• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <string>
18 
19 #include "scheduler.h"
20 
21 #include "base/scoped_arena_allocator.h"
22 #include "base/scoped_arena_containers.h"
23 #include "data_type-inl.h"
24 #include "prepare_for_register_allocation.h"
25 
26 #ifdef ART_ENABLE_CODEGEN_arm64
27 #include "scheduler_arm64.h"
28 #endif
29 
30 #ifdef ART_ENABLE_CODEGEN_arm
31 #include "scheduler_arm.h"
32 #endif
33 
34 namespace art {
35 
AddDependency(SchedulingNode * node,SchedulingNode * dependency,bool is_data_dependency)36 void SchedulingGraph::AddDependency(SchedulingNode* node,
37                                     SchedulingNode* dependency,
38                                     bool is_data_dependency) {
39   if (node == nullptr || dependency == nullptr) {
40     // A `nullptr` node indicates an instruction out of scheduling range (eg. in
41     // an other block), so we do not need to add a dependency edge to the graph.
42     return;
43   }
44 
45   if (is_data_dependency) {
46     if (!HasImmediateDataDependency(node, dependency)) {
47       node->AddDataPredecessor(dependency);
48     }
49   } else if (!HasImmediateOtherDependency(node, dependency)) {
50     node->AddOtherPredecessor(dependency);
51   }
52 }
53 
MayHaveReorderingDependency(SideEffects node,SideEffects other)54 static bool MayHaveReorderingDependency(SideEffects node, SideEffects other) {
55   // Read after write.
56   if (node.MayDependOn(other)) {
57     return true;
58   }
59 
60   // Write after read.
61   if (other.MayDependOn(node)) {
62     return true;
63   }
64 
65   // Memory write after write.
66   if (node.DoesAnyWrite() && other.DoesAnyWrite()) {
67     return true;
68   }
69 
70   return false;
71 }
72 
ArrayAccessHeapLocation(HInstruction * array,HInstruction * index) const73 size_t SchedulingGraph::ArrayAccessHeapLocation(HInstruction* array, HInstruction* index) const {
74   DCHECK(heap_location_collector_ != nullptr);
75   size_t heap_loc = heap_location_collector_->GetArrayHeapLocation(array, index);
76   // This array access should be analyzed and added to HeapLocationCollector before.
77   DCHECK(heap_loc != HeapLocationCollector::kHeapLocationNotFound);
78   return heap_loc;
79 }
80 
ArrayAccessMayAlias(const HInstruction * node,const HInstruction * other) const81 bool SchedulingGraph::ArrayAccessMayAlias(const HInstruction* node,
82                                           const HInstruction* other) const {
83   DCHECK(heap_location_collector_ != nullptr);
84   size_t node_heap_loc = ArrayAccessHeapLocation(node->InputAt(0), node->InputAt(1));
85   size_t other_heap_loc = ArrayAccessHeapLocation(other->InputAt(0), other->InputAt(1));
86 
87   // For example: arr[0] and arr[0]
88   if (node_heap_loc == other_heap_loc) {
89     return true;
90   }
91 
92   // For example: arr[0] and arr[i]
93   if (heap_location_collector_->MayAlias(node_heap_loc, other_heap_loc)) {
94     return true;
95   }
96 
97   return false;
98 }
99 
IsArrayAccess(const HInstruction * instruction)100 static bool IsArrayAccess(const HInstruction* instruction) {
101   return instruction->IsArrayGet() || instruction->IsArraySet();
102 }
103 
IsInstanceFieldAccess(const HInstruction * instruction)104 static bool IsInstanceFieldAccess(const HInstruction* instruction) {
105   return instruction->IsInstanceFieldGet() ||
106          instruction->IsInstanceFieldSet() ||
107          instruction->IsUnresolvedInstanceFieldGet() ||
108          instruction->IsUnresolvedInstanceFieldSet();
109 }
110 
IsStaticFieldAccess(const HInstruction * instruction)111 static bool IsStaticFieldAccess(const HInstruction* instruction) {
112   return instruction->IsStaticFieldGet() ||
113          instruction->IsStaticFieldSet() ||
114          instruction->IsUnresolvedStaticFieldGet() ||
115          instruction->IsUnresolvedStaticFieldSet();
116 }
117 
IsResolvedFieldAccess(const HInstruction * instruction)118 static bool IsResolvedFieldAccess(const HInstruction* instruction) {
119   return instruction->IsInstanceFieldGet() ||
120          instruction->IsInstanceFieldSet() ||
121          instruction->IsStaticFieldGet() ||
122          instruction->IsStaticFieldSet();
123 }
124 
IsUnresolvedFieldAccess(const HInstruction * instruction)125 static bool IsUnresolvedFieldAccess(const HInstruction* instruction) {
126   return instruction->IsUnresolvedInstanceFieldGet() ||
