " v%d, %04x // %c%04x", dec_insn->VRegA(),
904               insn_idx + targ,
905               (targ < 0) ? '-' : '+',
906               (targ < 0) ? -targ : targ);
907       break;
908     }
909     case Instruction::k21s:        // op vAA, #+BBBB
910       fprintf(out_file_, " v%d, #int %d // #%x",
911               dec_insn->VRegA(), (int32_t) dec_insn->VRegB(), (uint16_t)dec_insn->VRegB());
912       break;
913     case Instruction::k21h:        // op vAA, #+BBBB0000[00000000]
914       // The printed format varies a bit based on the actual opcode.
915       if (dec_insn->Opcode() == Instruction::CONST_HIGH16) {
916         const int32_t value = dec_insn->VRegB() << 16;
917         fprintf(out_file_, " v%d, #int %d // #%x",
918                 dec_insn->VRegA(), value, (uint16_t) dec_insn->VRegB());
919       } else {
920         const int64_t value = ((int64_t) dec_insn->VRegB()) << 48;
921         fprintf(out_file_, " v%d, #long %" PRId64 " // #%x",
922                 dec_insn->VRegA(), value, (uint16_t) dec_insn->VRegB());
923       }
924       break;
925     case Instruction::k21c:        // op vAA, thing@BBBB
926     case Instruction::k31c:        // op vAA, thing@BBBBBBBB
927       fprintf(out_file_, " v%d, %s", dec_insn->VRegA(), index_buf.get());
928       break;
929     case Instruction::k23x:        // op vAA, vBB, vCC
930       fprintf(out_file_, " v%d, v%d, v%d",
931               dec_insn->VRegA(), dec_insn->VRegB(), dec_insn->VRegC());
932       break;
933     case Instruction::k22b:        // op vAA, vBB, #+CC
934       fprintf(out_file_, " v%d, v%d, #int %d // #%02x",
935               dec_insn->VRegA(), dec_insn->VRegB(),
936               (int32_t) dec_insn->VRegC(), (uint8_t) dec_insn->VRegC());
937       break;
938     case Instruction::k22t: {      // op vA, vB, +CCCC
939       const int32_t targ = (int32_t) dec_insn->VRegC();
940       fprintf(out_file_, " v%d, v%d, %04x // %c%04x",
941               dec_insn->VRegA(), dec_insn->VRegB(),
942               insn_idx + targ,
943               (targ < 0) ? '-' : '+',
944               (targ < 0) ? -targ : targ);
945       break;
946     }
947     case Instruction::k22s:        // op vA, vB, #+CCCC
948       fprintf(out_file_, " v%d, v%d, #int %d // #%04x",
949               dec_insn->VRegA(), dec_insn->VRegB(),
950               (int32_t) dec_insn->VRegC(), (uint16_t) dec_insn->VRegC());
951       break;
952     case Instruction::k22c:        // op vA, vB, thing@CCCC
953     // NOT SUPPORTED:
954     // case Instruction::k22cs:    // [opt] op vA, vB, field offset CCCC
955       fprintf(out_file_, " v%d, v%d, %s",
956               dec_insn->VRegA(), dec_insn->VRegB(), index_buf.get());
957       break;
958     case Instruction::k30t:
959       fprintf(out_file_, " #%08x", dec_insn->VRegA());
960       break;
961     case Instruction::k31i: {     // op vAA, #+BBBBBBBB
962       // This is often, but not always, a float.
963       union {
964         float f;
965         uint32_t i;
966       } conv;
967       conv.i = dec_insn->VRegB();
968       fprintf(out_file_, " v%d, #float %g // #%08x",
969               dec_insn->VRegA(), conv.f, dec_insn->VRegB());
970       break;
971     }
972     case Instruction::k31t:       // op vAA, offset +BBBBBBBB
973       fprintf(out_file_, " v%d, %08x // +%08x",
974               dec_insn->VRegA(), insn_idx + dec_insn->VRegB(), dec_insn->VRegB());
975       break;
976     case Instruction::k32x:        // op vAAAA, vBBBB
977       fprintf(out_file_, " v%d, v%d", dec_insn->VRegA(), dec_insn->VRegB());
978       break;
979     case Instruction::k35c:           // op {vC, vD, vE, vF, vG}, thing@BBBB
980     case Instruction::k45cc: {        // op {vC, vD, vE, vF, vG}, meth@BBBB, proto@HHHH
981     // NOT SUPPORTED:
982     // case Instruction::k35ms:       // [opt] invoke-virtual+super
983     // case Instruction::k35mi:       // [opt] inline invoke
984       uint32_t arg[Instruction::kMaxVarArgRegs];
985       dec_insn->GetVarArgs(arg);
986       fputs(" {", out_file_);
987       for (int i = 0, n = dec_insn->VRegA(); i < n; i++) {
988         if (i == 0) {
989           fprintf(out_file_, "v%d", arg[i]);
990         } else {
991           fprintf(out_file_, ", v%d", arg[i]);
992         }
993       }  // for
994       fprintf(out_file_, "}, %s", index_buf.get());
995       break;
996     }
997     case Instruction::k3rc:           // op {vCCCC .. v(CCCC+AA-1)}, thing@BBBB
998     case Instruction::k4rcc:          // op {vCCCC .. v(CCCC+AA-1)}, meth@BBBB, proto@HHHH
999     // NOT SUPPORTED:
1000     // case Instruction::k3rms:       // [opt] invoke-virtual+super/range
1001     // case Instruction::k3rmi:       // [opt] execute-inline/range
1002       {
1003         // This doesn't match the "dx" output when some of the args are
1004         // 64-bit values -- dx only shows the first register.
1005         fputs(" {", out_file_);
1006         for (int i = 0, n = dec_insn->VRegA(); i < n; i++) {
1007           if (i == 0) {
1008             fprintf(out_file_, "v%d", dec_insn->VRegC() + i);
1009           } else {
1010             fprintf(out_file_, ", v%d", dec_insn->VRegC() + i);
1011           }
1012         }  // for
1013         fprintf(out_file_, "}, %s", index_buf.get());
1014       }
1015       break;
1016     case Instruction::k51l: {      // op vAA, #+BBBBBBBBBBBBBBBB
1017       // This is often, but not always, a double.
1018       union {
1019         double d;
1020         uint64_t j;
1021       } conv;
1022       conv.j = dec_insn->WideVRegB();
1023       fprintf(out_file_, " v%d, #double %g // #%016" PRIx64,
1024               dec_insn->VRegA(), conv.d, dec_insn->WideVRegB());
1025       break;
1026     }
1027     // NOT SUPPORTED:
1028     // case Instruction::k00x:        // unknown op or breakpoint
1029     //    break;
1030     default:
1031       fprintf(out_file_, " ???");
1032       break;
1033   }  // switch
1034 
1035   fputc('\n', out_file_);
1036 }
1037 
1038 /*
1039  * Dumps a bytecode disassembly.
