• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "intrinsics_mips.h"
18 
19 #include "arch/mips/instruction_set_features_mips.h"
20 #include "art_method.h"
21 #include "code_generator_mips.h"
22 #include "entrypoints/quick/quick_entrypoints.h"
23 #include "heap_poisoning.h"
24 #include "intrinsics.h"
25 #include "mirror/array-inl.h"
26 #include "mirror/object_array-inl.h"
27 #include "mirror/string.h"
28 #include "scoped_thread_state_change-inl.h"
29 #include "thread.h"
30 #include "utils/mips/assembler_mips.h"
31 #include "utils/mips/constants_mips.h"
32 
33 namespace art {
34 
35 namespace mips {
36 
IntrinsicLocationsBuilderMIPS(CodeGeneratorMIPS * codegen)37 IntrinsicLocationsBuilderMIPS::IntrinsicLocationsBuilderMIPS(CodeGeneratorMIPS* codegen)
38   : codegen_(codegen), allocator_(codegen->GetGraph()->GetAllocator()) {
39 }
40 
GetAssembler()41 MipsAssembler* IntrinsicCodeGeneratorMIPS::GetAssembler() {
42   return reinterpret_cast<MipsAssembler*>(codegen_->GetAssembler());
43 }
44 
GetAllocator()45 ArenaAllocator* IntrinsicCodeGeneratorMIPS::GetAllocator() {
46   return codegen_->GetGraph()->GetAllocator();
47 }
48 
IsR2OrNewer() const49 inline bool IntrinsicCodeGeneratorMIPS::IsR2OrNewer() const {
50   return codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
51 }
52 
IsR6() const53 inline bool IntrinsicCodeGeneratorMIPS::IsR6() const {
54   return codegen_->GetInstructionSetFeatures().IsR6();
55 }
56 
Is32BitFPU() const57 inline bool IntrinsicCodeGeneratorMIPS::Is32BitFPU() const {
58   return codegen_->GetInstructionSetFeatures().Is32BitFloatingPoint();
59 }
60 
61 #define __ codegen->GetAssembler()->
62 
MoveFromReturnRegister(Location trg,DataType::Type type,CodeGeneratorMIPS * codegen)63 static void MoveFromReturnRegister(Location trg,
64                                    DataType::Type type,
65                                    CodeGeneratorMIPS* codegen) {
66   if (!trg.IsValid()) {
67     DCHECK_EQ(type, DataType::Type::kVoid);
68     return;
69   }
70 
71   DCHECK_NE(type, DataType::Type::kVoid);
72 
73   if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) {
74     Register trg_reg = trg.AsRegister<Register>();
75     if (trg_reg != V0) {
76       __ Move(V0, trg_reg);
77     }
78   } else {
79     FRegister trg_reg = trg.AsFpuRegister<FRegister>();
80     if (trg_reg != F0) {
81       if (type == DataType::Type::kFloat32) {
82         __ MovS(F0, trg_reg);
83       } else {
84         __ MovD(F0, trg_reg);
85       }
86     }
87   }
88 }
89 
MoveArguments(HInvoke * invoke,CodeGeneratorMIPS * codegen)90 static void MoveArguments(HInvoke* invoke, CodeGeneratorMIPS* codegen) {
91   InvokeDexCallingConventionVisitorMIPS calling_convention_visitor;
92   IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor);
93 }
94 
95 // Slow-path for fallback (calling the managed code to handle the
96 // intrinsic) in an intrinsified call. This will copy the arguments
97 // into the positions for a regular call.
98 //
99 // Note: The actual parameters are required to be in the locations
100 //       given by the invoke's location summary. If an intrinsic
101 //       modifies those locations before a slowpath call, they must be
102 //       restored!
103 class IntrinsicSlowPathMIPS : public SlowPathCodeMIPS {
104  public:
IntrinsicSlowPathMIPS(HInvoke * invoke)105   explicit IntrinsicSlowPathMIPS(HInvoke* invoke) : SlowPathCodeMIPS(invoke), invoke_(invoke) { }
106 
EmitNativeCode(CodeGenerator * codegen_in)107   void EmitNativeCode(CodeGenerator* codegen_in) OVERRIDE {
108     CodeGeneratorMIPS* codegen = down_cast<CodeGeneratorMIPS*>(codegen_in);
109 
110     __ Bind(GetEntryLabel());
111 
112     SaveLiveRegisters(codegen, invoke_->GetLocations());
113 
114     MoveArguments(invoke_, codegen);
115 
116     if (invoke_->IsInvokeStaticOrDirect()) {
117       codegen->GenerateStaticOrDirectCall(
118           invoke_->AsInvokeStaticOrDirect(), Location::RegisterLocation(A0), this);
119     } else {
120       codegen->GenerateVirtualCall(
121           invoke_->AsInvokeVirtual(), Location::RegisterLocation(A0), this);
122     }
123 
124     // Copy the result back to the expected output.
125     Location out = invoke_->GetLocations()->Out();
126     if (out.IsValid()) {
127       DCHECK(out.IsRegister());  // TODO: Replace this when we support output in memory.
128       DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
129       MoveFromReturnRegister(out, invoke_->GetType(), codegen);
130     }
131 
132     RestoreLiveRegisters(codegen, invoke_->GetLocations());
133     __ B(GetExitLabel());
134   }
135 
GetDescription() const136   const char* GetDescription() const OVERRIDE { return "IntrinsicSlowPathMIPS"; }
137 
138  private:
139   // The instruction where this slow path is happening.
140   HInvoke* const invoke_;
141 
142   DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathMIPS);
143 };
144 
145 #undef __
146 
TryDispatch(HInvoke * invoke)147 bool IntrinsicLocationsBuilderMIPS::TryDispatch(HInvoke* invoke) {
148   Dispatch(invoke);
149   LocationSummary* res = invoke->GetLocations();
150   return res != nullptr && res->Intrinsified();
151 }
152 
153 #define __ assembler->
154 
CreateFPToIntLocations(ArenaAllocator * allocator,HInvoke * invoke)155 static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
156   LocationSummary* locations =
157       new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
158   locations->SetInAt(0, Location::RequiresFpuRegister());
159   locations->SetOut(Location::RequiresRegister());
160 }
161 
MoveFPToInt(LocationSummary * locations,bool is64bit,MipsAssembler * assembler)162 static void MoveFPToInt(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) {
163   FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
164 
165   if (is64bit) {
166     Register out_lo = locations->Out().AsRegisterPairLow<Register>();
167     Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
168 
169     __ Mfc1(out_lo, in);
170     __ MoveFromFpuHigh(out_hi, in);
171   } else {
172     Register out = locations->Out().AsRegister<Register>();
173 
174     __ Mfc1(out, in);
175   }
176 }
177 
178 // long java.lang.Double.doubleToRawLongBits(double)
VisitDoubleDoubleToRawLongBits(HInvoke * invoke)179 void IntrinsicLocationsBuilderMIPS::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
180   CreateFPToIntLocations(allocator_, invoke);
181 }
182 
VisitDoubleDoubleToRawLongBits(HInvoke * invoke)183 void IntrinsicCodeGeneratorMIPS::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
184   MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
185 }
186 
187 // int java.lang.Float.floatToRawIntBits(float)
VisitFloatFloatToRawIntBits(HInvoke * invoke)188 void IntrinsicLocationsBuilderMIPS::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
189   CreateFPToIntLocations(allocator_, invoke);
190 }
191 
VisitFloatFloatToRawIntBits(HInvoke * invoke)192 void IntrinsicCodeGeneratorMIPS::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
193   MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
194 }
195 
CreateIntToFPLocations(ArenaAllocator * allocator,HInvoke * invoke)196 static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
197   LocationSummary* locations =
198       new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
199   locations->SetInAt(0, Location::RequiresRegister());
200   locations->SetOut(Location::RequiresFpuRegister());
201 }
202 
MoveIntToFP(LocationSummary * locations,bool is64bit,MipsAssembler * assembler)203 static void MoveIntToFP(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) {
204   FRegister out = locations->Out().AsFpuRegister<FRegister>();
205 
206   if (is64bit) {
207     Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
208     Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
209 
210     __ Mtc1(in_lo, out);
211     __ MoveToFpuHigh(in_hi, out);
212   } else {
213     Register in = locations->InAt(0).AsRegister<Register>();
214 
215     __ Mtc1(in, out);
216   }
217 }
218 
219 // double java.lang.Double.longBitsToDouble(long)
VisitDoubleLongBitsToDouble(HInvoke * invoke)220 void IntrinsicLocationsBuilderMIPS::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
221   CreateIntToFPLocations(allocator_, invoke);
222 }
223 
VisitDoubleLongBitsToDouble(HInvoke * invoke)224 void IntrinsicCodeGeneratorMIPS::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
225   MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
226 }
227 
228 // float java.lang.Float.intBitsToFloat(int)
VisitFloatIntBitsToFloat(HInvoke * invoke)229 void IntrinsicLocationsBuilderMIPS::VisitFloatIntBitsToFloat(HInvoke* invoke) {
230   CreateIntToFPLocations(allocator_, invoke);
231 }
232 
VisitFloatIntBitsToFloat(HInvoke * invoke)233 void IntrinsicCodeGeneratorMIPS::VisitFloatIntBitsToFloat(HInvoke* invoke) {
234   MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
235 }
236 
CreateIntToIntLocations(ArenaAllocator * allocator,HInvoke * invoke,Location::OutputOverlap overlaps=Location::kNoOutputOverlap)237 static void CreateIntToIntLocations(ArenaAllocator* allocator,
238                                     HInvoke* invoke,
239                                     Location::OutputOverlap overlaps = Location::kNoOutputOverlap) {
240   LocationSummary* locations =
241       new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
242   locations->SetInAt(0, Location::RequiresRegister());
243   locations->SetOut(Location::RequiresRegister(), overlaps);
244 }
245 
GenReverse(LocationSummary * locations,DataType::Type type,bool isR2OrNewer,bool isR6,bool reverseBits,MipsAssembler * assembler)246 static void GenReverse(LocationSummary* locations,
247                        DataType::Type type,
248                        bool isR2OrNewer,
249                        bool isR6,
250                        bool reverseBits,
251                        MipsAssembler* assembler) {
252   DCHECK(type == DataType::Type::kInt16 ||
253          type == DataType::Type::kInt32 ||
254          type == DataType::Type::kInt64);
255   DCHECK(type != DataType::Type::kInt16 || !reverseBits);
256 
257   if (type == DataType::Type::kInt16) {
258     Register in = locations->InAt(0).AsRegister<Register>();
259     Register out = locations->Out().AsRegister<Register>();
260 
261     if (isR2OrNewer) {
262       __ Wsbh(out, in);
263       __ Seh(out, out);
264     } else {
265       __ Sll(TMP, in, 24);
266       __ Sra(TMP, TMP, 16);
267       __ Sll(out, in, 16);
268       __ Srl(out, out, 24);
269       __ Or(out, out, TMP);
270     }
271   } else if (type == DataType::Type::kInt32) {
272     Register in = locations->InAt(0).AsRegister<Register>();
273     Register out = locations->Out().AsRegister<Register>();
274 
275     if (isR2OrNewer) {
276       __ Rotr(out, in, 16);
277       __ Wsbh(out, out);
278     } else {
279       // MIPS32r1
280       // __ Rotr(out, in, 16);
281       __ Sll(TMP, in, 16);
282       __ Srl(out, in, 16);
283       __ Or(out, out, TMP);
284       // __ Wsbh(out, out);
285       __ LoadConst32(AT, 0x00FF00FF);
286       __ And(TMP, out, AT);
287       __ Sll(TMP, TMP, 8);
288       __ Srl(out, out, 8);
289       __ And(out, out, AT);
290       __ Or(out, out, TMP);
291     }
292     if (reverseBits) {
293       if (isR6) {
294         __ Bitswap(out, out);
295       } else {
296         __ LoadConst32(AT, 0x0F0F0F0F);
297         __ And(TMP, out, AT);
298         __ Sll(TMP, TMP, 4);
299         __ Srl(out, out, 4);
300         __ And(out, out, AT);
301         __ Or(out, TMP, out);
302         __ LoadConst32(AT, 0x33333333);
303         __ And(TMP, out, AT);
304         __ Sll(TMP, TMP, 2);
305         __ Srl(out, out, 2);
306         __ And(out, out, AT);
307         __ Or(out, TMP, out);
308         __ LoadConst32(AT, 0x55555555);
309         __ And(TMP, out, AT);
310         __ Sll(TMP, TMP, 1);
311         __ Srl(out, out, 1);
312         __ And(out, out, AT);
313         __ Or(out, TMP, out);
314       }
315     }
316   } else if (type == DataType::Type::kInt64) {
317     Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
318     Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
319     Register out_lo = locations->Out().AsRegisterPairLow<Register>();
320     Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
321 
322     if (isR2OrNewer) {
323       __ Rotr(AT, in_hi, 16);
324       __ Rotr(TMP, in_lo, 16);
325       __ Wsbh(out_lo, AT);
326       __ Wsbh(out_hi, TMP);
327     } else {
328       // When calling CreateIntToIntLocations() we promised that the
329       // use of the out_lo/out_hi wouldn't overlap with the use of
330       // in_lo/in_hi. Be very careful not to write to out_lo/out_hi
331       // until we're completely done reading from in_lo/in_hi.
332       // __ Rotr(TMP, in_lo, 16);
333       __ Sll(TMP, in_lo, 16);
334       __ Srl(AT, in_lo, 16);
335       __ Or(TMP, TMP, AT);             // Hold in TMP until it's safe
336                                        // to write to out_hi.
337       // __ Rotr(out_lo, in_hi, 16);
338       __ Sll(AT, in_hi, 16);
339       __ Srl(out_lo, in_hi, 16);        // Here we are finally done reading
340                                         // from in_lo/in_hi so it's okay to
341                                         // write to out_lo/out_hi.
342       __ Or(out_lo, out_lo, AT);
343       // __ Wsbh(out_hi, out_hi);
344       __ LoadConst32(AT, 0x00FF00FF);
345       __ And(out_hi, TMP, AT);
346       __ Sll(out_hi, out_hi, 8);
347       __ Srl(TMP, TMP, 8);
348       __ And(TMP, TMP, AT);
349       __ Or(out_hi, out_hi, TMP);
350       // __ Wsbh(out_lo, out_lo);
351       __ And(TMP, out_lo, AT);  // AT already holds the correct mask value
352       __ Sll(TMP, TMP, 8);
353       __ Srl(out_lo, out_lo, 8);
354       __ And(out_lo, out_lo, AT);
355       __ Or(out_lo, out_lo, TMP);
356     }
357     if (reverseBits) {
358       if (isR6) {
359         __ Bitswap(out_hi, out_hi);
360         __ Bitswap(out_lo, out_lo);
361       } else {
362         __ LoadConst32(AT, 0x0F0F0F0F);
363         __ And(TMP, out_hi, AT);
364         __ Sll(TMP, TMP, 4);
365         __ Srl(out_hi, out_hi, 4);
366         __ And(out_hi, out_hi, AT);
367         __ Or(out_hi, TMP, out_hi);
368         __ And(TMP, out_lo, AT);
369         __ Sll(TMP, TMP, 4);
370         __ Srl(out_lo, out_lo, 4);
371         __ And(out_lo, out_lo, AT);
372         __ Or(out_lo, TMP, out_lo);
373         __ LoadConst32(AT, 0x33333333);
374         __ And(TMP, out_hi, AT);
375         __ Sll(TMP, TMP, 2);
376         __ Srl(out_hi, out_hi, 2);
377         __ And(out_hi, out_hi, AT);
378         __ Or(out_hi, TMP, out_hi);
379         __ And(TMP, out_lo, AT);
380         __ Sll(TMP, TMP, 2);
381         __ Srl(out_lo, out_lo, 2);
382         __ And(out_lo, out_lo, AT);
383         __ Or(out_lo, TMP, out_lo);
384         __ LoadConst32(AT, 0x55555555);
385         __ And(TMP, out_hi, AT);
386         __ Sll(TMP, TMP, 1);
387         __ Srl(out_hi, out_hi, 1);
388         __ And(out_hi, out_hi, AT);
389         __ Or(out_hi, TMP, out_hi);
390         __ And(TMP, out_lo, AT);
391         __ Sll(TMP, TMP, 1);
392         __ Srl(out_lo, out_lo, 1);
393         __ And(out_lo, out_lo, AT);
394         __ Or(out_lo, TMP, out_lo);
395       }
396     }
397   }
398 }
399 
400 // int java.lang.Integer.reverseBytes(int)
VisitIntegerReverseBytes(HInvoke * invoke)401 void IntrinsicLocationsBuilderMIPS::VisitIntegerReverseBytes(HInvoke* invoke) {
402   CreateIntToIntLocations(allocator_, invoke);
403 }
404 
VisitIntegerReverseBytes(HInvoke * invoke)405 void IntrinsicCodeGeneratorMIPS::VisitIntegerReverseBytes(HInvoke* invoke) {
406   GenReverse(invoke->GetLocations(),
407              DataType::Type::kInt32,
408              IsR2OrNewer(),
409              IsR6(),
410              /* reverseBits */ false,
411              GetAssembler());
412 }
413 
414 // long java.lang.Long.reverseBytes(long)
VisitLongReverseBytes(HInvoke * invoke)415 void IntrinsicLocationsBuilderMIPS::VisitLongReverseBytes(HInvoke* invoke) {
416   CreateIntToIntLocations(allocator_, invoke);
417 }
418 
VisitLongReverseBytes(HInvoke * invoke)419 void IntrinsicCodeGeneratorMIPS::VisitLongReverseBytes(HInvoke* invoke) {
420   GenReverse(invoke->GetLocations(),
421              DataType::Type::kInt64,
422              IsR2OrNewer(),
423              IsR6(),
424              /* reverseBits */ false,
425              GetAssembler());
426 }
427 
428 // short java.lang.Short.reverseBytes(short)
VisitShortReverseBytes(HInvoke * invoke)429 void IntrinsicLocationsBuilderMIPS::VisitShortReverseBytes(HInvoke* invoke) {
430   CreateIntToIntLocations(allocator_, invoke);
431 }
432 
VisitShortReverseBytes(HInvoke * invoke)433 void IntrinsicCodeGeneratorMIPS::VisitShortReverseBytes(HInvoke* invoke) {
434   GenReverse(invoke->GetLocations(),
435              DataType::Type::kInt16,
436              IsR2OrNewer(),
437              IsR6(),
438              /* reverseBits */ false,
439              GetAssembler());
440 }
441 
GenNumberOfLeadingZeroes(LocationSummary * locations,bool is64bit,bool isR6,MipsAssembler * assembler)442 static void GenNumberOfLeadingZeroes(LocationSummary* locations,
443                                      bool is64bit,
444                                      bool isR6,
445                                      MipsAssembler* assembler) {
446   Register out = locations->Out().AsRegister<Register>();
447   if (is64bit) {
448     Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
449     Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
450 
451     if (isR6) {
452       __ ClzR6(AT, in_hi);
453       __ ClzR6(TMP, in_lo);
454       __ Seleqz(TMP, TMP, in_hi);
455     } else {
456       __ ClzR2(AT, in_hi);
457       __ ClzR2(TMP, in_lo);
458       __ Movn(TMP, ZERO, in_hi);
459     }
460     __ Addu(out, AT, TMP);
461   } else {
462     Register in = locations->InAt(0).AsRegister<Register>();
463 
464     if (isR6) {
465       __ ClzR6(out, in);
466     } else {
467       __ ClzR2(out, in);
468     }
469   }
470 }
471 
472 // int java.lang.Integer.numberOfLeadingZeros(int i)
VisitIntegerNumberOfLeadingZeros(HInvoke * invoke)473 void IntrinsicLocationsBuilderMIPS::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
474   CreateIntToIntLocations(allocator_, invoke);
475 }
476 
VisitIntegerNumberOfLeadingZeros(HInvoke * invoke)477 void IntrinsicCodeGeneratorMIPS::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
478   GenNumberOfLeadingZeroes(invoke->GetLocations(), /* is64bit */ false, IsR6(), GetAssembler());
479 }
480 
481 // int java.lang.Long.numberOfLeadingZeros(long i)
VisitLongNumberOfLeadingZeros(HInvoke * invoke)482 void IntrinsicLocationsBuilderMIPS::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
483   CreateIntToIntLocations(allocator_, invoke);
484 }
485 
VisitLongNumberOfLeadingZeros(HInvoke * invoke)486 void IntrinsicCodeGeneratorMIPS::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
487   GenNumberOfLeadingZeroes(invoke->GetLocations(), /* is64bit */ true, IsR6(), GetAssembler());
488 }
489 
GenNumberOfTrailingZeroes(LocationSummary * locations,bool is64bit,bool isR6,MipsAssembler * assembler)490 static void GenNumberOfTrailingZeroes(LocationSummary* locations,
491                                       bool is64bit,
492                                       bool isR6,
493                                       MipsAssembler* assembler) {
494   Register out = locations->Out().AsRegister<Register>();
495   Register in_lo;
496   Register in;
497 
498   if (is64bit) {
499     Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
500 
501     in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
502 
503     // If in_lo is zero then count the number of trailing zeroes in in_hi;
504     // otherwise count the number of trailing zeroes in in_lo.
