• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_LINE_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_LINE_WRITER_H_
19 
20 #include <unordered_set>
21 #include <vector>
22 
23 #include "debug/dwarf/debug_line_opcode_writer.h"
24 #include "debug/dwarf/headers.h"
25 #include "debug/elf_compilation_unit.h"
26 #include "debug/src_map_elem.h"
27 #include "dex/dex_file-inl.h"
28 #include "linker/elf_builder.h"
29 #include "oat_file.h"
30 #include "stack_map.h"
31 
32 namespace art {
33 namespace debug {
34 
35 typedef std::vector<DexFile::PositionInfo> PositionInfos;
36 
PositionInfoCallback(void * ctx,const DexFile::PositionInfo & entry)37 static bool PositionInfoCallback(void* ctx, const DexFile::PositionInfo& entry) {
38   static_cast<PositionInfos*>(ctx)->push_back(entry);
39   return false;
40 }
41 
42 template<typename ElfTypes>
43 class ElfDebugLineWriter {
44   using Elf_Addr = typename ElfTypes::Addr;
45 
46  public:
ElfDebugLineWriter(linker::ElfBuilder<ElfTypes> * builder)47   explicit ElfDebugLineWriter(linker::ElfBuilder<ElfTypes>* builder) : builder_(builder) {
48   }
49 
Start()50   void Start() {
51     builder_->GetDebugLine()->Start();
52   }
53 
54   // Write line table for given set of methods.
55   // Returns the number of bytes written.
WriteCompilationUnit(ElfCompilationUnit & compilation_unit)56   size_t WriteCompilationUnit(ElfCompilationUnit& compilation_unit) {
57     const InstructionSet isa = builder_->GetIsa();
58     const bool is64bit = Is64BitInstructionSet(isa);
59     const Elf_Addr base_address = compilation_unit.is_code_address_text_relative
60         ? builder_->GetText()->GetAddress()
61         : 0;
62 
63     compilation_unit.debug_line_offset = builder_->GetDebugLine()->GetPosition();
64 
65     std::vector<dwarf::FileEntry> files;
66     std::unordered_map<std::string, size_t> files_map;
67     std::vector<std::string> directories;
68     std::unordered_map<std::string, size_t> directories_map;
69     int code_factor_bits_ = 0;
70     int dwarf_isa = -1;
71     switch (isa) {
72       case InstructionSet::kArm:  // arm actually means thumb2.
73       case InstructionSet::kThumb2:
74         code_factor_bits_ = 1;  // 16-bit instuctions
75         dwarf_isa = 1;  // DW_ISA_ARM_thumb.
76         break;
77       case InstructionSet::kArm64:
78       case InstructionSet::kMips:
79       case InstructionSet::kMips64:
80         code_factor_bits_ = 2;  // 32-bit instructions
81         break;
82       case InstructionSet::kNone:
83       case InstructionSet::kX86:
84       case InstructionSet::kX86_64:
85         break;
86     }
87     std::unordered_set<uint64_t> seen_addresses(compilation_unit.methods.size());
88     dwarf::DebugLineOpCodeWriter<> opcodes(is64bit, code_factor_bits_);
89     for (const MethodDebugInfo* mi : compilation_unit.methods) {
90       // Ignore function if we have already generated line table for the same address.
91       // It would confuse the debugger and the DWARF specification forbids it.
92       // We allow the line table for method to be replicated in different compilation unit.
93       // This ensures that each compilation unit contains line table for all its methods.
94       if (!seen_addresses.insert(mi->code_address).second) {
95         continue;
96       }
97 
98       uint32_t prologue_end = std::numeric_limits<uint32_t>::max();
99       std::vector<SrcMapElem> pc2dex_map;
100       if (mi->code_info != nullptr) {
101         // Use stack maps to create mapping table from pc to dex.