1040  */
DumpBytecodes(uint32_t idx,const dex_ir::CodeItem * code,uint32_t code_offset)1041 void DexLayout::DumpBytecodes(uint32_t idx, const dex_ir::CodeItem* code, uint32_t code_offset) {
1042   dex_ir::MethodId* method_id = header_->GetCollections().GetMethodId(idx);
1043   const char* name = method_id->Name()->Data();
1044   std::string type_descriptor = GetSignatureForProtoId(method_id->Proto());
1045   const char* back_descriptor = method_id->Class()->GetStringId()->Data();
1046 
1047   // Generate header.
1048   std::string dot(DescriptorToDotWrapper(back_descriptor));
1049   fprintf(out_file_, "%06x:                                        |[%06x] %s.%s:%s\n",
1050           code_offset, code_offset, dot.c_str(), name, type_descriptor.c_str());
1051 
1052   // Iterate over all instructions.
1053   for (const DexInstructionPcPair& inst : code->Instructions()) {
1054     const uint32_t insn_width = inst->SizeInCodeUnits();
1055     if (insn_width == 0) {
1056       LOG(WARNING) << "GLITCH: zero-width instruction at idx=0x" << std::hex << inst.DexPc();
1057       break;
1058     }
1059     DumpInstruction(code, code_offset, inst.DexPc(), insn_width, &inst.Inst());
1060   }  // for
1061 }
1062 
1063 /*
1064  * Callback for dumping each positions table entry.
1065  */
DumpPositionsCb(void * context,const DexFile::PositionInfo & entry)1066 static bool DumpPositionsCb(void* context, const DexFile::PositionInfo& entry) {
1067   FILE* out_file = reinterpret_cast<FILE*>(context);
1068   fprintf(out_file, "        0x%04x line=%d\n", entry.address_, entry.line_);
1069   return false;
1070 }
1071 
1072 /*
1073  * Callback for dumping locals table entry.
1074  */
DumpLocalsCb(void * context,const DexFile::LocalInfo & entry)1075 static void DumpLocalsCb(void* context, const DexFile::LocalInfo& entry) {
1076   const char* signature = entry.signature_ != nullptr ? entry.signature_ : "";
1077   FILE* out_file = reinterpret_cast<FILE*>(context);
1078   fprintf(out_file, "        0x%04x - 0x%04x reg=%d %s %s %s\n",
1079           entry.start_address_, entry.end_address_, entry.reg_,
1080           entry.name_, entry.descriptor_, signature);
1081 }
1082 
1083 /*
1084  * Lookup functions.
1085  */
StringDataByIdx(uint32_t idx,dex_ir::Collections & collections)1086 static const char* StringDataByIdx(uint32_t idx, dex_ir::Collections& collections) {
1087   dex_ir::StringId* string_id = collections.GetStringIdOrNullPtr(idx);
1088   if (string_id == nullptr) {
1089     return nullptr;
1090   }
1091   return string_id->Data();
1092 }
1093 
StringDataByTypeIdx(uint16_t idx,dex_ir::Collections & collections)1094 static const char* StringDataByTypeIdx(uint16_t idx, dex_ir::Collections& collections) {
1095   dex_ir::TypeId* type_id = collections.GetTypeIdOrNullPtr(idx);
1096   if (type_id == nullptr) {
1097     return nullptr;
1098   }
1099   dex_ir::StringId* string_id = type_id->GetStringId();
1100   if (string_id == nullptr) {
1101     return nullptr;
1102   }
1103   return string_id->Data();
1104 }
1105 
1106 
1107 /*
1108  * Dumps code of a method.
1109  */
DumpCode(uint32_t idx,const dex_ir::CodeItem * code,uint32_t code_offset,const char * declaring_class_descriptor,const char * method_name,bool is_static,const dex_ir::ProtoId * proto)1110 void DexLayout::DumpCode(uint32_t idx,
1111                          const dex_ir::CodeItem* code,
1112                          uint32_t code_offset,
1113                          const char* declaring_class_descriptor,
1114                          const char* method_name,
1115                          bool is_static,
1116                          const dex_ir::ProtoId* proto) {
1117   fprintf(out_file_, "      registers     : %d\n", code->RegistersSize());
1118   fprintf(out_file_, "      ins           : %d\n", code->InsSize());
1119   fprintf(out_file_, "      outs          : %d\n", code->OutsSize());
1120   fprintf(out_file_, "      insns size    : %d 16-bit code units\n",
1121           code->InsnsSize());
1122 
1123   // Bytecode disassembly, if requested.
1124   if (options_.disassemble_) {
1125     DumpBytecodes(idx, code, code_offset);
1126   }
1127 
1128   // Try-catch blocks.
1129   DumpCatches(code);
1130 
1131   // Positions and locals table in the debug info.
1132   dex_ir::DebugInfoItem* debug_info = code->DebugInfo();
1133   fprintf(out_file_, "      positions     : \n");
1134   if (debug_info != nullptr) {
1135     DexFile::DecodeDebugPositionInfo(debug_info->GetDebugInfo(),
1136                                      [this](uint32_t idx) {
1137                                        return StringDataByIdx(idx, this->header_->GetCollections());
1138                                      },
1139                                      DumpPositionsCb,
1140                                      out_file_);
1141   }
1142   fprintf(out_file_, "      locals        : \n");
1143   if (debug_info != nullptr) {
1144     std::vector<const char*> arg_descriptors;
1145     const dex_ir::TypeList* parameters = proto->Parameters();
1146     if (parameters != nullptr) {
1147       const dex_ir::TypeIdVector* parameter_type_vector = parameters->GetTypeList();
1148       if (parameter_type_vector != nullptr) {
1149         for (const dex_ir::TypeId* type_id : *parameter_type_vector) {
1150           arg_descriptors.push_back(type_id->GetStringId()->Data());
1151         }
1152       }
1153     }
1154     DexFile::DecodeDebugLocalInfo(debug_info->GetDebugInfo(),
1155                                   "DexLayout in-memory",
1156                                   declaring_class_descriptor,
1157                                   arg_descriptors,
1158                                   method_name,
1159                                   is_static,
1160                                   code->RegistersSize(),
1161                                   code->InsSize(),
1162                                   code->InsnsSize(),
1163                                   [this](uint32_t idx) {
1164                                     return StringDataByIdx(idx, this->header_->GetCollections());
1165                                   },
1166                                   [this](uint32_t idx) {
1167                                     return
1168                                         StringDataByTypeIdx(dchecked_integral_cast<uint16_t>(idx),
1169                                                             this->header_->GetCollections());
1170                                   },
1171                                   DumpLocalsCb,
1172                                   out_file_);
1173   }
1174 }
1175 
1176 /*
1177  * Dumps a method.
