• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * lib/prio_tree.c - priority search tree
3  *
4  * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
5  *
6  * This file is released under the GPL v2.
7  *
8  * Based on the radix priority search tree proposed by Edward M. McCreight
9  * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
10  *
11  * 02Feb2004	Initial version
12  */
13 
14 #include <stdlib.h>
15 #include <limits.h>
16 
17 #include "../compiler/compiler.h"
18 #include "prio_tree.h"
19 
20 #define ARRAY_SIZE(x)    (sizeof((x)) / (sizeof((x)[0])))
21 
22 /*
23  * A clever mix of heap and radix trees forms a radix priority search tree (PST)
24  * which is useful for storing intervals, e.g, we can consider a vma as a closed
25  * interval of file pages [offset_begin, offset_end], and store all vmas that
26  * map a file in a PST. Then, using the PST, we can answer a stabbing query,
27  * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a
28  * given input interval X (a set of consecutive file pages), in "O(log n + m)"
29  * time where 'log n' is the height of the PST, and 'm' is the number of stored
30  * intervals (vmas) that overlap (map) with the input interval X (the set of
31  * consecutive file pages).
32  *
33  * In our implementation, we store closed intervals of the form [radix_index,
34  * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST
35  * is designed for storing intervals with unique radix indices, i.e., each
36  * interval have different radix_index. However, this limitation can be easily
37  * overcome by using the size, i.e., heap_index - radix_index, as part of the
38  * index, so we index the tree using [(radix_index,size), heap_index].
39  *
40  * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit
41  * machine, the maximum height of a PST can be 64. We can use a balanced version
42  * of the priority search tree to optimize the tree height, but the balanced
43  * tree proposed by McCreight is too complex and memory-hungry for our purpose.
44  */
45 
get_index(const struct prio_tree_node * node,unsigned long * radix,unsigned long * heap)46 static void get_index(const struct prio_tree_node *node,
47 		      unsigned long *radix, unsigned long *heap)
48 {
49 	*radix = node->start;
50 	*heap = node->last;
51 }
52 
53 static unsigned long index_bits_to_maxindex[BITS_PER_LONG];
54 
prio_tree_init(void)55 static void fio_init prio_tree_init(void)
56 {
57 	unsigned int i;
58 
59 	for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++)
60 		index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1;
61 	index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL;
62 }
63 
64 /*
65  * Maximum heap_index that can be stored in a PST with index_bits bits
66  */
prio_tree_maxindex(unsigned int bits)67 static inline unsigned long prio_tree_maxindex(unsigned int bits)
68 {
69 	return index_bits_to_maxindex[bits - 1];
70 }
71 
72 /*
73  * Extend a priority search tree so that it can store a node with heap_index
74  * max_heap_index. In the worst case, this algorithm takes O((log n)^2).
75  * However, this function is used rarely and the common case performance is
76  * not bad.
77  */
prio_tree_expand(struct prio_tree_root * root,struct prio_tree_node * node,unsigned long max_heap_index)78 static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root,
79 		struct prio_tree_node *node, unsigned long max_heap_index)
80 {
81 	struct prio_tree_node *first = NULL, *prev, *last = NULL;
82 
83 	if (max_heap_index > prio_tree_maxindex(root->index_bits))
84 		root->index_bits++;
85 
86 	while (max_heap_index > prio_tree_maxindex(root->index_bits)) {
87 		root->index_bits++;
88 
89 		if (prio_tree_empty(root))
90 			continue;
91 
92 		if (first == NULL) {
93 			first = root->prio_tree_node;
94 			prio_tree_remove(root, root->prio_tree_node);
95 			INIT_PRIO_TREE_NODE(first);
96 			last = first;
97 		} else {
98 			prev = last;
99 			last = root->prio_tree_node;
100 			prio_tree_remove(root, root->prio_tree_node);
101 			INIT_PRIO_TREE_NODE(last);
102 			prev->left = last;
103 			last->parent = prev;
104 		}
105 	}
106 
107 	INIT_PRIO_TREE_NODE(node);
108 
109 	if (first) {
110 		node->left = first;
111 		first->parent = node;
112 	} else
113 		last = node;
114 
115 	if (!prio_tree_empty(root)) {
116 		last->left = root->prio_tree_node;
117 		last->left->parent = last;
118 	}
119 
120 	root->prio_tree_node = node;
121 	return node;
122 }
123 
124 /*
125  * Replace a prio_tree_node with a new node and return the old node
126  */
prio_tree_replace(struct prio_tree_root * root,struct prio_tree_node * old,struct prio_tree_node * node)127 struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root,
128 		struct prio_tree_node *old, struct prio_tree_node *node)
129 {
130 	INIT_PRIO_TREE_NODE(node);
131 
132 	if (prio_tree_root(old)) {
133 		assert(root->prio_tree_node == old);
134 		/*
135 		 * We can reduce root->index_bits here. However, it is complex
136 		 * and does not help much to improve performance (IMO).
