• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "instruction_simplifier_shared.h"
18 
19 #include "mirror/array-inl.h"
20 
21 namespace art {
22 
23 namespace {
24 
TrySimpleMultiplyAccumulatePatterns(HMul * mul,HBinaryOperation * input_binop,HInstruction * input_other)25 bool TrySimpleMultiplyAccumulatePatterns(HMul* mul,
26                                          HBinaryOperation* input_binop,
27                                          HInstruction* input_other) {
28   DCHECK(DataType::IsIntOrLongType(mul->GetType()));
29   DCHECK(input_binop->IsAdd() || input_binop->IsSub());
30   DCHECK_NE(input_binop, input_other);
31   if (!input_binop->HasOnlyOneNonEnvironmentUse()) {
32     return false;
33   }
34 
35   // Try to interpret patterns like
36   //    a * (b <+/-> 1)
37   // as
38   //    (a * b) <+/-> a
39   HInstruction* input_a = input_other;
40   HInstruction* input_b = nullptr;  // Set to a non-null value if we found a pattern to optimize.
41   HInstruction::InstructionKind op_kind;
42 
43   if (input_binop->IsAdd()) {
44     if ((input_binop->GetConstantRight() != nullptr) && input_binop->GetConstantRight()->IsOne()) {
45       // Interpret
46       //    a * (b + 1)
47       // as
48       //    (a * b) + a
49       input_b = input_binop->GetLeastConstantLeft();
50       op_kind = HInstruction::kAdd;
51     }
52   } else {
53     DCHECK(input_binop->IsSub());
54     if (input_binop->GetRight()->IsConstant() &&
55         input_binop->GetRight()->AsConstant()->IsMinusOne()) {
56       // Interpret
57       //    a * (b - (-1))
58       // as
59       //    a + (a * b)
60       input_b = input_binop->GetLeft();
61       op_kind = HInstruction::kAdd;
62     } else if (input_binop->GetLeft()->IsConstant() &&
63                input_binop->GetLeft()->AsConstant()->IsOne()) {
64       // Interpret
65       //    a * (1 - b)
66       // as
67       //    a - (a * b)
68       input_b = input_binop->GetRight();
69       op_kind = HInstruction::kSub;
70     }
71   }
72 
73   if (input_b == nullptr) {
74     // We did not find a pattern we can optimize.
75     return false;
76   }
77 
78   ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator();
79   HMultiplyAccumulate* mulacc = new (allocator) HMultiplyAccumulate(
80       mul->GetType(), op_kind, input_a, input_a, input_b, mul->GetDexPc());
81 
82   mul->GetBlock()->ReplaceAndRemoveInstructionWith(mul, mulacc);
83   input_binop->GetBlock()->RemoveInstruction(input_binop);
84 
85   return true;
86 }
87 
88 }  // namespace
89 
TryCombineMultiplyAccumulate(HMul * mul,InstructionSet isa)90 bool TryCombineMultiplyAccumulate(HMul* mul, InstructionSet isa) {
91   DataType::Type type = mul->GetType();
92   switch (isa) {
93     case InstructionSet::kArm:
94     case InstructionSet::kThumb2:
95       if (type != DataType::Type::kInt32) {
96         return false;
97       }
98       break;
99     case InstructionSet::kArm64:
100       if (!DataType::IsIntOrLongType(type)) {
101         return false;
102       }
103       break;
104     default:
105       return false;
106   }
107 
108   ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator();
109 
110   if (mul->HasOnlyOneNonEnvironmentUse()) {
111     HInstruction* use = mul->GetUses().front().GetUser();
112     if (use->IsAdd() || use->IsSub()) {
113       // Replace code looking like
114       //    MUL tmp, x, y
115       //    SUB dst, acc, tmp
116       // with
117       //    MULSUB dst, acc, x, y
118       // Note that we do not want to (unconditionally) perform the merge when the
119       // multiplication has multiple uses and it can be merged in all of them.
120       // Multiple uses could happen on the same control-flow path, and we would
121       // then increase the amount of work. In the future we could try to evaluate
122       // whether all uses are on different control-flow paths (using dominance and
123       // reverse-dominance information) and only perform the merge when they are.
124       HInstruction* accumulator = nullptr;
125       HBinaryOperation* binop = use->AsBinaryOperation();
126       HInstruction* binop_left = binop->GetLeft();
127       HInstruction* binop_right = binop->GetRight();
128       // Be careful after GVN. This should not happen since the `HMul` has only
129       // one use.