1178  */
DumpMethod(uint32_t idx,uint32_t flags,const dex_ir::CodeItem * code,int i)1179 void DexLayout::DumpMethod(uint32_t idx, uint32_t flags, const dex_ir::CodeItem* code, int i) {
1180   // Bail for anything private if export only requested.
1181   if (options_.exports_only_ && (flags & (kAccPublic | kAccProtected)) == 0) {
1182     return;
1183   }
1184 
1185   dex_ir::MethodId* method_id = header_->GetCollections().GetMethodId(idx);
1186   const char* name = method_id->Name()->Data();
1187   char* type_descriptor = strdup(GetSignatureForProtoId(method_id->Proto()).c_str());
1188   const char* back_descriptor = method_id->Class()->GetStringId()->Data();
1189   char* access_str = CreateAccessFlagStr(flags, kAccessForMethod);
1190 
1191   if (options_.output_format_ == kOutputPlain) {
1192     fprintf(out_file_, "    #%d              : (in %s)\n", i, back_descriptor);
1193     fprintf(out_file_, "      name          : '%s'\n", name);
1194     fprintf(out_file_, "      type          : '%s'\n", type_descriptor);
1195     fprintf(out_file_, "      access        : 0x%04x (%s)\n", flags, access_str);
1196     if (code == nullptr) {
1197       fprintf(out_file_, "      code          : (none)\n");
1198     } else {
1199       fprintf(out_file_, "      code          -\n");
1200       DumpCode(idx,
1201                code,
1202                code->GetOffset(),
1203                back_descriptor,
1204                name,
1205                (flags & kAccStatic) != 0,
1206                method_id->Proto());
1207     }
1208     if (options_.disassemble_) {
1209       fputc('\n', out_file_);
1210     }
1211   } else if (options_.output_format_ == kOutputXml) {
1212     const bool constructor = (name[0] == '<');
1213 
1214     // Method name and prototype.
1215     if (constructor) {
1216       std::string dot(DescriptorClassToDot(back_descriptor));
1217       fprintf(out_file_, "<constructor name=\"%s\"\n", dot.c_str());
1218       dot = DescriptorToDotWrapper(back_descriptor);
1219       fprintf(out_file_, " type=\"%s\"\n", dot.c_str());
1220     } else {
1221       fprintf(out_file_, "<method name=\"%s\"\n", name);
1222       const char* return_type = strrchr(type_descriptor, ')');
1223       if (return_type == nullptr) {
1224         LOG(ERROR) << "bad method type descriptor '" << type_descriptor << "'";
1225         goto bail;
1226       }
1227       std::string dot(DescriptorToDotWrapper(return_type + 1));
1228       fprintf(out_file_, " return=\"%s\"\n", dot.c_str());
1229       fprintf(out_file_, " abstract=%s\n", QuotedBool((flags & kAccAbstract) != 0));
1230       fprintf(out_file_, " native=%s\n", QuotedBool((flags & kAccNative) != 0));
1231       fprintf(out_file_, " synchronized=%s\n", QuotedBool(
1232           (flags & (kAccSynchronized | kAccDeclaredSynchronized)) != 0));
1233     }
1234 
1235     // Additional method flags.
1236     fprintf(out_file_, " static=%s\n", QuotedBool((flags & kAccStatic) != 0));
1237     fprintf(out_file_, " final=%s\n", QuotedBool((flags & kAccFinal) != 0));
1238     // The "deprecated=" not knowable w/o parsing annotations.
1239     fprintf(out_file_, " visibility=%s\n>\n", QuotedVisibility(flags));
1240 
1241     // Parameters.
1242     if (type_descriptor[0] != '(') {
1243       LOG(ERROR) << "ERROR: bad descriptor '" << type_descriptor << "'";
1244       goto bail;
1245     }
1246     char* tmp_buf = reinterpret_cast<char*>(malloc(strlen(type_descriptor) + 1));
1247     const char* base = type_descriptor + 1;
1248     int arg_num = 0;
1249     while (*base != ')') {
1250       char* cp = tmp_buf;
1251       while (*base == '[') {
1252         *cp++ = *base++;
1253       }
1254       if (*base == 'L') {
1255         // Copy through ';'.
1256         do {
1257           *cp = *base++;
1258         } while (*cp++ != ';');
1259       } else {
1260         // Primitive char, copy it.
1261         if (strchr("ZBCSIFJD", *base) == nullptr) {
1262           LOG(ERROR) << "ERROR: bad method signature '" << base << "'";
1263           break;  // while
1264         }
1265         *cp++ = *base++;
1266       }
1267       // Null terminate and display.
1268       *cp++ = '\0';
1269       std::string dot(DescriptorToDotWrapper(tmp_buf));
1270       fprintf(out_file_, "<parameter name=\"arg%d\" type=\"%s\">\n"
1271                         "</parameter>\n", arg_num++, dot.c_str());
1272     }  // while
1273     free(tmp_buf);
1274     if (constructor) {
1275       fprintf(out_file_, "</constructor>\n");
1276     } else {
1277       fprintf(out_file_, "</method>\n");
1278     }
1279   }
1280 
1281  bail:
1282   free(type_descriptor);
1283   free(access_str);
1284 }
1285 
1286 /*
1287  * Dumps a static (class) field.
1288  */
DumpSField(uint32_t idx,uint32_t flags,int i,dex_ir::EncodedValue * init)1289 void DexLayout::DumpSField(uint32_t idx, uint32_t flags, int i, dex_ir::EncodedValue* init) {
1290   // Bail for anything private if export only requested.
1291   if (options_.exports_only_ && (flags & (kAccPublic | kAccProtected)) == 0) {
1292     return;
1293   }
1294 
1295   dex_ir::FieldId* field_id = header_->GetCollections().GetFieldId(idx);
1296   const char* name = field_id->Name()->Data();
1297   const char* type_descriptor = field_id->Type()->GetStringId()->Data();
1298   const char* back_descriptor = field_id->Class()->GetStringId()->Data();
1299   char* access_str = CreateAccessFlagStr(flags, kAccessForField);
1300 
1301   if (options_.output_format_ == kOutputPlain) {
1302     fprintf(out_file_, "    #%d              : (in %s)\n", i, back_descriptor);
1303     fprintf(out_file_, "      name          : '%s'\n", name);
1304     fprintf(out_file_, "      type          : '%s'\n", type_descriptor);
1305     fprintf(out_file_, "      access        : 0x%04x (%s)\n", flags, access_str);
1306     if (init != nullptr) {
1307       fputs("      value         : ", out_file_);
1308       DumpEncodedValue(init);
1309       fputs("\n", out_file_);
1310     }
1311   } else if (options_.output_format_ == kOutputXml) {
1312     fprintf(out_file_, "<field name=\"%s\"\n", name);
1313     std::string dot(DescriptorToDotWrapper(type_descriptor));
1314     fprintf(out_file_, " type=\"%s\"\n", dot.c_str());
1315     fprintf(out_file_, " transient=%s\n", QuotedBool((flags & kAccTransient) != 0));
1316     fprintf(out_file_, " volatile=%s\n", QuotedBool((flags & kAccVolatile) != 0));
1317     // The "value=" is not knowable w/o parsing annotations.