505     // out = in_lo ? in_lo : in_hi;
506     if (isR6) {
507       __ Seleqz(out, in_hi, in_lo);
508       __ Selnez(TMP, in_lo, in_lo);
509       __ Or(out, out, TMP);
510     } else {
511       __ Movz(out, in_hi, in_lo);
512       __ Movn(out, in_lo, in_lo);
513     }
514 
515     in = out;
516   } else {
517     in = locations->InAt(0).AsRegister<Register>();
518     // Give in_lo a dummy value to keep the compiler from complaining.
519     // Since we only get here in the 32-bit case, this value will never
520     // be used.
521     in_lo = in;
522   }
523 
524   if (isR6) {
525     // We don't have an instruction to count the number of trailing zeroes.
526     // Start by flipping the bits end-for-end so we can count the number of
527     // leading zeroes instead.
528     __ Rotr(out, in, 16);
529     __ Wsbh(out, out);
530     __ Bitswap(out, out);
531     __ ClzR6(out, out);
532   } else {
533     // Convert trailing zeroes to trailing ones, and bits to their left
534     // to zeroes.
535     __ Addiu(TMP, in, -1);
536     __ Xor(out, TMP, in);
537     __ And(out, out, TMP);
538     // Count number of leading zeroes.
539     __ ClzR2(out, out);
540     // Subtract number of leading zeroes from 32 to get number of trailing ones.
541     // Remember that the trailing ones were formerly trailing zeroes.
542     __ LoadConst32(TMP, 32);
543     __ Subu(out, TMP, out);
544   }
545 
546   if (is64bit) {
547     // If in_lo is zero, then we counted the number of trailing zeroes in in_hi so we must add the
548     // number of trailing zeroes in in_lo (32) to get the correct final count
549     __ LoadConst32(TMP, 32);
550     if (isR6) {
551       __ Seleqz(TMP, TMP, in_lo);
552     } else {
553       __ Movn(TMP, ZERO, in_lo);
554     }
555     __ Addu(out, out, TMP);
556   }
557 }
558 
559 // int java.lang.Integer.numberOfTrailingZeros(int i)
VisitIntegerNumberOfTrailingZeros(HInvoke * invoke)560 void IntrinsicLocationsBuilderMIPS::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
561   CreateIntToIntLocations(allocator_, invoke, Location::kOutputOverlap);
562 }
563 
VisitIntegerNumberOfTrailingZeros(HInvoke * invoke)564 void IntrinsicCodeGeneratorMIPS::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
565   GenNumberOfTrailingZeroes(invoke->GetLocations(), /* is64bit */ false, IsR6(), GetAssembler());
566 }
567 
568 // int java.lang.Long.numberOfTrailingZeros(long i)
VisitLongNumberOfTrailingZeros(HInvoke * invoke)569 void IntrinsicLocationsBuilderMIPS::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
570   CreateIntToIntLocations(allocator_, invoke, Location::kOutputOverlap);
571 }
572 
VisitLongNumberOfTrailingZeros(HInvoke * invoke)573 void IntrinsicCodeGeneratorMIPS::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
574   GenNumberOfTrailingZeroes(invoke->GetLocations(), /* is64bit */ true, IsR6(), GetAssembler());
575 }
576 
577 // int java.lang.Integer.reverse(int)
VisitIntegerReverse(HInvoke * invoke)578 void IntrinsicLocationsBuilderMIPS::VisitIntegerReverse(HInvoke* invoke) {
579   CreateIntToIntLocations(allocator_, invoke);
580 }
581 
VisitIntegerReverse(HInvoke * invoke)582 void IntrinsicCodeGeneratorMIPS::VisitIntegerReverse(HInvoke* invoke) {
583   GenReverse(invoke->GetLocations(),
584              DataType::Type::kInt32,
585              IsR2OrNewer(),
586              IsR6(),
587              /* reverseBits */ true,
588              GetAssembler());
589 }
590 
591 // long java.lang.Long.reverse(long)
VisitLongReverse(HInvoke * invoke)592 void IntrinsicLocationsBuilderMIPS::VisitLongReverse(HInvoke* invoke) {
593   CreateIntToIntLocations(allocator_, invoke);
594 }
595 
VisitLongReverse(HInvoke * invoke)596 void IntrinsicCodeGeneratorMIPS::VisitLongReverse(HInvoke* invoke) {
597   GenReverse(invoke->GetLocations(),
598              DataType::Type::kInt64,
599              IsR2OrNewer(),
600              IsR6(),
601              /* reverseBits */ true,
602              GetAssembler());
603 }
604 
CreateFPToFPLocations(ArenaAllocator * allocator,HInvoke * invoke)605 static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
606   LocationSummary* locations =
607       new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
608   locations->SetInAt(0, Location::RequiresFpuRegister());
609   locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
610 }
611 
GenBitCount(LocationSummary * locations,DataType::Type type,bool isR6,MipsAssembler * assembler)612 static void GenBitCount(LocationSummary* locations,
613                         DataType::Type type,
614                         bool isR6,
615                         MipsAssembler* assembler) {
616   Register out = locations->Out().AsRegister<Register>();
617 
618   // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
619   //
620   // A generalization of the best bit counting method to integers of
621   // bit-widths up to 128 (parameterized by type T) is this:
622   //
623   // v = v - ((v >> 1) & (T)~(T)0/3);                           // temp
624   // v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3);      // temp
625   // v = (v + (v >> 4)) & (T)~(T)0/255*15;                      // temp
626   // c = (T)(v * ((T)~(T)0/255)) >> (sizeof(T) - 1) * BITS_PER_BYTE; // count
627   //
628   // For comparison, for 32-bit quantities, this algorithm can be executed
629   // using 20 MIPS instructions (the calls to LoadConst32() generate two
630   // machine instructions each for the values being used in this algorithm).
631   // A(n unrolled) loop-based algorithm required 25 instructions.
632   //
633   // For 64-bit quantities, this algorithm gets executed twice, (once
634   // for in_lo, and again for in_hi), but saves a few instructions
635   // because the mask values only have to be loaded once.  Using this
636   // algorithm the count for a 64-bit operand can be performed in 29
637   // instructions compared to a loop-based algorithm which required 47
638   // instructions.
639 
640   if (type == DataType::Type::kInt32) {
641     Register in = locations->InAt(0).AsRegister<Register>();
642 
643     __ Srl(TMP, in, 1);
644     __ LoadConst32(AT, 0x55555555);
645     __ And(TMP, TMP, AT);
646     __ Subu(TMP, in, TMP);
647     __ LoadConst32(AT, 0x33333333);
648     __ And(out, TMP, AT);
649     __ Srl(TMP, TMP, 2);
650     __ And(TMP, TMP, AT);
651     __ Addu(TMP, out, TMP);
652     __ Srl(out, TMP, 4);
653     __ Addu(out, out, TMP);
654     __ LoadConst32(AT, 0x0F0F0F0F);
655     __ And(out, out, AT);
656     __ LoadConst32(TMP, 0x01010101);
657     if (isR6) {
658       __ MulR6(out, out, TMP);
659     } else {
660       __ MulR2(out, out, TMP);
661     }
662     __ Srl(out, out, 24);
663   } else {
664     DCHECK_EQ(type, DataType::Type::kInt64);
665     Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
666     Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
667     Register tmp_hi = locations->GetTemp(0).AsRegister<Register>();
668     Register out_hi = locations->GetTemp(1).AsRegister<Register>();
669     Register tmp_lo = TMP;
670     Register out_lo = out;
671 
672     __ Srl(tmp_lo, in_lo, 1);
673     __ Srl(tmp_hi, in_hi, 1);
674 
675     __ LoadConst32(AT, 0x55555555);
676 
677     __ And(tmp_lo, tmp_lo, AT);
678     __ Subu(tmp_lo, in_lo, tmp_lo);
679 
680     __ And(tmp_hi, tmp_hi, AT);
681     __ Subu(tmp_hi, in_hi, tmp_hi);
682 
683     __ LoadConst32(AT, 0x33333333);
684 
685     __ And(out_lo, tmp_lo, AT);
686     __ Srl(tmp_lo, tmp_lo, 2);
687     __ And(tmp_lo, tmp_lo, AT);
688     __ Addu(tmp_lo, out_lo, tmp_lo);
689 
690     __ And(out_hi, tmp_hi, AT);
691     __ Srl(tmp_hi, tmp_hi, 2);
692     __ And(tmp_hi, tmp_hi, AT);
693     __ Addu(tmp_hi, out_hi, tmp_hi);
694 
695     // Here we deviate from the original algorithm a bit. We've reached
696     // the stage where the bitfields holding the subtotals are large
697     // enough to hold the combined subtotals for both the low word, and
698     // the high word. This means that we can add the subtotals for the
699     // the high, and low words into a single word, and compute the final
700     // result for both the high, and low words using fewer instructions.
701     __ LoadConst32(AT, 0x0F0F0F0F);
702 
703     __ Addu(TMP, tmp_hi, tmp_lo);
704 
705     __ Srl(out, TMP, 4);
706     __ And(out, out, AT);
707     __ And(TMP, TMP, AT);
708     __ Addu(out, out, TMP);
709 
710     __ LoadConst32(AT, 0x01010101);
711 
712     if (isR6) {
713       __ MulR6(out, out, AT);
714     } else {
715       __ MulR2(out, out, AT);
716     }
717 
718     __ Srl(out, out, 24);
719   }
720 }
721 
722 // int java.lang.Integer.bitCount(int)
VisitIntegerBitCount(HInvoke * invoke)723 void IntrinsicLocationsBuilderMIPS::VisitIntegerBitCount(HInvoke* invoke) {
724   CreateIntToIntLocations(allocator_, invoke);
725 }
726 
VisitIntegerBitCount(HInvoke * invoke)727 void IntrinsicCodeGeneratorMIPS::VisitIntegerBitCount(HInvoke* invoke) {
728   GenBitCount(invoke->GetLocations(), DataType::Type::kInt32, IsR6(), GetAssembler());
729 }
730 
731 // int java.lang.Long.bitCount(int)
VisitLongBitCount(HInvoke * invoke)732 void IntrinsicLocationsBuilderMIPS::VisitLongBitCount(HInvoke* invoke) {
733   LocationSummary* locations =
734       new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
735   locations->SetInAt(0, Location::RequiresRegister());
736   locations->SetOut(Location::RequiresRegister());
737   locations->AddTemp(Location::RequiresRegister());
738   locations->AddTemp(Location::RequiresRegister());
739 }
740 
VisitLongBitCount(HInvoke * invoke)741 void IntrinsicCodeGeneratorMIPS::VisitLongBitCount(HInvoke* invoke) {
742   GenBitCount(invoke->GetLocations(), DataType::Type::kInt64, IsR6(), GetAssembler());
743 }
744 
MathAbsFP(LocationSummary * locations,bool is64bit,bool isR2OrNewer,bool isR6,MipsAssembler * assembler)745 static void MathAbsFP(LocationSummary* locations,
746                       bool is64bit,
747                       bool isR2OrNewer,
748                       bool isR6,
749                       MipsAssembler* assembler) {
750   FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
751   FRegister out = locations->Out().AsFpuRegister<FRegister>();
752 
753   // Note, as a "quality of implementation", rather than pure "spec compliance", we require that
754   // Math.abs() clears the sign bit (but changes nothing else) for all numbers, including NaN
755   // (signaling NaN may become quiet though).
756   //
757   // The ABS.fmt instructions (abs.s and abs.d) do exactly that when NAN2008=1 (R6). For this case,
758   // both regular floating point numbers and NAN values are treated alike, only the sign bit is
759   // affected by this instruction.
760   // But when NAN2008=0 (R2 and before), the ABS.fmt instructions can't be used. For this case, any
761   // NaN operand signals invalid operation. This means that other bits (not just sign bit) might be
762   // changed when doing abs(NaN). Because of that, we clear sign bit in a different way.
763   if (isR6) {
764     if (is64bit) {
765       __ AbsD(out, in);
766     } else {
767       __ AbsS(out, in);
768     }
769   } else {
770     if (is64bit) {
771       if (in != out) {
772         __ MovD(out, in);
773       }
774       __ MoveFromFpuHigh(TMP, in);
775       // ins instruction is not available for R1.
776       if (isR2OrNewer) {
777         __ Ins(TMP, ZERO, 31, 1);
778       } else {
779         __ Sll(TMP, TMP, 1);
780         __ Srl(TMP, TMP, 1);
781       }
782       __ MoveToFpuHigh(TMP, out);
783     } else {
784       __ Mfc1(TMP, in);
785       // ins instruction is not available for R1.
786       if (isR2OrNewer) {
787         __ Ins(TMP, ZERO, 31, 1);
788       } else {
789         __ Sll(TMP, TMP, 1);
790         __ Srl(TMP, TMP, 1);
791       }
792       __ Mtc1(TMP, out);
793     }
794   }
795 }
796 
797 // double java.lang.Math.abs(double)
VisitMathAbsDouble(HInvoke * invoke)798 void IntrinsicLocationsBuilderMIPS::VisitMathAbsDouble(HInvoke* invoke) {
799   CreateFPToFPLocations(allocator_, invoke);
800 }
801 
VisitMathAbsDouble(HInvoke * invoke)802 void IntrinsicCodeGeneratorMIPS::VisitMathAbsDouble(HInvoke* invoke) {
803   MathAbsFP(invoke->GetLocations(), /* is64bit */ true, IsR2OrNewer(), IsR6(), GetAssembler());
804 }
805 
806 // float java.lang.Math.abs(float)
VisitMathAbsFloat(HInvoke * invoke)807 void IntrinsicLocationsBuilderMIPS::VisitMathAbsFloat(HInvoke* invoke) {
808   CreateFPToFPLocations(allocator_, invoke);
809 }
810 
VisitMathAbsFloat(HInvoke * invoke)811 void IntrinsicCodeGeneratorMIPS::VisitMathAbsFloat(HInvoke* invoke) {
812   MathAbsFP(invoke->GetLocations(), /* is64bit */ false, IsR2OrNewer(), IsR6(), GetAssembler());
813 }
814 
GenAbsInteger(LocationSummary * locations,bool is64bit,MipsAssembler * assembler)815 static void GenAbsInteger(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) {
816   if (is64bit) {
817     Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
818     Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
819     Register out_lo = locations->Out().AsRegisterPairLow<Register>();
820     Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
821 
822     // The comments in this section show the analogous operations which would
823     // be performed if we had 64-bit registers "in", and "out".