130       DCHECK_NE(binop_left, binop_right);
131       if (binop_right == mul) {
132         accumulator = binop_left;
133       } else if (use->IsAdd()) {
134         DCHECK_EQ(binop_left, mul);
135         accumulator = binop_right;
136       }
137 
138       if (accumulator != nullptr) {
139         HMultiplyAccumulate* mulacc =
140             new (allocator) HMultiplyAccumulate(type,
141                                                 binop->GetKind(),
142                                                 accumulator,
143                                                 mul->GetLeft(),
144                                                 mul->GetRight());
145 
146         binop->GetBlock()->ReplaceAndRemoveInstructionWith(binop, mulacc);
147         DCHECK(!mul->HasUses());
148         mul->GetBlock()->RemoveInstruction(mul);
149         return true;
150       }
151     } else if (use->IsNeg() && isa != InstructionSet::kArm) {
152       HMultiplyAccumulate* mulacc =
153           new (allocator) HMultiplyAccumulate(type,
154                                               HInstruction::kSub,
155                                               mul->GetBlock()->GetGraph()->GetConstant(type, 0),
156                                               mul->GetLeft(),
157                                               mul->GetRight());
158 
159       use->GetBlock()->ReplaceAndRemoveInstructionWith(use, mulacc);
160       DCHECK(!mul->HasUses());
161       mul->GetBlock()->RemoveInstruction(mul);
162       return true;
163     }
164   }
165 
166   // Use multiply accumulate instruction for a few simple patterns.
167   // We prefer not applying the following transformations if the left and
168   // right inputs perform the same operation.
169   // We rely on GVN having squashed the inputs if appropriate. However the
170   // results are still correct even if that did not happen.
171   if (mul->GetLeft() == mul->GetRight()) {
172     return false;
173   }
174 
175   HInstruction* left = mul->GetLeft();
176   HInstruction* right = mul->GetRight();
177   if ((right->IsAdd() || right->IsSub()) &&
178       TrySimpleMultiplyAccumulatePatterns(mul, right->AsBinaryOperation(), left)) {
179     return true;
180   }
181   if ((left->IsAdd() || left->IsSub()) &&
182       TrySimpleMultiplyAccumulatePatterns(mul, left->AsBinaryOperation(), right)) {
183     return true;
184   }
185   return false;
186 }
187 
188 
TryMergeNegatedInput(HBinaryOperation * op)189 bool TryMergeNegatedInput(HBinaryOperation* op) {
190   DCHECK(op->IsAnd() || op->IsOr() || op->IsXor()) << op->DebugName();
191   HInstruction* left = op->GetLeft();
192   HInstruction* right = op->GetRight();
193 
194   // Only consider the case where there is exactly one Not, with 2 Not's De
195   // Morgan's laws should be applied instead.
196   if (left->IsNot() ^ right->IsNot()) {
197     HInstruction* hnot = (left->IsNot() ? left : right);
198     HInstruction* hother = (left->IsNot() ? right : left);
199 
200     // Only do the simplification if the Not has only one use and can thus be
201     // safely removed. Even though ARM64 negated bitwise operations do not have
202     // an immediate variant (only register), we still do the simplification when
203     // `hother` is a constant, because it removes an instruction if the constant
204     // cannot be encoded as an immediate:
205     //   mov r0, #large_constant
206     //   neg r2, r1
207     //   and r0, r0, r2
208     // becomes:
209     //   mov r0, #large_constant
210     //   bic r0, r0, r1
211     if (hnot->HasOnlyOneNonEnvironmentUse()) {
212       // Replace code looking like
213       //    NOT tmp, mask
214       //    AND dst, src, tmp   (respectively ORR, EOR)
215       // with
216       //    BIC dst, src, mask  (respectively ORN, EON)
217       HInstruction* src = hnot->AsNot()->GetInput();
218 
219       HBitwiseNegatedRight* neg_op = new (hnot->GetBlock()->GetGraph()->GetAllocator())
220           HBitwiseNegatedRight(op->GetType(), op->GetKind(), hother, src, op->GetDexPc());
221 
222       op->GetBlock()->ReplaceAndRemoveInstructionWith(op, neg_op);
223       hnot->GetBlock()->RemoveInstruction(hnot);
224       return true;
225     }
226   }
227 
228   return false;
229 }
230 
231 
TryExtractArrayAccessAddress(HInstruction * access,HInstruction * array,HInstruction * index,size_t data_offset)232 bool TryExtractArrayAccessAddress(HInstruction* access,
233                                   HInstruction* array,
234                                   HInstruction* index,
235                                   size_t data_offset) {
236   if (index->IsConstant() ||
237       (index->IsBoundsCheck() && index->AsBoundsCheck()->GetIndex()->IsConstant())) {
238     // When the index is a constant all the addressing can be fitted in the
239     // memory access instruction, so do not split the access.
240     return false;
241   }
242   if (access->IsArraySet() &&
243       access->AsArraySet()->GetValue()->GetType() == DataType::Type::kReference) {
244     // The access may require a runtime call or the original array pointer.