137 		 */
138 		node->parent = node;
139 		root->prio_tree_node = node;
140 	} else {
141 		node->parent = old->parent;
142 		if (old->parent->left == old)
143 			old->parent->left = node;
144 		else
145 			old->parent->right = node;
146 	}
147 
148 	if (!prio_tree_left_empty(old)) {
149 		node->left = old->left;
150 		old->left->parent = node;
151 	}
152 
153 	if (!prio_tree_right_empty(old)) {
154 		node->right = old->right;
155 		old->right->parent = node;
156 	}
157 
158 	return old;
159 }
160 
161 /*
162  * Insert a prio_tree_node @node into a radix priority search tree @root. The
163  * algorithm typically takes O(log n) time where 'log n' is the number of bits
164  * required to represent the maximum heap_index. In the worst case, the algo
165  * can take O((log n)^2) - check prio_tree_expand.
166  *
167  * If a prior node with same radix_index and heap_index is already found in
168  * the tree, then returns the address of the prior node. Otherwise, inserts
169  * @node into the tree and returns @node.
170  */
prio_tree_insert(struct prio_tree_root * root,struct prio_tree_node * node)171 struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root,
172 		struct prio_tree_node *node)
173 {
174 	struct prio_tree_node *cur, *res = node;
175 	unsigned long radix_index, heap_index;
176 	unsigned long r_index, h_index, index, mask;
177 	int size_flag = 0;
178 
179 	get_index(node, &radix_index, &heap_index);
180 
181 	if (prio_tree_empty(root) ||
182 			heap_index > prio_tree_maxindex(root->index_bits))
183 		return prio_tree_expand(root, node, heap_index);
184 
185 	cur = root->prio_tree_node;
186 	mask = 1UL << (root->index_bits - 1);
187 
188 	while (mask) {
189 		get_index(cur, &r_index, &h_index);
190 
191 		if (r_index == radix_index && h_index == heap_index)
192 			return cur;
193 
194                 if (h_index < heap_index ||
195 		    (h_index == heap_index && r_index > radix_index)) {
196 			struct prio_tree_node *tmp = node;
197 			node = prio_tree_replace(root, cur, node);
198 			cur = tmp;
199 			/* swap indices */
200 			index = r_index;
201 			r_index = radix_index;
202 			radix_index = index;
203 			index = h_index;
204 			h_index = heap_index;
205 			heap_index = index;
206 		}
207 
208 		if (size_flag)
209 			index = heap_index - radix_index;
210 		else
211 			index = radix_index;
212 
213 		if (index & mask) {
214 			if (prio_tree_right_empty(cur)) {
215 				INIT_PRIO_TREE_NODE(node);
216 				cur->right = node;
217 				node->parent = cur;
218 				return res;
219 			} else
220 				cur = cur->right;
221 		} else {
222 			if (prio_tree_left_empty(cur)) {
223 				INIT_PRIO_TREE_NODE(node);
224 				cur->left = node;
225 				node->parent = cur;
226 				return res;
227 			} else
228 				cur = cur->left;
229 		}
230 
231 		mask >>= 1;
232 
233 		if (!mask) {
234 			mask = 1UL << (BITS_PER_LONG - 1);
235 			size_flag = 1;
236 		}
237 	}
238 	/* Should not reach here */
239 	assert(0);
240 	return NULL;
241 }
242 
243 /*
244  * Remove a prio_tree_node @node from a radix priority search tree @root. The
245  * algorithm takes O(log n) time where 'log n' is the number of bits required
246  * to represent the maximum heap_index.
