• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2014 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
18 #define CASTER_Z_CAP_RATIO 0.95f
19 
20 // When there is no umbra, then just fake the umbra using
21 // centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
22 #define FAKE_UMBRA_SIZE_RATIO 0.05f
23 
24 // When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
25 // That is consider pretty fine tessllated polygon so far.
26 // This is just to prevent using too much some memory when edge slicing is not
27 // needed any more.
28 #define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
29 /**
30  * Extra vertices for the corner for smoother corner.
31  * Only for outer loop.
32  * Note that we use such extra memory to avoid an extra loop.
33  */
34 // For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
35 // Set to 1 if we don't want to have any.
36 #define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
37 
38 // For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
39 // therefore, the maximum number of extra vertices will be twice bigger.
40 #define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
41 
42 // For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
43 #define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
44 
45 #define PENUMBRA_ALPHA 0.0f
46 #define UMBRA_ALPHA 1.0f
47 
48 #include "SpotShadow.h"
49 
50 #include "ShadowTessellator.h"
51 #include "Vertex.h"
52 #include "VertexBuffer.h"
53 #include "utils/MathUtils.h"
54 
55 #include <math.h>
56 #include <stdlib.h>
57 #include <utils/Log.h>
58 #include <algorithm>
59 
60 // TODO: After we settle down the new algorithm, we can remove the old one and
61 // its utility functions.
62 // Right now, we still need to keep it for comparison purpose and future expansion.
63 namespace android {
64 namespace uirenderer {
65 
66 static const float EPSILON = 1e-7;
67 
68 /**
69  * For each polygon's vertex, the light center will project it to the receiver
70  * as one of the outline vertex.
71  * For each outline vertex, we need to store the position and normal.
72  * Normal here is defined against the edge by the current vertex and the next vertex.
73  */
74 struct OutlineData {
75     Vector2 position;
76     Vector2 normal;
77     float radius;
78 };
79 
80 /**
81  * For each vertex, we need to keep track of its angle, whether it is penumbra or
82  * umbra, and its corresponding vertex index.
83  */
84 struct SpotShadow::VertexAngleData {
85     // The angle to the vertex from the centroid.
86     float mAngle;
87     // True is the vertex comes from penumbra, otherwise it comes from umbra.
88     bool mIsPenumbra;
89     // The index of the vertex described by this data.
90     int mVertexIndex;
setandroid::uirenderer::SpotShadow::VertexAngleData91     void set(float angle, bool isPenumbra, int index) {
92         mAngle = angle;
93         mIsPenumbra = isPenumbra;
94         mVertexIndex = index;
95     }
96 };
97 
98 /**
99  * Calculate the angle between and x and a y coordinate.
100  * The atan2 range from -PI to PI.
101  */
angle(const Vector2 & point,const Vector2 & center)102 static float angle(const Vector2& point, const Vector2& center) {
103     return atan2(point.y - center.y, point.x - center.x);
104 }
105 
106 /**
107  * Calculate the intersection of a ray with the line segment defined by two points.
108  *
109  * Returns a negative value in error conditions.
110 
111  * @param rayOrigin The start of the ray
112  * @param dx The x vector of the ray
113  * @param dy The y vector of the ray
114  * @param p1 The first point defining the line segment
115  * @param p2 The second point defining the line segment
116  * @return The distance along the ray if it intersects with the line segment, negative if otherwise
117  */
rayIntersectPoints(const Vector2 & rayOrigin,float dx,float dy,const Vector2 & p1,const Vector2 & p2)118 static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy, const Vector2& p1,
119                                 const Vector2& p2) {
120     // The math below is derived from solving this formula, basically the
121     // intersection point should stay on both the ray and the edge of (p1, p2).
122     // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
123 
124     float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
125     if (divisor == 0) return -1.0f;  // error, invalid divisor
126 
127 #if DEBUG_SHADOW
128     float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
129     if (interpVal < 0 || interpVal > 1) {
130         ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
131     }
132 #endif
133 
134     float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
135                       rayOrigin.x * (p2.y - p1.y)) /
136                      divisor;
137 
138     return distance;  // may be negative in error cases
139 }
140 
141 /**
142  * Sort points by their X coordinates
143  *
144  * @param points the points as a Vector2 array.
145  * @param pointsLength the number of vertices of the polygon.
146  */
xsort(Vector2 * points,int pointsLength)147 void SpotShadow::xsort(Vector2* points, int pointsLength) {
148     auto cmp = [](const Vector2& a, const Vector2& b) -> bool { return a.x < b.x; };
149     std::sort(points, points + pointsLength, cmp);
150 }
151 
152 /**
153  * compute the convex hull of a collection of Points
154  *
155  * @param points the points as a Vector2 array.
156  * @param pointsLength the number of vertices of the polygon.
