1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 // The highest z value can't be higher than (CASTER_Z_CAP_RATIO * light.z)
18 #define CASTER_Z_CAP_RATIO 0.95f
19
20 // When there is no umbra, then just fake the umbra using
21 // centroid * (1 - FAKE_UMBRA_SIZE_RATIO) + outline * FAKE_UMBRA_SIZE_RATIO
22 #define FAKE_UMBRA_SIZE_RATIO 0.05f
23
24 // When the polygon is about 90 vertices, the penumbra + umbra can reach 270 rays.
25 // That is consider pretty fine tessllated polygon so far.
26 // This is just to prevent using too much some memory when edge slicing is not
27 // needed any more.
28 #define FINE_TESSELLATED_POLYGON_RAY_NUMBER 270
29 /**
30 * Extra vertices for the corner for smoother corner.
31 * Only for outer loop.
32 * Note that we use such extra memory to avoid an extra loop.
33 */
34 // For half circle, we could add EXTRA_VERTEX_PER_PI vertices.
35 // Set to 1 if we don't want to have any.
36 #define SPOT_EXTRA_CORNER_VERTEX_PER_PI 18
37
38 // For the whole polygon, the sum of all the deltas b/t normals is 2 * M_PI,
39 // therefore, the maximum number of extra vertices will be twice bigger.
40 #define SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER (2 * SPOT_EXTRA_CORNER_VERTEX_PER_PI)
41
42 // For each RADIANS_DIVISOR, we would allocate one more vertex b/t the normals.
43 #define SPOT_CORNER_RADIANS_DIVISOR (M_PI / SPOT_EXTRA_CORNER_VERTEX_PER_PI)
44
45 #define PENUMBRA_ALPHA 0.0f
46 #define UMBRA_ALPHA 1.0f
47
48 #include "SpotShadow.h"
49
50 #include "ShadowTessellator.h"
51 #include "Vertex.h"
52 #include "VertexBuffer.h"
53 #include "utils/MathUtils.h"
54
55 #include <math.h>
56 #include <stdlib.h>
57 #include <utils/Log.h>
58 #include <algorithm>
59
60 // TODO: After we settle down the new algorithm, we can remove the old one and
61 // its utility functions.
62 // Right now, we still need to keep it for comparison purpose and future expansion.
63 namespace android {
64 namespace uirenderer {
65
66 static const float EPSILON = 1e-7;
67
68 /**
69 * For each polygon's vertex, the light center will project it to the receiver
70 * as one of the outline vertex.
71 * For each outline vertex, we need to store the position and normal.
72 * Normal here is defined against the edge by the current vertex and the next vertex.
73 */
74 struct OutlineData {
75 Vector2 position;
76 Vector2 normal;
77 float radius;
78 };
79
80 /**
81 * For each vertex, we need to keep track of its angle, whether it is penumbra or
82 * umbra, and its corresponding vertex index.
83 */
84 struct SpotShadow::VertexAngleData {
85 // The angle to the vertex from the centroid.
86 float mAngle;
87 // True is the vertex comes from penumbra, otherwise it comes from umbra.
88 bool mIsPenumbra;
89 // The index of the vertex described by this data.
90 int mVertexIndex;
setandroid::uirenderer::SpotShadow::VertexAngleData91 void set(float angle, bool isPenumbra, int index) {
92 mAngle = angle;
93 mIsPenumbra = isPenumbra;
94 mVertexIndex = index;
95 }
96 };
97
98 /**
99 * Calculate the angle between and x and a y coordinate.
100 * The atan2 range from -PI to PI.
101 */
angle(const Vector2 & point,const Vector2 & center)102 static float angle(const Vector2& point, const Vector2& center) {
103 return atan2(point.y - center.y, point.x - center.x);
104 }
105
106 /**
107 * Calculate the intersection of a ray with the line segment defined by two points.
108 *
109 * Returns a negative value in error conditions.
110
111 * @param rayOrigin The start of the ray
112 * @param dx The x vector of the ray
113 * @param dy The y vector of the ray
114 * @param p1 The first point defining the line segment
115 * @param p2 The second point defining the line segment
116 * @return The distance along the ray if it intersects with the line segment, negative if otherwise
117 */
rayIntersectPoints(const Vector2 & rayOrigin,float dx,float dy,const Vector2 & p1,const Vector2 & p2)118 static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy, const Vector2& p1,
119 const Vector2& p2) {
120 // The math below is derived from solving this formula, basically the
121 // intersection point should stay on both the ray and the edge of (p1, p2).
122 // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]);
123
124 float divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x);
125 if (divisor == 0) return -1.0f; // error, invalid divisor
126
127 #if DEBUG_SHADOW
128 float interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor;
129 if (interpVal < 0 || interpVal > 1) {
130 ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal);
131 }
132 #endif
133
134 float distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) +
135 rayOrigin.x * (p2.y - p1.y)) /
136 divisor;
137
138 return distance; // may be negative in error cases
139 }
140
141 /**
142 * Sort points by their X coordinates
143 *
144 * @param points the points as a Vector2 array.
145 * @param pointsLength the number of vertices of the polygon.
146 */
xsort(Vector2 * points,int pointsLength)147 void SpotShadow::xsort(Vector2* points, int pointsLength) {
148 auto cmp = [](const Vector2& a, const Vector2& b) -> bool { return a.x < b.x; };
149 std::sort(points, points + pointsLength, cmp);
150 }
151
152 /**
153 * compute the convex hull of a collection of Points
154 *
155 * @param points the points as a Vector2 array.
156 * @param pointsLength the number of vertices of the polygon.