1318     fprintf(out_file_, " static=%s\n", QuotedBool((flags & kAccStatic) != 0));
1319     fprintf(out_file_, " final=%s\n", QuotedBool((flags & kAccFinal) != 0));
1320     // The "deprecated=" is not knowable w/o parsing annotations.
1321     fprintf(out_file_, " visibility=%s\n", QuotedVisibility(flags));
1322     if (init != nullptr) {
1323       fputs(" value=\"", out_file_);
1324       DumpEncodedValue(init);
1325       fputs("\"\n", out_file_);
1326     }
1327     fputs(">\n</field>\n", out_file_);
1328   }
1329 
1330   free(access_str);
1331 }
1332 
1333 /*
1334  * Dumps an instance field.
1335  */
DumpIField(uint32_t idx,uint32_t flags,int i)1336 void DexLayout::DumpIField(uint32_t idx, uint32_t flags, int i) {
1337   DumpSField(idx, flags, i, nullptr);
1338 }
1339 
1340 /*
1341  * Dumps the class.
1342  *
1343  * Note "idx" is a DexClassDef index, not a DexTypeId index.
1344  *
1345  * If "*last_package" is nullptr or does not match the current class' package,
1346  * the value will be replaced with a newly-allocated string.
1347  */
DumpClass(int idx,char ** last_package)1348 void DexLayout::DumpClass(int idx, char** last_package) {
1349   dex_ir::ClassDef* class_def = header_->GetCollections().GetClassDef(idx);
1350   // Omitting non-public class.
1351   if (options_.exports_only_ && (class_def->GetAccessFlags() & kAccPublic) == 0) {
1352     return;
1353   }
1354 
1355   if (options_.show_section_headers_) {
1356     DumpClassDef(idx);
1357   }
1358 
1359   if (options_.show_annotations_) {
1360     DumpClassAnnotations(idx);
1361   }
1362 
1363   // For the XML output, show the package name.  Ideally we'd gather
1364   // up the classes, sort them, and dump them alphabetically so the
1365   // package name wouldn't jump around, but that's not a great plan
1366   // for something that needs to run on the device.
1367   const char* class_descriptor =
1368       header_->GetCollections().GetClassDef(idx)->ClassType()->GetStringId()->Data();
1369   if (!(class_descriptor[0] == 'L' &&
1370         class_descriptor[strlen(class_descriptor)-1] == ';')) {
1371     // Arrays and primitives should not be defined explicitly. Keep going?
1372     LOG(ERROR) << "Malformed class name '" << class_descriptor << "'";
1373   } else if (options_.output_format_ == kOutputXml) {
1374     char* mangle = strdup(class_descriptor + 1);
1375     mangle[strlen(mangle)-1] = '\0';
1376 
1377     // Reduce to just the package name.
1378     char* last_slash = strrchr(mangle, '/');
1379     if (last_slash != nullptr) {
1380       *last_slash = '\0';
1381     } else {
1382       *mangle = '\0';
1383     }
1384 
1385     for (char* cp = mangle; *cp != '\0'; cp++) {
1386       if (*cp == '/') {
1387         *cp = '.';
1388       }
1389     }  // for
1390 
1391     if (*last_package == nullptr || strcmp(mangle, *last_package) != 0) {
1392       // Start of a new package.
1393       if (*last_package != nullptr) {
1394         fprintf(out_file_, "</package>\n");
1395       }
1396       fprintf(out_file_, "<package name=\"%s\"\n>\n", mangle);
1397       free(*last_package);
1398       *last_package = mangle;
1399     } else {
1400       free(mangle);
1401     }
1402   }
1403 
1404   // General class information.
1405   char* access_str = CreateAccessFlagStr(class_def->GetAccessFlags(), kAccessForClass);
1406   const char* superclass_descriptor = nullptr;
1407   if (class_def->Superclass() != nullptr) {
1408     superclass_descriptor = class_def->Superclass()->GetStringId()->Data();
1409   }
1410   if (options_.output_format_ == kOutputPlain) {
1411     fprintf(out_file_, "Class #%d            -\n", idx);
1412     fprintf(out_file_, "  Class descriptor  : '%s'\n", class_descriptor);
1413     fprintf(out_file_, "  Access flags      : 0x%04x (%s)\n",
1414             class_def->GetAccessFlags(), access_str);
1415     if (superclass_descriptor != nullptr) {
1416       fprintf(out_file_, "  Superclass        : '%s'\n", superclass_descriptor);
1417     }
1418     fprintf(out_file_, "  Interfaces        -\n");
1419   } else {
1420     std::string dot(DescriptorClassToDot(class_descriptor));
1421     fprintf(out_file_, "<class name=\"%s\"\n", dot.c_str());
1422     if (superclass_descriptor != nullptr) {
1423       dot = DescriptorToDotWrapper(superclass_descriptor);
1424       fprintf(out_file_, " extends=\"%s\"\n", dot.c_str());
1425     }
1426     fprintf(out_file_, " interface=%s\n",
1427             QuotedBool((class_def->GetAccessFlags() & kAccInterface) != 0));
1428     fprintf(out_file_, " abstract=%s\n",
1429             QuotedBool((class_def->GetAccessFlags() & kAccAbstract) != 0));
1430     fprintf(out_file_, " static=%s\n", QuotedBool((class_def->GetAccessFlags() & kAccStatic) != 0));
1431     fprintf(out_file_, " final=%s\n", QuotedBool((class_def->GetAccessFlags() & kAccFinal) != 0));
1432     // The "deprecated=" not knowable w/o parsing annotations.
1433     fprintf(out_file_, " visibility=%s\n", QuotedVisibility(class_def->GetAccessFlags()));
1434     fprintf(out_file_, ">\n");
1435   }
1436 
1437   // Interfaces.
1438   const dex_ir::TypeList* interfaces = class_def->Interfaces();
1439   if (interfaces != nullptr) {
1440     const dex_ir::TypeIdVector* interfaces_vector = interfaces->GetTypeList();
1441     for (uint32_t i = 0; i < interfaces_vector->size(); i++) {
1442       DumpInterface((*interfaces_vector)[i], i);
1443     }  // for
1444   }
1445 
1446   // Fields and methods.
1447   dex_ir::ClassData* class_data = class_def->GetClassData();
1448   // Prepare data for static fields.