157  * @param retPoly pre allocated array of floats to put the vertices
158  * @return the number of points in the polygon 0 if no intersection
159  */
hull(Vector2 * points,int pointsLength,Vector2 * retPoly)160 int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
161     xsort(points, pointsLength);
162     int n = pointsLength;
163     Vector2 lUpper[n];
164     lUpper[0] = points[0];
165     lUpper[1] = points[1];
166 
167     int lUpperSize = 2;
168 
169     for (int i = 2; i < n; i++) {
170         lUpper[lUpperSize] = points[i];
171         lUpperSize++;
172 
173         while (lUpperSize > 2 &&
174                !ccw(lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y, lUpper[lUpperSize - 2].x,
175                     lUpper[lUpperSize - 2].y, lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
176             // Remove the middle point of the three last
177             lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
178             lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
179             lUpperSize--;
180         }
181     }
182 
183     Vector2 lLower[n];
184     lLower[0] = points[n - 1];
185     lLower[1] = points[n - 2];
186 
187     int lLowerSize = 2;
188 
189     for (int i = n - 3; i >= 0; i--) {
190         lLower[lLowerSize] = points[i];
191         lLowerSize++;
192 
193         while (lLowerSize > 2 &&
194                !ccw(lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y, lLower[lLowerSize - 2].x,
195                     lLower[lLowerSize - 2].y, lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
196             // Remove the middle point of the three last
197             lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
198             lLowerSize--;
199         }
200     }
201 
202     // output points in CW ordering
203     const int total = lUpperSize + lLowerSize - 2;
204     int outIndex = total - 1;
205     for (int i = 0; i < lUpperSize; i++) {
206         retPoly[outIndex] = lUpper[i];
207         outIndex--;
208     }
209 
210     for (int i = 1; i < lLowerSize - 1; i++) {
211         retPoly[outIndex] = lLower[i];
212         outIndex--;
213     }
214     // TODO: Add test harness which verify that all the points are inside the hull.
215     return total;
216 }
217 
218 /**
219  * Test whether the 3 points form a counter clockwise turn.
220  *
221  * @return true if a right hand turn
222  */
ccw(float ax,float ay,float bx,float by,float cx,float cy)223 bool SpotShadow::ccw(float ax, float ay, float bx, float by, float cx, float cy) {
224     return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
225 }
226 
227 /**
228  * Sort points about a center point
229  *
230  * @param poly The in and out polyogon as a Vector2 array.
231  * @param polyLength The number of vertices of the polygon.
232  * @param center the center ctr[0] = x , ctr[1] = y to sort around.
233  */
sort(Vector2 * poly,int polyLength,const Vector2 & center)234 void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
235     quicksortCirc(poly, 0, polyLength - 1, center);
236 }
237 
238 /**
239  * Swap points pointed to by i and j
240  */
swap(Vector2 * points,int i,int j)241 void SpotShadow::swap(Vector2* points, int i, int j) {
242     Vector2 temp = points[i];
243     points[i] = points[j];
244     points[j] = temp;
245 }
246 
247 /**
248  * quick sort implementation about the center.
249  */
quicksortCirc(Vector2 * points,int low,int high,const Vector2 & center)250 void SpotShadow::quicksortCirc(Vector2* points, int low, int high, const Vector2& center) {
251     int i = low, j = high;
252     int p = low + (high - low) / 2;
253     float pivot = angle(points[p], center);
254     while (i <= j) {
255         while (angle(points[i], center) > pivot) {
256             i++;
257         }
258         while (angle(points[j], center) < pivot) {
259             j--;
260         }
261 
262         if (i <= j) {
263             swap(points, i, j);
264             i++;
265             j--;
266         }
267     }
268     if (low < j) quicksortCirc(points, low, j, center);
269     if (i < high) quicksortCirc(points, i, high, center);
270 }
271 
272 /**
273  * Test whether a point is inside the polygon.
274  *
275  * @param testPoint the point to test
276  * @param poly the polygon
277  * @return true if the testPoint is inside the poly.
278  */
testPointInsidePolygon(const Vector2 testPoint,const Vector2 * poly,int len)279 bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint, const Vector2* poly, int len) {
280     bool c = false;
281     float testx = testPoint.x;
282     float testy = testPoint.y;
283     for (int i = 0, j = len - 1; i < len; j = i++) {
284         float startX = poly[j].x;
285         float startY = poly[j].y;
286         float endX = poly[i].x;
287         float endY = poly[i].y;
288 
289         if (((endY > testy) != (startY > testy)) &&
290             (testx < (startX - endX) * (testy - endY) / (startY - endY) + endX)) {
291             c = !c;
292         }
293     }
294     return c;
295 }
296 
297 /**
298  * Reverse the polygon
299  *
300  * @param polygon the polygon as a Vector2 array
301  * @param len the number of points of the polygon
302  */
reverse(Vector2 * polygon,int len)303 void SpotShadow::reverse(Vector2* polygon, int len) {
304     int n = len / 2;
305     for (int i = 0; i < n; i++) {
306         Vector2 tmp = polygon[i];
307         int k = len - 1 - i;
308         polygon[i] = polygon[k];
309         polygon[k] = tmp;
310     }
311 }
312 
313 /**
314  * Compute a horizontal circular polygon about point (x , y , height) of radius
315  * (size)
316  *
317  * @param points number of the points of the output polygon.
318  * @param lightCenter the center of the light.
319  * @param size the light size.
320  * @param ret result polygon.
321  */
computeLightPolygon(int points,const Vector3 & lightCenter,float size,Vector3 * ret)322 void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter, float size,
323                                      Vector3* ret) {
324     // TODO: Caching all the sin / cos values and store them in a look up table.
325     for (int i = 0; i < points; i++) {
326         float angle = 2 * i * M_PI / points;
327         ret[i].x = cosf(angle) * size + lightCenter.x;
328         ret[i].y = sinf(angle) * size + lightCenter.y;
329         ret[i].z = lightCenter.z;
330     }
331 }
332 
333 /**
334  * From light center, project one vertex to the z=0 surface and get the outline.
335  *
336  * @param outline The result which is the outline position.
337  * @param lightCenter The center of light.
338  * @param polyVertex The input polygon's vertex.
339  *
340  * @return float The ratio of (polygon.z / light.z - polygon.z)
341  */
projectCasterToOutline(Vector2 & outline,const Vector3 & lightCenter,const Vector3 & polyVertex)342 float SpotShadow::projectCasterToOutline(Vector2& outline, const Vector3& lightCenter,
343                                          const Vector3& polyVertex) {
344     float lightToPolyZ = lightCenter.z - polyVertex.z;
345     float ratioZ = CASTER_Z_CAP_RATIO;
346     if (lightToPolyZ != 0) {
347         // If any caster's vertex is almost above the light, we just keep it as 95%
348         // of the height of the light.