157 * @param retPoly pre allocated array of floats to put the vertices
158 * @return the number of points in the polygon 0 if no intersection
159 */
hull(Vector2 * points,int pointsLength,Vector2 * retPoly)160 int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) {
161 xsort(points, pointsLength);
162 int n = pointsLength;
163 Vector2 lUpper[n];
164 lUpper[0] = points[0];
165 lUpper[1] = points[1];
166
167 int lUpperSize = 2;
168
169 for (int i = 2; i < n; i++) {
170 lUpper[lUpperSize] = points[i];
171 lUpperSize++;
172
173 while (lUpperSize > 2 &&
174 !ccw(lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y, lUpper[lUpperSize - 2].x,
175 lUpper[lUpperSize - 2].y, lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) {
176 // Remove the middle point of the three last
177 lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x;
178 lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y;
179 lUpperSize--;
180 }
181 }
182
183 Vector2 lLower[n];
184 lLower[0] = points[n - 1];
185 lLower[1] = points[n - 2];
186
187 int lLowerSize = 2;
188
189 for (int i = n - 3; i >= 0; i--) {
190 lLower[lLowerSize] = points[i];
191 lLowerSize++;
192
193 while (lLowerSize > 2 &&
194 !ccw(lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y, lLower[lLowerSize - 2].x,
195 lLower[lLowerSize - 2].y, lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) {
196 // Remove the middle point of the three last
197 lLower[lLowerSize - 2] = lLower[lLowerSize - 1];
198 lLowerSize--;
199 }
200 }
201
202 // output points in CW ordering
203 const int total = lUpperSize + lLowerSize - 2;
204 int outIndex = total - 1;
205 for (int i = 0; i < lUpperSize; i++) {
206 retPoly[outIndex] = lUpper[i];
207 outIndex--;
208 }
209
210 for (int i = 1; i < lLowerSize - 1; i++) {
211 retPoly[outIndex] = lLower[i];
212 outIndex--;
213 }
214 // TODO: Add test harness which verify that all the points are inside the hull.
215 return total;
216 }
217
218 /**
219 * Test whether the 3 points form a counter clockwise turn.
220 *
221 * @return true if a right hand turn
222 */
ccw(float ax,float ay,float bx,float by,float cx,float cy)223 bool SpotShadow::ccw(float ax, float ay, float bx, float by, float cx, float cy) {
224 return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON;
225 }
226
227 /**
228 * Sort points about a center point
229 *
230 * @param poly The in and out polyogon as a Vector2 array.
231 * @param polyLength The number of vertices of the polygon.
232 * @param center the center ctr[0] = x , ctr[1] = y to sort around.
233 */
sort(Vector2 * poly,int polyLength,const Vector2 & center)234 void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) {
235 quicksortCirc(poly, 0, polyLength - 1, center);
236 }
237
238 /**
239 * Swap points pointed to by i and j
240 */
swap(Vector2 * points,int i,int j)241 void SpotShadow::swap(Vector2* points, int i, int j) {
242 Vector2 temp = points[i];
243 points[i] = points[j];
244 points[j] = temp;
245 }
246
247 /**
248 * quick sort implementation about the center.
249 */
quicksortCirc(Vector2 * points,int low,int high,const Vector2 & center)250 void SpotShadow::quicksortCirc(Vector2* points, int low, int high, const Vector2& center) {
251 int i = low, j = high;
252 int p = low + (high - low) / 2;
253 float pivot = angle(points[p], center);
254 while (i <= j) {
255 while (angle(points[i], center) > pivot) {
256 i++;
257 }
258 while (angle(points[j], center) < pivot) {
259 j--;
260 }
261
262 if (i <= j) {
263 swap(points, i, j);
264 i++;
265 j--;
266 }
267 }
268 if (low < j) quicksortCirc(points, low, j, center);
269 if (i < high) quicksortCirc(points, i, high, center);
270 }
271
272 /**
273 * Test whether a point is inside the polygon.
274 *
275 * @param testPoint the point to test
276 * @param poly the polygon
277 * @return true if the testPoint is inside the poly.
278 */
testPointInsidePolygon(const Vector2 testPoint,const Vector2 * poly,int len)279 bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint, const Vector2* poly, int len) {
280 bool c = false;
281 float testx = testPoint.x;
282 float testy = testPoint.y;
283 for (int i = 0, j = len - 1; i < len; j = i++) {
284 float startX = poly[j].x;
285 float startY = poly[j].y;
286 float endX = poly[i].x;
287 float endY = poly[i].y;
288
289 if (((endY > testy) != (startY > testy)) &&
290 (testx < (startX - endX) * (testy - endY) / (startY - endY) + endX)) {
291 c = !c;
292 }
293 }
294 return c;
295 }
296
297 /**
298 * Reverse the polygon
299 *
300 * @param polygon the polygon as a Vector2 array
301 * @param len the number of points of the polygon
302 */
reverse(Vector2 * polygon,int len)303 void SpotShadow::reverse(Vector2* polygon, int len) {
304 int n = len / 2;
305 for (int i = 0; i < n; i++) {
306 Vector2 tmp = polygon[i];
307 int k = len - 1 - i;
308 polygon[i] = polygon[k];
309 polygon[k] = tmp;
310 }
311 }
312
313 /**
314 * Compute a horizontal circular polygon about point (x , y , height) of radius
315 * (size)
316 *
317 * @param points number of the points of the output polygon.
318 * @param lightCenter the center of the light.
319 * @param size the light size.
320 * @param ret result polygon.
321 */
computeLightPolygon(int points,const Vector3 & lightCenter,float size,Vector3 * ret)322 void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter, float size,
323 Vector3* ret) {
324 // TODO: Caching all the sin / cos values and store them in a look up table.
325 for (int i = 0; i < points; i++) {
326 float angle = 2 * i * M_PI / points;
327 ret[i].x = cosf(angle) * size + lightCenter.x;
328 ret[i].y = sinf(angle) * size + lightCenter.y;
329 ret[i].z = lightCenter.z;
330 }
331 }
332
333 /**
334 * From light center, project one vertex to the z=0 surface and get the outline.
335 *
336 * @param outline The result which is the outline position.
337 * @param lightCenter The center of light.
338 * @param polyVertex The input polygon's vertex.
339 *
340 * @return float The ratio of (polygon.z / light.z - polygon.z)
341 */
projectCasterToOutline(Vector2 & outline,const Vector3 & lightCenter,const Vector3 & polyVertex)342 float SpotShadow::projectCasterToOutline(Vector2& outline, const Vector3& lightCenter,
343 const Vector3& polyVertex) {
344 float lightToPolyZ = lightCenter.z - polyVertex.z;
345 float ratioZ = CASTER_Z_CAP_RATIO;
346 if (lightToPolyZ != 0) {
347 // If any caster's vertex is almost above the light, we just keep it as 95%
348 // of the height of the light.