127          instruction->IsUnresolvedInstanceFieldSet() ||
128          instruction->IsUnresolvedStaticFieldGet() ||
129          instruction->IsUnresolvedStaticFieldSet();
130 }
131 
IsFieldAccess(const HInstruction * instruction)132 static bool IsFieldAccess(const HInstruction* instruction) {
133   return IsResolvedFieldAccess(instruction) || IsUnresolvedFieldAccess(instruction);
134 }
135 
GetFieldInfo(const HInstruction * instruction)136 static const FieldInfo* GetFieldInfo(const HInstruction* instruction) {
137   if (instruction->IsInstanceFieldGet()) {
138     return &instruction->AsInstanceFieldGet()->GetFieldInfo();
139   } else if (instruction->IsInstanceFieldSet()) {
140     return &instruction->AsInstanceFieldSet()->GetFieldInfo();
141   } else if (instruction->IsStaticFieldGet()) {
142     return &instruction->AsStaticFieldGet()->GetFieldInfo();
143   } else if (instruction->IsStaticFieldSet()) {
144     return &instruction->AsStaticFieldSet()->GetFieldInfo();
145   } else {
146     LOG(FATAL) << "Unexpected field access type";
147     UNREACHABLE();
148   }
149 }
150 
FieldAccessHeapLocation(HInstruction * obj,const FieldInfo * field) const151 size_t SchedulingGraph::FieldAccessHeapLocation(HInstruction* obj, const FieldInfo* field) const {
152   DCHECK(obj != nullptr);
153   DCHECK(field != nullptr);
154   DCHECK(heap_location_collector_ != nullptr);
155 
156   size_t heap_loc = heap_location_collector_->GetFieldHeapLocation(obj, field);
157   // This field access should be analyzed and added to HeapLocationCollector before.
158   DCHECK(heap_loc != HeapLocationCollector::kHeapLocationNotFound);
159 
160   return heap_loc;
161 }
162 
FieldAccessMayAlias(const HInstruction * node,const HInstruction * other) const163 bool SchedulingGraph::FieldAccessMayAlias(const HInstruction* node,
164                                           const HInstruction* other) const {
165   DCHECK(heap_location_collector_ != nullptr);
166 
167   // Static and instance field accesses should not alias.
168   if ((IsInstanceFieldAccess(node) && IsStaticFieldAccess(other)) ||
169       (IsStaticFieldAccess(node) && IsInstanceFieldAccess(other))) {
170     return false;
171   }
172 
173   // If either of the field accesses is unresolved.
174   if (IsUnresolvedFieldAccess(node) || IsUnresolvedFieldAccess(other)) {
175     // Conservatively treat these two accesses may alias.
176     return true;
177   }
178 
179   // If both fields accesses are resolved.
180   const FieldInfo* node_field = GetFieldInfo(node);
181   const FieldInfo* other_field = GetFieldInfo(other);
182 
183   size_t node_loc = FieldAccessHeapLocation(node->InputAt(0), node_field);
184   size_t other_loc = FieldAccessHeapLocation(other->InputAt(0), other_field);
185 
186   if (node_loc == other_loc) {
187     return true;
188   }
189 
190   if (!heap_location_collector_->MayAlias(node_loc, other_loc)) {
191     return false;
192   }
193 
194   return true;
195 }
196 
HasMemoryDependency(const HInstruction * node,const HInstruction * other) const197 bool SchedulingGraph::HasMemoryDependency(const HInstruction* node,
198                                           const HInstruction* other) const {
199   if (!MayHaveReorderingDependency(node->GetSideEffects(), other->GetSideEffects())) {
200     return false;
201   }
202 
203   if (heap_location_collector_ == nullptr ||
204       heap_location_collector_->GetNumberOfHeapLocations() == 0) {
205     // Without HeapLocation information from load store analysis,
206     // we cannot do further disambiguation analysis on these two instructions.
207     // Just simply say that those two instructions have memory dependency.
208     return true;
209   }
210 
211   if (IsArrayAccess(node) && IsArrayAccess(other)) {
212     return ArrayAccessMayAlias(node, other);
213   }
214   if (IsFieldAccess(node) && IsFieldAccess(other)) {
215     return FieldAccessMayAlias(node, other);
216   }
217 
218   // TODO(xueliang): LSA to support alias analysis among HVecLoad, HVecStore and ArrayAccess
219   if (node->IsVecMemoryOperation() && other->IsVecMemoryOperation()) {
220     return true;
221   }
222   if (node->IsVecMemoryOperation() && IsArrayAccess(other)) {
223     return true;
224   }
225   if (IsArrayAccess(node) && other->IsVecMemoryOperation()) {
226     return true;
227   }
228 
229   // Heap accesses of different kinds should not alias.