1449   dex_ir::EncodedArrayItem* static_values = class_def->StaticValues();
1450   dex_ir::EncodedValueVector* encoded_values =
1451       static_values == nullptr ? nullptr : static_values->GetEncodedValues();
1452   const uint32_t encoded_values_size = (encoded_values == nullptr) ? 0 : encoded_values->size();
1453 
1454   // Static fields.
1455   if (options_.output_format_ == kOutputPlain) {
1456     fprintf(out_file_, "  Static fields     -\n");
1457   }
1458   if (class_data != nullptr) {
1459     dex_ir::FieldItemVector* static_fields = class_data->StaticFields();
1460     if (static_fields != nullptr) {
1461       for (uint32_t i = 0; i < static_fields->size(); i++) {
1462         DumpSField((*static_fields)[i]->GetFieldId()->GetIndex(),
1463                    (*static_fields)[i]->GetAccessFlags(),
1464                    i,
1465                    i < encoded_values_size ? (*encoded_values)[i].get() : nullptr);
1466       }  // for
1467     }
1468   }
1469 
1470   // Instance fields.
1471   if (options_.output_format_ == kOutputPlain) {
1472     fprintf(out_file_, "  Instance fields   -\n");
1473   }
1474   if (class_data != nullptr) {
1475     dex_ir::FieldItemVector* instance_fields = class_data->InstanceFields();
1476     if (instance_fields != nullptr) {
1477       for (uint32_t i = 0; i < instance_fields->size(); i++) {
1478         DumpIField((*instance_fields)[i]->GetFieldId()->GetIndex(),
1479                    (*instance_fields)[i]->GetAccessFlags(),
1480                    i);
1481       }  // for
1482     }
1483   }
1484 
1485   // Direct methods.
1486   if (options_.output_format_ == kOutputPlain) {
1487     fprintf(out_file_, "  Direct methods    -\n");
1488   }
1489   if (class_data != nullptr) {
1490     dex_ir::MethodItemVector* direct_methods = class_data->DirectMethods();
1491     if (direct_methods != nullptr) {
1492       for (uint32_t i = 0; i < direct_methods->size(); i++) {
1493         DumpMethod((*direct_methods)[i]->GetMethodId()->GetIndex(),
1494                    (*direct_methods)[i]->GetAccessFlags(),
1495                    (*direct_methods)[i]->GetCodeItem(),
1496                  i);
1497       }  // for
1498     }
1499   }
1500 
1501   // Virtual methods.
1502   if (options_.output_format_ == kOutputPlain) {
1503     fprintf(out_file_, "  Virtual methods   -\n");
1504   }
1505   if (class_data != nullptr) {
1506     dex_ir::MethodItemVector* virtual_methods = class_data->VirtualMethods();
1507     if (virtual_methods != nullptr) {
1508       for (uint32_t i = 0; i < virtual_methods->size(); i++) {
1509         DumpMethod((*virtual_methods)[i]->GetMethodId()->GetIndex(),
1510                    (*virtual_methods)[i]->GetAccessFlags(),
1511                    (*virtual_methods)[i]->GetCodeItem(),
1512                    i);
1513       }  // for
1514     }
1515   }
1516 
1517   // End of class.
1518   if (options_.output_format_ == kOutputPlain) {
1519     const char* file_name = "unknown";
1520     if (class_def->SourceFile() != nullptr) {
1521       file_name = class_def->SourceFile()->Data();
1522     }
1523     const dex_ir::StringId* source_file = class_def->SourceFile();
1524     fprintf(out_file_, "  source_file_idx   : %d (%s)\n\n",
1525             source_file == nullptr ? 0xffffffffU : source_file->GetIndex(), file_name);
1526   } else if (options_.output_format_ == kOutputXml) {
1527     fprintf(out_file_, "</class>\n");
1528   }
1529 
1530   free(access_str);
1531 }
1532 
DumpDexFile()1533 void DexLayout::DumpDexFile() {
1534   // Headers.
1535   if (options_.show_file_headers_) {
1536     DumpFileHeader();
1537   }
1538 
1539   // Open XML context.
1540   if (options_.output_format_ == kOutputXml) {
1541     fprintf(out_file_, "<api>\n");
1542   }
1543 
1544   // Iterate over all classes.
1545   char* package = nullptr;
1546   const uint32_t class_defs_size = header_->GetCollections().ClassDefsSize();
1547   for (uint32_t i = 0; i < class_defs_size; i++) {
1548     DumpClass(i, &package);
1549   }  // for
1550 
1551   // Free the last package allocated.
1552   if (package != nullptr) {
1553     fprintf(out_file_, "</package>\n");
1554     free(package);
1555   }
1556 
1557   // Close XML context.
1558   if (options_.output_format_ == kOutputXml) {
1559     fprintf(out_file_, "</api>\n");
1560   }
1561 }
1562 
LayoutClassDefsAndClassData(const DexFile * dex_file)1563 void DexLayout::LayoutClassDefsAndClassData(const DexFile* dex_file) {
1564   std::vector<dex_ir::ClassDef*> new_class_def_order;
1565   for (std::unique_ptr<dex_ir::ClassDef>& class_def : header_->GetCollections().ClassDefs()) {
1566     dex::TypeIndex type_idx(class_def->ClassType()->GetIndex());
1567     if (info_->ContainsClass(*dex_file, type_idx)) {
1568       new_class_def_order.push_back(class_def.get());
1569     }
1570   }
1571   for (std::unique_ptr<dex_ir::ClassDef>& class_def : header_->GetCollections().ClassDefs()) {
1572     dex::TypeIndex type_idx(class_def->ClassType()->GetIndex());
1573     if (!info_->ContainsClass(*dex_file, type_idx)) {
1574       new_class_def_order.push_back(class_def.get());
1575     }
1576   }
1577   std::unordered_set<dex_ir::ClassData*> visited_class_data;
1578   size_t class_data_index = 0;
1579   dex_ir::CollectionVector<dex_ir::ClassData>::Vector& class_datas =
1580       header_->GetCollections().ClassDatas();
1581   for (dex_ir::ClassDef* class_def : new_class_def_order) {
1582     dex_ir::ClassData* class_data = class_def->GetClassData();
1583     if (class_data != nullptr && visited_class_data.find(class_data) == visited_class_data.end()) {
1584       visited_class_data.insert(class_data);
1585       // Overwrite the existing vector with the new ordering, note that the sets of objects are
1586       // equivalent, but the order changes. This is why this is not a memory leak.
1587       // TODO: Consider cleaning this up with a shared_ptr.
1588       class_datas[class_data_index].release();
1589       class_datas[class_data_index].reset(class_data);
1590       ++class_data_index;
1591     }
1592   }
1593   CHECK_EQ(class_data_index, class_datas.size());
1594 
1595   if (DexLayout::kChangeClassDefOrder) {
1596     // This currently produces dex files that violate the spec since the super class class_def is
1597     // supposed to occur before any subclasses.