349 ratioZ = MathUtils::clamp(polyVertex.z / lightToPolyZ, 0.0f, CASTER_Z_CAP_RATIO);
350 }
351
352 outline.x = polyVertex.x - ratioZ * (lightCenter.x - polyVertex.x);
353 outline.y = polyVertex.y - ratioZ * (lightCenter.y - polyVertex.y);
354 return ratioZ;
355 }
356
357 /**
358 * Generate the shadow spot light of shape lightPoly and a object poly
359 *
360 * @param isCasterOpaque whether the caster is opaque
361 * @param lightCenter the center of the light
362 * @param lightSize the radius of the light
363 * @param poly x,y,z vertexes of a convex polygon that occludes the light source
364 * @param polyLength number of vertexes of the occluding polygon
365 * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return
366 * empty strip if error.
367 */
createSpotShadow(bool isCasterOpaque,const Vector3 & lightCenter,float lightSize,const Vector3 * poly,int polyLength,const Vector3 & polyCentroid,VertexBuffer & shadowTriangleStrip)368 void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3& lightCenter, float lightSize,
369 const Vector3* poly, int polyLength, const Vector3& polyCentroid,
370 VertexBuffer& shadowTriangleStrip) {
371 if (CC_UNLIKELY(lightCenter.z <= 0)) {
372 ALOGW("Relative Light Z is not positive. No spot shadow!");
373 return;
374 }
375 if (CC_UNLIKELY(polyLength < 3)) {
376 #if DEBUG_SHADOW
377 ALOGW("Invalid polygon length. No spot shadow!");
378 #endif
379 return;
380 }
381 OutlineData outlineData[polyLength];
382 Vector2 outlineCentroid;
383 // Calculate the projected outline for each polygon's vertices from the light center.
384 //
385 // O Light
386 // /
387 // /
388 // . Polygon vertex
389 // /
390 // /
391 // O Outline vertices
392 //
393 // Ratio = (Poly - Outline) / (Light - Poly)
394 // Outline.x = Poly.x - Ratio * (Light.x - Poly.x)
395 // Outline's radius / Light's radius = Ratio
396
397 // Compute the last outline vertex to make sure we can get the normal and outline
398 // in one single loop.
399 projectCasterToOutline(outlineData[polyLength - 1].position, lightCenter, poly[polyLength - 1]);
400
401 // Take the outline's polygon, calculate the normal for each outline edge.
402 int currentNormalIndex = polyLength - 1;
403 int nextNormalIndex = 0;
404
405 for (int i = 0; i < polyLength; i++) {
406 float ratioZ = projectCasterToOutline(outlineData[i].position, lightCenter, poly[i]);
407 outlineData[i].radius = ratioZ * lightSize;
408
409 outlineData[currentNormalIndex].normal = ShadowTessellator::calculateNormal(
410 outlineData[currentNormalIndex].position, outlineData[nextNormalIndex].position);
411 currentNormalIndex = (currentNormalIndex + 1) % polyLength;
412 nextNormalIndex++;
413 }
414
415 projectCasterToOutline(outlineCentroid, lightCenter, polyCentroid);
416
417 int penumbraIndex = 0;
418 // Then each polygon's vertex produce at minmal 2 penumbra vertices.
419 // Since the size can be dynamic here, we keep track of the size and update
420 // the real size at the end.
421 int allocatedPenumbraLength = 2 * polyLength + SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER;
422 Vector2 penumbra[allocatedPenumbraLength];
423 int totalExtraCornerSliceNumber = 0;
424
425 Vector2 umbra[polyLength];
426
427 // When centroid is covered by all circles from outline, then we consider
428 // the umbra is invalid, and we will tune down the shadow strength.
429 bool hasValidUmbra = true;
430 // We need the minimal of RaitoVI to decrease the spot shadow strength accordingly.
431 float minRaitoVI = FLT_MAX;
432
433 for (int i = 0; i < polyLength; i++) {
434 // Generate all the penumbra's vertices only using the (outline vertex + normal * radius)
435 // There is no guarantee that the penumbra is still convex, but for
436 // each outline vertex, it will connect to all its corresponding penumbra vertices as
437 // triangle fans. And for neighber penumbra vertex, it will be a trapezoid.
438 //
439 // Penumbra Vertices marked as Pi
440 // Outline Vertices marked as Vi
441 // (P3)
442 // (P2) | ' (P4)
443 // (P1)' | | '
444 // ' | | '
445 // (P0) ------------------------------------------------(P5)
446 // | (V0) |(V1)
447 // | |
448 // | |
449 // | |
450 // | |
451 // | |
452 // | |
453 // | |
454 // | |
455 // (V3)-----------------------------------(V2)
456 int preNormalIndex = (i + polyLength - 1) % polyLength;
457
458 const Vector2& previousNormal = outlineData[preNormalIndex].normal;
459 const Vector2& currentNormal = outlineData[i].normal;
460
461 // Depending on how roundness we want for each corner, we can subdivide
462 // further here and/or introduce some heuristic to decide how much the
463 // subdivision should be.
464 int currentExtraSliceNumber = ShadowTessellator::getExtraVertexNumber(
465 previousNormal, currentNormal, SPOT_CORNER_RADIANS_DIVISOR);
466
467 int currentCornerSliceNumber = 1 + currentExtraSliceNumber;
468 totalExtraCornerSliceNumber += currentExtraSliceNumber;
469 #if DEBUG_SHADOW
470 ALOGD("currentExtraSliceNumber should be %d", currentExtraSliceNumber);
471 ALOGD("currentCornerSliceNumber should be %d", currentCornerSliceNumber);
472 ALOGD("totalCornerSliceNumber is %d", totalExtraCornerSliceNumber);
473 #endif
474 if (CC_UNLIKELY(totalExtraCornerSliceNumber > SPOT_MAX_EXTRA_CORNER_VERTEX_NUMBER)) {
475 currentCornerSliceNumber = 1;
476 }
477 for (int k = 0; k <= currentCornerSliceNumber; k++) {
478 Vector2 avgNormal =
479 (previousNormal * (currentCornerSliceNumber - k) + currentNormal * k) /
480 currentCornerSliceNumber;
481 avgNormal.normalize();
482 penumbra[penumbraIndex++] = outlineData[i].position + avgNormal * outlineData[i].radius;
483 }
484
485 // Compute the umbra by the intersection from the outline's centroid!