824     // __ Dsra32(AT, in, 31);
825     __ Sra(AT, in_hi, 31);
826     // __ Xor(out, in, AT);
827     __ Xor(TMP, in_lo, AT);
828     __ Xor(out_hi, in_hi, AT);
829     // __ Dsubu(out, out, AT);
830     __ Subu(out_lo, TMP, AT);
831     __ Sltu(TMP, out_lo, TMP);
832     __ Addu(out_hi, out_hi, TMP);
833   } else {
834     Register in = locations->InAt(0).AsRegister<Register>();
835     Register out = locations->Out().AsRegister<Register>();
836 
837     __ Sra(AT, in, 31);
838     __ Xor(out, in, AT);
839     __ Subu(out, out, AT);
840   }
841 }
842 
843 // int java.lang.Math.abs(int)
VisitMathAbsInt(HInvoke * invoke)844 void IntrinsicLocationsBuilderMIPS::VisitMathAbsInt(HInvoke* invoke) {
845   CreateIntToIntLocations(allocator_, invoke);
846 }
847 
VisitMathAbsInt(HInvoke * invoke)848 void IntrinsicCodeGeneratorMIPS::VisitMathAbsInt(HInvoke* invoke) {
849   GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
850 }
851 
852 // long java.lang.Math.abs(long)
VisitMathAbsLong(HInvoke * invoke)853 void IntrinsicLocationsBuilderMIPS::VisitMathAbsLong(HInvoke* invoke) {
854   CreateIntToIntLocations(allocator_, invoke);
855 }
856 
VisitMathAbsLong(HInvoke * invoke)857 void IntrinsicCodeGeneratorMIPS::VisitMathAbsLong(HInvoke* invoke) {
858   GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
859 }
860 
GenMinMaxFP(LocationSummary * locations,bool is_min,DataType::Type type,bool is_R6,MipsAssembler * assembler)861 static void GenMinMaxFP(LocationSummary* locations,
862                         bool is_min,
863                         DataType::Type type,
864                         bool is_R6,
865                         MipsAssembler* assembler) {
866   FRegister out = locations->Out().AsFpuRegister<FRegister>();
867   FRegister a = locations->InAt(0).AsFpuRegister<FRegister>();
868   FRegister b = locations->InAt(1).AsFpuRegister<FRegister>();
869 
870   if (is_R6) {
871     MipsLabel noNaNs;
872     MipsLabel done;
873     FRegister ftmp = ((out != a) && (out != b)) ? out : FTMP;
874 
875     // When Java computes min/max it prefers a NaN to a number; the
876     // behavior of MIPSR6 is to prefer numbers to NaNs, i.e., if one of
877     // the inputs is a NaN and the other is a valid number, the MIPS
878     // instruction will return the number; Java wants the NaN value
879     // returned. This is why there is extra logic preceding the use of
880     // the MIPS min.fmt/max.fmt instructions. If either a, or b holds a
881     // NaN, return the NaN, otherwise return the min/max.
882     if (type == DataType::Type::kFloat64) {
883       __ CmpUnD(FTMP, a, b);
884       __ Bc1eqz(FTMP, &noNaNs);
885 
886       // One of the inputs is a NaN
887       __ CmpEqD(ftmp, a, a);
888       // If a == a then b is the NaN, otherwise a is the NaN.
889       __ SelD(ftmp, a, b);
890 
891       if (ftmp != out) {
892         __ MovD(out, ftmp);
893       }
894 
895       __ B(&done);
896 
897       __ Bind(&noNaNs);
898 
899       if (is_min) {
900         __ MinD(out, a, b);
901       } else {
902         __ MaxD(out, a, b);
903       }
904     } else {
905       DCHECK_EQ(type, DataType::Type::kFloat32);
906       __ CmpUnS(FTMP, a, b);
907       __ Bc1eqz(FTMP, &noNaNs);
908 
909       // One of the inputs is a NaN
910       __ CmpEqS(ftmp, a, a);
911       // If a == a then b is the NaN, otherwise a is the NaN.
912       __ SelS(ftmp, a, b);
913 
914       if (ftmp != out) {
915         __ MovS(out, ftmp);
916       }
917 
918       __ B(&done);
919 
920       __ Bind(&noNaNs);
921 
922       if (is_min) {
923         __ MinS(out, a, b);
924       } else {
925         __ MaxS(out, a, b);
926       }
927     }
928 
929     __ Bind(&done);
930   } else {
931     MipsLabel ordered;
932     MipsLabel compare;
933     MipsLabel select;
934     MipsLabel done;
935 
936     if (type == DataType::Type::kFloat64) {
937       __ CunD(a, b);
938     } else {
939       DCHECK_EQ(type, DataType::Type::kFloat32);
940       __ CunS(a, b);
941     }
942     __ Bc1f(&ordered);
943 
944     // a or b (or both) is a NaN. Return one, which is a NaN.
945     if (type == DataType::Type::kFloat64) {
946       __ CeqD(b, b);
947     } else {
948       __ CeqS(b, b);
949     }
950     __ B(&select);
951 
952     __ Bind(&ordered);
953 
954     // Neither is a NaN.
955     // a == b? (-0.0 compares equal with +0.0)
956     // If equal, handle zeroes, else compare further.
957     if (type == DataType::Type::kFloat64) {
958       __ CeqD(a, b);
959     } else {
960       __ CeqS(a, b);
961     }
962     __ Bc1f(&compare);
963 
964     // a == b either bit for bit or one is -0.0 and the other is +0.0.
965     if (type == DataType::Type::kFloat64) {
966       __ MoveFromFpuHigh(TMP, a);
967       __ MoveFromFpuHigh(AT, b);
968     } else {
969       __ Mfc1(TMP, a);
970       __ Mfc1(AT, b);
971     }
972 
973     if (is_min) {
974       // -0.0 prevails over +0.0.
975       __ Or(TMP, TMP, AT);
976     } else {
977       // +0.0 prevails over -0.0.
978       __ And(TMP, TMP, AT);
979     }
980 
981     if (type == DataType::Type::kFloat64) {
982       __ Mfc1(AT, a);
983       __ Mtc1(AT, out);
984       __ MoveToFpuHigh(TMP, out);
985     } else {
986       __ Mtc1(TMP, out);
987     }
988     __ B(&done);
989 
990     __ Bind(&compare);
991 
992     if (type == DataType::Type::kFloat64) {
993       if (is_min) {
994         // return (a <= b) ? a : b;
995         __ ColeD(a, b);
996       } else {
997         // return (a >= b) ? a : b;
998         __ ColeD(b, a);  // b <= a
999       }
1000     } else {
1001       if (is_min) {
1002         // return (a <= b) ? a : b;
1003         __ ColeS(a, b);
1004       } else {
1005         // return (a >= b) ? a : b;
1006         __ ColeS(b, a);  // b <= a
1007       }
1008     }
1009 
1010     __ Bind(&select);
1011 
1012     if (type == DataType::Type::kFloat64) {
1013       __ MovtD(out, a);
1014       __ MovfD(out, b);
1015     } else {
1016       __ MovtS(out, a);
1017       __ MovfS(out, b);
1018     }
1019 
1020     __ Bind(&done);
1021   }
1022 }
1023 
CreateFPFPToFPLocations(ArenaAllocator * allocator,HInvoke * invoke)1024 static void CreateFPFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
1025   LocationSummary* locations =
1026       new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
1027   locations->SetInAt(0, Location::RequiresFpuRegister());
1028   locations->SetInAt(1, Location::RequiresFpuRegister());
1029   locations->SetOut(Location::RequiresFpuRegister(), Location::kOutputOverlap);
1030 }
1031 
1032 // double java.lang.Math.min(double, double)
VisitMathMinDoubleDouble(HInvoke * invoke)1033 void IntrinsicLocationsBuilderMIPS::VisitMathMinDoubleDouble(HInvoke* invoke) {
1034   CreateFPFPToFPLocations(allocator_, invoke);
1035 }
1036 
VisitMathMinDoubleDouble(HInvoke * invoke)1037 void IntrinsicCodeGeneratorMIPS::VisitMathMinDoubleDouble(HInvoke* invoke) {
1038   GenMinMaxFP(invoke->GetLocations(),
1039               /* is_min */ true,
1040               DataType::Type::kFloat64,
1041               IsR6(),
1042               GetAssembler());
1043 }
1044 
1045 // float java.lang.Math.min(float, float)
VisitMathMinFloatFloat(HInvoke * invoke)1046 void IntrinsicLocationsBuilderMIPS::VisitMathMinFloatFloat(HInvoke* invoke) {
1047   CreateFPFPToFPLocations(allocator_, invoke);
1048 }
1049 
VisitMathMinFloatFloat(HInvoke * invoke)1050 void IntrinsicCodeGeneratorMIPS::VisitMathMinFloatFloat(HInvoke* invoke) {
1051   GenMinMaxFP(invoke->GetLocations(),
1052               /* is_min */ true,
1053               DataType::Type::kFloat32,
1054               IsR6(),
1055               GetAssembler());
1056 }
1057 
1058 // double java.lang.Math.max(double, double)
VisitMathMaxDoubleDouble(HInvoke * invoke)1059 void IntrinsicLocationsBuilderMIPS::VisitMathMaxDoubleDouble(HInvoke* invoke) {
1060   CreateFPFPToFPLocations(allocator_, invoke);
1061 }
1062 
VisitMathMaxDoubleDouble(HInvoke * invoke)1063 void IntrinsicCodeGeneratorMIPS::VisitMathMaxDoubleDouble(HInvoke* invoke) {
1064   GenMinMaxFP(invoke->GetLocations(),
1065               /* is_min */ false,
1066               DataType::Type::kFloat64,
1067               IsR6(),
1068               GetAssembler());
1069 }
1070 
1071 // float java.lang.Math.max(float, float)
VisitMathMaxFloatFloat(HInvoke * invoke)1072 void IntrinsicLocationsBuilderMIPS::VisitMathMaxFloatFloat(HInvoke* invoke) {
1073   CreateFPFPToFPLocations(allocator_, invoke);
1074 }
1075 
VisitMathMaxFloatFloat(HInvoke * invoke)1076 void IntrinsicCodeGeneratorMIPS::VisitMathMaxFloatFloat(HInvoke* invoke) {
1077   GenMinMaxFP(invoke->GetLocations(),
1078               /* is_min */ false,
1079               DataType::Type::kFloat32,
1080               IsR6(),
1081               GetAssembler());
1082 }
1083 
CreateIntIntToIntLocations(ArenaAllocator * allocator,HInvoke * invoke)1084 static void CreateIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
1085   LocationSummary* locations =
1086       new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
1087   locations->SetInAt(0, Location::RequiresRegister());
1088   locations->SetInAt(1, Location::RequiresRegister());
1089   locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
1090 }
1091 
GenMinMax(LocationSummary * locations,bool is_min,DataType::Type type,bool is_R6,MipsAssembler * assembler)1092 static void GenMinMax(LocationSummary* locations,
1093                       bool is_min,
1094                       DataType::Type type,
1095                       bool is_R6,
1096                       MipsAssembler* assembler) {
1097   if (is_R6) {
1098     // Some architectures, such as ARM and MIPS (prior to r6), have a
1099     // conditional move instruction which only changes the target
1100     // (output) register if the condition is true (MIPS prior to r6 had
1101     // MOVF, MOVT, MOVN, and MOVZ). The SELEQZ and SELNEZ instructions
1102     // always change the target (output) register.  If the condition is
1103     // true the output register gets the contents of the "rs" register;
1104     // otherwise, the output register is set to zero. One consequence
1105     // of this is that to implement something like "rd = c==0 ? rs : rt"
1106     // MIPS64r6 needs to use a pair of SELEQZ/SELNEZ instructions.
1107     // After executing this pair of instructions one of the output
1108     // registers from the pair will necessarily contain zero. Then the
1109     // code ORs the output registers from the SELEQZ/SELNEZ instructions
1110     // to get the final result.
1111     //
1112     // The initial test to see if the output register is same as the
1113     // first input register is needed to make sure that value in the
1114     // first input register isn't clobbered before we've finished
1115     // computing the output value. The logic in the corresponding else
1116     // clause performs the same task but makes sure the second input
1117     // register isn't clobbered in the event that it's the same register
1118     // as the output register; the else clause also handles the case
1119     // where the output register is distinct from both the first, and the
1120     // second input registers.
1121     if (type == DataType::Type::kInt64) {
1122       Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>();
1123       Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
1124       Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>();
1125       Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>();
1126       Register out_lo = locations->Out().AsRegisterPairLow<Register>();
1127       Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
1128 
1129       MipsLabel compare_done;
1130 
1131       if (a_lo == b_lo) {
1132         if (out_lo != a_lo) {
1133           __ Move(out_lo, a_lo);
1134           __ Move(out_hi, a_hi);
1135         }
1136       } else {
1137         __ Slt(TMP, b_hi, a_hi);
1138         __ Bne(b_hi, a_hi, &compare_done);
1139 
1140         __ Sltu(TMP, b_lo, a_lo);
1141 
1142         __ Bind(&compare_done);
1143 
1144         if (is_min) {
1145           __ Seleqz(AT, a_lo, TMP);
1146           __ Selnez(out_lo, b_lo, TMP);  // Safe even if out_lo == a_lo/b_lo
1147                                          // because at this point we're
1148                                          // done using a_lo/b_lo.
1149         } else {
1150           __ Selnez(AT, a_lo, TMP);
1151           __ Seleqz(out_lo, b_lo, TMP);  // ditto
1152         }
1153         __ Or(out_lo, out_lo, AT);
1154         if (is_min) {
1155           __ Seleqz(AT, a_hi, TMP);
1156           __ Selnez(out_hi, b_hi, TMP);  // ditto but for out_hi & a_hi/b_hi
1157         } else {
1158           __ Selnez(AT, a_hi, TMP);
1159           __ Seleqz(out_hi, b_hi, TMP);  // ditto but for out_hi & a_hi/b_hi
1160         }
1161         __ Or(out_hi, out_hi, AT);
1162       }
1163     } else {
1164       DCHECK_EQ(type, DataType::Type::kInt32);
1165       Register a = locations->InAt(0).AsRegister<Register>();
1166       Register b = locations->InAt(1).AsRegister<Register>();
1167       Register out = locations->Out().AsRegister<Register>();
1168 
1169       if (a == b) {
1170         if (out != a) {
1171           __ Move(out, a);
1172         }
1173       } else {
1174         __ Slt(AT, b, a);
1175         if (is_min) {
1176           __ Seleqz(TMP, a, AT);
1177           __ Selnez(AT, b, AT);
1178         } else {
1179           __ Selnez(TMP, a, AT);
1180           __ Seleqz(AT, b, AT);
1181         }
1182         __ Or(out, TMP, AT);
1183       }
1184     }
1185   } else {
1186     if (type == DataType::Type::kInt64) {
1187       Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>();
1188       Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
1189       Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>();
1190       Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>();
1191       Register out_lo = locations->Out().AsRegisterPairLow<Register>();
1192       Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
1193 
1194       MipsLabel compare_done;
1195 
1196       if (a_lo == b_lo) {
1197         if (out_lo != a_lo) {
1198           __ Move(out_lo, a_lo);
1199           __ Move(out_hi, a_hi);
1200         }
1201       } else {
1202         __ Slt(TMP, a_hi, b_hi);
1203         __ Bne(a_hi, b_hi, &compare_done);
1204 
1205         __ Sltu(TMP, a_lo, b_lo);
1206 
1207         __ Bind(&compare_done);
1208 
1209         if (is_min) {
1210           if (out_lo != a_lo) {
1211             __ Movn(out_hi, a_hi, TMP);
1212             __ Movn(out_lo, a_lo, TMP);
1213           }
1214           if (out_lo != b_lo) {
1215             __ Movz(out_hi, b_hi, TMP);
1216             __ Movz(out_lo, b_lo, TMP);
1217           }
1218         } else {
1219           if (out_lo != a_lo) {
1220             __ Movz(out_hi, a_hi, TMP);
1221             __ Movz(out_lo, a_lo, TMP);
1222           }
1223           if (out_lo != b_lo) {
1224             __ Movn(out_hi, b_hi, TMP);
1225             __ Movn(out_lo, b_lo, TMP);
1226           }
1227         }
1228       }
1229     } else {
1230       DCHECK_EQ(type, DataType::Type::kInt32);
1231       Register a = locations->InAt(0).AsRegister<Register>();
1232       Register b = locations->InAt(1).AsRegister<Register>();
1233       Register out = locations->Out().AsRegister<Register>();
1234 
1235       if (a == b) {
1236         if (out != a) {
1237           __ Move(out, a);
1238         }
1239       } else {
1240         __ Slt(AT, a, b);
1241         if (is_min) {
1242           if (out != a) {
1243             __ Movn(out, a, AT);
1244           }
1245           if (out != b) {
1246             __ Movz(out, b, AT);
1247           }
1248         } else {
1249           if (out != a) {
1250             __ Movz(out, a, AT);
1251           }
1252           if (out != b) {
1253             __ Movn(out, b, AT);
1254           }
1255         }
1256       }
1257     }
1258   }
1259 }
1260 
1261 // int java.lang.Math.min(int, int)
VisitMathMinIntInt(HInvoke * invoke)1262 void IntrinsicLocationsBuilderMIPS::VisitMathMinIntInt(HInvoke* invoke) {
1263   CreateIntIntToIntLocations(allocator_, invoke);
1264 }
1265 
VisitMathMinIntInt(HInvoke * invoke)1266 void IntrinsicCodeGeneratorMIPS::VisitMathMinIntInt(HInvoke* invoke) {
1267   GenMinMax(invoke->GetLocations(),
1268             /* is_min */ true,
1269             DataType::Type::kInt32,
1270             IsR6(),
1271             GetAssembler());
1272 }
1273 
1274 // long java.lang.Math.min(long, long)
VisitMathMinLongLong(HInvoke * invoke)1275 void IntrinsicLocationsBuilderMIPS::VisitMathMinLongLong(HInvoke* invoke) {
1276   CreateIntIntToIntLocations(allocator_, invoke);
1277 }
1278 
VisitMathMinLongLong(HInvoke * invoke)1279 void IntrinsicCodeGeneratorMIPS::VisitMathMinLongLong(HInvoke* invoke) {
1280   GenMinMax(invoke->GetLocations(),
1281             /* is_min */ true,
1282             DataType::Type::kInt64,
1283             IsR6(),
1284             GetAssembler());
1285 }
1286 
1287 // int java.lang.Math.max(int, int)
VisitMathMaxIntInt(HInvoke * invoke)1288 void IntrinsicLocationsBuilderMIPS::VisitMathMaxIntInt(HInvoke* invoke) {
1289   CreateIntIntToIntLocations(allocator_, invoke);
1290 }
1291 
VisitMathMaxIntInt(HInvoke * invoke)1292 void IntrinsicCodeGeneratorMIPS::VisitMathMaxIntInt(HInvoke* invoke) {
1293   GenMinMax(invoke->GetLocations(),
1294             /* is_min */ false,
1295             DataType::Type::kInt32,
1296             IsR6(),
1297             GetAssembler());
1298 }
1299 
1300 // long java.lang.Math.max(long, long)
VisitMathMaxLongLong(HInvoke * invoke)1301 void IntrinsicLocationsBuilderMIPS::VisitMathMaxLongLong(HInvoke* invoke) {
1302   CreateIntIntToIntLocations(allocator_, invoke);
1303 }
1304 
VisitMathMaxLongLong(HInvoke * invoke)1305 void IntrinsicCodeGeneratorMIPS::VisitMathMaxLongLong(HInvoke* invoke) {
1306   GenMinMax(invoke->GetLocations(),
1307             /* is_min */ false,
1308             DataType::Type::kInt64,
1309             IsR6(),
1310             GetAssembler());
1311 }
1312 
1313 // double java.lang.Math.sqrt(double)
VisitMathSqrt(HInvoke * invoke)1314 void IntrinsicLocationsBuilderMIPS::VisitMathSqrt(HInvoke* invoke) {
1315   CreateFPToFPLocations(allocator_, invoke);
1316 }
1317 
VisitMathSqrt(HInvoke * invoke)1318 void IntrinsicCodeGeneratorMIPS::VisitMathSqrt(HInvoke* invoke) {
1319   LocationSummary* locations = invoke->GetLocations();
1320   MipsAssembler* assembler = GetAssembler();
1321   FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
1322   FRegister out = locations->Out().AsFpuRegister<FRegister>();
1323 
1324   __ SqrtD(out, in);
1325 }
1326 
1327 // byte libcore.io.Memory.peekByte(long address)
VisitMemoryPeekByte(HInvoke * invoke)1328 void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekByte(HInvoke* invoke) {
1329   CreateIntToIntLocations(allocator_, invoke);
1330 }
1331 
VisitMemoryPeekByte(HInvoke * invoke)1332 void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekByte(HInvoke* invoke) {
1333   MipsAssembler* assembler = GetAssembler();
1334   Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
1335   Register out = invoke->GetLocations()->Out().AsRegister<Register>();
1336 
1337   __ Lb(out, adr, 0);
1338 }
1339 
1340 // short libcore.io.Memory.peekShort(long address)
VisitMemoryPeekShortNative(HInvoke * invoke)1341 void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekShortNative(HInvoke* invoke) {
1342   CreateIntToIntLocations(allocator_, invoke);
1343 }
1344 
VisitMemoryPeekShortNative(HInvoke * invoke)1345 void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekShortNative(HInvoke* invoke) {
1346   MipsAssembler* assembler = GetAssembler();
1347   Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
1348   Register out = invoke->GetLocations()->Out().AsRegister<Register>();
1349 
1350   if (IsR6()) {
1351     __ Lh(out, adr, 0);
1352   } else if (IsR2OrNewer()) {
1353     // Unlike for words, there are no lhl/lhr instructions to load
1354     // unaligned halfwords so the code loads individual bytes, in case
1355     // the address isn't halfword-aligned, and assembles them into a
1356     // signed halfword.