349         ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
350     }
351 
352     outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
353     outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
354     return ratioZ;
355 }
356 
357 /**
358  * Generate the shadow spot light of shape lightPoly and a object poly
359  *
360  * @param isCasterOpaque whether the caster is opaque
361  * @param lightCenter the center of the light
362  * @param lightSize the radius of the light
363  * @param poly x,y,z vertexes of a convex polygon that occludes the light source
364  * @param polyLength number of vertexes of the occluding polygon
365  * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
366  *                            empty strip if error.
367  */
createSpotShadow(bool isCasterOpaque,const Vector3 & lightCenter,float lightSize,const Vector3 * poly,int polyLength,const Vector3 & polyCentroid,VertexBuffer & shadowTriangleStrip)368 void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter, float lightSize,
369                                   const Vector3* poly, int polyLength, const Vector3& polyCentroid,
370                                   VertexBuffer& shadowTriangleStrip) {
371     if (CC_UNLIKELY(lightCenter.z <= 0)) {
372         ALOGW("Relative Light Z is not positive. No spot shadow!");
373         return;
374     }
375     if (CC_UNLIKELY(polyLength < 3)) {
376 #if DEBUG_SHADOW
377         ALOGW("Invalid polygon length. No spot shadow!");
378 #endif
379         return;
380     }
381     OutlineData outlineData[polyLength];
382     Vector2 outlineCentroid;
383     // Calculate the projected outline for each polygon's vertices from the light center.
384     //
385     //                       O     Light
386     //                      /
387     //                    /
388     //                   .     Polygon vertex
389     //                 /
390     //               /
391     //              O     Outline vertices
392     //
393     // Ratio = (Poly - Outline) / (Light - Poly)
394     // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
395     // Outline's radius / Light's radius = Ratio
396 
397     // Compute the last outline vertex to make sure we can get the normal and outline
398     // in one single loop.
399     projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter, poly[polyLength - 1]);
400 
401     // Take the outline's polygon, calculate the normal for each outline edge.
402     int currentNormalIndex = polyLength - 1;
403     int nextNormalIndex = 0;
404 
405     for (int i = 0; i < polyLength; i++) {
406         float ratioZ = projectCasterToOutline(outlineData[i].position, lightCenter, poly[i]);
407         outlineData[i].radius = ratioZ * lightSize;
408 
409         outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
410                 outlineData[currentNormalIndex].position, outlineData[nextNormalIndex].position);
411         currentNormalIndex = (currentNormalIndex + 1) % polyLength;
412         nextNormalIndex++;
413     }
414 
415     projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
416 
417     int penumbraIndex = 0;
418     // Then each polygon's vertex produce at minmal 2 penumbra vertices.
419     // Since the size can be dynamic here, we keep track of the size and update
420     // the real size at the end.
421     int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
422     Vector2 penumbra[allocatedPenumbraLength];
423     int totalExtraCornerSliceNumber = 0;
424 
425     Vector2 umbra[polyLength];
426 
427     // When centroid is covered by all circles from outline, then we consider
428     // the umbra is invalid, and we will tune down the shadow strength.
429     bool hasValidUmbra = true;
430     // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
431     float minRaitoVI = FLT_MAX;
432 
433     for (int i = 0; i < polyLength; i++) {
434         // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
435         // There is no guarantee that the penumbra is still convex, but for
436         // each outline vertex, it will connect to all its corresponding penumbra vertices as
437         // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
438         //
439         // Penumbra Vertices marked as Pi
440         // Outline Vertices marked as Vi
441         //                                            (P3)
442         //          (P2)                               |     ' (P4)
443         //   (P1)'   |                                 |   '
444         //         ' |                                 | '
445         // (P0)  ------------------------------------------------(P5)
446         //           | (V0)                            |(V1)
447         //           |                                 |
448         //           |                                 |
449         //           |                                 |
450         //           |                                 |
451         //           |                                 |
452         //           |                                 |
453         //           |                                 |
454         //           |                                 |
455         //       (V3)-----------------------------------(V2)
456         int preNormalIndex = (i + polyLength - 1) % polyLength;
457 
458         const Vector2& previousNormal = outlineData[preNormalIndex].normal;
459         const Vector2& currentNormal = outlineData[i].normal;
460 
461         // Depending on how roundness we want for each corner, we can subdivide
462         // further here and/or introduce some heuristic to decide how much the
463         // subdivision should be.
464         int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
465                 previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
466 
467         int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
468         totalExtraCornerSliceNumber += currentExtraSliceNumber;
469 #if DEBUG_SHADOW
470         ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
471         ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
472         ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
473 #endif
474         if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
475             currentCornerSliceNumber = 1;
476         }
477         for (int k = 0; k <= currentCornerSliceNumber; k++) {
478             Vector2 avgNormal =
479                     (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
480                     currentCornerSliceNumber;
481             avgNormal.normalize();
482             penumbra[penumbraIndex++] = outlineData[i].position + avgNormal * outlineData[i].radius;
483         }
484 
485         // Compute the umbra by the intersection from the outline's centroid!
486         //
487         //       (V) ------------------------------------
488         //           |          '                       |
489         //           |         '                        |
490         //           |       ' (I)                      |
491         //           |    '                             |
492         //           | '             (C)                |
493         //           |                                  |
494         //           |                                  |
495         //           |                                  |
496         //           |                                  |
497         //           ------------------------------------
498         //
499         // Connect a line b/t the outline vertex (V) and the centroid (C), it will
500         // intersect with the outline vertex's circle at point (I).