486 //
487 // (V) ------------------------------------
488 // | ' |
489 // | ' |
490 // | ' (I) |
491 // | ' |
492 // | ' (C) |
493 // | |
494 // | |
495 // | |
496 // | |
497 // ------------------------------------
498 //
499 // Connect a line b/t the outline vertex (V) and the centroid (C), it will
500 // intersect with the outline vertex's circle at point (I).
501 // Now, ratioVI = VI / VC, ratioIC = IC / VC
502 // Then the intersetion point can be computed as Ixy = Vxy * ratioIC + Cxy * ratioVI;
503 //
504 // When all of the outline circles cover the the outline centroid, (like I is
505 // on the other side of C), there is no real umbra any more, so we just fake
506 // a small area around the centroid as the umbra, and tune down the spot
507 // shadow's umbra strength to simulate the effect the whole shadow will
508 // become lighter in this case.
509 // The ratio can be simulated by using the inverse of maximum of ratioVI for
510 // all (V).
511 float distOutline = (outlineData[i].position - outlineCentroid).length();
512 if (CC_UNLIKELY(distOutline == 0)) {
513 // If the outline has 0 area, then there is no spot shadow anyway.
514 ALOGW("Outline has 0 area, no spot shadow!");
515 return;
516 }
517
518 float ratioVI = outlineData[i].radius / distOutline;
519 minRaitoVI = std::min(minRaitoVI, ratioVI);
520 if (ratioVI >= (1 - FAKE_UMBRA_SIZE_RATIO)) {
521 ratioVI = (1 - FAKE_UMBRA_SIZE_RATIO);
522 }
523 // When we know we don't have valid umbra, don't bother to compute the
524 // values below. But we can't skip the loop yet since we want to know the
525 // maximum ratio.
526 float ratioIC = 1 - ratioVI;
527 umbra[i] = outlineData[i].position * ratioIC + outlineCentroid * ratioVI;
528 }
529
530 hasValidUmbra = (minRaitoVI <= 1.0);
531 float shadowStrengthScale = 1.0;
532 if (!hasValidUmbra) {
533 #if DEBUG_SHADOW
534 ALOGW("The object is too close to the light or too small, no real umbra!");
535 #endif
536 for (int i = 0; i < polyLength; i++) {
537 umbra[i] = outlineData[i].position * FAKE_UMBRA_SIZE_RATIO +
538 outlineCentroid * (1 - FAKE_UMBRA_SIZE_RATIO);
539 }
540 shadowStrengthScale = 1.0 / minRaitoVI;
541 }
542
543 int penumbraLength = penumbraIndex;
544 int umbraLength = polyLength;
545
546 #if DEBUG_SHADOW
547 ALOGD("penumbraLength is %d , allocatedPenumbraLength %d", penumbraLength,
548 allocatedPenumbraLength);
549 dumpPolygon(poly, polyLength, "input poly");
550 dumpPolygon(penumbra, penumbraLength, "penumbra");
551 dumpPolygon(umbra, umbraLength, "umbra");
552 ALOGD("hasValidUmbra is %d and shadowStrengthScale is %f", hasValidUmbra, shadowStrengthScale);
553 #endif
554
555 // The penumbra and umbra needs to be in convex shape to keep consistency
556 // and quality.
557 // Since we are still shooting rays to penumbra, it needs to be convex.
558 // Umbra can be represented as a fan from the centroid, but visually umbra
559 // looks nicer when it is convex.
560 Vector2 finalUmbra[umbraLength];
561 Vector2 finalPenumbra[penumbraLength];
562 int finalUmbraLength = hull(umbra, umbraLength, finalUmbra);
563 int finalPenumbraLength = hull(penumbra, penumbraLength, finalPenumbra);
564
565 generateTriangleStrip(isCasterOpaque, shadowStrengthScale, finalPenumbra, finalPenumbraLength,
566 finalUmbra, finalUmbraLength, poly, polyLength, shadowTriangleStrip,
567 outlineCentroid);
568 }
569
570 /**
571 * This is only for experimental purpose.
572 * After intersections are calculated, we could smooth the polygon if needed.
573 * So far, we don't think it is more appealing yet.
574 *
575 * @param level The level of smoothness.
576 * @param rays The total number of rays.
577 * @param rayDist (In and Out) The distance for each ray.
578 *
579 */
smoothPolygon(int level,int rays,float * rayDist)580 void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) {
581 for (int k = 0; k < level; k++) {
582 for (int i = 0; i < rays; i++) {
583 float p1 = rayDist[(rays - 1 + i) % rays];
584 float p2 = rayDist[i];
585 float p3 = rayDist[(i + 1) % rays];
586 rayDist[i] = (p1 + p2 * 2 + p3) / 4;
587 }
588 }
589 }
590
591 // Index pair is meant for storing the tessellation information for the penumbra
592 // area. One index must come from exterior tangent of the circles, the other one
593 // must come from the interior tangent of the circles.
594 struct IndexPair {
595 int outerIndex;
596 int innerIndex;
597 };
598
599 // For one penumbra vertex, find the cloest umbra vertex and return its index.
getClosestUmbraIndex(const Vector2 & pivot,const Vector2 * polygon,int polygonLength)600 inline int getClosestUmbraIndex(const Vector2& pivot, const Vector2* polygon, int polygonLength) {
601 float minLengthSquared = FLT_MAX;
602 int resultIndex = -1;
603 bool hasDecreased = false;
604 // Starting with some negative offset, assuming both umbra and penumbra are starting
605 // at the same angle, this can help to find the result faster.
606 // Normally, loop 3 times, we can find the closest point.