1598     dex_ir::CollectionVector<dex_ir::ClassDef>::Vector& class_defs =
1599         header_->GetCollections().ClassDefs();
1600     CHECK_EQ(new_class_def_order.size(), class_defs.size());
1601     for (size_t i = 0; i < class_defs.size(); ++i) {
1602       // Overwrite the existing vector with the new ordering, note that the sets of objects are
1603       // equivalent, but the order changes. This is why this is not a memory leak.
1604       // TODO: Consider cleaning this up with a shared_ptr.
1605       class_defs[i].release();
1606       class_defs[i].reset(new_class_def_order[i]);
1607     }
1608   }
1609 }
1610 
LayoutStringData(const DexFile * dex_file)1611 void DexLayout::LayoutStringData(const DexFile* dex_file) {
1612   const size_t num_strings = header_->GetCollections().StringIds().size();
1613   std::vector<bool> is_shorty(num_strings, false);
1614   std::vector<bool> from_hot_method(num_strings, false);
1615   for (std::unique_ptr<dex_ir::ClassDef>& class_def : header_->GetCollections().ClassDefs()) {
1616     // A name of a profile class is probably going to get looked up by ClassTable::Lookup, mark it
1617     // as hot. Add its super class and interfaces as well, which can be used during initialization.
1618     const bool is_profile_class =
1619         info_->ContainsClass(*dex_file, dex::TypeIndex(class_def->ClassType()->GetIndex()));
1620     if (is_profile_class) {
1621       from_hot_method[class_def->ClassType()->GetStringId()->GetIndex()] = true;
1622       const dex_ir::TypeId* superclass = class_def->Superclass();
1623       if (superclass != nullptr) {
1624         from_hot_method[superclass->GetStringId()->GetIndex()] = true;
1625       }
1626       const dex_ir::TypeList* interfaces = class_def->Interfaces();
1627       if (interfaces != nullptr) {
1628         for (const dex_ir::TypeId* interface_type : *interfaces->GetTypeList()) {
1629           from_hot_method[interface_type->GetStringId()->GetIndex()] = true;
1630         }
1631       }
1632     }
1633     dex_ir::ClassData* data = class_def->GetClassData();
1634     if (data == nullptr) {
1635       continue;
1636     }
1637     for (size_t i = 0; i < 2; ++i) {
1638       for (auto& method : *(i == 0 ? data->DirectMethods() : data->VirtualMethods())) {
1639         const dex_ir::MethodId* method_id = method->GetMethodId();
1640         dex_ir::CodeItem* code_item = method->GetCodeItem();
1641         if (code_item == nullptr) {
1642           continue;
1643         }
1644         const bool is_clinit = is_profile_class &&
1645             (method->GetAccessFlags() & kAccConstructor) != 0 &&
1646             (method->GetAccessFlags() & kAccStatic) != 0;
1647         const bool method_executed = is_clinit ||
1648             info_->GetMethodHotness(MethodReference(dex_file, method_id->GetIndex())).IsInProfile();
1649         if (!method_executed) {
1650           continue;
1651         }
1652         is_shorty[method_id->Proto()->Shorty()->GetIndex()] = true;
1653         dex_ir::CodeFixups* fixups = code_item->GetCodeFixups();
1654         if (fixups == nullptr) {
1655           continue;
1656         }
1657         // Add const-strings.
1658         for (dex_ir::StringId* id : fixups->StringIds()) {
1659           from_hot_method[id->GetIndex()] = true;
1660         }
1661         // Add field classes, names, and types.
1662         for (dex_ir::FieldId* id : fixups->FieldIds()) {
1663           // TODO: Only visit field ids from static getters and setters.
1664           from_hot_method[id->Class()->GetStringId()->GetIndex()] = true;
1665           from_hot_method[id->Name()->GetIndex()] = true;
1666           from_hot_method[id->Type()->GetStringId()->GetIndex()] = true;
1667         }
1668         // For clinits, add referenced method classes, names, and protos.
1669         if (is_clinit) {
1670           for (dex_ir::MethodId* id : fixups->MethodIds()) {
1671             from_hot_method[id->Class()->GetStringId()->GetIndex()] = true;
1672             from_hot_method[id->Name()->GetIndex()] = true;
1673             is_shorty[id->Proto()->Shorty()->GetIndex()] = true;
1674           }
1675         }
1676       }
1677     }
1678   }
1679   // Sort string data by specified order.
1680   std::vector<dex_ir::StringId*> string_ids;
1681   for (auto& string_id : header_->GetCollections().StringIds()) {
1682     string_ids.push_back(string_id.get());
1683   }
1684   std::sort(string_ids.begin(),
1685             string_ids.end(),
1686             [&is_shorty, &from_hot_method](const dex_ir::StringId* a,
1687                                            const dex_ir::StringId* b) {
1688     const bool a_is_hot = from_hot_method[a->GetIndex()];
1689     const bool b_is_hot = from_hot_method[b->GetIndex()];
1690     if (a_is_hot != b_is_hot) {
1691       return a_is_hot < b_is_hot;
1692     }
1693     // After hot methods are partitioned, subpartition shorties.
1694     const bool a_is_shorty = is_shorty[a->GetIndex()];
1695     const bool b_is_shorty = is_shorty[b->GetIndex()];
1696     if (a_is_shorty != b_is_shorty) {
1697       return a_is_shorty < b_is_shorty;
1698     }
1699     // Order by index by default.
1700     return a->GetIndex() < b->GetIndex();
1701   });
1702   dex_ir::CollectionVector<dex_ir::StringData>::Vector& string_datas =
1703       header_->GetCollections().StringDatas();
1704   // Now we know what order we want the string data, reorder them.
1705   size_t data_index = 0;
1706   for (dex_ir::StringId* string_id : string_ids) {
1707     string_datas[data_index].release();
1708     string_datas[data_index].reset(string_id->DataItem());
1709     ++data_index;
1710   }
1711   if (kIsDebugBuild) {
1712     std::unordered_set<dex_ir::StringData*> visited;
1713     for (const std::unique_ptr<dex_ir::StringData>& data : string_datas) {
1714       visited.insert(data.get());
1715     }
1716     for (auto& string_id : header_->GetCollections().StringIds()) {
1717       CHECK(visited.find(string_id->DataItem()) != visited.end());
1718     }
1719   }
1720   CHECK_EQ(data_index, string_datas.size());
1721 }
1722 
1723 // Orders code items according to specified class data ordering.
LayoutCodeItems(const DexFile * dex_file)1724 void DexLayout::LayoutCodeItems(const DexFile* dex_file) {
1725   static constexpr InvokeType invoke_types[] = {
1726     kDirect,
1727     kVirtual
1728   };
1729 
1730   std::unordered_map<dex_ir::CodeItem*, LayoutType>& code_item_layout =
1731       layout_hotness_info_.code_item_layout_;
1732 
1733   // Assign hotness flags to all code items.