501         // Now, ratioVI = VI / VC, ratioIC = IC / VC
502         // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
503         //
504         // When all of the outline circles cover the the outline centroid, (like I is
505         // on the other side of C), there is no real umbra any more, so we just fake
506         // a small area around the centroid as the umbra, and tune down the spot
507         // shadow's umbra strength to simulate the effect the whole shadow will
508         // become lighter in this case.
509         // The ratio can be simulated by using the inverse of maximum of ratioVI for
510         // all (V).
511         float distOutline = (outlineData[i].position - outlineCentroid).length();
512         if (CC_UNLIKELY(distOutline == 0)) {
513             // If the outline has 0 area, then there is no spot shadow anyway.
514             ALOGW("Outline has 0 area, no spot shadow!");
515             return;
516         }
517 
518         float ratioVI = outlineData[i].radius / distOutline;
519         minRaitoVI = std::min(minRaitoVI, ratioVI);
520         if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
521             ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
522         }
523         // When we know we don't have valid umbra, don't bother to compute the
524         // values below. But we can't skip the loop yet since we want to know the
525         // maximum ratio.
526         float ratioIC = 1 - ratioVI;
527         umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
528     }
529 
530     hasValidUmbra = (minRaitoVI <= 1.0);
531     float shadowStrengthScale = 1.0;
532     if (!hasValidUmbra) {
533 #if DEBUG_SHADOW
534         ALOGW("The object is too close to the light or too small, no real umbra!");
535 #endif
536         for (int i = 0; i < polyLength; i++) {
537             umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
538                        outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
539         }
540         shadowStrengthScale = 1.0 / minRaitoVI;
541     }
542 
543     int penumbraLength = penumbraIndex;
544     int umbraLength = polyLength;
545 
546 #if DEBUG_SHADOW
547     ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength,
548           allocatedPenumbraLength);
549     dumpPolygon(poly, polyLength, "input poly");
550     dumpPolygon(penumbra, penumbraLength, "penumbra");
551     dumpPolygon(umbra, umbraLength, "umbra");
552     ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
553 #endif
554 
555     // The penumbra and umbra needs to be in convex shape to keep consistency
556     // and quality.
557     // Since we are still shooting rays to penumbra, it needs to be convex.
558     // Umbra can be represented as a fan from the centroid, but visually umbra
559     // looks nicer when it is convex.
560     Vector2 finalUmbra[umbraLength];
561     Vector2 finalPenumbra[penumbraLength];
562     int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
563     int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
564 
565     generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra, finalPenumbraLength,
566                           finalUmbra, finalUmbraLength, poly, polyLength, shadowTriangleStrip,
567                           outlineCentroid);
568 }
569 
570 /**
571  * This is only for experimental purpose.
572  * After intersections are calculated, we could smooth the polygon if needed.
573  * So far, we don't think it is more appealing yet.
574  *
575  * @param level The level of smoothness.
576  * @param rays The total number of rays.
577  * @param rayDist (In and Out) The distance for each ray.
578  *
579  */
smoothPolygon(int level,int rays,float * rayDist)580 void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
581     for (int k = 0; k < level; k++) {
582         for (int i = 0; i < rays; i++) {
583             float p1 = rayDist[(rays - 1 + i) % rays];
584             float p2 = rayDist[i];
585             float p3 = rayDist[(i + 1) % rays];
586             rayDist[i] = (p1 + p2 * 2 + p3) / 4;
587         }
588     }
589 }
590 
591 // Index pair is meant for storing the tessellation information for the penumbra
592 // area. One index must come from exterior tangent of the circles, the other one
593 // must come from the interior tangent of the circles.
594 struct IndexPair {
595     int outerIndex;
596     int innerIndex;
597 };
598 
599 // For one penumbra vertex, find the cloest umbra vertex and return its index.
getClosestUmbraIndex(const Vector2 & pivot,const Vector2 * polygon,int polygonLength)600 inline int getClosestUmbraIndex(const Vector2& pivot, const Vector2* polygon, int polygonLength) {
601     float minLengthSquared = FLT_MAX;
602     int resultIndex = -1;
603     bool hasDecreased = false;
604     // Starting with some negative offset, assuming both umbra and penumbra are starting
605     // at the same angle, this can help to find the result faster.
606     // Normally, loop 3 times, we can find the closest point.
607     int offset = polygonLength - 2;
608     for (int i = 0; i < polygonLength; i++) {
609         int currentIndex = (i + offset) % polygonLength;
610         float currentLengthSquared = (pivot - polygon[currentIndex]).lengthSquared();
611         if (currentLengthSquared < minLengthSquared) {
612             if (minLengthSquared != FLT_MAX) {
613                 hasDecreased = true;
614             }
615             minLengthSquared = currentLengthSquared;
616             resultIndex = currentIndex;
617         } else if (currentLengthSquared > minLengthSquared && hasDecreased) {
618             // Early break b/c we have found the closet one and now the length
619             // is increasing again.
620             break;
621         }
622     }
623     if (resultIndex == -1) {
624         ALOGE("resultIndex is -1, the polygon must be invalid!");
625         resultIndex = 0;
626     }
627     return resultIndex;
628 }
629 
630 // Allow some epsilon here since the later ray intersection did allow for some small
631 // floating point error, when the intersection point is slightly outside the segment.
sameDirections(bool isPositiveCross,float a,float b)632 inline bool sameDirections(bool isPositiveCross, float a, float b) {
633     if (isPositiveCross) {
634         return a >= -EPSILON && b >= -EPSILON;
635     } else {
636         return a <= EPSILON && b <= EPSILON;
637     }
638 }
639 
640 // Find the right polygon edge to shoot the ray at.
findPolyIndex(bool isPositiveCross,int startPolyIndex,const Vector2 & umbraDir,const Vector2 * polyToCentroid,int polyLength)641 inline int findPolyIndex(bool isPositiveCross, int startPolyIndex, const Vector2& umbraDir,
642                          const Vector2* polyToCentroid, int polyLength) {
643     // Make sure we loop with a bound.