607 int offset = polygonLength - 2;
608 for (int i = 0; i < polygonLength; i++) {
609 int currentIndex = (i + offset) % polygonLength;
610 float currentLengthSquared = (pivot - polygon[currentIndex]).lengthSquared();
611 if (currentLengthSquared < minLengthSquared) {
612 if (minLengthSquared != FLT_MAX) {
613 hasDecreased = true;
614 }
615 minLengthSquared = currentLengthSquared;
616 resultIndex = currentIndex;
617 } else if (currentLengthSquared > minLengthSquared && hasDecreased) {
618 // Early break b/c we have found the closet one and now the length
619 // is increasing again.
620 break;
621 }
622 }
623 if (resultIndex == -1) {
624 ALOGE("resultIndex is -1, the polygon must be invalid!");
625 resultIndex = 0;
626 }
627 return resultIndex;
628 }
629
630 // Allow some epsilon here since the later ray intersection did allow for some small
631 // floating point error, when the intersection point is slightly outside the segment.
sameDirections(bool isPositiveCross,float a,float b)632 inline bool sameDirections(bool isPositiveCross, float a, float b) {
633 if (isPositiveCross) {
634 return a >= -EPSILON && b >= -EPSILON;
635 } else {
636 return a <= EPSILON && b <= EPSILON;
637 }
638 }
639
640 // Find the right polygon edge to shoot the ray at.
findPolyIndex(bool isPositiveCross,int startPolyIndex,const Vector2 & umbraDir,const Vector2 * polyToCentroid,int polyLength)641 inline int findPolyIndex(bool isPositiveCross, int startPolyIndex, const Vector2& umbraDir,
642 const Vector2* polyToCentroid, int polyLength) {
643 // Make sure we loop with a bound.
644 for (int i = 0; i < polyLength; i++) {
645 int currentIndex = (i + startPolyIndex) % polyLength;
646 const Vector2& currentToCentroid = polyToCentroid[currentIndex];
647 const Vector2& nextToCentroid = polyToCentroid[(currentIndex + 1) % polyLength];
648
649 float currentCrossUmbra = currentToCentroid.cross(umbraDir);
650 float umbraCrossNext = umbraDir.cross(nextToCentroid);
651 if (sameDirections(isPositiveCross, currentCrossUmbra, umbraCrossNext)) {
652 #if DEBUG_SHADOW
653 ALOGD("findPolyIndex loop %d times , index %d", i, currentIndex);
654 #endif
655 return currentIndex;
656 }
657 }
658 LOG_ALWAYS_FATAL("Can't find the right polygon's edge from startPolyIndex %d", startPolyIndex);
659 return -1;
660 }
661
662 // Generate the index pair for penumbra / umbra vertices, and more penumbra vertices
663 // if needed.
genNewPenumbraAndPairWithUmbra(const Vector2 * penumbra,int penumbraLength,const Vector2 * umbra,int umbraLength,Vector2 * newPenumbra,int & newPenumbraIndex,IndexPair * verticesPair,int & verticesPairIndex)664 inline void genNewPenumbraAndPairWithUmbra(const Vector2* penumbra, int penumbraLength,
665 const Vector2* umbra, int umbraLength,
666 Vector2* newPenumbra, int& newPenumbraIndex,
667 IndexPair* verticesPair, int& verticesPairIndex) {
668 // In order to keep everything in just one loop, we need to pre-compute the
669 // closest umbra vertex for the last penumbra vertex.
670 int previousClosestUmbraIndex =
671 getClosestUmbraIndex(penumbra[penumbraLength - 1], umbra, umbraLength);
672 for (int i = 0; i < penumbraLength; i++) {
673 const Vector2& currentPenumbraVertex = penumbra[i];
674 // For current penumbra vertex, starting from previousClosestUmbraIndex,
675 // then check the next one until the distance increase.
676 // The last one before the increase is the umbra vertex we need to pair with.
677 float currentLengthSquared =
678 (currentPenumbraVertex - umbra[previousClosestUmbraIndex]).lengthSquared();
679 int currentClosestUmbraIndex = previousClosestUmbraIndex;
680 int indexDelta = 0;
681 for (int j = 1; j < umbraLength; j++) {
682 int newUmbraIndex = (previousClosestUmbraIndex + j) % umbraLength;
683 float newLengthSquared = (currentPenumbraVertex - umbra[newUmbraIndex]).lengthSquared();
684 if (newLengthSquared > currentLengthSquared) {
685 // currentClosestUmbraIndex is the umbra vertex's index which has
686 // currently found smallest distance, so we can simply break here.
687 break;
688 } else {
689 currentLengthSquared = newLengthSquared;
690 indexDelta++;
691 currentClosestUmbraIndex = newUmbraIndex;
692 }
693 }
694
695 if (indexDelta > 1) {
696 // For those umbra don't have penumbra, generate new penumbra vertices by
697 // interpolation.
698 //
699 // Assuming Pi for penumbra vertices, and Ui for umbra vertices.
700 // In the case like below P1 paired with U1 and P2 paired with U5.
701 // U2 to U4 are unpaired umbra vertices.
702 //
703 // P1 P2
704 // | |
705 // U1 U2 U3 U4 U5
706 //
707 // We will need to generate 3 more penumbra vertices P1.1, P1.2, P1.3
708 // to pair with U2 to U4.
709 //
710 // P1 P1.1 P1.2 P1.3 P2
711 // | | | | |
712 // U1 U2 U3 U4 U5
713 //
714 // That distance ratio b/t Ui to U1 and Ui to U5 decides its paired penumbra
715 // vertex's location.
716 int newPenumbraNumber = indexDelta - 1;
717
718 float accumulatedDeltaLength[indexDelta];
719 float totalDeltaLength = 0;
720
721 // To save time, cache the previous umbra vertex info outside the loop
722 // and update each loop.
723 Vector2 previousClosestUmbra = umbra[previousClosestUmbraIndex];
724 Vector2 skippedUmbra;
725 // Use umbra data to precompute the length b/t unpaired umbra vertices,
726 // and its ratio against the total length.
727 for (int k = 0; k < indexDelta; k++) {
728 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
729 skippedUmbra = umbra[skippedUmbraIndex];
730 float currentDeltaLength = (skippedUmbra - previousClosestUmbra).length();
731
732 totalDeltaLength += currentDeltaLength;
733 accumulatedDeltaLength[k] = totalDeltaLength;
734
735 previousClosestUmbra = skippedUmbra;
736 }
737
738 const Vector2& previousPenumbra = penumbra[(i + penumbraLength - 1) % penumbraLength];
739 // Then for each unpaired umbra vertex, create a new penumbra by the ratio,
740 // and pair them togehter.