1734   for (InvokeType invoke_type : invoke_types) {
1735     for (std::unique_ptr<dex_ir::ClassDef>& class_def : header_->GetCollections().ClassDefs()) {
1736       const bool is_profile_class =
1737           info_->ContainsClass(*dex_file, dex::TypeIndex(class_def->ClassType()->GetIndex()));
1738 
1739       // Skip classes that are not defined in this dex file.
1740       dex_ir::ClassData* class_data = class_def->GetClassData();
1741       if (class_data == nullptr) {
1742         continue;
1743       }
1744       for (auto& method : *(invoke_type == InvokeType::kDirect
1745                                 ? class_data->DirectMethods()
1746                                 : class_data->VirtualMethods())) {
1747         const dex_ir::MethodId *method_id = method->GetMethodId();
1748         dex_ir::CodeItem *code_item = method->GetCodeItem();
1749         if (code_item == nullptr) {
1750           continue;
1751         }
1752         // Separate executed methods (clinits and profiled methods) from unexecuted methods.
1753         const bool is_clinit = (method->GetAccessFlags() & kAccConstructor) != 0 &&
1754             (method->GetAccessFlags() & kAccStatic) != 0;
1755         const bool is_startup_clinit = is_profile_class && is_clinit;
1756         using Hotness = ProfileCompilationInfo::MethodHotness;
1757         Hotness hotness = info_->GetMethodHotness(MethodReference(dex_file, method_id->GetIndex()));
1758         LayoutType state = LayoutType::kLayoutTypeUnused;
1759         if (hotness.IsHot()) {
1760           // Hot code is compiled, maybe one day it won't be accessed. So lay it out together for
1761           // now.
1762           state = LayoutType::kLayoutTypeHot;
1763         } else if (is_startup_clinit || hotness.GetFlags() == Hotness::kFlagStartup) {
1764           // Startup clinit or a method that only has the startup flag.
1765           state = LayoutType::kLayoutTypeStartupOnly;
1766         } else if (is_clinit) {
1767           state = LayoutType::kLayoutTypeUsedOnce;
1768         } else if (hotness.IsInProfile()) {
1769           state = LayoutType::kLayoutTypeSometimesUsed;
1770         }
1771         auto it = code_item_layout.emplace(code_item, state);
1772         if (!it.second) {
1773           LayoutType& layout_type = it.first->second;
1774           // Already exists, merge the hotness.
1775           layout_type = MergeLayoutType(layout_type, state);
1776         }
1777       }
1778     }
1779   }
1780 
1781   dex_ir::CollectionVector<dex_ir::CodeItem>::Vector& code_items =
1782         header_->GetCollections().CodeItems();
1783   if (VLOG_IS_ON(dex)) {
1784     size_t layout_count[static_cast<size_t>(LayoutType::kLayoutTypeCount)] = {};
1785     for (const std::unique_ptr<dex_ir::CodeItem>& code_item : code_items) {
1786       auto it = code_item_layout.find(code_item.get());
1787       DCHECK(it != code_item_layout.end());
1788       ++layout_count[static_cast<size_t>(it->second)];
1789     }
1790     for (size_t i = 0; i < static_cast<size_t>(LayoutType::kLayoutTypeCount); ++i) {
1791       LOG(INFO) << "Code items in category " << i << " count=" << layout_count[i];
1792     }
1793   }
1794 
1795   // Sort the code items vector by new layout. The writing process will take care of calculating
1796   // all the offsets. Stable sort to preserve any existing locality that might be there.
1797   std::stable_sort(code_items.begin(),
1798                    code_items.end(),
1799                    [&](const std::unique_ptr<dex_ir::CodeItem>& a,
1800                        const std::unique_ptr<dex_ir::CodeItem>& b) {
1801     auto it_a = code_item_layout.find(a.get());
1802     auto it_b = code_item_layout.find(b.get());
1803     DCHECK(it_a != code_item_layout.end());
1804     DCHECK(it_b != code_item_layout.end());
1805     const LayoutType layout_type_a = it_a->second;
1806     const LayoutType layout_type_b = it_b->second;
1807     return layout_type_a < layout_type_b;
1808   });
1809 }
1810 
LayoutOutputFile(const DexFile * dex_file)1811 void DexLayout::LayoutOutputFile(const DexFile* dex_file) {
1812   LayoutStringData(dex_file);
1813   LayoutClassDefsAndClassData(dex_file);
1814   LayoutCodeItems(dex_file);
1815 }
1816 
OutputDexFile(const DexFile * input_dex_file,bool compute_offsets,std::unique_ptr<DexContainer> * dex_container,std::string * error_msg)1817 bool DexLayout::OutputDexFile(const DexFile* input_dex_file,
1818                               bool compute_offsets,
1819                               std::unique_ptr<DexContainer>* dex_container,
1820                               std::string* error_msg) {
1821   const std::string& dex_file_location = input_dex_file->GetLocation();
1822   std::unique_ptr<File> new_file;
1823   // If options_.output_dex_directory_ is non null, we are outputting to a file.
1824   if (options_.output_dex_directory_ != nullptr) {
1825     std::string output_location(options_.output_dex_directory_);
1826     size_t last_slash = dex_file_location.rfind('/');
1827     std::string dex_file_directory = dex_file_location.substr(0, last_slash + 1);
1828     if (output_location == dex_file_directory) {
1829       output_location = dex_file_location + ".new";
1830     } else if (last_slash != std::string::npos) {
1831       output_location += dex_file_location.substr(last_slash);
1832     } else {
1833       output_location += "/" + dex_file_location + ".new";
1834     }
1835     new_file.reset(OS::CreateEmptyFile(output_location.c_str()));
1836     if (new_file == nullptr) {
1837       LOG(ERROR) << "Could not create dex writer output file: " << output_location;
1838       return false;
1839     }
1840   }
1841   if (!DexWriter::Output(this, dex_container, compute_offsets, error_msg)) {
1842     return false;
1843   }
1844   if (new_file != nullptr) {
1845     DexContainer* const container = dex_container->get();
1846     DexContainer::Section* const main_section = container->GetMainSection();
1847     if (!new_file->WriteFully(main_section->Begin(), main_section->Size())) {
1848       LOG(ERROR) << "Failed to write main section for dex file " << dex_file_location;
1849       new_file->Erase();
1850       return false;
1851     }
1852     DexContainer::Section* const data_section = container->GetDataSection();
1853     if (!new_file->WriteFully(data_section->Begin(), data_section->Size())) {
1854       LOG(ERROR) << "Failed to write data section for dex file " << dex_file_location;
1855       new_file->Erase();
1856       return false;
1857     }
1858     UNUSED(new_file->FlushCloseOrErase());
1859   }
1860   return true;
1861 }
1862 
1863 /*
1864  * Dumps the requested sections of the file.