230   if (IsArrayAccess(node) && IsFieldAccess(other)) {
231     return false;
232   }
233   if (IsFieldAccess(node) && IsArrayAccess(other)) {
234     return false;
235   }
236   if (node->IsVecMemoryOperation() && IsFieldAccess(other)) {
237     return false;
238   }
239   if (IsFieldAccess(node) && other->IsVecMemoryOperation()) {
240     return false;
241   }
242 
243   // We conservatively treat all other cases having dependency,
244   // for example, Invoke and ArrayGet.
245   return true;
246 }
247 
HasExceptionDependency(const HInstruction * node,const HInstruction * other) const248 bool SchedulingGraph::HasExceptionDependency(const HInstruction* node,
249                                              const HInstruction* other) const {
250   if (other->CanThrow() && node->GetSideEffects().DoesAnyWrite()) {
251     return true;
252   }
253   if (other->GetSideEffects().DoesAnyWrite() && node->CanThrow()) {
254     return true;
255   }
256   if (other->CanThrow() && node->CanThrow()) {
257     return true;
258   }
259 
260   // Above checks should cover all cases where we cannot reorder two
261   // instructions which may throw exception.
262   return false;
263 }
264 
265 // Check whether `node` depends on `other`, taking into account `SideEffect`
266 // information and `CanThrow` information.
HasSideEffectDependency(const HInstruction * node,const HInstruction * other) const267 bool SchedulingGraph::HasSideEffectDependency(const HInstruction* node,
268                                               const HInstruction* other) const {
269   if (HasMemoryDependency(node, other)) {
270     return true;
271   }
272 
273   // Even if above memory dependency check has passed, it is still necessary to
274   // check dependencies between instructions that can throw and instructions
275   // that write to memory.
276   if (HasExceptionDependency(node, other)) {
277     return true;
278   }
279 
280   return false;
281 }
282 
AddDependencies(HInstruction * instruction,bool is_scheduling_barrier)283 void SchedulingGraph::AddDependencies(HInstruction* instruction, bool is_scheduling_barrier) {
284   SchedulingNode* instruction_node = GetNode(instruction);
285 
286   // Define-use dependencies.
287   for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
288     AddDataDependency(GetNode(use.GetUser()), instruction_node);
289   }
290 
291   // Scheduling barrier dependencies.
292   DCHECK(!is_scheduling_barrier || contains_scheduling_barrier_);
293   if (contains_scheduling_barrier_) {
294     // A barrier depends on instructions after it. And instructions before the
295     // barrier depend on it.
296     for (HInstruction* other = instruction->GetNext(); other != nullptr; other = other->GetNext()) {
297       SchedulingNode* other_node = GetNode(other);
298       CHECK(other_node != nullptr)
299           << other->DebugName()
300           << " is in block " << other->GetBlock()->GetBlockId()
301           << ", and expected in block " << instruction->GetBlock()->GetBlockId();
302       bool other_is_barrier = other_node->IsSchedulingBarrier();
303       if (is_scheduling_barrier || other_is_barrier) {
304         AddOtherDependency(other_node, instruction_node);
305       }
306       if (other_is_barrier) {
307         // This other scheduling barrier guarantees ordering of instructions after
308         // it, so avoid creating additional useless dependencies in the graph.
309         // For example if we have
310         //     instr_1
311         //     barrier_2
312         //     instr_3
313         //     barrier_4
314         //     instr_5
315         // we only create the following non-data dependencies
316         //     1 -> 2
317         //     2 -> 3
318         //     2 -> 4
319         //     3 -> 4
320         //     4 -> 5
321         // and do not create
322         //     1 -> 4
323         //     2 -> 5
324         // Note that in this example we could also avoid creating the dependency
325         // `2 -> 4`.  But if we remove `instr_3` that dependency is required to
326         // order the barriers. So we generate it to avoid a special case.
327         break;
328       }
329     }
330   }
331 
332   // Side effect dependencies.
333   if (!instruction->GetSideEffects().DoesNothing() || instruction->CanThrow()) {
334     for (HInstruction* other = instruction->GetNext(); other != nullptr; other = other->GetNext()) {
335       SchedulingNode* other_node = GetNode(other);
336       if (other_node->IsSchedulingBarrier()) {
337         // We have reached a scheduling barrier so we can stop further
338         // processing.