741 for (int k = 0; k < newPenumbraNumber; k++) {
742 float weightForCurrentPenumbra = 1.0f;
743 if (totalDeltaLength != 0.0f) {
744 weightForCurrentPenumbra = accumulatedDeltaLength[k] / totalDeltaLength;
745 }
746 float weightForPreviousPenumbra = 1.0f - weightForCurrentPenumbra;
747
748 Vector2 interpolatedPenumbra = currentPenumbraVertex * weightForCurrentPenumbra +
749 previousPenumbra * weightForPreviousPenumbra;
750
751 int skippedUmbraIndex = (previousClosestUmbraIndex + k + 1) % umbraLength;
752 verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
753 verticesPair[verticesPairIndex].innerIndex = skippedUmbraIndex;
754 verticesPairIndex++;
755 newPenumbra[newPenumbraIndex++] = interpolatedPenumbra;
756 }
757 }
758 verticesPair[verticesPairIndex].outerIndex = newPenumbraIndex;
759 verticesPair[verticesPairIndex].innerIndex = currentClosestUmbraIndex;
760 verticesPairIndex++;
761 newPenumbra[newPenumbraIndex++] = currentPenumbraVertex;
762
763 previousClosestUmbraIndex = currentClosestUmbraIndex;
764 }
765 }
766
767 // Precompute all the polygon's vector, return true if the reference cross product is positive.
genPolyToCentroid(const Vector2 * poly2d,int polyLength,const Vector2 & centroid,Vector2 * polyToCentroid)768 inline bool genPolyToCentroid(const Vector2* poly2d, int polyLength, const Vector2& centroid,
769 Vector2* polyToCentroid) {
770 for (int j = 0; j < polyLength; j++) {
771 polyToCentroid[j] = poly2d[j] - centroid;
772 // Normalize these vectors such that we can use epsilon comparison after
773 // computing their cross products with another normalized vector.
774 polyToCentroid[j].normalize();
775 }
776 float refCrossProduct = 0;
777 for (int j = 0; j < polyLength; j++) {
778 refCrossProduct = polyToCentroid[j].cross(polyToCentroid[(j + 1) % polyLength]);
779 if (refCrossProduct != 0) {
780 break;
781 }
782 }
783
784 return refCrossProduct > 0;
785 }
786
787 // For one umbra vertex, shoot an ray from centroid to it.
788 // If the ray hit the polygon first, then return the intersection point as the
789 // closer vertex.
getCloserVertex(const Vector2 & umbraVertex,const Vector2 & centroid,const Vector2 * poly2d,int polyLength,const Vector2 * polyToCentroid,bool isPositiveCross,int & previousPolyIndex)790 inline Vector2 getCloserVertex(const Vector2& umbraVertex, const Vector2& centroid,
791 const Vector2* poly2d, int polyLength, const Vector2* polyToCentroid,
792 bool isPositiveCross, int& previousPolyIndex) {
793 Vector2 umbraToCentroid = umbraVertex - centroid;
794 float distanceToUmbra = umbraToCentroid.length();
795 umbraToCentroid = umbraToCentroid / distanceToUmbra;
796
797 // previousPolyIndex is updated for each item such that we can minimize the
798 // looping inside findPolyIndex();
799 previousPolyIndex = findPolyIndex(isPositiveCross, previousPolyIndex, umbraToCentroid,
800 polyToCentroid, polyLength);
801
802 float dx = umbraToCentroid.x;
803 float dy = umbraToCentroid.y;
804 float distanceToIntersectPoly =
805 rayIntersectPoints(centroid, dx, dy, poly2d[previousPolyIndex],
806 poly2d[(previousPolyIndex + 1) % polyLength]);
807 if (distanceToIntersectPoly < 0) {
808 distanceToIntersectPoly = 0;
809 }
810
811 // Pick the closer one as the occluded area vertex.
812 Vector2 closerVertex;
813 if (distanceToIntersectPoly < distanceToUmbra) {
814 closerVertex.x = centroid.x + dx * distanceToIntersectPoly;
815 closerVertex.y = centroid.y + dy * distanceToIntersectPoly;
816 } else {
817 closerVertex = umbraVertex;
818 }
819
820 return closerVertex;
821 }
822
823 /**
824 * Generate a triangle strip given two convex polygon
825 **/
generateTriangleStrip(bool isCasterOpaque,float shadowStrengthScale,Vector2 * penumbra,int penumbraLength,Vector2 * umbra,int umbraLength,const Vector3 * poly,int polyLength,VertexBuffer & shadowTriangleStrip,const Vector2 & centroid)826 void SpotShadow::generateTriangleStrip(bool isCasterOpaque, float shadowStrengthScale,
827 Vector2* penumbra, int penumbraLength, Vector2* umbra,
828 int umbraLength, const Vector3* poly, int polyLength,
829 VertexBuffer& shadowTriangleStrip, const Vector2& centroid) {
830 bool hasOccludedUmbraArea = false;
831 Vector2 poly2d[polyLength];
832
833 if (isCasterOpaque) {
834 for (int i = 0; i < polyLength; i++) {
835 poly2d[i].x = poly[i].x;
836 poly2d[i].y = poly[i].y;
837 }
838 // Make sure the centroid is inside the umbra, otherwise, fall back to the
839 // approach as if there is no occluded umbra area.
840 if (testPointInsidePolygon(centroid, poly2d, polyLength)) {
841 hasOccludedUmbraArea = true;
842 }
843 }
844
845 // For each penumbra vertex, find its corresponding closest umbra vertex index.
846 //
847 // Penumbra Vertices marked as Pi
848 // Umbra Vertices marked as Ui
849 // (P3)
850 // (P2) | ' (P4)
851 // (P1)' | | '
852 // ' | | '
853 // (P0) ------------------------------------------------(P5)
854 // | (U0) |(U1)
855 // | |
856 // | |(U2) (P5.1)
857 // | |
858 // | |
859 // | |
860 // | |
861 // | |
862 // | |
863 // (U4)-----------------------------------(U3) (P6)
864 //
865 // At least, like P0, P1, P2, they will find the matching umbra as U0.