247  */
prio_tree_remove(struct prio_tree_root * root,struct prio_tree_node * node)248 void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node)
249 {
250 	struct prio_tree_node *cur;
251 	unsigned long r_index, h_index_right, h_index_left;
252 
253 	cur = node;
254 
255 	while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) {
256 		if (!prio_tree_left_empty(cur))
257 			get_index(cur->left, &r_index, &h_index_left);
258 		else {
259 			cur = cur->right;
260 			continue;
261 		}
262 
263 		if (!prio_tree_right_empty(cur))
264 			get_index(cur->right, &r_index, &h_index_right);
265 		else {
266 			cur = cur->left;
267 			continue;
268 		}
269 
270 		/* both h_index_left and h_index_right cannot be 0 */
271 		if (h_index_left >= h_index_right)
272 			cur = cur->left;
273 		else
274 			cur = cur->right;
275 	}
276 
277 	if (prio_tree_root(cur)) {
278 		assert(root->prio_tree_node == cur);
279 		INIT_PRIO_TREE_ROOT(root);
280 		return;
281 	}
282 
283 	if (cur->parent->right == cur)
284 		cur->parent->right = cur->parent;
285 	else
286 		cur->parent->left = cur->parent;
287 
288 	while (cur != node)
289 		cur = prio_tree_replace(root, cur->parent, cur);
290 }
291 
292 /*
293  * Following functions help to enumerate all prio_tree_nodes in the tree that
294  * overlap with the input interval X [radix_index, heap_index]. The enumeration
295  * takes O(log n + m) time where 'log n' is the height of the tree (which is
296  * proportional to # of bits required to represent the maximum heap_index) and
297  * 'm' is the number of prio_tree_nodes that overlap the interval X.
298  */
299 
prio_tree_left(struct prio_tree_iter * iter,unsigned long * r_index,unsigned long * h_index)300 static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter,
301 		unsigned long *r_index, unsigned long *h_index)
302 {
303 	if (prio_tree_left_empty(iter->cur))
304 		return NULL;
305 
306 	get_index(iter->cur->left, r_index, h_index);
307 
308 	if (iter->r_index <= *h_index) {
309 		iter->cur = iter->cur->left;
310 		iter->mask >>= 1;
311 		if (iter->mask) {
312 			if (iter->size_level)
313 				iter->size_level++;
314 		} else {
315 			if (iter->size_level) {
316 				assert(prio_tree_left_empty(iter->cur));
317 				assert(prio_tree_right_empty(iter->cur));
318 				iter->size_level++;
319 				iter->mask = ULONG_MAX;
320 			} else {
321 				iter->size_level = 1;
322 				iter->mask = 1UL << (BITS_PER_LONG - 1);
323 			}
324 		}
325 		return iter->cur;
326 	}
327 
328 	return NULL;
329 }
330 
prio_tree_right(struct prio_tree_iter * iter,unsigned long * r_index,unsigned long * h_index)331 static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter,
332 		unsigned long *r_index, unsigned long *h_index)
333 {
334 	unsigned long value;
335 
336 	if (prio_tree_right_empty(iter->cur))
337 		return NULL;
338 
339 	if (iter->size_level)
340 		value = iter->value;
341 	else
342 		value = iter->value | iter->mask;
343 
344 	if (iter->h_index < value)
345 		return NULL;
346 
347 	get_index(iter->cur->right, r_index, h_index);
348 
349 	if (iter->r_index <= *h_index) {
350 		iter->cur = iter->cur->right;
351 		iter->mask >>= 1;
352 		iter->value = value;