339         DCHECK(HasImmediateOtherDependency(other_node, instruction_node));
340         break;
341       }
342       if (HasSideEffectDependency(other, instruction)) {
343         AddOtherDependency(other_node, instruction_node);
344       }
345     }
346   }
347 
348   // Environment dependencies.
349   // We do not need to process those if the instruction is a scheduling barrier,
350   // since the barrier already has non-data dependencies on all following
351   // instructions.
352   if (!is_scheduling_barrier) {
353     for (const HUseListNode<HEnvironment*>& use : instruction->GetEnvUses()) {
354       // Note that here we could stop processing if the environment holder is
355       // across a scheduling barrier. But checking this would likely require
356       // more work than simply iterating through environment uses.
357       AddOtherDependency(GetNode(use.GetUser()->GetHolder()), instruction_node);
358     }
359   }
360 }
361 
HasImmediateDataDependency(const SchedulingNode * node,const SchedulingNode * other) const362 bool SchedulingGraph::HasImmediateDataDependency(const SchedulingNode* node,
363                                                  const SchedulingNode* other) const {
364   return ContainsElement(node->GetDataPredecessors(), other);
365 }
366 
HasImmediateDataDependency(const HInstruction * instruction,const HInstruction * other_instruction) const367 bool SchedulingGraph::HasImmediateDataDependency(const HInstruction* instruction,
368                                                  const HInstruction* other_instruction) const {
369   const SchedulingNode* node = GetNode(instruction);
370   const SchedulingNode* other = GetNode(other_instruction);
371   if (node == nullptr || other == nullptr) {
372     // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their
373     // corresponding SchedulingNode in the graph, and tell whether there is a dependency.
374     // Otherwise there is no dependency from SchedulingGraph's perspective, for example,
375     // instruction and other_instruction are in different basic blocks.
376     return false;
377   }
378   return HasImmediateDataDependency(node, other);
379 }
380 
HasImmediateOtherDependency(const SchedulingNode * node,const SchedulingNode * other) const381 bool SchedulingGraph::HasImmediateOtherDependency(const SchedulingNode* node,
382                                                   const SchedulingNode* other) const {
383   return ContainsElement(node->GetOtherPredecessors(), other);
384 }
385 
HasImmediateOtherDependency(const HInstruction * instruction,const HInstruction * other_instruction) const386 bool SchedulingGraph::HasImmediateOtherDependency(const HInstruction* instruction,
387                                                   const HInstruction* other_instruction) const {
388   const SchedulingNode* node = GetNode(instruction);
389   const SchedulingNode* other = GetNode(other_instruction);
390   if (node == nullptr || other == nullptr) {
391     // Both instructions must be in current basic block, i.e. the SchedulingGraph can see their
392     // corresponding SchedulingNode in the graph, and tell whether there is a dependency.
393     // Otherwise there is no dependency from SchedulingGraph's perspective, for example,
394     // instruction and other_instruction are in different basic blocks.
395     return false;
396   }
397   return HasImmediateOtherDependency(node, other);
398 }
399 
InstructionTypeId(const HInstruction * instruction)400 static const std::string InstructionTypeId(const HInstruction* instruction) {
401   return DataType::TypeId(instruction->GetType()) + std::to_string(instruction->GetId());
402 }
403 
404 // Ideally we would reuse the graph visualizer code, but it is not available
405 // from here and it is not worth moving all that code only for our use.
DumpAsDotNode(std::ostream & output,const SchedulingNode * node)406 static void DumpAsDotNode(std::ostream& output, const SchedulingNode* node) {
407   const HInstruction* instruction = node->GetInstruction();
408   // Use the instruction typed id as the node identifier.
409   std::string instruction_id = InstructionTypeId(instruction);
410   output << instruction_id << "[shape=record, label=\""
411       << instruction_id << ' ' << instruction->DebugName() << " [";
412   // List the instruction's inputs in its description. When visualizing the
413   // graph this helps differentiating data inputs from other dependencies.
414   const char* seperator = "";
415   for (const HInstruction* input : instruction->GetInputs()) {
416     output << seperator << InstructionTypeId(input);
417     seperator = ",";
418   }
419   output << "]";
420   // Other properties of the node.
421   output << "\\ninternal_latency: " << node->GetInternalLatency();
422   output << "\\ncritical_path: " << node->GetCriticalPath();
423   if (node->IsSchedulingBarrier()) {
424     output << "\\n(barrier)";
425   }
426   output << "\"];\n";
427   // We want program order to go from top to bottom in the graph output, so we
428   // reverse the edges and specify `dir=back`.