1357     __ Lb(AT, adr, 1);   // This byte must be sign-extended.
1358     __ Lb(out, adr, 0);  // This byte can be either sign-extended, or
1359                          // zero-extended because the following
1360                          // instruction overwrites the sign bits.
1361     __ Ins(out, AT, 8, 24);
1362   } else {
1363     __ Lbu(AT, adr, 0);  // This byte must be zero-extended.  If it's not
1364                          // the "or" instruction below will destroy the upper
1365                          // 24 bits of the final result.
1366     __ Lb(out, adr, 1);  // This byte must be sign-extended.
1367     __ Sll(out, out, 8);
1368     __ Or(out, out, AT);
1369   }
1370 }
1371 
1372 // int libcore.io.Memory.peekInt(long address)
VisitMemoryPeekIntNative(HInvoke * invoke)1373 void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekIntNative(HInvoke* invoke) {
1374   CreateIntToIntLocations(allocator_, invoke, Location::kOutputOverlap);
1375 }
1376 
VisitMemoryPeekIntNative(HInvoke * invoke)1377 void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekIntNative(HInvoke* invoke) {
1378   MipsAssembler* assembler = GetAssembler();
1379   Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
1380   Register out = invoke->GetLocations()->Out().AsRegister<Register>();
1381 
1382   if (IsR6()) {
1383     __ Lw(out, adr, 0);
1384   } else {
1385     __ Lwr(out, adr, 0);
1386     __ Lwl(out, adr, 3);
1387   }
1388 }
1389 
1390 // long libcore.io.Memory.peekLong(long address)
VisitMemoryPeekLongNative(HInvoke * invoke)1391 void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekLongNative(HInvoke* invoke) {
1392   CreateIntToIntLocations(allocator_, invoke, Location::kOutputOverlap);
1393 }
1394 
VisitMemoryPeekLongNative(HInvoke * invoke)1395 void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekLongNative(HInvoke* invoke) {
1396   MipsAssembler* assembler = GetAssembler();
1397   Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
1398   Register out_lo = invoke->GetLocations()->Out().AsRegisterPairLow<Register>();
1399   Register out_hi = invoke->GetLocations()->Out().AsRegisterPairHigh<Register>();
1400 
1401   if (IsR6()) {
1402     __ Lw(out_lo, adr, 0);
1403     __ Lw(out_hi, adr, 4);
1404   } else {
1405     __ Lwr(out_lo, adr, 0);
1406     __ Lwl(out_lo, adr, 3);
1407     __ Lwr(out_hi, adr, 4);
1408     __ Lwl(out_hi, adr, 7);
1409   }
1410 }
1411 
CreateIntIntToVoidLocations(ArenaAllocator * allocator,HInvoke * invoke)1412 static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) {
1413   LocationSummary* locations =
1414       new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
1415   locations->SetInAt(0, Location::RequiresRegister());
1416   locations->SetInAt(1, Location::RequiresRegister());
1417 }
1418 
1419 // void libcore.io.Memory.pokeByte(long address, byte value)
VisitMemoryPokeByte(HInvoke * invoke)1420 void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeByte(HInvoke* invoke) {
1421   CreateIntIntToVoidLocations(allocator_, invoke);
1422 }
1423 
VisitMemoryPokeByte(HInvoke * invoke)1424 void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeByte(HInvoke* invoke) {
1425   MipsAssembler* assembler = GetAssembler();
1426   Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
1427   Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>();
1428 
1429   __ Sb(val, adr, 0);
1430 }
1431 
1432 // void libcore.io.Memory.pokeShort(long address, short value)
VisitMemoryPokeShortNative(HInvoke * invoke)1433 void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeShortNative(HInvoke* invoke) {
1434   CreateIntIntToVoidLocations(allocator_, invoke);
1435 }
1436 
VisitMemoryPokeShortNative(HInvoke * invoke)1437 void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeShortNative(HInvoke* invoke) {
1438   MipsAssembler* assembler = GetAssembler();
1439   Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
1440   Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>();
1441 
1442   if (IsR6()) {
1443     __ Sh(val, adr, 0);
1444   } else {
1445     // Unlike for words, there are no shl/shr instructions to store
1446     // unaligned halfwords so the code stores individual bytes, in case
1447     // the address isn't halfword-aligned.
1448     __ Sb(val, adr, 0);
1449     __ Srl(AT, val, 8);
1450     __ Sb(AT, adr, 1);
1451   }
1452 }
1453 
1454 // void libcore.io.Memory.pokeInt(long address, int value)
VisitMemoryPokeIntNative(HInvoke * invoke)1455 void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeIntNative(HInvoke* invoke) {
1456   CreateIntIntToVoidLocations(allocator_, invoke);
1457 }
1458 
VisitMemoryPokeIntNative(HInvoke * invoke)1459 void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeIntNative(HInvoke* invoke) {
1460   MipsAssembler* assembler = GetAssembler();
1461   Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
1462   Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>();
1463 
1464   if (IsR6()) {
1465     __ Sw(val, adr, 0);
1466   } else {
1467     __ Swr(val, adr, 0);
1468     __ Swl(val, adr, 3);
1469   }
1470 }
1471 
1472 // void libcore.io.Memory.pokeLong(long address, long value)
VisitMemoryPokeLongNative(HInvoke * invoke)1473 void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeLongNative(HInvoke* invoke) {
1474   CreateIntIntToVoidLocations(allocator_, invoke);
1475 }
1476 
VisitMemoryPokeLongNative(HInvoke * invoke)1477 void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeLongNative(HInvoke* invoke) {
1478   MipsAssembler* assembler = GetAssembler();
1479   Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
1480   Register val_lo = invoke->GetLocations()->InAt(1).AsRegisterPairLow<Register>();
1481   Register val_hi = invoke->GetLocations()->InAt(1).AsRegisterPairHigh<Register>();
1482 
1483   if (IsR6()) {
1484     __ Sw(val_lo, adr, 0);
1485     __ Sw(val_hi, adr, 4);
1486   } else {
1487     __ Swr(val_lo, adr, 0);
1488     __ Swl(val_lo, adr, 3);
1489     __ Swr(val_hi, adr, 4);
1490     __ Swl(val_hi, adr, 7);
1491   }
1492 }
1493 
1494 // Thread java.lang.Thread.currentThread()
VisitThreadCurrentThread(HInvoke * invoke)1495 void IntrinsicLocationsBuilderMIPS::VisitThreadCurrentThread(HInvoke* invoke) {
1496   LocationSummary* locations =
1497       new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
1498   locations->SetOut(Location::RequiresRegister());
1499 }
1500 
VisitThreadCurrentThread(HInvoke * invoke)1501 void IntrinsicCodeGeneratorMIPS::VisitThreadCurrentThread(HInvoke* invoke) {
1502   MipsAssembler* assembler = GetAssembler();
1503   Register out = invoke->GetLocations()->Out().AsRegister<Register>();
1504 
1505   __ LoadFromOffset(kLoadWord,
1506                     out,
1507                     TR,
1508                     Thread::PeerOffset<kMipsPointerSize>().Int32Value());
1509 }
1510 
CreateIntIntIntToIntLocations(ArenaAllocator * allocator,HInvoke * invoke,DataType::Type type)1511 static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator,
1512                                           HInvoke* invoke,
1513                                           DataType::Type type) {
1514   bool can_call = kEmitCompilerReadBarrier &&
1515       (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
1516        invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
1517   LocationSummary* locations =
1518       new (allocator) LocationSummary(invoke,
1519                                       can_call
1520                                           ? LocationSummary::kCallOnSlowPath
1521                                           : LocationSummary::kNoCall,
1522                                       kIntrinsified);
1523   if (can_call && kUseBakerReadBarrier) {
1524     locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty());  // No caller-save registers.
1525   }
1526   locations->SetInAt(0, Location::NoLocation());        // Unused receiver.
1527   locations->SetInAt(1, Location::RequiresRegister());
1528   locations->SetInAt(2, Location::RequiresRegister());
1529   locations->SetOut(Location::RequiresRegister(),
1530                     (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
1531   if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1532     // We need a temporary register for the read barrier marking slow
1533     // path in InstructionCodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier.
1534     locations->AddTemp(Location::RequiresRegister());
1535   }
1536 }
1537 
1538 // Note that the caller must supply a properly aligned memory address.
1539 // If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur).
GenUnsafeGet(HInvoke * invoke,DataType::Type type,bool is_volatile,bool is_R6,CodeGeneratorMIPS * codegen)1540 static void GenUnsafeGet(HInvoke* invoke,
1541                          DataType::Type type,
1542                          bool is_volatile,
1543                          bool is_R6,
1544                          CodeGeneratorMIPS* codegen) {
1545   LocationSummary* locations = invoke->GetLocations();
1546   DCHECK((type == DataType::Type::kInt32) ||
1547          (type == DataType::Type::kInt64) ||
1548          (type == DataType::Type::kReference)) << type;
1549   MipsAssembler* assembler = codegen->GetAssembler();
1550   // Target register.
1551   Location trg_loc = locations->Out();
1552   // Object pointer.
1553   Location base_loc = locations->InAt(1);
1554   Register base = base_loc.AsRegister<Register>();
1555   // The "offset" argument is passed as a "long". Since this code is for
1556   // a 32-bit processor, we can only use 32-bit addresses, so we only
1557   // need the low 32-bits of offset.
1558   Location offset_loc = locations->InAt(2);
1559   Register offset_lo = offset_loc.AsRegisterPairLow<Register>();
1560 
1561   if (!(kEmitCompilerReadBarrier && kUseBakerReadBarrier && (type == DataType::Type::kReference))) {
1562     __ Addu(TMP, base, offset_lo);
1563   }
1564 
1565   switch (type) {
1566     case DataType::Type::kInt64: {
1567       Register trg_lo = trg_loc.AsRegisterPairLow<Register>();
1568       Register trg_hi = trg_loc.AsRegisterPairHigh<Register>();
1569       CHECK(!is_volatile);  // TODO: support atomic 8-byte volatile loads.
1570       if (is_R6) {
1571         __ Lw(trg_lo, TMP, 0);
1572         __ Lw(trg_hi, TMP, 4);
1573       } else {
1574         __ Lwr(trg_lo, TMP, 0);
1575         __ Lwl(trg_lo, TMP, 3);
1576         __ Lwr(trg_hi, TMP, 4);
1577         __ Lwl(trg_hi, TMP, 7);
1578       }
1579       break;
1580     }
1581 
1582     case DataType::Type::kInt32: {
1583       Register trg = trg_loc.AsRegister<Register>();
1584       if (is_R6) {
1585         __ Lw(trg, TMP, 0);
1586       } else {
1587         __ Lwr(trg, TMP, 0);
1588         __ Lwl(trg, TMP, 3);
1589       }
1590       if (is_volatile) {
1591         __ Sync(0);
1592       }
1593       break;
1594     }
1595 
1596     case DataType::Type::kReference: {
1597       Register trg = trg_loc.AsRegister<Register>();
1598       if (kEmitCompilerReadBarrier) {
1599         if (kUseBakerReadBarrier) {
1600           Location temp = locations->GetTemp(0);
1601           codegen->GenerateReferenceLoadWithBakerReadBarrier(invoke,
1602                                                              trg_loc,
1603                                                              base,
1604                                                              /* offset */ 0U,
1605                                                              /* index */ offset_loc,
1606                                                              TIMES_1,
1607                                                              temp,
1608                                                              /* needs_null_check */ false);
1609           if (is_volatile) {
1610             __ Sync(0);
1611           }
1612         } else {
1613           if (is_R6) {
1614             __ Lw(trg, TMP, 0);
1615           } else {
1616             __ Lwr(trg, TMP, 0);
1617             __ Lwl(trg, TMP, 3);
1618           }
1619           if (is_volatile) {
1620             __ Sync(0);
1621           }
1622           codegen->GenerateReadBarrierSlow(invoke,
1623                                            trg_loc,
1624                                            trg_loc,
1625                                            base_loc,
1626                                            /* offset */ 0U,
1627                                            /* index */ offset_loc);
1628         }
1629       } else {
1630         if (is_R6) {
1631           __ Lw(trg, TMP, 0);
1632         } else {
1633           __ Lwr(trg, TMP, 0);
1634           __ Lwl(trg, TMP, 3);
1635         }
1636         if (is_volatile) {
1637           __ Sync(0);
1638         }
1639         __ MaybeUnpoisonHeapReference(trg);
1640       }
1641       break;
1642     }
1643 
1644     default:
1645       LOG(FATAL) << "Unexpected type " << type;
1646       UNREACHABLE();
1647   }
1648 }
1649 
1650 // int sun.misc.Unsafe.getInt(Object o, long offset)
VisitUnsafeGet(HInvoke * invoke)1651 void IntrinsicLocationsBuilderMIPS::VisitUnsafeGet(HInvoke* invoke) {
1652   CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32);
1653 }
1654 
VisitUnsafeGet(HInvoke * invoke)1655 void IntrinsicCodeGeneratorMIPS::VisitUnsafeGet(HInvoke* invoke) {
1656   GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile */ false, IsR6(), codegen_);
1657 }
1658 
1659 // int sun.misc.Unsafe.getIntVolatile(Object o, long offset)
VisitUnsafeGetVolatile(HInvoke * invoke)1660 void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetVolatile(HInvoke* invoke) {
1661   CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt32);
1662 }
1663 
VisitUnsafeGetVolatile(HInvoke * invoke)1664 void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetVolatile(HInvoke* invoke) {
1665   GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile */ true, IsR6(), codegen_);
1666 }
1667 
1668 // long sun.misc.Unsafe.getLong(Object o, long offset)
VisitUnsafeGetLong(HInvoke * invoke)1669 void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetLong(HInvoke* invoke) {
1670   CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kInt64);
1671 }
1672 
VisitUnsafeGetLong(HInvoke * invoke)1673 void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetLong(HInvoke* invoke) {
1674   GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile */ false, IsR6(), codegen_);
1675 }
1676 
1677 // Object sun.misc.Unsafe.getObject(Object o, long offset)
VisitUnsafeGetObject(HInvoke * invoke)1678 void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetObject(HInvoke* invoke) {
1679   CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kReference);
1680 }
1681 
VisitUnsafeGetObject(HInvoke * invoke)1682 void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetObject(HInvoke* invoke) {
1683   GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile */ false, IsR6(), codegen_);
1684 }
1685 
1686 // Object sun.misc.Unsafe.getObjectVolatile(Object o, long offset)
VisitUnsafeGetObjectVolatile(HInvoke * invoke)1687 void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
1688   CreateIntIntIntToIntLocations(allocator_, invoke, DataType::Type::kReference);
1689 }
1690 
VisitUnsafeGetObjectVolatile(HInvoke * invoke)1691 void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
1692   GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile */ true, IsR6(), codegen_);
1693 }
1694 
CreateIntIntIntIntToVoidLocations(ArenaAllocator * allocator,HInvoke * invoke)1695 static void CreateIntIntIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) {
1696   LocationSummary* locations =
1697       new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
1698   locations->SetInAt(0, Location::NoLocation());        // Unused receiver.