866 // If we jump over some umbra vertex without matching penumbra vertex, then
867 // we will generate some new penumbra vertex by interpolation. Like P6 is
868 // matching U3, but U2 is not matched with any penumbra vertex.
869 // So interpolate P5.1 out and match U2.
870 // In this way, every umbra vertex will have a matching penumbra vertex.
871 //
872 // The total pair number can be as high as umbraLength + penumbraLength.
873 const int maxNewPenumbraLength = umbraLength + penumbraLength;
874 IndexPair verticesPair[maxNewPenumbraLength];
875 int verticesPairIndex = 0;
876
877 // Cache all the existing penumbra vertices and newly interpolated vertices into a
878 // a new array.
879 Vector2 newPenumbra[maxNewPenumbraLength];
880 int newPenumbraIndex = 0;
881
882 // For each penumbra vertex, find its closet umbra vertex by comparing the
883 // neighbor umbra vertices.
884 genNewPenumbraAndPairWithUmbra(penumbra, penumbraLength, umbra, umbraLength, newPenumbra,
885 newPenumbraIndex, verticesPair, verticesPairIndex);
886 ShadowTessellator::checkOverflow(verticesPairIndex, maxNewPenumbraLength, "Spot pair");
887 ShadowTessellator::checkOverflow(newPenumbraIndex, maxNewPenumbraLength, "Spot new penumbra");
888 #if DEBUG_SHADOW
889 for (int i = 0; i < umbraLength; i++) {
890 ALOGD("umbra i %d, [%f, %f]", i, umbra[i].x, umbra[i].y);
891 }
892 for (int i = 0; i < newPenumbraIndex; i++) {
893 ALOGD("new penumbra i %d, [%f, %f]", i, newPenumbra[i].x, newPenumbra[i].y);
894 }
895 for (int i = 0; i < verticesPairIndex; i++) {
896 ALOGD("index i %d, [%d, %d]", i, verticesPair[i].outerIndex, verticesPair[i].innerIndex);
897 }
898 #endif
899
900 // For the size of vertex buffer, we need 3 rings, one has newPenumbraSize,
901 // one has umbraLength, the last one has at most umbraLength.
902 //
903 // For the size of index buffer, the umbra area needs (2 * umbraLength + 2).
904 // The penumbra one can vary a bit, but it is bounded by (2 * verticesPairIndex + 2).
905 // And 2 more for jumping between penumbra to umbra.
906 const int newPenumbraLength = newPenumbraIndex;
907 const int totalVertexCount = newPenumbraLength + umbraLength * 2;
908 const int totalIndexCount = 2 * umbraLength + 2 * verticesPairIndex + 6;
909 AlphaVertex* shadowVertices = shadowTriangleStrip.alloc<AlphaVertex>(totalVertexCount);
910 uint16_t* indexBuffer = shadowTriangleStrip.allocIndices<uint16_t>(totalIndexCount);
911 int vertexBufferIndex = 0;
912 int indexBufferIndex = 0;
913
914 // Fill the IB and VB for the penumbra area.
915 for (int i = 0; i < newPenumbraLength; i++) {
916 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], newPenumbra[i].x, newPenumbra[i].y,
917 PENUMBRA_ALPHA);
918 }
919 // Since the umbra can be a faked one when the occluder is too high, the umbra should be lighter
920 // in this case.
921 float scaledUmbraAlpha = UMBRA_ALPHA * shadowStrengthScale;
922
923 for (int i = 0; i < umbraLength; i++) {
924 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], umbra[i].x, umbra[i].y,
925 scaledUmbraAlpha);
926 }
927
928 for (int i = 0; i < verticesPairIndex; i++) {
929 indexBuffer[indexBufferIndex++] = verticesPair[i].outerIndex;
930 // All umbra index need to be offseted by newPenumbraSize.
931 indexBuffer[indexBufferIndex++] = verticesPair[i].innerIndex + newPenumbraLength;
932 }
933 indexBuffer[indexBufferIndex++] = verticesPair[0].outerIndex;
934 indexBuffer[indexBufferIndex++] = verticesPair[0].innerIndex + newPenumbraLength;
935
936 // Now fill the IB and VB for the umbra area.
937 // First duplicated the index from previous strip and the first one for the
938 // degenerated triangles.
939 indexBuffer[indexBufferIndex] = indexBuffer[indexBufferIndex - 1];
940 indexBufferIndex++;
941 indexBuffer[indexBufferIndex++] = newPenumbraLength + 0;
942 // Save the first VB index for umbra area in order to close the loop.
943 int savedStartIndex = vertexBufferIndex;
944
945 if (hasOccludedUmbraArea) {
946 // Precompute all the polygon's vector, and the reference cross product,
947 // in order to find the right polygon edge for the ray to intersect.
948 Vector2 polyToCentroid[polyLength];
949 bool isPositiveCross = genPolyToCentroid(poly2d, polyLength, centroid, polyToCentroid);
950
951 // Because both the umbra and polygon are going in the same direction,
952 // we can save the previous polygon index to make sure we have less polygon
953 // vertex to compute for each ray.
954 int previousPolyIndex = 0;
955 for (int i = 0; i < umbraLength; i++) {
956 // Shoot a ray from centroid to each umbra vertices and pick the one with
957 // shorter distance to the centroid, b/t the umbra vertex or the intersection point.
958 Vector2 closerVertex =
959 getCloserVertex(umbra[i], centroid, poly2d, polyLength, polyToCentroid,
960 isPositiveCross, previousPolyIndex);
961
962 // We already stored the umbra vertices, just need to add the occlued umbra's ones.
963 indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
964 indexBuffer[indexBufferIndex++] = vertexBufferIndex;
965 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], closerVertex.x, closerVertex.y,
966 scaledUmbraAlpha);
967 }
968 } else {
969 // If there is no occluded umbra at all, then draw the triangle fan
970 // starting from the centroid to all umbra vertices.