644     for (int i = 0; i < polyLength; i++) {
645         int currentIndex = (i + startPolyIndex) % polyLength;
646         const Vector2& currentToCentroid = polyToCentroid[currentIndex];
647         const Vector2& nextToCentroid = polyToCentroid[(currentIndex + 1) % polyLength];
648 
649         float currentCrossUmbra = currentToCentroid.cross(umbraDir);
650         float umbraCrossNext = umbraDir.cross(nextToCentroid);
651         if (sameDirections(isPositiveCross, currentCrossUmbra, umbraCrossNext)) {
652 #if DEBUG_SHADOW
653             ALOGD("findPolyIndex loop %d times , index %d", i, currentIndex);
654 #endif
655             return currentIndex;
656         }
657     }
658     LOG_ALWAYS_FATAL("Can't find the right polygon's edge from startPolyIndex %d", startPolyIndex);
659     return -1;
660 }
661 
662 // Generate the index pair for penumbra / umbra vertices, and more penumbra vertices
663 // if needed.
genNewPenumbraAndPairWithUmbra(const Vector2 * penumbra,int penumbraLength,const Vector2 * umbra,int umbraLength,Vector2 * newPenumbra,int & newPenumbraIndex,IndexPair * verticesPair,int & verticesPairIndex)664 inline void genNewPenumbraAndPairWithUmbra(const Vector2* penumbra, int penumbraLength,
665                                            const Vector2* umbra, int umbraLength,
666                                            Vector2* newPenumbra, int& newPenumbraIndex,
667                                            IndexPair* verticesPair, int& verticesPairIndex) {
668     // In order to keep everything in just one loop, we need to pre-compute the
669     // closest umbra vertex for the last penumbra vertex.
670     int previousClosestUmbraIndex =
671             getClosestUmbraIndex(penumbra[penumbraLength - 1], umbra, umbraLength);
672     for (int i = 0; i < penumbraLength; i++) {
673         const Vector2& currentPenumbraVertex = penumbra[i];
674         // For current penumbra vertex, starting from previousClosestUmbraIndex,
675         // then check the next one until the distance increase.
676         // The last one before the increase is the umbra vertex we need to pair with.
677         float currentLengthSquared =
678                 (currentPenumbraVertex - umbra[previousClosestUmbraIndex]).lengthSquared();
679         int currentClosestUmbraIndex = previousClosestUmbraIndex;
680         int indexDelta = 0;
681         for (int j = 1; j < umbraLength; j++) {
682             int newUmbraIndex = (previousClosestUmbraIndex + j) % umbraLength;
683             float newLengthSquared = (currentPenumbraVertex - umbra[newUmbraIndex]).lengthSquared();
684             if (newLengthSquared > currentLengthSquared) {
685                 // currentClosestUmbraIndex is the umbra vertex's index which has
686                 // currently found smallest distance, so we can simply break here.
687                 break;
688             } else {
689                 currentLengthSquared = newLengthSquared;
690                 indexDelta++;
691                 currentClosestUmbraIndex = newUmbraIndex;
692             }
693         }
694 
695         if (indexDelta > 1) {
696             // For those umbra don't have  penumbra, generate new penumbra vertices by
697             // interpolation.
698             //
699             // Assuming Pi for penumbra vertices, and Ui for umbra vertices.
700             // In the case like below P1 paired with U1 and P2 paired with  U5.
701             // U2 to U4 are unpaired umbra vertices.
702             //
703             // P1                                        P2
704             // |                                          |
705             // U1     U2                   U3     U4     U5
706             //
707             // We will need to generate 3 more penumbra vertices P1.1, P1.2, P1.3
708             // to pair with U2 to U4.
709             //
710             // P1     P1.1                P1.2   P1.3    P2
711             // |       |                   |      |      |
712             // U1     U2                   U3     U4     U5
713             //
714             // That distance ratio b/t Ui to U1 and Ui to U5 decides its paired penumbra
715             // vertex's location.
716             int newPenumbraNumber = indexDelta - 1;
717 
718             float accumulatedDeltaLength[indexDelta];
719             float totalDeltaLength = 0;
720 
721             // To save time, cache the previous umbra vertex info outside the loop
722             // and update each loop.
723             Vector2 previousClosestUmbra = umbra[previousClosestUmbraIndex];
724             Vector2 skippedUmbra;
725             // Use umbra data to precompute the length b/t unpaired umbra vertices,
726             // and its ratio against the total length.
727             for (int k = 0; k < indexDelta; k++) {
728                 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
729                 skippedUmbra = umbra[skippedUmbraIndex];
730                 float currentDeltaLength = (skippedUmbra - previousClosestUmbra).length();
731 
732                 totalDeltaLength += currentDeltaLength;
733                 accumulatedDeltaLength[k] = totalDeltaLength;
734 
735                 previousClosestUmbra = skippedUmbra;
736             }
737 
738             const Vector2& previousPenumbra = penumbra[(i + penumbraLength - 1) % penumbraLength];
739             // Then for each unpaired umbra vertex, create a new penumbra by the ratio,
740             // and pair them togehter.