429   for (const SchedulingNode* predecessor : node->GetDataPredecessors()) {
430     const HInstruction* predecessor_instruction = predecessor->GetInstruction();
431     output << InstructionTypeId(predecessor_instruction) << ":s -> " << instruction_id << ":n "
432         << "[label=\"" << predecessor->GetLatency() << "\",dir=back]\n";
433   }
434   for (const SchedulingNode* predecessor : node->GetOtherPredecessors()) {
435     const HInstruction* predecessor_instruction = predecessor->GetInstruction();
436     output << InstructionTypeId(predecessor_instruction) << ":s -> " << instruction_id << ":n "
437         << "[dir=back,color=blue]\n";
438   }
439 }
440 
DumpAsDotGraph(const std::string & description,const ScopedArenaVector<SchedulingNode * > & initial_candidates)441 void SchedulingGraph::DumpAsDotGraph(const std::string& description,
442                                      const ScopedArenaVector<SchedulingNode*>& initial_candidates) {
443   // TODO(xueliang): ideally we should move scheduling information into HInstruction, after that
444   // we should move this dotty graph dump feature to visualizer, and have a compiler option for it.
445   std::ofstream output("scheduling_graphs.dot", std::ofstream::out | std::ofstream::app);
446   // Description of this graph, as a comment.
447   output << "// " << description << "\n";
448   // Start the dot graph. Use an increasing index for easier differentiation.
449   output << "digraph G {\n";
450   for (const auto& entry : nodes_map_) {
451     SchedulingNode* node = entry.second.get();
452     DumpAsDotNode(output, node);
453   }
454   // Create a fake 'end_of_scheduling' node to help visualization of critical_paths.
455   for (SchedulingNode* node : initial_candidates) {
456     const HInstruction* instruction = node->GetInstruction();
457     output << InstructionTypeId(instruction) << ":s -> end_of_scheduling:n "
458       << "[label=\"" << node->GetLatency() << "\",dir=back]\n";
459   }
460   // End of the dot graph.
461   output << "}\n";
462   output.close();
463 }
464 
SelectMaterializedCondition(ScopedArenaVector<SchedulingNode * > * nodes,const SchedulingGraph & graph) const465 SchedulingNode* CriticalPathSchedulingNodeSelector::SelectMaterializedCondition(
466     ScopedArenaVector<SchedulingNode*>* nodes, const SchedulingGraph& graph) const {
467   // Schedule condition inputs that can be materialized immediately before their use.
468   // In following example, after we've scheduled HSelect, we want LessThan to be scheduled
469   // immediately, because it is a materialized condition, and will be emitted right before HSelect
470   // in codegen phase.
471   //
472   // i20 HLessThan [...]                  HLessThan    HAdd      HAdd
473   // i21 HAdd [...]                ===>      |          |         |
474   // i22 HAdd [...]                          +----------+---------+
475   // i23 HSelect [i21, i22, i20]                     HSelect
476 
477   if (prev_select_ == nullptr) {
478     return nullptr;
479   }
480 
481   const HInstruction* instruction = prev_select_->GetInstruction();
482   const HCondition* condition = nullptr;
483   DCHECK(instruction != nullptr);
484 
485   if (instruction->IsIf()) {
486     condition = instruction->AsIf()->InputAt(0)->AsCondition();
487   } else if (instruction->IsSelect()) {
488     condition = instruction->AsSelect()->GetCondition()->AsCondition();
489   }
490 
491   SchedulingNode* condition_node = (condition != nullptr) ? graph.GetNode(condition) : nullptr;
492 
493   if ((condition_node != nullptr) &&
494       condition->HasOnlyOneNonEnvironmentUse() &&
495       ContainsElement(*nodes, condition_node)) {
496     DCHECK(!condition_node->HasUnscheduledSuccessors());
497     // Remove the condition from the list of candidates and schedule it.
498     RemoveElement(*nodes, condition_node);
499     return condition_node;
500   }
501 
502   return nullptr;
503 }
504 
PopHighestPriorityNode(ScopedArenaVector<SchedulingNode * > * nodes,const SchedulingGraph & graph)505 SchedulingNode* CriticalPathSchedulingNodeSelector::PopHighestPriorityNode(
506     ScopedArenaVector<SchedulingNode*>* nodes, const SchedulingGraph& graph) {
507   DCHECK(!nodes->empty());
508   SchedulingNode* select_node = nullptr;
509 
510   // Optimize for materialized condition and its emit before use scenario.
511   select_node = SelectMaterializedCondition(nodes, graph);
512 
513   if (select_node == nullptr) {
514     // Get highest priority node based on critical path information.