1699   locations->SetInAt(1, Location::RequiresRegister());
1700   locations->SetInAt(2, Location::RequiresRegister());
1701   locations->SetInAt(3, Location::RequiresRegister());
1702 }
1703 
1704 // Note that the caller must supply a properly aligned memory address.
1705 // If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur).
GenUnsafePut(LocationSummary * locations,DataType::Type type,bool is_volatile,bool is_ordered,bool is_R6,CodeGeneratorMIPS * codegen)1706 static void GenUnsafePut(LocationSummary* locations,
1707                          DataType::Type type,
1708                          bool is_volatile,
1709                          bool is_ordered,
1710                          bool is_R6,
1711                          CodeGeneratorMIPS* codegen) {
1712   DCHECK((type == DataType::Type::kInt32) ||
1713          (type == DataType::Type::kInt64) ||
1714          (type == DataType::Type::kReference)) << type;
1715   MipsAssembler* assembler = codegen->GetAssembler();
1716   // Object pointer.
1717   Register base = locations->InAt(1).AsRegister<Register>();
1718   // The "offset" argument is passed as a "long", i.e., it's 64-bits in
1719   // size. Since this code is for a 32-bit processor, we can only use
1720   // 32-bit addresses, so we only need the low 32-bits of offset.
1721   Register offset_lo = locations->InAt(2).AsRegisterPairLow<Register>();
1722 
1723   __ Addu(TMP, base, offset_lo);
1724   if (is_volatile || is_ordered) {
1725     __ Sync(0);
1726   }
1727   if ((type == DataType::Type::kInt32) || (type == DataType::Type::kReference)) {
1728     Register value = locations->InAt(3).AsRegister<Register>();
1729 
1730     if (kPoisonHeapReferences && type == DataType::Type::kReference) {
1731       __ PoisonHeapReference(AT, value);
1732       value = AT;
1733     }
1734 
1735     if (is_R6) {
1736       __ Sw(value, TMP, 0);
1737     } else {
1738       __ Swr(value, TMP, 0);
1739       __ Swl(value, TMP, 3);
1740     }
1741   } else {
1742     Register value_lo = locations->InAt(3).AsRegisterPairLow<Register>();
1743     Register value_hi = locations->InAt(3).AsRegisterPairHigh<Register>();
1744     CHECK(!is_volatile);  // TODO: support atomic 8-byte volatile stores.
1745     if (is_R6) {
1746       __ Sw(value_lo, TMP, 0);
1747       __ Sw(value_hi, TMP, 4);
1748     } else {
1749       __ Swr(value_lo, TMP, 0);
1750       __ Swl(value_lo, TMP, 3);
1751       __ Swr(value_hi, TMP, 4);
1752       __ Swl(value_hi, TMP, 7);
1753     }
1754   }
1755 
1756   if (is_volatile) {
1757     __ Sync(0);
1758   }
1759 
1760   if (type == DataType::Type::kReference) {
1761     bool value_can_be_null = true;  // TODO: Worth finding out this information?
1762     codegen->MarkGCCard(base, locations->InAt(3).AsRegister<Register>(), value_can_be_null);
1763   }
1764 }
1765 
1766 // void sun.misc.Unsafe.putInt(Object o, long offset, int x)
VisitUnsafePut(HInvoke * invoke)1767 void IntrinsicLocationsBuilderMIPS::VisitUnsafePut(HInvoke* invoke) {
1768   CreateIntIntIntIntToVoidLocations(allocator_, invoke);
1769 }
1770 
VisitUnsafePut(HInvoke * invoke)1771 void IntrinsicCodeGeneratorMIPS::VisitUnsafePut(HInvoke* invoke) {
1772   GenUnsafePut(invoke->GetLocations(),
1773                DataType::Type::kInt32,
1774                /* is_volatile */ false,
1775                /* is_ordered */ false,
1776                IsR6(),
1777                codegen_);
1778 }
1779 
1780 // void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x)
VisitUnsafePutOrdered(HInvoke * invoke)1781 void IntrinsicLocationsBuilderMIPS::VisitUnsafePutOrdered(HInvoke* invoke) {
1782   CreateIntIntIntIntToVoidLocations(allocator_, invoke);
1783 }
1784 
VisitUnsafePutOrdered(HInvoke * invoke)1785 void IntrinsicCodeGeneratorMIPS::VisitUnsafePutOrdered(HInvoke* invoke) {
1786   GenUnsafePut(invoke->GetLocations(),
1787                DataType::Type::kInt32,
1788                /* is_volatile */ false,
1789                /* is_ordered */ true,
1790                IsR6(),
1791                codegen_);
1792 }
1793 
1794 // void sun.misc.Unsafe.putIntVolatile(Object o, long offset, int x)
VisitUnsafePutVolatile(HInvoke * invoke)1795 void IntrinsicLocationsBuilderMIPS::VisitUnsafePutVolatile(HInvoke* invoke) {
1796   CreateIntIntIntIntToVoidLocations(allocator_, invoke);
1797 }
1798 
VisitUnsafePutVolatile(HInvoke * invoke)1799 void IntrinsicCodeGeneratorMIPS::VisitUnsafePutVolatile(HInvoke* invoke) {
1800   GenUnsafePut(invoke->GetLocations(),
1801                DataType::Type::kInt32,
1802                /* is_volatile */ true,
1803                /* is_ordered */ false,
1804                IsR6(),
1805                codegen_);
1806 }
1807 
1808 // void sun.misc.Unsafe.putObject(Object o, long offset, Object x)
VisitUnsafePutObject(HInvoke * invoke)1809 void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObject(HInvoke* invoke) {
1810   CreateIntIntIntIntToVoidLocations(allocator_, invoke);
1811 }
1812 
VisitUnsafePutObject(HInvoke * invoke)1813 void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObject(HInvoke* invoke) {
1814   GenUnsafePut(invoke->GetLocations(),
1815                DataType::Type::kReference,
1816                /* is_volatile */ false,
1817                /* is_ordered */ false,
1818                IsR6(),
1819                codegen_);
1820 }
1821 
1822 // void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x)
VisitUnsafePutObjectOrdered(HInvoke * invoke)1823 void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
1824   CreateIntIntIntIntToVoidLocations(allocator_, invoke);
1825 }
1826 
VisitUnsafePutObjectOrdered(HInvoke * invoke)1827 void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
1828   GenUnsafePut(invoke->GetLocations(),
1829                DataType::Type::kReference,
1830                /* is_volatile */ false,
1831                /* is_ordered */ true,
1832                IsR6(),
1833                codegen_);
1834 }
1835 
1836 // void sun.misc.Unsafe.putObjectVolatile(Object o, long offset, Object x)
VisitUnsafePutObjectVolatile(HInvoke * invoke)1837 void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
1838   CreateIntIntIntIntToVoidLocations(allocator_, invoke);
1839 }
1840 
VisitUnsafePutObjectVolatile(HInvoke * invoke)1841 void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
1842   GenUnsafePut(invoke->GetLocations(),
1843                DataType::Type::kReference,
1844                /* is_volatile */ true,
1845                /* is_ordered */ false,
1846                IsR6(),
1847                codegen_);
1848 }
1849 
1850 // void sun.misc.Unsafe.putLong(Object o, long offset, long x)
VisitUnsafePutLong(HInvoke * invoke)1851 void IntrinsicLocationsBuilderMIPS::VisitUnsafePutLong(HInvoke* invoke) {
1852   CreateIntIntIntIntToVoidLocations(allocator_, invoke);
1853 }
1854 
VisitUnsafePutLong(HInvoke * invoke)1855 void IntrinsicCodeGeneratorMIPS::VisitUnsafePutLong(HInvoke* invoke) {
1856   GenUnsafePut(invoke->GetLocations(),
1857                DataType::Type::kInt64,
1858                /* is_volatile */ false,
1859                /* is_ordered */ false,
1860                IsR6(),
1861                codegen_);
1862 }
1863 
1864 // void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x)
VisitUnsafePutLongOrdered(HInvoke * invoke)1865 void IntrinsicLocationsBuilderMIPS::VisitUnsafePutLongOrdered(HInvoke* invoke) {
1866   CreateIntIntIntIntToVoidLocations(allocator_, invoke);
1867 }
1868 
VisitUnsafePutLongOrdered(HInvoke * invoke)1869 void IntrinsicCodeGeneratorMIPS::VisitUnsafePutLongOrdered(HInvoke* invoke) {
1870   GenUnsafePut(invoke->GetLocations(),
1871                DataType::Type::kInt64,
1872                /* is_volatile */ false,
1873                /* is_ordered */ true,
1874                IsR6(),
1875                codegen_);
1876 }
1877 
CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator * allocator,HInvoke * invoke)1878 static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* allocator, HInvoke* invoke) {
1879   bool can_call = kEmitCompilerReadBarrier &&
1880       kUseBakerReadBarrier &&
1881       (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
1882   LocationSummary* locations =
1883       new (allocator) LocationSummary(invoke,
1884                                       can_call
1885                                           ? LocationSummary::kCallOnSlowPath
1886                                           : LocationSummary::kNoCall,
1887                                       kIntrinsified);
1888   locations->SetInAt(0, Location::NoLocation());        // Unused receiver.
1889   locations->SetInAt(1, Location::RequiresRegister());
1890   locations->SetInAt(2, Location::RequiresRegister());
1891   locations->SetInAt(3, Location::RequiresRegister());
1892   locations->SetInAt(4, Location::RequiresRegister());
1893   locations->SetOut(Location::RequiresRegister());
1894 
1895   // Temporary register used in CAS by (Baker) read barrier.
1896   if (can_call) {
1897     locations->AddTemp(Location::RequiresRegister());
1898   }
1899 }
1900 
1901 // Note that the caller must supply a properly aligned memory address.
1902 // If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur).
GenCas(HInvoke * invoke,DataType::Type type,CodeGeneratorMIPS * codegen)1903 static void GenCas(HInvoke* invoke, DataType::Type type, CodeGeneratorMIPS* codegen) {
1904   MipsAssembler* assembler = codegen->GetAssembler();
1905   LocationSummary* locations = invoke->GetLocations();
1906   bool isR6 = codegen->GetInstructionSetFeatures().IsR6();
1907   Register base = locations->InAt(1).AsRegister<Register>();
1908   Location offset_loc = locations->InAt(2);
1909   Register offset_lo = offset_loc.AsRegisterPairLow<Register>();
1910   Register expected = locations->InAt(3).AsRegister<Register>();
1911   Register value = locations->InAt(4).AsRegister<Register>();
1912   Location out_loc = locations->Out();
1913   Register out = out_loc.AsRegister<Register>();
1914 
1915   DCHECK_NE(base, out);
1916   DCHECK_NE(offset_lo, out);
1917   DCHECK_NE(expected, out);
1918 
1919   if (type == DataType::Type::kReference) {
1920     // The only read barrier implementation supporting the
1921     // UnsafeCASObject intrinsic is the Baker-style read barriers.
1922     DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
1923 
1924     // Mark card for object assuming new value is stored. Worst case we will mark an unchanged
1925     // object and scan the receiver at the next GC for nothing.
1926     bool value_can_be_null = true;  // TODO: Worth finding out this information?
1927     codegen->MarkGCCard(base, value, value_can_be_null);
1928 
1929     if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
1930       Location temp = locations->GetTemp(0);
1931       // Need to make sure the reference stored in the field is a to-space
1932       // one before attempting the CAS or the CAS could fail incorrectly.
1933       codegen->GenerateReferenceLoadWithBakerReadBarrier(
1934           invoke,
1935           out_loc,  // Unused, used only as a "temporary" within the read barrier.
1936           base,
1937           /* offset */ 0u,
1938           /* index */ offset_loc,
1939           ScaleFactor::TIMES_1,
1940           temp,
1941           /* needs_null_check */ false,
1942           /* always_update_field */ true);
1943     }
1944   }
1945 
1946   MipsLabel loop_head, exit_loop;
1947   __ Addu(TMP, base, offset_lo);
1948 
1949   if (kPoisonHeapReferences && type == DataType::Type::kReference) {
1950     __ PoisonHeapReference(expected);
1951     // Do not poison `value`, if it is the same register as
1952     // `expected`, which has just been poisoned.
1953     if (value != expected) {
1954       __ PoisonHeapReference(value);
1955     }
1956   }
1957 
1958   // do {
1959   //   tmp_value = [tmp_ptr] - expected;
1960   // } while (tmp_value == 0 && failure([tmp_ptr] <- r_new_value));
1961   // result = tmp_value != 0;
1962 
1963   __ Sync(0);
1964   __ Bind(&loop_head);
1965   if ((type == DataType::Type::kInt32) || (type == DataType::Type::kReference)) {
1966     if (isR6) {
1967       __ LlR6(out, TMP);
1968     } else {
1969       __ LlR2(out, TMP);
1970     }
1971   } else {
1972     LOG(FATAL) << "Unsupported op size " << type;
1973     UNREACHABLE();
1974   }
1975   __ Subu(out, out, expected);          // If we didn't get the 'expected'
1976   __ Sltiu(out, out, 1);                // value, set 'out' to false, and
1977   __ Beqz(out, &exit_loop);             // return.
1978   __ Move(out, value);  // Use 'out' for the 'store conditional' instruction.
1979                         // If we use 'value' directly, we would lose 'value'
1980                         // in the case that the store fails.  Whether the
1981                         // store succeeds, or fails, it will load the
1982                         // correct Boolean value into the 'out' register.
1983   // This test isn't really necessary. We only support DataType::Type::kInt,
1984   // DataType::Type::kReference, and we already verified that we're working on one
1985   // of those two types. It's left here in case the code needs to support
1986   // other types in the future.
1987   if ((type == DataType::Type::kInt32) || (type == DataType::Type::kReference)) {
1988     if (isR6) {
1989       __ ScR6(out, TMP);
1990     } else {
1991       __ ScR2(out, TMP);
1992     }
1993   }
1994   __ Beqz(out, &loop_head);     // If we couldn't do the read-modify-write
1995                                 // cycle atomically then retry.
1996   __ Bind(&exit_loop);
1997   __ Sync(0);
1998 
1999   if (kPoisonHeapReferences && type == DataType::Type::kReference) {
2000     __ UnpoisonHeapReference(expected);
2001     // Do not unpoison `value`, if it is the same register as
2002     // `expected`, which has just been unpoisoned.
2003     if (value != expected) {
2004       __ UnpoisonHeapReference(value);
2005     }
2006   }
2007 }
2008 
2009 // boolean sun.misc.Unsafe.compareAndSwapInt(Object o, long offset, int expected, int x)
VisitUnsafeCASInt(HInvoke * invoke)2010 void IntrinsicLocationsBuilderMIPS::VisitUnsafeCASInt(HInvoke* invoke) {
2011   CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke);
2012 }
2013 
VisitUnsafeCASInt(HInvoke * invoke)2014 void IntrinsicCodeGeneratorMIPS::VisitUnsafeCASInt(HInvoke* invoke) {
2015   GenCas(invoke, DataType::Type::kInt32, codegen_);
2016 }
2017 
2018 // boolean sun.misc.Unsafe.compareAndSwapObject(Object o, long offset, Object expected, Object x)
VisitUnsafeCASObject(HInvoke * invoke)2019 void IntrinsicLocationsBuilderMIPS::VisitUnsafeCASObject(HInvoke* invoke) {
2020   // The only read barrier implementation supporting the
2021   // UnsafeCASObject intrinsic is the Baker-style read barriers.
2022   if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
2023     return;
2024   }
2025 
2026   CreateIntIntIntIntIntToIntPlusTemps(allocator_, invoke);
2027 }
2028 
VisitUnsafeCASObject(HInvoke * invoke)2029 void IntrinsicCodeGeneratorMIPS::VisitUnsafeCASObject(HInvoke* invoke) {
2030   // The only read barrier implementation supporting the
2031   // UnsafeCASObject intrinsic is the Baker-style read barriers.
2032   DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
2033 
2034   GenCas(invoke, DataType::Type::kReference, codegen_);
2035 }
2036 
2037 // int java.lang.String.compareTo(String anotherString)
VisitStringCompareTo(HInvoke * invoke)2038 void IntrinsicLocationsBuilderMIPS::VisitStringCompareTo(HInvoke* invoke) {
2039   LocationSummary* locations = new (allocator_) LocationSummary(
2040       invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
2041   InvokeRuntimeCallingConvention calling_convention;
2042   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
2043   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
2044   Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
2045   locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
2046 }
2047 
VisitStringCompareTo(HInvoke * invoke)2048 void IntrinsicCodeGeneratorMIPS::VisitStringCompareTo(HInvoke* invoke) {
2049   MipsAssembler* assembler = GetAssembler();
2050   LocationSummary* locations = invoke->GetLocations();
2051 
2052   // Note that the null check must have been done earlier.