102         const CodeInfo code_info(mi->code_info);
103         const CodeInfoEncoding encoding = code_info.ExtractEncoding();
104         pc2dex_map.reserve(code_info.GetNumberOfStackMaps(encoding));
105         for (uint32_t s = 0; s < code_info.GetNumberOfStackMaps(encoding); s++) {
106           StackMap stack_map = code_info.GetStackMapAt(s, encoding);
107           DCHECK(stack_map.IsValid());
108           const uint32_t pc = stack_map.GetNativePcOffset(encoding.stack_map.encoding, isa);
109           const int32_t dex = stack_map.GetDexPc(encoding.stack_map.encoding);
110           pc2dex_map.push_back({pc, dex});
111           if (stack_map.HasDexRegisterMap(encoding.stack_map.encoding)) {
112             // Guess that the first map with local variables is the end of prologue.
113             prologue_end = std::min(prologue_end, pc);
114           }
115         }
116         std::sort(pc2dex_map.begin(), pc2dex_map.end());
117       }
118 
119       if (pc2dex_map.empty()) {
120         continue;
121       }
122 
123       // Compensate for compiler's off-by-one-instruction error.
124       //
125       // The compiler generates stackmap with PC *after* the branch instruction
126       // (because this is the PC which is easier to obtain when unwinding).
127       //
128       // However, the debugger is more clever and it will ask us for line-number
129       // mapping at the location of the branch instruction (since the following
130       // instruction could belong to other line, this is the correct thing to do).
131       //
132       // So we really want to just decrement the PC by one instruction so that the
133       // branch instruction is covered as well. However, we do not know the size
134       // of the previous instruction, and we can not subtract just a fixed amount
135       // (the debugger would trust us that the PC is valid; it might try to set
136       // breakpoint there at some point, and setting breakpoint in mid-instruction
137       // would make the process crash in spectacular way).
138       //
139       // Therefore, we say that the PC which the compiler gave us for the stackmap
140       // is the end of its associated address range, and we use the PC from the
141       // previous stack map as the start of the range. This ensures that the PC is
142       // valid and that the branch instruction is covered.
143       //
144       // This ensures we have correct line number mapping at call sites (which is
145       // important for backtraces), but there is nothing we can do for non-call
146       // sites (so stepping through optimized code in debugger is not possible).
147       //
148       // We do not adjust the stackmaps if the code was compiled as debuggable.
149       // In that case, the stackmaps should accurately cover all instructions.
150       if (!mi->is_native_debuggable) {
151         for (size_t i = pc2dex_map.size() - 1; i > 0; --i) {
152           pc2dex_map[i].from_ = pc2dex_map[i - 1].from_;
153         }
154         pc2dex_map[0].from_ = 0;
155       }
156 
157       Elf_Addr method_address = base_address + mi->code_address;
158 
159       PositionInfos dex2line_map;
160       DCHECK(mi->dex_file != nullptr);
161       const DexFile* dex = mi->dex_file;
162       CodeItemDebugInfoAccessor accessor(*dex, mi->code_item, mi->dex_method_index);
163       const uint32_t debug_info_offset = accessor.DebugInfoOffset();
164       if (!dex->DecodeDebugPositionInfo(debug_info_offset, PositionInfoCallback, &dex2line_map)) {
165         continue;
166       }
167 
168       if (dex2line_map.empty()) {
169         continue;
170       }
171 
172       opcodes.SetAddress(method_address);
173       if (dwarf_isa != -1) {
174         opcodes.SetISA(dwarf_isa);
175       }
176 
177       // Get and deduplicate directory and filename.
178       int file_index = 0;  // 0 - primary source file of the compilation.
179       auto& dex_class_def = dex->GetClassDef(mi->class_def_index);
180       const char* source_file = dex->GetSourceFile(dex_class_def);
181       if (source_file != nullptr) {
182         std::string file_name(source_file);
183         size_t file_name_slash = file_name.find_last_of('/');
184         std::string class_name(dex->GetClassDescriptor(dex_class_def));
185         size_t class_name_slash = class_name.find_last_of('/');
186         std::string full_path(file_name);
187 
188         // Guess directory from package name.
189         int directory_index = 0;  // 0 - current directory of the compilation.
190         if (file_name_slash == std::string::npos &&  // Just filename.
191             class_name.front() == 'L' &&  // Type descriptor for a class.