741             for (int k = 0; k < newPenumbraNumber; k++) {
742                 float weightForCurrentPenumbra = 1.0f;
743                 if (totalDeltaLength != 0.0f) {
744                     weightForCurrentPenumbra = accumulatedDeltaLength[k] / totalDeltaLength;
745                 }
746                 float weightForPreviousPenumbra = 1.0f - weightForCurrentPenumbra;
747 
748                 Vector2 interpolatedPenumbra = currentPenumbraVertex * weightForCurrentPenumbra +
749                                                previousPenumbra * weightForPreviousPenumbra;
750 
751                 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
752                 verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
753                 verticesPair[verticesPairIndex].innerIndex = skippedUmbraIndex;
754                 verticesPairIndex++;
755                 newPenumbra[newPenumbraIndex++] = interpolatedPenumbra;
756             }
757         }
758         verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
759         verticesPair[verticesPairIndex].innerIndex = currentClosestUmbraIndex;
760         verticesPairIndex++;
761         newPenumbra[newPenumbraIndex++] = currentPenumbraVertex;
762 
763         previousClosestUmbraIndex = currentClosestUmbraIndex;
764     }
765 }
766 
767 // Precompute all the polygon's vector, return true if the reference cross product is positive.
genPolyToCentroid(const Vector2 * poly2d,int polyLength,const Vector2 & centroid,Vector2 * polyToCentroid)768 inline bool genPolyToCentroid(const Vector2* poly2d, int polyLength, const Vector2& centroid,
769                               Vector2* polyToCentroid) {
770     for (int j = 0; j < polyLength; j++) {
771         polyToCentroid[j] = poly2d[j] - centroid;
772         // Normalize these vectors such that we can use epsilon comparison after
773         // computing their cross products with another normalized vector.
774         polyToCentroid[j].normalize();
775     }
776     float refCrossProduct = 0;
777     for (int j = 0; j < polyLength; j++) {
778         refCrossProduct = polyToCentroid[j].cross(polyToCentroid[(j + 1) % polyLength]);
779         if (refCrossProduct != 0) {
780             break;
781         }
782     }
783 
784     return refCrossProduct > 0;
785 }
786 
787 // For one umbra vertex, shoot an ray from centroid to it.
788 // If the ray hit the polygon first, then return the intersection point as the
789 // closer vertex.
getCloserVertex(const Vector2 & umbraVertex,const Vector2 & centroid,const Vector2 * poly2d,int polyLength,const Vector2 * polyToCentroid,bool isPositiveCross,int & previousPolyIndex)790 inline Vector2 getCloserVertex(const Vector2& umbraVertex, const Vector2& centroid,
791                                const Vector2* poly2d, int polyLength, const Vector2* polyToCentroid,
792                                bool isPositiveCross, int& previousPolyIndex) {
793     Vector2 umbraToCentroid = umbraVertex - centroid;
794     float distanceToUmbra = umbraToCentroid.length();
795     umbraToCentroid = umbraToCentroid / distanceToUmbra;
796 
797     // previousPolyIndex is updated for each item such that we can minimize the
798     // looping inside findPolyIndex();
799     previousPolyIndex = findPolyIndex(isPositiveCross, previousPolyIndex, umbraToCentroid,
800                                       polyToCentroid, polyLength);
801 
802     float dx = umbraToCentroid.x;
803     float dy = umbraToCentroid.y;
804     float distanceToIntersectPoly =
805             rayIntersectPoints(centroid, dx, dy, poly2d[previousPolyIndex],
806                                poly2d[(previousPolyIndex + 1) % polyLength]);
807     if (distanceToIntersectPoly < 0) {
808         distanceToIntersectPoly = 0;
809     }
810 
811     // Pick the closer one as the occluded area vertex.
812     Vector2 closerVertex;
813     if (distanceToIntersectPoly < distanceToUmbra) {
814         closerVertex.x = centroid.x + dx * distanceToIntersectPoly;
815         closerVertex.y = centroid.y + dy * distanceToIntersectPoly;
816     } else {
817         closerVertex = umbraVertex;
818     }
819 
820     return closerVertex;
821 }
822 
823 /**
824  * Generate a triangle strip given two convex polygon
825 **/
generateTriangleStrip(bool isCasterOpaque,float shadowStrengthScale,Vector2 * penumbra,int penumbraLength,Vector2 * umbra,int umbraLength,const Vector3 * poly,int polyLength,VertexBuffer & shadowTriangleStrip,const Vector2 & centroid)826 void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
827                                        Vector2* penumbra, int penumbraLength, Vector2* umbra,
828                                        int umbraLength, const Vector3* poly, int polyLength,
829                                        VertexBuffer& shadowTriangleStrip, const Vector2& centroid) {
830     bool hasOccludedUmbraArea = false;
831     Vector2 poly2d[polyLength];
832 
833     if (isCasterOpaque) {
834         for (int i = 0; i < polyLength; i++) {
835             poly2d[i].x = poly[i].x;
836             poly2d[i].y = poly[i].y;
837         }
838         // Make sure the centroid is inside the umbra, otherwise, fall back to the
839         // approach as if there is no occluded umbra area.
840         if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
841             hasOccludedUmbraArea = true;
842         }
843     }
844 
845     // For each penumbra vertex, find its corresponding closest umbra vertex index.
846     //
847     // Penumbra Vertices marked as Pi
848     // Umbra Vertices marked as Ui
849     //                                            (P3)
850     //          (P2)                               |     ' (P4)
851     //   (P1)'   |                                 |   '
852     //         ' |                                 | '
853     // (P0)  ------------------------------------------------(P5)
854     //           | (U0)                            |(U1)
855     //           |                                 |
856     //           |                                 |(U2)     (P5.1)
857     //           |                                 |
858     //           |                                 |
859     //           |                                 |
860     //           |                                 |
861     //           |                                 |
862     //           |                                 |
863     //       (U4)-----------------------------------(U3)      (P6)
864     //
865     // At least, like P0, P1, P2, they will find the matching umbra as U0.