353 		if (iter->mask) {
354 			if (iter->size_level)
355 				iter->size_level++;
356 		} else {
357 			if (iter->size_level) {
358 				assert(prio_tree_left_empty(iter->cur));
359 				assert(prio_tree_right_empty(iter->cur));
360 				iter->size_level++;
361 				iter->mask = ULONG_MAX;
362 			} else {
363 				iter->size_level = 1;
364 				iter->mask = 1UL << (BITS_PER_LONG - 1);
365 			}
366 		}
367 		return iter->cur;
368 	}
369 
370 	return NULL;
371 }
372 
prio_tree_parent(struct prio_tree_iter * iter)373 static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter)
374 {
375 	iter->cur = iter->cur->parent;
376 	if (iter->mask == ULONG_MAX)
377 		iter->mask = 1UL;
378 	else if (iter->size_level == 1)
379 		iter->mask = 1UL;
380 	else
381 		iter->mask <<= 1;
382 	if (iter->size_level)
383 		iter->size_level--;
384 	if (!iter->size_level && (iter->value & iter->mask))
385 		iter->value ^= iter->mask;
386 	return iter->cur;
387 }
388 
overlap(struct prio_tree_iter * iter,unsigned long r_index,unsigned long h_index)389 static inline int overlap(struct prio_tree_iter *iter,
390 		unsigned long r_index, unsigned long h_index)
391 {
392 	return iter->h_index >= r_index && iter->r_index <= h_index;
393 }
394 
395 /*
396  * prio_tree_first:
397  *
398  * Get the first prio_tree_node that overlaps with the interval [radix_index,
399  * heap_index]. Note that always radix_index <= heap_index. We do a pre-order
400  * traversal of the tree.
401  */
prio_tree_first(struct prio_tree_iter * iter)402 static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter)
403 {
404 	struct prio_tree_root *root;
405 	unsigned long r_index, h_index;
406 
407 	INIT_PRIO_TREE_ITER(iter);
408 
409 	root = iter->root;
410 	if (prio_tree_empty(root))
411 		return NULL;
412 
413 	get_index(root->prio_tree_node, &r_index, &h_index);
414 
415 	if (iter->r_index > h_index)
416 		return NULL;
417 
418 	iter->mask = 1UL << (root->index_bits - 1);
419 	iter->cur = root->prio_tree_node;
420 
421 	while (1) {
422 		if (overlap(iter, r_index, h_index))
423 			return iter->cur;
424 
425 		if (prio_tree_left(iter, &r_index, &h_index))
426 			continue;
427 
428 		if (prio_tree_right(iter, &r_index, &h_index))
429 			continue;
430 
431 		break;
432 	}
433 	return NULL;
434 }
435 
436 /*
437  * prio_tree_next:
438  *
439  * Get the next prio_tree_node that overlaps with the input interval in iter
440  */
prio_tree_next(struct prio_tree_iter * iter)441 struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter)
442 {
443 	unsigned long r_index, h_index;
444 
445 	if (iter->cur == NULL)
446 		return prio_tree_first(iter);
447 
448 repeat:
449 	while (prio_tree_left(iter, &r_index, &h_index))
450 		if (overlap(iter, r_index, h_index))
451 			return iter->cur;
452 
453 	while (!prio_tree_right(iter, &r_index, &h_index)) {
454 	    	while (!prio_tree_root(iter->cur) &&
455 				iter->cur->parent->right == iter->cur)
456 			prio_tree_parent(iter);
457 
458 		if (prio_tree_root(iter->cur))
459 			return NULL;
460 
461 		prio_tree_parent(iter);
462 	}
463 
464 	if (overlap(iter, r_index, h_index))
465 		return iter->cur;
466 
467 	goto repeat;
468 }
469