515     select_node = (*nodes)[0];
516     size_t select = 0;
517     for (size_t i = 1, e = nodes->size(); i < e; i++) {
518       SchedulingNode* check = (*nodes)[i];
519       SchedulingNode* candidate = (*nodes)[select];
520       select_node = GetHigherPrioritySchedulingNode(candidate, check);
521       if (select_node == check) {
522         select = i;
523       }
524     }
525     DeleteNodeAtIndex(nodes, select);
526   }
527 
528   prev_select_ = select_node;
529   return select_node;
530 }
531 
GetHigherPrioritySchedulingNode(SchedulingNode * candidate,SchedulingNode * check) const532 SchedulingNode* CriticalPathSchedulingNodeSelector::GetHigherPrioritySchedulingNode(
533     SchedulingNode* candidate, SchedulingNode* check) const {
534   uint32_t candidate_path = candidate->GetCriticalPath();
535   uint32_t check_path = check->GetCriticalPath();
536   // First look at the critical_path.
537   if (check_path != candidate_path) {
538     return check_path < candidate_path ? check : candidate;
539   }
540   // If both critical paths are equal, schedule instructions with a higher latency
541   // first in program order.
542   return check->GetLatency() < candidate->GetLatency() ? check : candidate;
543 }
544 
Schedule(HGraph * graph)545 void HScheduler::Schedule(HGraph* graph) {
546   // We run lsa here instead of in a separate pass to better control whether we
547   // should run the analysis or not.
548   LoadStoreAnalysis lsa(graph);
549   if (!only_optimize_loop_blocks_ || graph->HasLoops()) {
550     lsa.Run();
551     scheduling_graph_.SetHeapLocationCollector(lsa.GetHeapLocationCollector());
552   }
553 
554   for (HBasicBlock* block : graph->GetReversePostOrder()) {
555     if (IsSchedulable(block)) {
556       Schedule(block);
557     }
558   }
559 }
560 
Schedule(HBasicBlock * block)561 void HScheduler::Schedule(HBasicBlock* block) {
562   ScopedArenaVector<SchedulingNode*> scheduling_nodes(allocator_->Adapter(kArenaAllocScheduler));
563 
564   // Build the scheduling graph.
565   scheduling_graph_.Clear();
566   for (HBackwardInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
567     HInstruction* instruction = it.Current();
568     CHECK_EQ(instruction->GetBlock(), block)
569         << instruction->DebugName()
570         << " is in block " << instruction->GetBlock()->GetBlockId()
571         << ", and expected in block " << block->GetBlockId();
572     SchedulingNode* node = scheduling_graph_.AddNode(instruction, IsSchedulingBarrier(instruction));
573     CalculateLatency(node);
574     scheduling_nodes.push_back(node);
575   }
576 
577   if (scheduling_graph_.Size() <= 1) {
578     scheduling_graph_.Clear();
579     return;
580   }
581 
582   cursor_ = block->GetLastInstruction();
583 
584   // Find the initial candidates for scheduling.
585   candidates_.clear();
586   for (SchedulingNode* node : scheduling_nodes) {
587     if (!node->HasUnscheduledSuccessors()) {
588       node->MaybeUpdateCriticalPath(node->GetLatency());
589       candidates_.push_back(node);
590     }
591   }
592 
593   ScopedArenaVector<SchedulingNode*> initial_candidates(allocator_->Adapter(kArenaAllocScheduler));
594   if (kDumpDotSchedulingGraphs) {
595     // Remember the list of initial candidates for debug output purposes.
596     initial_candidates.assign(candidates_.begin(), candidates_.end());
597   }
598 
599   // Schedule all nodes.
600   while (!candidates_.empty()) {
601     Schedule(selector_->PopHighestPriorityNode(&candidates_, scheduling_graph_));
602   }
603 
604   if (kDumpDotSchedulingGraphs) {
605     // Dump the graph in `dot` format.
606     HGraph* graph = block->GetGraph();
607     std::stringstream description;
608     description << graph->GetDexFile().PrettyMethod(graph->GetMethodIdx())
609         << " B" << block->GetBlockId();
610     scheduling_graph_.DumpAsDotGraph(description.str(), initial_candidates);
611   }
612 }
613 
Schedule(SchedulingNode * scheduling_node)614 void HScheduler::Schedule(SchedulingNode* scheduling_node) {
615   // Check whether any of the node's predecessors will be valid candidates after
616   // this node is scheduled.