2053   DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
2054 
2055   Register argument = locations->InAt(1).AsRegister<Register>();
2056   SlowPathCodeMIPS* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke);
2057   codegen_->AddSlowPath(slow_path);
2058   __ Beqz(argument, slow_path->GetEntryLabel());
2059   codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path);
2060   __ Bind(slow_path->GetExitLabel());
2061 }
2062 
2063 // boolean java.lang.String.equals(Object anObject)
VisitStringEquals(HInvoke * invoke)2064 void IntrinsicLocationsBuilderMIPS::VisitStringEquals(HInvoke* invoke) {
2065   if (kEmitCompilerReadBarrier &&
2066       !StringEqualsOptimizations(invoke).GetArgumentIsString() &&
2067       !StringEqualsOptimizations(invoke).GetNoReadBarrierForStringClass()) {
2068     // No support for this odd case (String class is moveable, not in the boot image).
2069     return;
2070   }
2071 
2072   LocationSummary* locations =
2073       new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
2074   locations->SetInAt(0, Location::RequiresRegister());
2075   locations->SetInAt(1, Location::RequiresRegister());
2076   locations->SetOut(Location::RequiresRegister());
2077 
2078   // Temporary registers to store lengths of strings and for calculations.
2079   locations->AddTemp(Location::RequiresRegister());
2080   locations->AddTemp(Location::RequiresRegister());
2081   locations->AddTemp(Location::RequiresRegister());
2082 }
2083 
VisitStringEquals(HInvoke * invoke)2084 void IntrinsicCodeGeneratorMIPS::VisitStringEquals(HInvoke* invoke) {
2085   MipsAssembler* assembler = GetAssembler();
2086   LocationSummary* locations = invoke->GetLocations();
2087 
2088   Register str = locations->InAt(0).AsRegister<Register>();
2089   Register arg = locations->InAt(1).AsRegister<Register>();
2090   Register out = locations->Out().AsRegister<Register>();
2091 
2092   Register temp1 = locations->GetTemp(0).AsRegister<Register>();
2093   Register temp2 = locations->GetTemp(1).AsRegister<Register>();
2094   Register temp3 = locations->GetTemp(2).AsRegister<Register>();
2095 
2096   MipsLabel loop;
2097   MipsLabel end;
2098   MipsLabel return_true;
2099   MipsLabel return_false;
2100 
2101   // Get offsets of count, value, and class fields within a string object.
2102   const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
2103   const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
2104   const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
2105 
2106   // Note that the null check must have been done earlier.
2107   DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
2108 
2109   // If the register containing the pointer to "this", and the register
2110   // containing the pointer to "anObject" are the same register then
2111   // "this", and "anObject" are the same object and we can
2112   // short-circuit the logic to a true result.
2113   if (str == arg) {
2114     __ LoadConst32(out, 1);
2115     return;
2116   }
2117   StringEqualsOptimizations optimizations(invoke);
2118   if (!optimizations.GetArgumentNotNull()) {
2119     // Check if input is null, return false if it is.
2120     __ Beqz(arg, &return_false);
2121   }
2122 
2123   // Reference equality check, return true if same reference.
2124   __ Beq(str, arg, &return_true);
2125 
2126   if (!optimizations.GetArgumentIsString()) {
2127     // Instanceof check for the argument by comparing class fields.
2128     // All string objects must have the same type since String cannot be subclassed.
2129     // Receiver must be a string object, so its class field is equal to all strings' class fields.
2130     // If the argument is a string object, its class field must be equal to receiver's class field.
2131     __ Lw(temp1, str, class_offset);
2132     __ Lw(temp2, arg, class_offset);
2133     __ Bne(temp1, temp2, &return_false);
2134   }
2135 
2136   // Load `count` fields of this and argument strings.
2137   __ Lw(temp1, str, count_offset);
2138   __ Lw(temp2, arg, count_offset);
2139   // Check if `count` fields are equal, return false if they're not.
2140   // Also compares the compression style, if differs return false.
2141   __ Bne(temp1, temp2, &return_false);
2142   // Return true if both strings are empty. Even with string compression `count == 0` means empty.
2143   static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
2144                 "Expecting 0=compressed, 1=uncompressed");
2145   __ Beqz(temp1, &return_true);
2146 
2147   // Don't overwrite input registers
2148   __ Move(TMP, str);
2149   __ Move(temp3, arg);
2150 
2151   // Assertions that must hold in order to compare strings 4 bytes at a time.
2152   DCHECK_ALIGNED(value_offset, 4);
2153   static_assert(IsAligned<4>(kObjectAlignment), "String of odd length is not zero padded");
2154 
2155   // For string compression, calculate the number of bytes to compare (not chars).
2156   if (mirror::kUseStringCompression) {
2157     // Extract compression flag.
2158     if (IsR2OrNewer()) {
2159       __ Ext(temp2, temp1, 0, 1);
2160     } else {
2161       __ Sll(temp2, temp1, 31);
2162       __ Srl(temp2, temp2, 31);
2163     }
2164     __ Srl(temp1, temp1, 1);             // Extract length.
2165     __ Sllv(temp1, temp1, temp2);        // Double the byte count if uncompressed.
2166   }
2167 
2168   // Loop to compare strings 4 bytes at a time starting at the beginning of the string.
2169   // Ok to do this because strings are zero-padded to kObjectAlignment.
2170   __ Bind(&loop);
2171   __ Lw(out, TMP, value_offset);
2172   __ Lw(temp2, temp3, value_offset);
2173   __ Bne(out, temp2, &return_false);
2174   __ Addiu(TMP, TMP, 4);
2175   __ Addiu(temp3, temp3, 4);
2176   // With string compression, we have compared 4 bytes, otherwise 2 chars.
2177   __ Addiu(temp1, temp1, mirror::kUseStringCompression ? -4 : -2);
2178   __ Bgtz(temp1, &loop);
2179 
2180   // Return true and exit the function.
2181   // If loop does not result in returning false, we return true.
2182   __ Bind(&return_true);
2183   __ LoadConst32(out, 1);
2184   __ B(&end);
2185 
2186   // Return false and exit the function.
2187   __ Bind(&return_false);
2188   __ LoadConst32(out, 0);
2189   __ Bind(&end);
2190 }
2191 
GenerateStringIndexOf(HInvoke * invoke,bool start_at_zero,MipsAssembler * assembler,CodeGeneratorMIPS * codegen)2192 static void GenerateStringIndexOf(HInvoke* invoke,
2193                                   bool start_at_zero,
2194                                   MipsAssembler* assembler,
2195                                   CodeGeneratorMIPS* codegen) {
2196   LocationSummary* locations = invoke->GetLocations();
2197   Register tmp_reg = start_at_zero ? locations->GetTemp(0).AsRegister<Register>() : TMP;
2198 
2199   // Note that the null check must have been done earlier.
2200   DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
2201 
2202   // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
2203   // or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
2204   SlowPathCodeMIPS* slow_path = nullptr;
2205   HInstruction* code_point = invoke->InputAt(1);
2206   if (code_point->IsIntConstant()) {
2207     if (!IsUint<16>(code_point->AsIntConstant()->GetValue())) {
2208       // Always needs the slow-path. We could directly dispatch to it,
2209       // but this case should be rare, so for simplicity just put the
2210       // full slow-path down and branch unconditionally.
2211       slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke);
2212       codegen->AddSlowPath(slow_path);
2213       __ B(slow_path->GetEntryLabel());
2214       __ Bind(slow_path->GetExitLabel());
2215       return;
2216     }
2217   } else if (code_point->GetType() != DataType::Type::kUint16) {
2218     Register char_reg = locations->InAt(1).AsRegister<Register>();
2219     // The "bltu" conditional branch tests to see if the character value
2220     // fits in a valid 16-bit (MIPS halfword) value. If it doesn't then
2221     // the character being searched for, if it exists in the string, is
2222     // encoded using UTF-16 and stored in the string as two (16-bit)
2223     // halfwords. Currently the assembly code used to implement this
2224     // intrinsic doesn't support searching for a character stored as
2225     // two halfwords so we fallback to using the generic implementation
2226     // of indexOf().
2227     __ LoadConst32(tmp_reg, std::numeric_limits<uint16_t>::max());
2228     slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke);
2229     codegen->AddSlowPath(slow_path);
2230     __ Bltu(tmp_reg, char_reg, slow_path->GetEntryLabel());
2231   }
2232 
2233   if (start_at_zero) {
2234     DCHECK_EQ(tmp_reg, A2);
2235     // Start-index = 0.
2236     __ Clear(tmp_reg);
2237   }
2238 
2239   codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path);
2240   if (slow_path != nullptr) {
2241     __ Bind(slow_path->GetExitLabel());
2242   }
2243 }
2244 
2245 // int java.lang.String.indexOf(int ch)
VisitStringIndexOf(HInvoke * invoke)2246 void IntrinsicLocationsBuilderMIPS::VisitStringIndexOf(HInvoke* invoke) {
2247   LocationSummary* locations = new (allocator_) LocationSummary(
2248       invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
2249   // We have a hand-crafted assembly stub that follows the runtime
2250   // calling convention. So it's best to align the inputs accordingly.
2251   InvokeRuntimeCallingConvention calling_convention;
2252   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
2253   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
2254   Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
2255   locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
2256 
2257   // Need a temp for slow-path codepoint compare, and need to send start-index=0.
2258   locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
2259 }
2260 
VisitStringIndexOf(HInvoke * invoke)2261 void IntrinsicCodeGeneratorMIPS::VisitStringIndexOf(HInvoke* invoke) {
2262   GenerateStringIndexOf(invoke, /* start_at_zero */ true, GetAssembler(), codegen_);
2263 }
2264 
2265 // int java.lang.String.indexOf(int ch, int fromIndex)
VisitStringIndexOfAfter(HInvoke * invoke)2266 void IntrinsicLocationsBuilderMIPS::VisitStringIndexOfAfter(HInvoke* invoke) {
2267   LocationSummary* locations = new (allocator_) LocationSummary(
2268       invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
2269   // We have a hand-crafted assembly stub that follows the runtime
2270   // calling convention. So it's best to align the inputs accordingly.
2271   InvokeRuntimeCallingConvention calling_convention;
2272   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
2273   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
2274   locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
2275   Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
2276   locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
2277 
2278   // Need a temp for slow-path codepoint compare.
2279   locations->AddTemp(Location::RequiresRegister());
2280 }
2281 
VisitStringIndexOfAfter(HInvoke * invoke)2282 void IntrinsicCodeGeneratorMIPS::VisitStringIndexOfAfter(HInvoke* invoke) {
2283   GenerateStringIndexOf(invoke, /* start_at_zero */ false, GetAssembler(), codegen_);
2284 }
2285 
2286 // java.lang.StringFactory.newStringFromBytes(byte[] data, int high, int offset, int byteCount)
VisitStringNewStringFromBytes(HInvoke * invoke)2287 void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromBytes(HInvoke* invoke) {
2288   LocationSummary* locations = new (allocator_) LocationSummary(
2289       invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
2290   InvokeRuntimeCallingConvention calling_convention;
2291   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
2292   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
2293   locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
2294   locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
2295   Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
2296   locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
2297 }
2298 
VisitStringNewStringFromBytes(HInvoke * invoke)2299 void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromBytes(HInvoke* invoke) {
2300   MipsAssembler* assembler = GetAssembler();
2301   LocationSummary* locations = invoke->GetLocations();
2302 
2303   Register byte_array = locations->InAt(0).AsRegister<Register>();
2304   SlowPathCodeMIPS* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke);
2305   codegen_->AddSlowPath(slow_path);
2306   __ Beqz(byte_array, slow_path->GetEntryLabel());
2307   codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path);
2308   __ Bind(slow_path->GetExitLabel());
2309 }
2310 
2311 // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
VisitStringNewStringFromChars(HInvoke * invoke)2312 void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromChars(HInvoke* invoke) {
2313   LocationSummary* locations =
2314       new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
2315   InvokeRuntimeCallingConvention calling_convention;
2316   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
2317   locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
2318   locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
2319   Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
2320   locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
2321 }
2322 
VisitStringNewStringFromChars(HInvoke * invoke)2323 void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromChars(HInvoke* invoke) {
2324   // No need to emit code checking whether `locations->InAt(2)` is a null
2325   // pointer, as callers of the native method
2326   //
2327   //   java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
2328   //
2329   // all include a null check on `data` before calling that method.
2330   codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
2331 }
2332 
2333 // java.lang.StringFactory.newStringFromString(String toCopy)
VisitStringNewStringFromString(HInvoke * invoke)2334 void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromString(HInvoke* invoke) {
2335   LocationSummary* locations = new (allocator_) LocationSummary(
2336       invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
2337   InvokeRuntimeCallingConvention calling_convention;
2338   locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
2339   Location outLocation = calling_convention.GetReturnLocation(DataType::Type::kInt32);
2340   locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
2341 }
2342 
VisitStringNewStringFromString(HInvoke * invoke)2343 void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromString(HInvoke* invoke) {
2344   MipsAssembler* assembler = GetAssembler();
2345   LocationSummary* locations = invoke->GetLocations();
2346 
2347   Register string_to_copy = locations->InAt(0).AsRegister<Register>();
2348   SlowPathCodeMIPS* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke);
2349   codegen_->AddSlowPath(slow_path);
2350   __ Beqz(string_to_copy, slow_path->GetEntryLabel());
2351   codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc());
2352   __ Bind(slow_path->GetExitLabel());
2353 }
2354 
GenIsInfinite(LocationSummary * locations,const DataType::Type type,const bool isR6,MipsAssembler * assembler)2355 static void GenIsInfinite(LocationSummary* locations,
2356                           const DataType::Type type,
2357                           const bool isR6,
2358                           MipsAssembler* assembler) {
2359   FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
2360   Register out = locations->Out().AsRegister<Register>();
2361 
2362   DCHECK(type == DataType::Type::kFloat32 || type == DataType::Type::kFloat64);
2363 
2364   if (isR6) {
2365     if (type == DataType::Type::kFloat64) {
2366         __ ClassD(FTMP, in);
2367     } else {
2368         __ ClassS(FTMP, in);
2369     }
2370     __ Mfc1(out, FTMP);
2371     __ Andi(out, out, kPositiveInfinity | kNegativeInfinity);
2372     __ Sltu(out, ZERO, out);
2373   } else {
2374     // If one, or more, of the exponent bits is zero, then the number can't be infinite.
2375     if (type == DataType::Type::kFloat64) {
2376       __ MoveFromFpuHigh(TMP, in);
2377       __ LoadConst32(AT, High32Bits(kPositiveInfinityDouble));
2378     } else {
2379       __ Mfc1(TMP, in);
2380       __ LoadConst32(AT, kPositiveInfinityFloat);
2381     }
2382     __ Xor(TMP, TMP, AT);
2383 
2384     __ Sll(TMP, TMP, 1);
2385 
2386     if (type == DataType::Type::kFloat64) {
2387       __ Mfc1(AT, in);
2388       __ Or(TMP, TMP, AT);
2389     }
2390     // If any of the significand bits are one, then the number is not infinite.
2391     __ Sltiu(out, TMP, 1);
2392   }
2393 }
2394 
2395 // boolean java.lang.Float.isInfinite(float)
VisitFloatIsInfinite(HInvoke * invoke)2396 void IntrinsicLocationsBuilderMIPS::VisitFloatIsInfinite(HInvoke* invoke) {
2397   CreateFPToIntLocations(allocator_, invoke);
2398 }
2399 
VisitFloatIsInfinite(HInvoke * invoke)2400 void IntrinsicCodeGeneratorMIPS::VisitFloatIsInfinite(HInvoke* invoke) {
2401   GenIsInfinite(invoke->GetLocations(), DataType::Type::kFloat32, IsR6(), GetAssembler());
2402 }
2403 
2404 // boolean java.lang.Double.isInfinite(double)
VisitDoubleIsInfinite(HInvoke * invoke)2405 void IntrinsicLocationsBuilderMIPS::VisitDoubleIsInfinite(HInvoke* invoke) {
2406   CreateFPToIntLocations(allocator_, invoke);
2407 }
2408 
VisitDoubleIsInfinite(HInvoke * invoke)2409 void IntrinsicCodeGeneratorMIPS::VisitDoubleIsInfinite(HInvoke* invoke) {
2410   GenIsInfinite(invoke->GetLocations(), DataType::Type::kFloat64, IsR6(), GetAssembler());
2411 }
2412 
GenHighestOneBit(LocationSummary * locations,const DataType::Type type,bool isR6,MipsAssembler * assembler)2413 static void GenHighestOneBit(LocationSummary* locations,
2414                              const DataType::Type type,
2415                              bool isR6,
2416                              MipsAssembler* assembler) {
2417   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
2418 
2419   if (type == DataType::Type::kInt64) {
2420     Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
2421     Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
2422     Register out_lo = locations->Out().AsRegisterPairLow<Register>();
2423     Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
2424 
2425     if (isR6) {
2426       __ ClzR6(TMP, in_hi);
2427     } else {
2428       __ ClzR2(TMP, in_hi);
2429     }
2430     __ LoadConst32(AT, 0x80000000);
2431     __ Srlv(out_hi, AT, TMP);
2432     __ And(out_hi, out_hi, in_hi);
2433     if (isR6) {
2434       __ ClzR6(TMP, in_lo);
2435     } else {
2436       __ ClzR2(TMP, in_lo);
2437     }
2438     __ Srlv(out_lo, AT, TMP);
2439     __ And(out_lo, out_lo, in_lo);
2440     if (isR6) {
2441       __ Seleqz(out_lo, out_lo, out_hi);
2442     } else {
2443       __ Movn(out_lo, ZERO, out_hi);
2444     }
2445   } else {
2446     Register in = locations->InAt(0).AsRegister<Register>();
2447     Register out = locations->Out().AsRegister<Register>();
2448 
2449     if (isR6) {
2450       __ ClzR6(TMP, in);
2451     } else {
2452       __ ClzR2(TMP, in);
2453     }
2454     __ LoadConst32(AT, 0x80000000);
2455     __ Srlv(AT, AT, TMP);  // Srlv shifts in the range of [0;31] bits (lower 5 bits of arg).