192             class_name_slash != std::string::npos) {  // Has package name.
193           std::string package_name = class_name.substr(1, class_name_slash - 1);
194           auto it = directories_map.find(package_name);
195           if (it == directories_map.end()) {
196             directory_index = 1 + directories.size();
197             directories_map.emplace(package_name, directory_index);
198             directories.push_back(package_name);
199           } else {
200             directory_index = it->second;
201           }
202           full_path = package_name + "/" + file_name;
203         }
204 
205         // Add file entry.
206         auto it2 = files_map.find(full_path);
207         if (it2 == files_map.end()) {
208           file_index = 1 + files.size();
209           files_map.emplace(full_path, file_index);
210           files.push_back(dwarf::FileEntry {
211             file_name,
212             directory_index,
213             0,  // Modification time - NA.
214             0,  // File size - NA.
215           });
216         } else {
217           file_index = it2->second;
218         }
219       }
220       opcodes.SetFile(file_index);
221 
222       // Generate mapping opcodes from PC to Java lines.
223       if (file_index != 0) {
224         // If the method was not compiled as native-debuggable, we still generate all available
225         // lines, but we try to prevent the debugger from stepping and setting breakpoints since
226         // the information is too inaccurate for that (breakpoints would be set after the calls).
227         const bool default_is_stmt = mi->is_native_debuggable;
228         bool first = true;
229         for (SrcMapElem pc2dex : pc2dex_map) {
230           uint32_t pc = pc2dex.from_;
231           int dex_pc = pc2dex.to_;
232           // Find mapping with address with is greater than our dex pc; then go back one step.
233           auto dex2line = std::upper_bound(
234               dex2line_map.begin(),
235               dex2line_map.end(),
236               dex_pc,
237               [](uint32_t address, const DexFile::PositionInfo& entry) {
238                   return address < entry.address_;
239               });
240           // Look for first valid mapping after the prologue.
241           if (dex2line != dex2line_map.begin() && pc >= prologue_end) {
242             int line = (--dex2line)->line_;
243             if (first) {
244               first = false;
245               if (pc > 0) {
246                 // Assume that any preceding code is prologue.
247                 int first_line = dex2line_map.front().line_;
248                 // Prologue is not a sensible place for a breakpoint.
249                 opcodes.SetIsStmt(false);
250                 opcodes.AddRow(method_address, first_line);
251                 opcodes.SetPrologueEnd();
252               }
253               opcodes.SetIsStmt(default_is_stmt);
254               opcodes.AddRow(method_address + pc, line);
255             } else if (line != opcodes.CurrentLine()) {
256               opcodes.SetIsStmt(default_is_stmt);
257               opcodes.AddRow(method_address + pc, line);
258             }
259           }
260         }
261       } else {
262         // line 0 - instruction cannot be attributed to any source line.
263         opcodes.AddRow(method_address, 0);
264       }
265 
266       opcodes.AdvancePC(method_address + mi->code_size);
267       opcodes.EndSequence();
268     }
269     std::vector<uint8_t> buffer;
270     buffer.reserve(opcodes.data()->size() + KB);
271     size_t offset = builder_->GetDebugLine()->GetPosition();
272     WriteDebugLineTable(directories, files, opcodes, offset, &buffer, &debug_line_patches_);
273     builder_->GetDebugLine()->WriteFully(buffer.data(), buffer.size());
274     return buffer.size();
275   }
276 
End(bool write_oat_patches)277   void End(bool write_oat_patches) {
278     builder_->GetDebugLine()->End();
279     if (write_oat_patches) {
280       builder_->WritePatches(".debug_line.oat_patches",
281                              ArrayRef<const uintptr_t>(debug_line_patches_));
282     }
283   }
284 
285  private:
286   linker::ElfBuilder<ElfTypes>* builder_;
287   std::vector<uintptr_t> debug_line_patches_;
288 };
289 
290 }  // namespace debug
291 }  // namespace art
292 
293 #endif  // ART_COMPILER_DEBUG_ELF_DEBUG_LINE_WRITER_H_
294 
295