866     // If we jump over some umbra vertex without matching penumbra vertex, then
867     // we will generate some new penumbra vertex by interpolation. Like P6 is
868     // matching U3, but U2 is not matched with any penumbra vertex.
869     // So interpolate P5.1 out and match U2.
870     // In this way, every umbra vertex will have a matching penumbra vertex.
871     //
872     // The total pair number can be as high as umbraLength + penumbraLength.
873     const int maxNewPenumbraLength = umbraLength + penumbraLength;
874     IndexPair verticesPair[maxNewPenumbraLength];
875     int verticesPairIndex = 0;
876 
877     // Cache all the existing penumbra vertices and newly interpolated vertices into a
878     // a new array.
879     Vector2 newPenumbra[maxNewPenumbraLength];
880     int newPenumbraIndex = 0;
881 
882     // For each penumbra vertex, find its closet umbra vertex by comparing the
883     // neighbor umbra vertices.
884     genNewPenumbraAndPairWithUmbra(penumbra, penumbraLength, umbra, umbraLength, newPenumbra,
885                                    newPenumbraIndex, verticesPair, verticesPairIndex);
886     ShadowTessellator::checkOverflow(verticesPairIndex, maxNewPenumbraLength, "Spot pair");
887     ShadowTessellator::checkOverflow(newPenumbraIndex, maxNewPenumbraLength, "Spot new penumbra");
888 #if DEBUG_SHADOW
889     for (int i = 0; i < umbraLength; i++) {
890         ALOGD("umbra i %d,  [%f, %f]", i, umbra[i].x, umbra[i].y);
891     }
892     for (int i = 0; i < newPenumbraIndex; i++) {
893         ALOGD("new penumbra i %d,  [%f, %f]", i, newPenumbra[i].x, newPenumbra[i].y);
894     }
895     for (int i = 0; i < verticesPairIndex; i++) {
896         ALOGD("index i %d,  [%d, %d]", i, verticesPair[i].outerIndex, verticesPair[i].innerIndex);
897     }
898 #endif
899 
900     // For the size of vertex buffer, we need 3 rings, one has newPenumbraSize,
901     // one has umbraLength, the last one has at most umbraLength.
902     //
903     // For the size of index buffer, the umbra area needs (2 * umbraLength + 2).
904     // The penumbra one can vary a bit, but it is bounded by (2 * verticesPairIndex + 2).
905     // And 2 more for jumping between penumbra to umbra.
906     const int newPenumbraLength = newPenumbraIndex;
907     const int totalVertexCount = newPenumbraLength + umbraLength * 2;
908     const int totalIndexCount = 2 * umbraLength + 2 * verticesPairIndex + 6;
909     AlphaVertex* shadowVertices = shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
910     uint16_t* indexBuffer = shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
911     int vertexBufferIndex = 0;
912     int indexBufferIndex = 0;
913 
914     // Fill the IB and VB for the penumbra area.
915     for (int i = 0; i < newPenumbraLength; i++) {
916         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], newPenumbra[i].x, newPenumbra[i].y,
917                          PENUMBRA_ALPHA);
918     }
919     // Since the umbra can be a faked one when the occluder is too high, the umbra should be lighter
920     // in this case.
921     float scaledUmbraAlpha = UMBRA_ALPHA * shadowStrengthScale;
922 
923     for (int i = 0; i < umbraLength; i++) {
924         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], umbra[i].x, umbra[i].y,
925                          scaledUmbraAlpha);
926     }
927 
928     for (int i = 0; i < verticesPairIndex; i++) {
929         indexBuffer[indexBufferIndex++] = verticesPair[i].outerIndex;
930         // All umbra index need to be offseted by newPenumbraSize.
931         indexBuffer[indexBufferIndex++] = verticesPair[i].innerIndex + newPenumbraLength;
932     }
933     indexBuffer[indexBufferIndex++] = verticesPair[0].outerIndex;
934     indexBuffer[indexBufferIndex++] = verticesPair[0].innerIndex + newPenumbraLength;
935 
936     // Now fill the IB and VB for the umbra area.
937     // First duplicated the index from previous strip and the first one for the
938     // degenerated triangles.
939     indexBuffer[indexBufferIndex] = indexBuffer[indexBufferIndex - 1];
940     indexBufferIndex++;
941     indexBuffer[indexBufferIndex++] = newPenumbraLength + 0;
942     // Save the first VB index for umbra area in order to close the loop.
943     int savedStartIndex = vertexBufferIndex;
944 
945     if (hasOccludedUmbraArea) {
946         // Precompute all the polygon's vector, and the reference cross product,
947         // in order to find the right polygon edge for the ray to intersect.
948         Vector2 polyToCentroid[polyLength];
949         bool isPositiveCross = genPolyToCentroid(poly2d, polyLength, centroid, polyToCentroid);
950 
951         // Because both the umbra and polygon are going in the same direction,
952         // we can save the previous polygon index to make sure we have less polygon
953         // vertex to compute for each ray.
954         int previousPolyIndex = 0;
955         for (int i = 0; i < umbraLength; i++) {
956             // Shoot a ray from centroid to each umbra vertices and pick the one with
957             // shorter distance to the centroid, b/t the umbra vertex or the intersection point.
958             Vector2 closerVertex =
959                     getCloserVertex(umbra[i], centroid, poly2d, polyLength, polyToCentroid,
960                                     isPositiveCross, previousPolyIndex);
961 
962             // We already stored the umbra vertices, just need to add the occlued umbra's ones.
963             indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
964             indexBuffer[indexBufferIndex++] = vertexBufferIndex;
965             AlphaVertex::set(&shadowVertices[vertexBufferIndex++], closerVertex.x, closerVertex.y,
966                              scaledUmbraAlpha);
967         }
968     } else {
969         // If there is no occluded umbra at all, then draw the triangle fan
970         // starting from the centroid to all umbra vertices.