2456     __ And(out, AT, in);   // So this is required for 0 (=shift by 32).
2457   }
2458 }
2459 
2460 // int java.lang.Integer.highestOneBit(int)
VisitIntegerHighestOneBit(HInvoke * invoke)2461 void IntrinsicLocationsBuilderMIPS::VisitIntegerHighestOneBit(HInvoke* invoke) {
2462   CreateIntToIntLocations(allocator_, invoke);
2463 }
2464 
VisitIntegerHighestOneBit(HInvoke * invoke)2465 void IntrinsicCodeGeneratorMIPS::VisitIntegerHighestOneBit(HInvoke* invoke) {
2466   GenHighestOneBit(invoke->GetLocations(), DataType::Type::kInt32, IsR6(), GetAssembler());
2467 }
2468 
2469 // long java.lang.Long.highestOneBit(long)
VisitLongHighestOneBit(HInvoke * invoke)2470 void IntrinsicLocationsBuilderMIPS::VisitLongHighestOneBit(HInvoke* invoke) {
2471   CreateIntToIntLocations(allocator_, invoke, Location::kOutputOverlap);
2472 }
2473 
VisitLongHighestOneBit(HInvoke * invoke)2474 void IntrinsicCodeGeneratorMIPS::VisitLongHighestOneBit(HInvoke* invoke) {
2475   GenHighestOneBit(invoke->GetLocations(), DataType::Type::kInt64, IsR6(), GetAssembler());
2476 }
2477 
GenLowestOneBit(LocationSummary * locations,const DataType::Type type,bool isR6,MipsAssembler * assembler)2478 static void GenLowestOneBit(LocationSummary* locations,
2479                             const DataType::Type type,
2480                             bool isR6,
2481                             MipsAssembler* assembler) {
2482   DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
2483 
2484   if (type == DataType::Type::kInt64) {
2485     Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
2486     Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
2487     Register out_lo = locations->Out().AsRegisterPairLow<Register>();
2488     Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
2489 
2490     __ Subu(TMP, ZERO, in_lo);
2491     __ And(out_lo, TMP, in_lo);
2492     __ Subu(TMP, ZERO, in_hi);
2493     __ And(out_hi, TMP, in_hi);
2494     if (isR6) {
2495       __ Seleqz(out_hi, out_hi, out_lo);
2496     } else {
2497       __ Movn(out_hi, ZERO, out_lo);
2498     }
2499   } else {
2500     Register in = locations->InAt(0).AsRegister<Register>();
2501     Register out = locations->Out().AsRegister<Register>();
2502 
2503     __ Subu(TMP, ZERO, in);
2504     __ And(out, TMP, in);
2505   }
2506 }
2507 
2508 // int java.lang.Integer.lowestOneBit(int)
VisitIntegerLowestOneBit(HInvoke * invoke)2509 void IntrinsicLocationsBuilderMIPS::VisitIntegerLowestOneBit(HInvoke* invoke) {
2510   CreateIntToIntLocations(allocator_, invoke);
2511 }
2512 
VisitIntegerLowestOneBit(HInvoke * invoke)2513 void IntrinsicCodeGeneratorMIPS::VisitIntegerLowestOneBit(HInvoke* invoke) {
2514   GenLowestOneBit(invoke->GetLocations(), DataType::Type::kInt32, IsR6(), GetAssembler());
2515 }
2516 
2517 // long java.lang.Long.lowestOneBit(long)
VisitLongLowestOneBit(HInvoke * invoke)2518 void IntrinsicLocationsBuilderMIPS::VisitLongLowestOneBit(HInvoke* invoke) {
2519   CreateIntToIntLocations(allocator_, invoke);
2520 }
2521 
VisitLongLowestOneBit(HInvoke * invoke)2522 void IntrinsicCodeGeneratorMIPS::VisitLongLowestOneBit(HInvoke* invoke) {
2523   GenLowestOneBit(invoke->GetLocations(), DataType::Type::kInt64, IsR6(), GetAssembler());
2524 }
2525 
2526 // int java.lang.Math.round(float)
VisitMathRoundFloat(HInvoke * invoke)2527 void IntrinsicLocationsBuilderMIPS::VisitMathRoundFloat(HInvoke* invoke) {
2528   LocationSummary* locations =
2529       new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
2530   locations->SetInAt(0, Location::RequiresFpuRegister());
2531   locations->AddTemp(Location::RequiresFpuRegister());
2532   locations->SetOut(Location::RequiresRegister());
2533 }
2534 
VisitMathRoundFloat(HInvoke * invoke)2535 void IntrinsicCodeGeneratorMIPS::VisitMathRoundFloat(HInvoke* invoke) {
2536   LocationSummary* locations = invoke->GetLocations();
2537   MipsAssembler* assembler = GetAssembler();
2538   FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
2539   FRegister half = locations->GetTemp(0).AsFpuRegister<FRegister>();
2540   Register out = locations->Out().AsRegister<Register>();
2541 
2542   MipsLabel done;
2543 
2544   if (IsR6()) {
2545     // out = floor(in);
2546     //
2547     // if (out != MAX_VALUE && out != MIN_VALUE) {
2548     //     TMP = ((in - out) >= 0.5) ? 1 : 0;
2549     //     return out += TMP;
2550     // }
2551     // return out;
2552 
2553     // out = floor(in);
2554     __ FloorWS(FTMP, in);
2555     __ Mfc1(out, FTMP);
2556 
2557     // if (out != MAX_VALUE && out != MIN_VALUE)
2558     __ Addiu(TMP, out, 1);
2559     __ Aui(TMP, TMP, 0x8000);  // TMP = out + 0x8000 0001
2560                                // or    out - 0x7FFF FFFF.
2561                                // IOW, TMP = 1 if out = Int.MIN_VALUE
2562                                // or   TMP = 0 if out = Int.MAX_VALUE.
2563     __ Srl(TMP, TMP, 1);       // TMP = 0 if out = Int.MIN_VALUE
2564                                //         or out = Int.MAX_VALUE.
2565     __ Beqz(TMP, &done);
2566 
2567     // TMP = (0.5f <= (in - out)) ? -1 : 0;
2568     __ Cvtsw(FTMP, FTMP);      // Convert output of floor.w.s back to "float".
2569     __ LoadConst32(AT, bit_cast<int32_t, float>(0.5f));
2570     __ SubS(FTMP, in, FTMP);
2571     __ Mtc1(AT, half);
2572 
2573     __ CmpLeS(FTMP, half, FTMP);
2574     __ Mfc1(TMP, FTMP);
2575 
2576     // Return out -= TMP.
2577     __ Subu(out, out, TMP);
2578   } else {
2579     // if (in.isNaN) {
2580     //   return 0;
2581     // }
2582     //
2583     // out = floor.w.s(in);
2584     //
2585     // /*
2586     //  * This "if" statement is only needed for the pre-R6 version of floor.w.s
2587     //  * which outputs Integer.MAX_VALUE for negative numbers with magnitudes
2588     //  * too large to fit in a 32-bit integer.
2589     //  */
2590     // if (out == Integer.MAX_VALUE) {
2591     //   TMP = (in < 0.0f) ? 1 : 0;
2592     //   /*
2593     //    * If TMP is 1, then adding it to out will wrap its value from
2594     //    * Integer.MAX_VALUE to Integer.MIN_VALUE.
2595     //    */
2596     //   return out += TMP;
2597     // }
2598     //
2599     // /*
2600     //  * For negative values not handled by the previous "if" statement the
2601     //  * test here will correctly set the value of TMP.
2602     //  */
2603     // TMP = ((in - out) >= 0.5f) ? 1 : 0;
2604     // return out += TMP;
2605 
2606     MipsLabel finite;
2607     MipsLabel add;
2608 
2609     // Test for NaN.
2610     __ CunS(in, in);
2611 
2612     // Return zero for NaN.
2613     __ Move(out, ZERO);
2614     __ Bc1t(&done);
2615 
2616     // out = floor(in);
2617     __ FloorWS(FTMP, in);
2618     __ Mfc1(out, FTMP);
2619 
2620     __ LoadConst32(TMP, -1);
2621 
2622     // TMP = (out = java.lang.Integer.MAX_VALUE) ? -1 : 0;
2623     __ LoadConst32(AT, std::numeric_limits<int32_t>::max());
2624     __ Bne(AT, out, &finite);
2625 
2626     __ Mtc1(ZERO, FTMP);
2627     __ ColtS(in, FTMP);
2628 
2629     __ B(&add);
2630 
2631     __ Bind(&finite);
2632 
2633     // TMP = (0.5f <= (in - out)) ? -1 : 0;
2634     __ Cvtsw(FTMP, FTMP);  // Convert output of floor.w.s back to "float".
2635     __ LoadConst32(AT, bit_cast<int32_t, float>(0.5f));
2636     __ SubS(FTMP, in, FTMP);
2637     __ Mtc1(AT, half);
2638     __ ColeS(half, FTMP);
2639 
2640     __ Bind(&add);
2641 
2642     __ Movf(TMP, ZERO);
2643 
2644     // Return out -= TMP.
2645     __ Subu(out, out, TMP);
2646   }
2647   __ Bind(&done);
2648 }
2649 
2650 // void java.lang.String.getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
VisitStringGetCharsNoCheck(HInvoke * invoke)2651 void IntrinsicLocationsBuilderMIPS::VisitStringGetCharsNoCheck(HInvoke* invoke) {
2652   LocationSummary* locations =
2653       new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
2654   locations->SetInAt(0, Location::RequiresRegister());
2655   locations->SetInAt(1, Location::RequiresRegister());
2656   locations->SetInAt(2, Location::RequiresRegister());
2657   locations->SetInAt(3, Location::RequiresRegister());
2658   locations->SetInAt(4, Location::RequiresRegister());
2659 
2660   locations->AddTemp(Location::RequiresRegister());
2661   locations->AddTemp(Location::RequiresRegister());
2662   locations->AddTemp(Location::RequiresRegister());
2663 }
2664 
VisitStringGetCharsNoCheck(HInvoke * invoke)2665 void IntrinsicCodeGeneratorMIPS::VisitStringGetCharsNoCheck(HInvoke* invoke) {
2666   MipsAssembler* assembler = GetAssembler();
2667   LocationSummary* locations = invoke->GetLocations();
2668 
2669   // Check assumption that sizeof(Char) is 2 (used in scaling below).
2670   const size_t char_size = DataType::Size(DataType::Type::kUint16);
2671   DCHECK_EQ(char_size, 2u);
2672   const size_t char_shift = DataType::SizeShift(DataType::Type::kUint16);
2673 
2674   Register srcObj = locations->InAt(0).AsRegister<Register>();
2675   Register srcBegin = locations->InAt(1).AsRegister<Register>();
2676   Register srcEnd = locations->InAt(2).AsRegister<Register>();
2677   Register dstObj = locations->InAt(3).AsRegister<Register>();
2678   Register dstBegin = locations->InAt(4).AsRegister<Register>();
2679 
2680   Register dstPtr = locations->GetTemp(0).AsRegister<Register>();
2681   Register srcPtr = locations->GetTemp(1).AsRegister<Register>();
2682   Register numChrs = locations->GetTemp(2).AsRegister<Register>();
2683 
2684   MipsLabel done;
2685   MipsLabel loop;
2686 
2687   // Location of data in char array buffer.
2688   const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
2689 
2690   // Get offset of value field within a string object.
2691   const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
2692 
2693   __ Beq(srcEnd, srcBegin, &done);  // No characters to move.
2694 
2695   // Calculate number of characters to be copied.
2696   __ Subu(numChrs, srcEnd, srcBegin);
2697 
2698   // Calculate destination address.
2699   __ Addiu(dstPtr, dstObj, data_offset);
2700   __ ShiftAndAdd(dstPtr, dstBegin, dstPtr, char_shift);
2701 
2702   if (mirror::kUseStringCompression) {
2703     MipsLabel uncompressed_copy, compressed_loop;
2704     const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
2705     // Load count field and extract compression flag.
2706     __ LoadFromOffset(kLoadWord, TMP, srcObj, count_offset);
2707     __ Sll(TMP, TMP, 31);
2708 
2709     // If string is uncompressed, use uncompressed path.
2710     __ Bnez(TMP, &uncompressed_copy);
2711 
2712     // Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time.
2713     __ Addu(srcPtr, srcObj, srcBegin);
2714     __ Bind(&compressed_loop);
2715     __ LoadFromOffset(kLoadUnsignedByte, TMP, srcPtr, value_offset);
2716     __ StoreToOffset(kStoreHalfword, TMP, dstPtr, 0);
2717     __ Addiu(numChrs, numChrs, -1);
2718     __ Addiu(srcPtr, srcPtr, 1);
2719     __ Addiu(dstPtr, dstPtr, 2);
2720     __ Bnez(numChrs, &compressed_loop);
2721 
2722     __ B(&done);
2723     __ Bind(&uncompressed_copy);
2724   }
2725 
2726   // Calculate source address.