971 int lastCentroidIndex = vertexBufferIndex;
972 AlphaVertex::set(&shadowVertices[vertexBufferIndex++], centroid.x, centroid.y,
973 scaledUmbraAlpha);
974 for (int i = 0; i < umbraLength; i++) {
975 indexBuffer[indexBufferIndex++] = newPenumbraLength + i;
976 indexBuffer[indexBufferIndex++] = lastCentroidIndex;
977 }
978 }
979 // Closing the umbra area triangle's loop here.
980 indexBuffer[indexBufferIndex++] = newPenumbraLength;
981 indexBuffer[indexBufferIndex++] = savedStartIndex;
982
983 // At the end, update the real index and vertex buffer size.
984 shadowTriangleStrip.updateVertexCount(vertexBufferIndex);
985 shadowTriangleStrip.updateIndexCount(indexBufferIndex);
986 ShadowTessellator::checkOverflow(vertexBufferIndex, totalVertexCount, "Spot Vertex Buffer");
987 ShadowTessellator::checkOverflow(indexBufferIndex, totalIndexCount, "Spot Index Buffer");
988
989 shadowTriangleStrip.setMeshFeatureFlags(VertexBuffer::kAlpha | VertexBuffer::kIndices);
990 shadowTriangleStrip.computeBounds<AlphaVertex>();
991 }
992
993 #if DEBUG_SHADOW
994
995 #define TEST_POINT_NUMBER 128
996 /**
997 * Calculate the bounds for generating random test points.
998 */
updateBound(const Vector2 inVector,Vector2 & lowerBound,Vector2 & upperBound)999 void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound, Vector2& upperBound) {
1000 if (inVector.x < lowerBound.x) {
1001 lowerBound.x = inVector.x;
1002 }
1003
1004 if (inVector.y < lowerBound.y) {
1005 lowerBound.y = inVector.y;
1006 }
1007
1008 if (inVector.x > upperBound.x) {
1009 upperBound.x = inVector.x;
1010 }
1011
1012 if (inVector.y > upperBound.y) {
1013 upperBound.y = inVector.y;
1014 }
1015 }
1016
1017 /**
1018 * For debug purpose, when things go wrong, dump the whole polygon data.
1019 */
dumpPolygon(const Vector2 * poly,int polyLength,const char * polyName)1020 void SpotShadow::dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) {
1021 for (int i = 0; i < polyLength; i++) {
1022 ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y);
1023 }
1024 }
1025
1026 /**
1027 * For debug purpose, when things go wrong, dump the whole polygon data.
1028 */
dumpPolygon(const Vector3 * poly,int polyLength,const char * polyName)1029 void SpotShadow::dumpPolygon(const Vector3* poly, int polyLength, const char* polyName) {
1030 for (int i = 0; i < polyLength; i++) {
1031 ALOGD("polygon %s i %d x %f y %f z %f", polyName, i, poly[i].x, poly[i].y, poly[i].z);
1032 }
1033 }
1034
1035 /**
1036 * Test whether the polygon is convex.
1037 */
testConvex(const Vector2 * polygon,int polygonLength,const char * name)1038 bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength, const char* name) {
1039 bool isConvex = true;
1040 for (int i = 0; i < polygonLength; i++) {
1041 Vector2 start = polygon[i];
1042 Vector2 middle = polygon[(i + 1) % polygonLength];
1043 Vector2 end = polygon[(i + 2) % polygonLength];
1044
1045 float delta = (float(middle.x) - start.x) * (float(end.y) - start.y) -
1046 (float(middle.y) - start.y) * (float(end.x) - start.x);
1047 bool isCCWOrCoLinear = (delta >= EPSILON);
1048
1049 if (isCCWOrCoLinear) {
1050 ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f),"
1051 "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!",
1052 name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta);
1053 isConvex = false;
1054 break;
1055 }
1056 }
1057 return isConvex;
1058 }
1059
1060 /**
1061 * Test whether or not the polygon (intersection) is within the 2 input polygons.
1062 * Using Marte Carlo method, we generate a random point, and if it is inside the
1063 * intersection, then it must be inside both source polygons.
1064 */
testIntersection(const Vector2 * poly1,int poly1Length,const Vector2 * poly2,int poly2Length,const Vector2 * intersection,int intersectionLength)1065 void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length, const Vector2* poly2,
1066 int poly2Length, const Vector2* intersection,
1067 int intersectionLength) {
1068 // Find the min and max of x and y.
1069 Vector2 lowerBound = {FLT_MAX, FLT_MAX};
1070 Vector2 upperBound = {-FLT_MAX, -FLT_MAX};
1071 for (int i = 0; i < poly1Length; i++) {
1072 updateBound(poly1[i], lowerBound, upperBound);
1073 }
1074 for (int i = 0; i < poly2Length; i++) {
1075 updateBound(poly2[i], lowerBound, upperBound);
1076 }
1077
1078 bool dumpPoly = false;
1079 for (int k = 0; k < TEST_POINT_NUMBER; k++) {
1080 // Generate a random point between minX, minY and maxX, maxY.
1081 float randomX = rand() / float(RAND_MAX);
1082 float randomY = rand() / float(RAND_MAX);
1083
1084 Vector2 testPoint;
1085 testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x);
1086 testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y);
1087
1088 // If the random point is in both poly 1 and 2, then it must be intersection.
1089 if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) {
1090 if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) {
1091 dumpPoly = true;
1092 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1093 " not in the poly1",
1094 testPoint.x, testPoint.y);
1095 }
1096
1097 if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) {
1098 dumpPoly = true;
1099 ALOGW("(Error Type 1): one point (%f, %f) in the intersection is"
1100 " not in the poly2",
1101 testPoint.x, testPoint.y);
1102 }
1103 }
1104 }
1105
1106 if (dumpPoly) {
1107 dumpPolygon(intersection, intersectionLength, "intersection");
1108 for (int i = 1; i < intersectionLength; i++) {
1109 Vector2 delta = intersection[i] - intersection[i - 1];
1110 ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared());
1111 }
1112
1113 dumpPolygon(poly1, poly1Length, "poly 1");
1114 dumpPolygon(poly2, poly2Length, "poly 2");
1115 }
1116 }
1117 #endif
1118
1119 }; // namespace uirenderer
1120 }; // namespace android
1121