617   uint32_t path_to_node = scheduling_node->GetCriticalPath();
618   for (SchedulingNode* predecessor : scheduling_node->GetDataPredecessors()) {
619     predecessor->MaybeUpdateCriticalPath(
620         path_to_node + predecessor->GetInternalLatency() + predecessor->GetLatency());
621     predecessor->DecrementNumberOfUnscheduledSuccessors();
622     if (!predecessor->HasUnscheduledSuccessors()) {
623       candidates_.push_back(predecessor);
624     }
625   }
626   for (SchedulingNode* predecessor : scheduling_node->GetOtherPredecessors()) {
627     // Do not update the critical path.
628     // The 'other' (so 'non-data') dependencies (usually) do not represent a
629     // 'material' dependency of nodes on others. They exist for program
630     // correctness. So we do not use them to compute the critical path.
631     predecessor->DecrementNumberOfUnscheduledSuccessors();
632     if (!predecessor->HasUnscheduledSuccessors()) {
633       candidates_.push_back(predecessor);
634     }
635   }
636 
637   Schedule(scheduling_node->GetInstruction());
638 }
639 
640 // Move an instruction after cursor instruction inside one basic block.
MoveAfterInBlock(HInstruction * instruction,HInstruction * cursor)641 static void MoveAfterInBlock(HInstruction* instruction, HInstruction* cursor) {
642   DCHECK_EQ(instruction->GetBlock(), cursor->GetBlock());
643   DCHECK_NE(cursor, cursor->GetBlock()->GetLastInstruction());
644   DCHECK(!instruction->IsControlFlow());
645   DCHECK(!cursor->IsControlFlow());
646   instruction->MoveBefore(cursor->GetNext(), /* do_checks */ false);
647 }
648 
Schedule(HInstruction * instruction)649 void HScheduler::Schedule(HInstruction* instruction) {
650   if (instruction == cursor_) {
651     cursor_ = cursor_->GetPrevious();
652   } else {
653     MoveAfterInBlock(instruction, cursor_);
654   }
655 }
656 
IsSchedulable(const HInstruction * instruction) const657 bool HScheduler::IsSchedulable(const HInstruction* instruction) const {
658   // We want to avoid exhaustively listing all instructions, so we first check
659   // for instruction categories that we know are safe.
660   if (instruction->IsControlFlow() ||
661       instruction->IsConstant()) {
662     return true;
663   }
664   // Currently all unary and binary operations are safe to schedule, so avoid
665   // checking for each of them individually.
666   // Since nothing prevents a new scheduling-unsafe HInstruction to subclass
667   // HUnaryOperation (or HBinaryOperation), check in debug mode that we have
668   // the exhaustive lists here.
669   if (instruction->IsUnaryOperation()) {
670     DCHECK(instruction->IsBooleanNot() ||
671            instruction->IsNot() ||
672            instruction->IsNeg()) << "unexpected instruction " << instruction->DebugName();
673     return true;
674   }
675   if (instruction->IsBinaryOperation()) {
676     DCHECK(instruction->IsAdd() ||
677            instruction->IsAnd() ||
678            instruction->IsCompare() ||
679            instruction->IsCondition() ||
680            instruction->IsDiv() ||
681            instruction->IsMul() ||
682            instruction->IsOr() ||
683            instruction->IsRem() ||
684            instruction->IsRor() ||
685            instruction->IsShl() ||
686            instruction->IsShr() ||
687            instruction->IsSub() ||
688            instruction->IsUShr() ||
689            instruction->IsXor()) << "unexpected instruction " << instruction->DebugName();
690     return true;
691   }
692   // The scheduler should not see any of these.
693   DCHECK(!instruction->IsParallelMove()) << "unexpected instruction " << instruction->DebugName();
694   // List of instructions explicitly excluded:
695   //    HClearException
696   //    HClinitCheck
697   //    HDeoptimize
698   //    HLoadClass
699   //    HLoadException
700   //    HMemoryBarrier
701   //    HMonitorOperation
702   //    HNativeDebugInfo
703   //    HThrow
704   //    HTryBoundary
705   // TODO: Some of the instructions above may be safe to schedule (maybe as
706   // scheduling barriers).