245     return false;
246   }
247   if (kEmitCompilerReadBarrier &&
248       access->IsArrayGet() &&
249       access->GetType() == DataType::Type::kReference) {
250     // For object arrays, the read barrier instrumentation requires
251     // the original array pointer.
252     // TODO: This can be relaxed for Baker CC.
253     return false;
254   }
255 
256   // Proceed to extract the base address computation.
257   HGraph* graph = access->GetBlock()->GetGraph();
258   ArenaAllocator* allocator = graph->GetAllocator();
259 
260   HIntConstant* offset = graph->GetIntConstant(data_offset);
261   HIntermediateAddress* address = new (allocator) HIntermediateAddress(array, offset, kNoDexPc);
262   // TODO: Is it ok to not have this on the intermediate address?
263   // address->SetReferenceTypeInfo(array->GetReferenceTypeInfo());
264   access->GetBlock()->InsertInstructionBefore(address, access);
265   access->ReplaceInput(address, 0);
266   // Both instructions must depend on GC to prevent any instruction that can
267   // trigger GC to be inserted between the two.
268   access->AddSideEffects(SideEffects::DependsOnGC());
269   DCHECK(address->GetSideEffects().Includes(SideEffects::DependsOnGC()));
270   DCHECK(access->GetSideEffects().Includes(SideEffects::DependsOnGC()));
271   // TODO: Code generation for HArrayGet and HArraySet will check whether the input address
272   // is an HIntermediateAddress and generate appropriate code.
273   // We would like to replace the `HArrayGet` and `HArraySet` with custom instructions (maybe
274   // `HArm64Load` and `HArm64Store`,`HArmLoad` and `HArmStore`). We defer these changes
275   // because these new instructions would not bring any advantages yet.
276   // Also see the comments in
277   // `InstructionCodeGeneratorARMVIXL::VisitArrayGet()`
278   // `InstructionCodeGeneratorARMVIXL::VisitArraySet()`
279   // `InstructionCodeGeneratorARM64::VisitArrayGet()`
280   // `InstructionCodeGeneratorARM64::VisitArraySet()`.
281   return true;
282 }
283 
TryExtractVecArrayAccessAddress(HVecMemoryOperation * access,HInstruction * index)284 bool TryExtractVecArrayAccessAddress(HVecMemoryOperation* access, HInstruction* index) {
285   if (index->IsConstant()) {
286     // If index is constant the whole address calculation often can be done by LDR/STR themselves.
287     // TODO: Treat the case with not-embedable constant.
288     return false;
289   }
290 
291   HGraph* graph = access->GetBlock()->GetGraph();
292   ArenaAllocator* allocator = graph->GetAllocator();
293   DataType::Type packed_type = access->GetPackedType();
294   uint32_t data_offset = mirror::Array::DataOffset(
295       DataType::Size(packed_type)).Uint32Value();
296   size_t component_shift = DataType::SizeShift(packed_type);
297 
298   bool is_extracting_beneficial = false;
299   // It is beneficial to extract index intermediate address only if there are at least 2 users.
300   for (const HUseListNode<HInstruction*>& use : index->GetUses()) {
301     HInstruction* user = use.GetUser();
302     if (user->IsVecMemoryOperation() && user != access) {
303       HVecMemoryOperation* another_access = user->AsVecMemoryOperation();
304       DataType::Type another_packed_type = another_access->GetPackedType();
305       uint32_t another_data_offset = mirror::Array::DataOffset(
306           DataType::Size(another_packed_type)).Uint32Value();
307       size_t another_component_shift = DataType::SizeShift(another_packed_type);
308       if (another_data_offset == data_offset && another_component_shift == component_shift) {
309         is_extracting_beneficial = true;
310         break;
311       }
312     } else if (user->IsIntermediateAddressIndex()) {
313       HIntermediateAddressIndex* another_access = user->AsIntermediateAddressIndex();
314       uint32_t another_data_offset = another_access->GetOffset()->AsIntConstant()->GetValue();
315       size_t another_component_shift = another_access->GetShift()->AsIntConstant()->GetValue();
316       if (another_data_offset == data_offset && another_component_shift == component_shift) {
317         is_extracting_beneficial = true;
318         break;
319       }
320     }
321   }
322 
323   if (!is_extracting_beneficial) {
324     return false;
325   }
326 
327   // Proceed to extract the index + data_offset address computation.
328   HIntConstant* offset = graph->GetIntConstant(data_offset);
329   HIntConstant* shift = graph->GetIntConstant(component_shift);
330   HIntermediateAddressIndex* address =
331       new (allocator) HIntermediateAddressIndex(index, offset, shift, kNoDexPc);
332 
333   access->GetBlock()->InsertInstructionBefore(address, access);
334   access->ReplaceInput(address, 1);
335 
336   return true;
337 }
338 
339 }  // namespace art
340