Searched refs:smart_cond (Results 1 – 15 of 15) sorted by relevance
/external/tensorflow/tensorflow/python/layers/ |
D | normalization.py | 400 output, mean, variance = utils.smart_cond( 413 one_minus_decay = utils.smart_cond(training, 458 r = utils.smart_cond(training, lambda: r, lambda: array_ops.ones_like(r)) 459 d = utils.smart_cond(training, lambda: d, lambda: array_ops.zeros_like(d)) 480 return utils.smart_cond(training, _do_update, _fake_update) 552 adj_scale = utils.smart_cond(training, 555 adj_bias = utils.smart_cond(training, 568 mean = utils.smart_cond(training, 571 variance = utils.smart_cond(training, 605 mean_update = utils.smart_cond( [all …]
|
D | utils.py | 182 def smart_cond(pred, true_fn=None, false_fn=None, name=None): function 204 return control_flow_ops.smart_cond(pred, true_fn=true_fn,
|
D | core.py | 303 return utils.smart_cond(training,
|
/external/tensorflow/tensorflow/contrib/layers/python/layers/ |
D | utils_test.py | 113 o = utils.smart_cond(constant_op.constant(v), fn1, fn2) 121 o = utils.smart_cond(constant_op.constant(v), fn1, fn2) 130 o = utils.smart_cond(constant_op.constant(v), fn1, fn2) 140 o = utils.smart_cond(constant_op.constant(v), fn1, fn2) 153 o = utils.smart_cond(p, fn1, fn2) 163 o = utils.smart_cond(p, fn1, fn2) 173 o = utils.smart_cond(p, fn1, fn2) 184 o = utils.smart_cond(p, fn1, fn2)
|
D | utils.py | 197 def smart_cond(pred, fn1, fn2, name=None): function
|
D | layers.py | 382 outputs, mean, variance = utils.smart_cond( 404 outputs = utils.smart_cond(is_training, _force_updates, no_updates) 416 update_mean, update_variance = utils.smart_cond( 802 mean, variance = utils.smart_cond(is_training, _force_updates, 814 update_mean, update_variance = utils.smart_cond( 820 mean, variance = utils.smart_cond(is_training, vars_fn, moving_vars_fn)
|
/external/tensorflow/tensorflow/contrib/framework/ |
D | __init__.py | 107 from tensorflow.python.ops.control_flow_ops import smart_cond
|
/external/tensorflow/tensorflow/contrib/quantize/python/ |
D | fold_batch_norms.py | 343 bn_decay_mean_out = utils.smart_cond( 354 bn_decay_var_out = utils.smart_cond( 363 correction_recip = utils.smart_cond( 369 correction_offset = utils.smart_cond(
|
/external/tensorflow/tensorflow/contrib/crf/python/ops/ |
D | crf.py | 105 return utils.smart_cond( 513 return utils.smart_cond(
|
/external/tensorflow/tensorflow/python/training/ |
D | input.py | 503 return utils.smart_cond( 509 out_tensor = utils.smart_cond( 706 enqueue_ops = [utils.smart_cond( 723 enqueue_ops = [utils.smart_cond(
|
/external/tensorflow/tensorflow/python/ops/ |
D | control_flow_ops_test.py | 360 z = control_flow_ops.smart_cond( 370 z = control_flow_ops.smart_cond( 380 control_flow_ops.smart_cond(True, false_fn=lambda: x) 387 control_flow_ops.smart_cond(True, lambda: x)
|
D | control_flow_ops.py | 2125 def smart_cond(pred, true_fn=None, false_fn=None, name=None): function
|
/external/tensorflow/tensorflow/contrib/training/python/training/ |
D | bucket_ops.py | 242 maybe_enqueue = utils.smart_cond(
|
/external/tensorflow/tensorflow/contrib/summary/ |
D | summary_ops.py | 340 op = utils.smart_cond(
|
/external/tensorflow/tensorflow/contrib/learn/python/learn/learn_io/ |
D | graph_io.py | 306 keys, examples_proto = utils.smart_cond(
|