1865  */
ProcessDexFile(const char * file_name,const DexFile * dex_file,size_t dex_file_index,std::unique_ptr<DexContainer> * dex_container,std::string * error_msg)1866 bool DexLayout::ProcessDexFile(const char* file_name,
1867                                const DexFile* dex_file,
1868                                size_t dex_file_index,
1869                                std::unique_ptr<DexContainer>* dex_container,
1870                                std::string* error_msg) {
1871   const bool has_output_container = dex_container != nullptr;
1872   const bool output = options_.output_dex_directory_ != nullptr || has_output_container;
1873 
1874   // Try to avoid eagerly assigning offsets to find bugs since GetOffset will abort if the offset
1875   // is unassigned.
1876   bool eagerly_assign_offsets = false;
1877   if (options_.visualize_pattern_ || options_.show_section_statistics_ || options_.dump_) {
1878     // These options required the offsets for dumping purposes.
1879     eagerly_assign_offsets = true;
1880   }
1881   std::unique_ptr<dex_ir::Header> header(dex_ir::DexIrBuilder(*dex_file,
1882                                                                eagerly_assign_offsets,
1883                                                                GetOptions()));
1884   SetHeader(header.get());
1885 
1886   if (options_.verbose_) {
1887     fprintf(out_file_, "Opened '%s', DEX version '%.3s'\n",
1888             file_name, dex_file->GetHeader().magic_ + 4);
1889   }
1890 
1891   if (options_.visualize_pattern_) {
1892     VisualizeDexLayout(header_, dex_file, dex_file_index, info_);
1893     return true;
1894   }
1895 
1896   if (options_.show_section_statistics_) {
1897     ShowDexSectionStatistics(header_, dex_file_index);
1898     return true;
1899   }
1900 
1901   // Dump dex file.
1902   if (options_.dump_) {
1903     DumpDexFile();
1904   }
1905 
1906   // In case we are outputting to a file, keep it open so we can verify.
1907   if (output) {
1908     // Layout information about what strings and code items are hot. Used by the writing process
1909     // to generate the sections that are stored in the oat file.
1910     bool do_layout = info_ != nullptr;
1911     if (do_layout) {
1912       LayoutOutputFile(dex_file);
1913     }
1914     // The output needs a dex container, use a temporary one.
1915     std::unique_ptr<DexContainer> temp_container;
1916     if (dex_container == nullptr) {
1917       dex_container = &temp_container;
1918     }
1919     // If we didn't set the offsets eagerly, we definitely need to compute them here.
1920     if (!OutputDexFile(dex_file, do_layout || !eagerly_assign_offsets, dex_container, error_msg)) {
1921       return false;
1922     }
1923 
1924     // Clear header before verifying to reduce peak RAM usage.
1925     const size_t file_size = header_->FileSize();
1926     header.reset();
1927 
1928     // Verify the output dex file's structure, only enabled by default for debug builds.
1929     if (options_.verify_output_ && has_output_container) {
1930       std::string location = "memory mapped file for " + std::string(file_name);
1931       // Dex file verifier cannot handle compact dex.
1932       bool verify = options_.compact_dex_level_ == CompactDexLevel::kCompactDexLevelNone;
1933       const ArtDexFileLoader dex_file_loader;
1934       DexContainer::Section* const main_section = (*dex_container)->GetMainSection();
1935       DexContainer::Section* const data_section = (*dex_container)->GetDataSection();
1936       DCHECK_EQ(file_size, main_section->Size())
1937           << main_section->Size() << " " << data_section->Size();
1938       std::unique_ptr<const DexFile> output_dex_file(
1939           dex_file_loader.OpenWithDataSection(
1940               main_section->Begin(),
1941               main_section->Size(),
1942               data_section->Begin(),
1943               data_section->Size(),
1944               location,
1945               /* checksum */ 0,
1946               /*oat_dex_file*/ nullptr,
1947               verify,
1948               /*verify_checksum*/ false,
1949               error_msg));
1950       CHECK(output_dex_file != nullptr) << "Failed to re-open output file:" << *error_msg;
1951 
1952       // Do IR-level comparison between input and output. This check ignores potential differences
1953       // due to layout, so offsets are not checked. Instead, it checks the data contents of each
1954       // item.
1955       //
1956       // Regenerate output IR to catch any bugs that might happen during writing.
1957       std::unique_ptr<dex_ir::Header> output_header(
1958           dex_ir::DexIrBuilder(*output_dex_file,
1959                                /*eagerly_assign_offsets*/ true,
1960                                GetOptions()));
1961       std::unique_ptr<dex_ir::Header> orig_header(
1962           dex_ir::DexIrBuilder(*dex_file,
1963                                /*eagerly_assign_offsets*/ true,
1964                                GetOptions()));
1965       CHECK(VerifyOutputDexFile(output_header.get(), orig_header.get(), error_msg)) << *error_msg;
1966     }
1967   }
1968   return true;
1969 }
1970 
1971 /*
1972  * Processes a single file (either direct .dex or indirect .zip/.jar/.apk).
1973  */
ProcessFile(const char * file_name)1974 int DexLayout::ProcessFile(const char* file_name) {
1975   if (options_.verbose_) {
1976     fprintf(out_file_, "Processing '%s'...\n", file_name);
1977   }
1978 
1979   // If the file is not a .dex file, the function tries .zip/.jar/.apk files,
1980   // all of which are Zip archives with "classes.dex" inside.
1981   const bool verify_checksum = !options_.ignore_bad_checksum_;
1982   std::string error_msg;
1983   const ArtDexFileLoader dex_file_loader;
1984   std::vector<std::unique_ptr<const DexFile>> dex_files;
1985   if (!dex_file_loader.Open(
1986         file_name, file_name, /* verify */ true, verify_checksum, &error_msg, &dex_files)) {
1987     // Display returned error message to user. Note that this error behavior
1988     // differs from the error messages shown by the original Dalvik dexdump.
1989     LOG(ERROR) << error_msg;
1990     return -1;
1991   }
1992 
1993   // Success. Either report checksum verification or process
1994   // all dex files found in given file.
1995   if (options_.checksum_only_) {
1996     fprintf(out_file_, "Checksum verified\n");
1997   } else {
1998     for (size_t i = 0; i < dex_files.size(); i++) {
1999       // Pass in a null container to avoid output by default.
2000       if (!ProcessDexFile(file_name,
2001                           dex_files[i].get(),
2002                           i,
2003                           /*dex_container*/ nullptr,
2004                           &error_msg)) {
2005         LOG(WARNING) << "Failed to run dex file " << i << " in " << file_name << " : " << error_msg;
2006       }
2007     }
2008   }
2009   return 0;
2010 }
2011 
2012 }  // namespace art
2013