971         int lastCentroidIndex = vertexBufferIndex;
972         AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x, centroid.y,
973                          scaledUmbraAlpha);
974         for (int i = 0; i < umbraLength; i++) {
975             indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
976             indexBuffer[indexBufferIndex++] = lastCentroidIndex;
977         }
978     }
979     // Closing the umbra area triangle's loop here.
980     indexBuffer[indexBufferIndex++] = newPenumbraLength;
981     indexBuffer[indexBufferIndex++] = savedStartIndex;
982 
983     // At the end, update the real index and vertex buffer size.
984     shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
985     shadowTriangleStrip.updateIndexCount(indexBufferIndex);
986     ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
987     ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
988 
989     shadowTriangleStrip.setMeshFeatureFlags(VertexBuffer::kAlpha | VertexBuffer::kIndices);
990     shadowTriangleStrip.computeBounds<AlphaVertex>();
991 }
992 
993 #if DEBUG_SHADOW
994 
995 #define TEST_POINT_NUMBER 128
996 /**
997  * Calculate the bounds for generating random test points.
998  */
updateBound(const Vector2 inVector,Vector2 & lowerBound,Vector2 & upperBound)999 void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound, Vector2& upperBound) {
1000     if (inVector.x < lowerBound.x) {
1001         lowerBound.x = inVector.x;
1002     }
1003 
1004     if (inVector.y < lowerBound.y) {
1005         lowerBound.y = inVector.y;
1006     }
1007 
1008     if (inVector.x > upperBound.x) {
1009         upperBound.x = inVector.x;
1010     }
1011 
1012     if (inVector.y > upperBound.y) {
1013         upperBound.y = inVector.y;
1014     }
1015 }
1016 
1017 /**
1018  * For debug purpose, when things go wrong, dump the whole polygon data.
1019  */
dumpPolygon(const Vector2 * poly,int polyLength,const char * polyName)1020 void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
1021     for (int i = 0; i < polyLength; i++) {
1022         ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1023     }
1024 }
1025 
1026 /**
1027  * For debug purpose, when things go wrong, dump the whole polygon data.
1028  */
dumpPolygon(const Vector3 * poly,int polyLength,const char * polyName)1029 void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
1030     for (int i = 0; i < polyLength; i++) {
1031         ALOGD("polygon %s i %d x %f y %f z %f", polyName, i, poly[i].x, poly[i].y, poly[i].z);
1032     }
1033 }
1034 
1035 /**
1036  * Test whether the polygon is convex.
1037  */
testConvex(const Vector2 * polygon,int polygonLength,const char * name)1038 bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength, const char* name) {
1039     bool isConvex = true;
1040     for (int i = 0; i < polygonLength; i++) {
1041         Vector2 start = polygon[i];
1042         Vector2 middle = polygon[(i + 1) % polygonLength];
1043         Vector2 end = polygon[(i + 2) % polygonLength];
1044 
1045         float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) -
1046                       (float(middle.y) - start.y) * (float(end.x) - start.x);
1047         bool isCCWOrCoLinear = (delta >= EPSILON);
1048 
1049         if (isCCWOrCoLinear) {
1050             ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
1051                   "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
1052                   name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
1053             isConvex = false;
1054             break;
1055         }
1056     }
1057     return isConvex;
1058 }
1059 
1060 /**
1061  * Test whether or not the polygon (intersection) is within the 2 input polygons.
1062  * Using Marte Carlo method, we generate a random point, and if it is inside the
1063  * intersection, then it must be inside both source polygons.
1064  */
testIntersection(const Vector2 * poly1,int poly1Length,const Vector2 * poly2,int poly2Length,const Vector2 * intersection,int intersectionLength)1065 void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length, const Vector2* poly2,
1066                                   int poly2Length, const Vector2* intersection,
1067                                   int intersectionLength) {
1068     // Find the min and max of x and y.
1069     Vector2 lowerBound = {FLT_MAX, FLT_MAX};
1070     Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
1071     for (int i = 0; i < poly1Length; i++) {
1072         updateBound(poly1[i], lowerBound, upperBound);
1073     }
1074     for (int i = 0; i < poly2Length; i++) {
1075         updateBound(poly2[i], lowerBound, upperBound);
1076     }
1077 
1078     bool dumpPoly = false;
1079     for (int k = 0; k < TEST_POINT_NUMBER; k++) {
1080         // Generate a random point between minX, minY and maxX, maxY.
1081         float randomX = rand() / float(RAND_MAX);
1082         float randomY = rand() / float(RAND_MAX);
1083 
1084         Vector2 testPoint;
1085         testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
1086         testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
1087 
1088         // If the random point is in both poly 1 and 2, then it must be intersection.
1089         if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
1090             if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
1091                 dumpPoly = true;
1092                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1093                       " not in the poly1",
1094                       testPoint.x, testPoint.y);
1095             }
1096 
1097             if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
1098                 dumpPoly = true;
1099                 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1100                       " not in the poly2",
1101                       testPoint.x, testPoint.y);
1102             }
1103         }
1104     }
1105 
1106     if (dumpPoly) {
1107         dumpPolygon(intersection, intersectionLength, "intersection");
1108         for (int i = 1; i < intersectionLength; i++) {
1109             Vector2 delta = intersection[i] - intersection[i - 1];
1110             ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
1111         }
1112 
1113         dumpPolygon(poly1, poly1Length, "poly 1");
1114         dumpPolygon(poly2, poly2Length, "poly 2");
1115     }
1116 }
1117 #endif
1118 
1119 };  // namespace uirenderer
1120 };  // namespace android
1121