707   return instruction->IsArrayGet() ||
708       instruction->IsArraySet() ||
709       instruction->IsArrayLength() ||
710       instruction->IsBoundType() ||
711       instruction->IsBoundsCheck() ||
712       instruction->IsCheckCast() ||
713       instruction->IsClassTableGet() ||
714       instruction->IsCurrentMethod() ||
715       instruction->IsDivZeroCheck() ||
716       (instruction->IsInstanceFieldGet() && !instruction->AsInstanceFieldGet()->IsVolatile()) ||
717       (instruction->IsInstanceFieldSet() && !instruction->AsInstanceFieldSet()->IsVolatile()) ||
718       instruction->IsInstanceOf() ||
719       instruction->IsInvokeInterface() ||
720       instruction->IsInvokeStaticOrDirect() ||
721       instruction->IsInvokeUnresolved() ||
722       instruction->IsInvokeVirtual() ||
723       instruction->IsLoadString() ||
724       instruction->IsNewArray() ||
725       instruction->IsNewInstance() ||
726       instruction->IsNullCheck() ||
727       instruction->IsPackedSwitch() ||
728       instruction->IsParameterValue() ||
729       instruction->IsPhi() ||
730       instruction->IsReturn() ||
731       instruction->IsReturnVoid() ||
732       instruction->IsSelect() ||
733       (instruction->IsStaticFieldGet() && !instruction->AsStaticFieldGet()->IsVolatile()) ||
734       (instruction->IsStaticFieldSet() && !instruction->AsStaticFieldSet()->IsVolatile()) ||
735       instruction->IsSuspendCheck() ||
736       instruction->IsTypeConversion();
737 }
738 
IsSchedulable(const HBasicBlock * block) const739 bool HScheduler::IsSchedulable(const HBasicBlock* block) const {
740   // We may be only interested in loop blocks.
741   if (only_optimize_loop_blocks_ && !block->IsInLoop()) {
742     return false;
743   }
744   if (block->GetTryCatchInformation() != nullptr) {
745     // Do not schedule blocks that are part of try-catch.
746     // Because scheduler cannot see if catch block has assumptions on the instruction order in
747     // the try block. In following example, if we enable scheduler for the try block,
748     // MulitiplyAccumulate may be scheduled before DivZeroCheck,
749     // which can result in an incorrect value in the catch block.
750     //   try {
751     //     a = a/b;    // DivZeroCheck
752     //                 // Div
753     //     c = c*d+e;  // MulitiplyAccumulate
754     //   } catch {System.out.print(c); }
755     return false;
756   }
757   // Check whether all instructions in this block are schedulable.
758   for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
759     if (!IsSchedulable(it.Current())) {
760       return false;
761     }
762   }
763   return true;
764 }
765 
IsSchedulingBarrier(const HInstruction * instr) const766 bool HScheduler::IsSchedulingBarrier(const HInstruction* instr) const {
767   return instr->IsControlFlow() ||
768       // Don't break calling convention.
769       instr->IsParameterValue() ||
770       // Code generation of goto relies on SuspendCheck's position.
771       instr->IsSuspendCheck();
772 }
773 
Run(bool only_optimize_loop_blocks,bool schedule_randomly)774 void HInstructionScheduling::Run(bool only_optimize_loop_blocks,
775                                  bool schedule_randomly) {
776 #if defined(ART_ENABLE_CODEGEN_arm64) || defined(ART_ENABLE_CODEGEN_arm)
777   // Phase-local allocator that allocates scheduler internal data structures like
778   // scheduling nodes, internel nodes map, dependencies, etc.
779   ScopedArenaAllocator allocator(graph_->GetArenaStack());
780   CriticalPathSchedulingNodeSelector critical_path_selector;
781   RandomSchedulingNodeSelector random_selector;
782   SchedulingNodeSelector* selector = schedule_randomly
783       ? static_cast<SchedulingNodeSelector*>(&random_selector)
784       : static_cast<SchedulingNodeSelector*>(&critical_path_selector);
785 #else
786   // Avoid compilation error when compiling for unsupported instruction set.
787   UNUSED(only_optimize_loop_blocks);
788   UNUSED(schedule_randomly);
789   UNUSED(codegen_);
790 #endif
791 
792   switch (instruction_set_) {
793 #ifdef ART_ENABLE_CODEGEN_arm64
794     case InstructionSet::kArm64: {
795       arm64::HSchedulerARM64 scheduler(&allocator, selector);
796       scheduler.SetOnlyOptimizeLoopBlocks(only_optimize_loop_blocks);
797       scheduler.Schedule(graph_);
798       break;
799     }
800 #endif
801 #if defined(ART_ENABLE_CODEGEN_arm)
802     case InstructionSet::kThumb2:
803     case InstructionSet::kArm: {
804       arm::SchedulingLatencyVisitorARM arm_latency_visitor(codegen_);
805       arm::HSchedulerARM scheduler(&allocator, selector, &arm_latency_visitor);
806       scheduler.SetOnlyOptimizeLoopBlocks(only_optimize_loop_blocks);
807       scheduler.Schedule(graph_);
808       break;
809     }
810 #endif
811     default:
812       break;
813   }
814 }
815 
816 }  // namespace art
817