2727   __ Addiu(srcPtr, srcObj, value_offset);
2728   __ ShiftAndAdd(srcPtr, srcBegin, srcPtr, char_shift);
2729 
2730   __ Bind(&loop);
2731   __ Lh(AT, srcPtr, 0);
2732   __ Addiu(numChrs, numChrs, -1);
2733   __ Addiu(srcPtr, srcPtr, char_size);
2734   __ Sh(AT, dstPtr, 0);
2735   __ Addiu(dstPtr, dstPtr, char_size);
2736   __ Bnez(numChrs, &loop);
2737 
2738   __ Bind(&done);
2739 }
2740 
CreateFPToFPCallLocations(ArenaAllocator * allocator,HInvoke * invoke)2741 static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
2742   LocationSummary* locations =
2743       new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
2744   InvokeRuntimeCallingConvention calling_convention;
2745 
2746   locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
2747   locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kFloat64));
2748 }
2749 
CreateFPFPToFPCallLocations(ArenaAllocator * allocator,HInvoke * invoke)2750 static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
2751   LocationSummary* locations =
2752       new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
2753   InvokeRuntimeCallingConvention calling_convention;
2754 
2755   locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
2756   locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
2757   locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kFloat64));
2758 }
2759 
GenFPToFPCall(HInvoke * invoke,CodeGeneratorMIPS * codegen,QuickEntrypointEnum entry)2760 static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorMIPS* codegen, QuickEntrypointEnum entry) {
2761   LocationSummary* locations = invoke->GetLocations();
2762   FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
2763   DCHECK_EQ(in, F12);
2764   FRegister out = locations->Out().AsFpuRegister<FRegister>();
2765   DCHECK_EQ(out, F0);
2766 
2767   codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
2768 }
2769 
GenFPFPToFPCall(HInvoke * invoke,CodeGeneratorMIPS * codegen,QuickEntrypointEnum entry)2770 static void GenFPFPToFPCall(HInvoke* invoke,
2771                             CodeGeneratorMIPS* codegen,
2772                             QuickEntrypointEnum entry) {
2773   LocationSummary* locations = invoke->GetLocations();
2774   FRegister in0 = locations->InAt(0).AsFpuRegister<FRegister>();
2775   DCHECK_EQ(in0, F12);
2776   FRegister in1 = locations->InAt(1).AsFpuRegister<FRegister>();
2777   DCHECK_EQ(in1, F14);
2778   FRegister out = locations->Out().AsFpuRegister<FRegister>();
2779   DCHECK_EQ(out, F0);
2780 
2781   codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
2782 }
2783 
2784 // static double java.lang.Math.cos(double a)
VisitMathCos(HInvoke * invoke)2785 void IntrinsicLocationsBuilderMIPS::VisitMathCos(HInvoke* invoke) {
2786   CreateFPToFPCallLocations(allocator_, invoke);
2787 }
2788 
VisitMathCos(HInvoke * invoke)2789 void IntrinsicCodeGeneratorMIPS::VisitMathCos(HInvoke* invoke) {
2790   GenFPToFPCall(invoke, codegen_, kQuickCos);
2791 }
2792 
2793 // static double java.lang.Math.sin(double a)
VisitMathSin(HInvoke * invoke)2794 void IntrinsicLocationsBuilderMIPS::VisitMathSin(HInvoke* invoke) {
2795   CreateFPToFPCallLocations(allocator_, invoke);
2796 }
2797 
VisitMathSin(HInvoke * invoke)2798 void IntrinsicCodeGeneratorMIPS::VisitMathSin(HInvoke* invoke) {
2799   GenFPToFPCall(invoke, codegen_, kQuickSin);
2800 }
2801 
2802 // static double java.lang.Math.acos(double a)
VisitMathAcos(HInvoke * invoke)2803 void IntrinsicLocationsBuilderMIPS::VisitMathAcos(HInvoke* invoke) {
2804   CreateFPToFPCallLocations(allocator_, invoke);
2805 }
2806 
VisitMathAcos(HInvoke * invoke)2807 void IntrinsicCodeGeneratorMIPS::VisitMathAcos(HInvoke* invoke) {
2808   GenFPToFPCall(invoke, codegen_, kQuickAcos);
2809 }
2810 
2811 // static double java.lang.Math.asin(double a)
VisitMathAsin(HInvoke * invoke)2812 void IntrinsicLocationsBuilderMIPS::VisitMathAsin(HInvoke* invoke) {
2813   CreateFPToFPCallLocations(allocator_, invoke);
2814 }
2815 
VisitMathAsin(HInvoke * invoke)2816 void IntrinsicCodeGeneratorMIPS::VisitMathAsin(HInvoke* invoke) {
2817   GenFPToFPCall(invoke, codegen_, kQuickAsin);
2818 }
2819 
2820 // static double java.lang.Math.atan(double a)
VisitMathAtan(HInvoke * invoke)2821 void IntrinsicLocationsBuilderMIPS::VisitMathAtan(HInvoke* invoke) {
2822   CreateFPToFPCallLocations(allocator_, invoke);
2823 }
2824 
VisitMathAtan(HInvoke * invoke)2825 void IntrinsicCodeGeneratorMIPS::VisitMathAtan(HInvoke* invoke) {
2826   GenFPToFPCall(invoke, codegen_, kQuickAtan);
2827 }
2828 
2829 // static double java.lang.Math.atan2(double y, double x)
VisitMathAtan2(HInvoke * invoke)2830 void IntrinsicLocationsBuilderMIPS::VisitMathAtan2(HInvoke* invoke) {
2831   CreateFPFPToFPCallLocations(allocator_, invoke);
2832 }
2833 
VisitMathAtan2(HInvoke * invoke)2834 void IntrinsicCodeGeneratorMIPS::VisitMathAtan2(HInvoke* invoke) {
2835   GenFPFPToFPCall(invoke, codegen_, kQuickAtan2);
2836 }
2837 
2838 // static double java.lang.Math.pow(double y, double x)
VisitMathPow(HInvoke * invoke)2839 void IntrinsicLocationsBuilderMIPS::VisitMathPow(HInvoke* invoke) {
2840   CreateFPFPToFPCallLocations(allocator_, invoke);
2841 }
2842 
VisitMathPow(HInvoke * invoke)2843 void IntrinsicCodeGeneratorMIPS::VisitMathPow(HInvoke* invoke) {
2844   GenFPFPToFPCall(invoke, codegen_, kQuickPow);
2845 }
2846 
2847 // static double java.lang.Math.cbrt(double a)
VisitMathCbrt(HInvoke * invoke)2848 void IntrinsicLocationsBuilderMIPS::VisitMathCbrt(HInvoke* invoke) {
2849   CreateFPToFPCallLocations(allocator_, invoke);
2850 }
2851 
VisitMathCbrt(HInvoke * invoke)2852 void IntrinsicCodeGeneratorMIPS::VisitMathCbrt(HInvoke* invoke) {
2853   GenFPToFPCall(invoke, codegen_, kQuickCbrt);
2854 }
2855 
2856 // static double java.lang.Math.cosh(double x)
VisitMathCosh(HInvoke * invoke)2857 void IntrinsicLocationsBuilderMIPS::VisitMathCosh(HInvoke* invoke) {
2858   CreateFPToFPCallLocations(allocator_, invoke);
2859 }
2860 
VisitMathCosh(HInvoke * invoke)2861 void IntrinsicCodeGeneratorMIPS::VisitMathCosh(HInvoke* invoke) {
2862   GenFPToFPCall(invoke, codegen_, kQuickCosh);
2863 }
2864 
2865 // static double java.lang.Math.exp(double a)
VisitMathExp(HInvoke * invoke)2866 void IntrinsicLocationsBuilderMIPS::VisitMathExp(HInvoke* invoke) {
2867   CreateFPToFPCallLocations(allocator_, invoke);
2868 }
2869 
VisitMathExp(HInvoke * invoke)2870 void IntrinsicCodeGeneratorMIPS::VisitMathExp(HInvoke* invoke) {
2871   GenFPToFPCall(invoke, codegen_, kQuickExp);
2872 }
2873 
2874 // static double java.lang.Math.expm1(double x)
VisitMathExpm1(HInvoke * invoke)2875 void IntrinsicLocationsBuilderMIPS::VisitMathExpm1(HInvoke* invoke) {
2876   CreateFPToFPCallLocations(allocator_, invoke);
2877 }
2878 
VisitMathExpm1(HInvoke * invoke)2879 void IntrinsicCodeGeneratorMIPS::VisitMathExpm1(HInvoke* invoke) {
2880   GenFPToFPCall(invoke, codegen_, kQuickExpm1);
2881 }
2882 
2883 // static double java.lang.Math.hypot(double x, double y)
VisitMathHypot(HInvoke * invoke)2884 void IntrinsicLocationsBuilderMIPS::VisitMathHypot(HInvoke* invoke) {
2885   CreateFPFPToFPCallLocations(allocator_, invoke);
2886 }
2887 
VisitMathHypot(HInvoke * invoke)2888 void IntrinsicCodeGeneratorMIPS::VisitMathHypot(HInvoke* invoke) {
2889   GenFPFPToFPCall(invoke, codegen_, kQuickHypot);
2890 }
2891 
2892 // static double java.lang.Math.log(double a)
VisitMathLog(HInvoke * invoke)2893 void IntrinsicLocationsBuilderMIPS::VisitMathLog(HInvoke* invoke) {
2894   CreateFPToFPCallLocations(allocator_, invoke);
2895 }
2896 
VisitMathLog(HInvoke * invoke)2897 void IntrinsicCodeGeneratorMIPS::VisitMathLog(HInvoke* invoke) {
2898   GenFPToFPCall(invoke, codegen_, kQuickLog);
2899 }
2900 
2901 // static double java.lang.Math.log10(double x)
VisitMathLog10(HInvoke * invoke)2902 void IntrinsicLocationsBuilderMIPS::VisitMathLog10(HInvoke* invoke) {
2903   CreateFPToFPCallLocations(allocator_, invoke);
2904 }
2905 
VisitMathLog10(HInvoke * invoke)2906 void IntrinsicCodeGeneratorMIPS::VisitMathLog10(HInvoke* invoke) {
2907   GenFPToFPCall(invoke, codegen_, kQuickLog10);
2908 }
2909 
2910 // static double java.lang.Math.nextAfter(double start, double direction)
VisitMathNextAfter(HInvoke * invoke)2911 void IntrinsicLocationsBuilderMIPS::VisitMathNextAfter(HInvoke* invoke) {
2912   CreateFPFPToFPCallLocations(allocator_, invoke);
2913 }
2914 
VisitMathNextAfter(HInvoke * invoke)2915 void IntrinsicCodeGeneratorMIPS::VisitMathNextAfter(HInvoke* invoke) {
2916   GenFPFPToFPCall(invoke, codegen_, kQuickNextAfter);
2917 }
2918 
2919 // static double java.lang.Math.sinh(double x)
VisitMathSinh(HInvoke * invoke)2920 void IntrinsicLocationsBuilderMIPS::VisitMathSinh(HInvoke* invoke) {
2921   CreateFPToFPCallLocations(allocator_, invoke);
2922 }
2923 
VisitMathSinh(HInvoke * invoke)2924 void IntrinsicCodeGeneratorMIPS::VisitMathSinh(HInvoke* invoke) {
2925   GenFPToFPCall(invoke, codegen_, kQuickSinh);
2926 }
2927 
2928 // static double java.lang.Math.tan(double a)
VisitMathTan(HInvoke * invoke)2929 void IntrinsicLocationsBuilderMIPS::VisitMathTan(HInvoke* invoke) {
2930   CreateFPToFPCallLocations(allocator_, invoke);
2931 }
2932 
VisitMathTan(HInvoke * invoke)2933 void IntrinsicCodeGeneratorMIPS::VisitMathTan(HInvoke* invoke) {
2934   GenFPToFPCall(invoke, codegen_, kQuickTan);
2935 }
2936 
2937 // static double java.lang.Math.tanh(double x)
VisitMathTanh(HInvoke * invoke)2938 void IntrinsicLocationsBuilderMIPS::VisitMathTanh(HInvoke* invoke) {
2939   CreateFPToFPCallLocations(allocator_, invoke);
2940 }
2941 
VisitMathTanh(HInvoke * invoke)2942 void IntrinsicCodeGeneratorMIPS::VisitMathTanh(HInvoke* invoke) {
2943   GenFPToFPCall(invoke, codegen_, kQuickTanh);
2944 }
2945 
2946 // static void java.lang.System.arraycopy(Object src, int srcPos,
2947 //                                        Object dest, int destPos,
2948 //                                        int length)
VisitSystemArrayCopyChar(HInvoke * invoke)2949 void IntrinsicLocationsBuilderMIPS::VisitSystemArrayCopyChar(HInvoke* invoke) {
2950   HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
2951   HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
2952   HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
2953 
2954   // As long as we are checking, we might as well check to see if the src and dest
2955   // positions are >= 0.
2956   if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
2957       (dest_pos != nullptr && dest_pos->GetValue() < 0)) {
2958     // We will have to fail anyways.
2959     return;
2960   }
2961 
2962   // And since we are already checking, check the length too.
2963   if (length != nullptr) {
2964     int32_t len = length->GetValue();
2965     if (len < 0) {
2966       // Just call as normal.
2967       return;
2968     }
2969   }
2970 
2971   // Okay, it is safe to generate inline code.
2972   LocationSummary* locations =
2973       new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
2974   // arraycopy(Object src, int srcPos, Object dest, int destPos, int length).
2975   locations->SetInAt(0, Location::RequiresRegister());
2976   locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
2977   locations->SetInAt(2, Location::RequiresRegister());
2978   locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
2979   locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
2980 
2981   locations->AddTemp(Location::RequiresRegister());
2982   locations->AddTemp(Location::RequiresRegister());
2983   locations->AddTemp(Location::RequiresRegister());
2984 }
2985 
2986 // Utility routine to verify that "length(input) - pos >= length"
EnoughItems(MipsAssembler * assembler,Register length_input_minus_pos,Location length,SlowPathCodeMIPS * slow_path)2987 static void EnoughItems(MipsAssembler* assembler,
2988                         Register length_input_minus_pos,
2989                         Location length,
2990                         SlowPathCodeMIPS* slow_path) {
2991   if (length.IsConstant()) {
2992     int32_t length_constant = length.GetConstant()->AsIntConstant()->GetValue();
2993 
2994     if (IsInt<16>(length_constant)) {
2995       __ Slti(TMP, length_input_minus_pos, length_constant);
2996       __ Bnez(TMP, slow_path->GetEntryLabel());
2997     } else {
2998       __ LoadConst32(TMP, length_constant);
2999       __ Blt(length_input_minus_pos, TMP, slow_path->GetEntryLabel());
3000     }
3001   } else {
3002     __ Blt(length_input_minus_pos, length.AsRegister<Register>(), slow_path->GetEntryLabel());
3003   }
3004 }
3005 
CheckPosition(MipsAssembler * assembler,Location pos,Register input,Location length,SlowPathCodeMIPS * slow_path,bool length_is_input_length=false)3006 static void CheckPosition(MipsAssembler* assembler,
3007                           Location pos,
3008                           Register input,
3009                           Location length,
3010                           SlowPathCodeMIPS* slow_path,
3011                           bool length_is_input_length = false) {
3012   // Where is the length in the Array?
3013   const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
3014 
3015   // Calculate length(input) - pos.
3016   if (pos.IsConstant()) {
3017     int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
3018     if (pos_const == 0) {
3019       if (!length_is_input_length) {
3020         // Check that length(input) >= length.
3021         __ LoadFromOffset(kLoadWord, AT, input, length_offset);
3022         EnoughItems(assembler, AT, length, slow_path);
3023       }
3024     } else {
3025       // Check that (length(input) - pos) >= zero.
3026       __ LoadFromOffset(kLoadWord, AT, input, length_offset);
3027       DCHECK_GT(pos_const, 0);
3028       __ Addiu32(AT, AT, -pos_const, TMP);
3029       __ Bltz(AT, slow_path->GetEntryLabel());
3030 
3031       // Verify that (length(input) - pos) >= length.
3032       EnoughItems(assembler, AT, length, slow_path);
3033     }
3034   } else if (length_is_input_length) {
3035     // The only way the copy can succeed is if pos is zero.
3036     Register pos_reg = pos.AsRegister<Register>();
3037     __ Bnez(pos_reg, slow_path->GetEntryLabel());
3038   } else {
3039     // Verify that pos >= 0.
3040     Register pos_reg = pos.AsRegister<Register>();
3041     __ Bltz(pos_reg, slow_path->GetEntryLabel());
3042 
3043     // Check that (length(input) - pos) >= zero.
3044     __ LoadFromOffset(kLoadWord, AT, input, length_offset);
3045     __ Subu(AT, AT, pos_reg);
3046     __ Bltz(AT, slow_path->GetEntryLabel());
3047 
3048     // Verify that (length(input) - pos) >= length.
3049     EnoughItems(assembler, AT, length, slow_path);
3050   }
3051 }
3052 
VisitSystemArrayCopyChar(HInvoke * invoke)3053 void IntrinsicCodeGeneratorMIPS::VisitSystemArrayCopyChar(HInvoke* invoke) {
3054   MipsAssembler* assembler = GetAssembler();
3055   LocationSummary* locations = invoke->GetLocations();
3056 
3057   Register src = locations->InAt(0).AsRegister<Register>();
3058   Location src_pos = locations->InAt(1);
3059   Register dest = locations->InAt(2).AsRegister<Register>();
3060   Location dest_pos = locations->InAt(3);
3061   Location length = locations->InAt(4);
3062 
3063   MipsLabel loop;
3064 
3065   Register dest_base = locations->GetTemp(0).AsRegister<Register>();
3066   Register src_base = locations->GetTemp(1).AsRegister<Register>();
3067   Register count = locations->GetTemp(2).AsRegister<Register>();
3068 
3069   SlowPathCodeMIPS* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathMIPS(invoke);
3070   codegen_->AddSlowPath(slow_path);
3071 
3072   // Bail out if the source and destination are the same (to handle overlap).
3073   __ Beq(src, dest, slow_path->GetEntryLabel());
3074 
3075   // Bail out if the source is null.
3076   __ Beqz(src, slow_path->GetEntryLabel());
3077 
3078   // Bail out if the destination is null.
3079   __ Beqz(dest, slow_path->GetEntryLabel());
3080 
3081   // Load length into register for count.
3082   if (length.IsConstant()) {
3083     __ LoadConst32(count, length.GetConstant()->AsIntConstant()->GetValue());
3084   } else {
3085     // If the length is negative, bail out.
3086     // We have already checked in the LocationsBuilder for the constant case.
3087     __ Bltz(length.AsRegister<Register>(), slow_path->GetEntryLabel());
3088 
3089     __ Move(count, length.AsRegister<Register>());
3090   }
3091 
3092   // Validity checks: source.
3093   CheckPosition(assembler, src_pos, src, Location::RegisterLocation(count), slow_path);
3094 
3095   // Validity checks: dest.
3096   CheckPosition(assembler, dest_pos, dest, Location::RegisterLocation(count), slow_path);
3097 
3098   // If count is zero, we're done.
3099   __ Beqz(count, slow_path->GetExitLabel());
3100 
3101   // Okay, everything checks out.  Finally time to do the copy.
3102   // Check assumption that sizeof(Char) is 2 (used in scaling below).
3103   const size_t char_size = DataType::Size(DataType::Type::kUint16);
3104   DCHECK_EQ(char_size, 2u);
3105 
3106   const size_t char_shift = DataType::SizeShift(DataType::Type::kUint16);
3107 
3108   const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
3109 
3110   // Calculate source and destination addresses.
3111   if (src_pos.IsConstant()) {
3112     int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue();
3113 
3114     __ Addiu32(src_base, src, data_offset + char_size * src_pos_const, TMP);
3115   } else {
3116     __ Addiu32(src_base, src, data_offset, TMP);
3117     __ ShiftAndAdd(src_base, src_pos.AsRegister<Register>(), src_base, char_shift);
3118   }
3119   if (dest_pos.IsConstant()) {
3120     int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue();
3121 
3122     __ Addiu32(dest_base, dest, data_offset + char_size * dest_pos_const, TMP);
3123   } else {
3124     __ Addiu32(dest_base, dest, data_offset, TMP);
3125     __ ShiftAndAdd(dest_base, dest_pos.AsRegister<Register>(), dest_base, char_shift);
3126   }
3127 
3128   __ Bind(&loop);
3129   __ Lh(TMP, src_base, 0);
3130   __ Addiu(src_base, src_base, char_size);
3131   __ Addiu(count, count, -1);
3132   __ Sh(TMP, dest_base, 0);
3133   __ Addiu(dest_base, dest_base, char_size);
3134   __ Bnez(count, &loop);
3135 
3136   __ Bind(slow_path->GetExitLabel());
3137 }
3138 
3139 // long java.lang.Integer.valueOf(long)
VisitIntegerValueOf(HInvoke * invoke)3140 void IntrinsicLocationsBuilderMIPS::VisitIntegerValueOf(HInvoke* invoke) {
3141   InvokeRuntimeCallingConvention calling_convention;
3142   IntrinsicVisitor::ComputeIntegerValueOfLocations(
3143       invoke,
3144       codegen_,
3145       calling_convention.GetReturnLocation(DataType::Type::kReference),
3146       Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
3147 }
3148 
VisitIntegerValueOf(HInvoke * invoke)3149 void IntrinsicCodeGeneratorMIPS::VisitIntegerValueOf(HInvoke* invoke) {
3150   IntrinsicVisitor::IntegerValueOfInfo info = IntrinsicVisitor::ComputeIntegerValueOfInfo();
3151   LocationSummary* locations = invoke->GetLocations();
3152   MipsAssembler* assembler = GetAssembler();
3153   InstructionCodeGeneratorMIPS* icodegen =
3154       down_cast<InstructionCodeGeneratorMIPS*>(codegen_->GetInstructionVisitor());
3155 
3156   Register out = locations->Out().AsRegister<Register>();
3157   InvokeRuntimeCallingConvention calling_convention;
3158   if (invoke->InputAt(0)->IsConstant()) {
3159     int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue();
3160     if (value >= info.low && value <= info.high) {
3161       // Just embed the j.l.Integer in the code.
3162       ScopedObjectAccess soa(Thread::Current());
3163       mirror::Object* boxed = info.cache->Get(value + (-info.low));
3164       DCHECK(boxed != nullptr && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(boxed));
3165       uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(boxed));
3166       __ LoadConst32(out, address);
3167     } else {
3168       // Allocate and initialize a new j.l.Integer.
3169       // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the
3170       // JIT object table.
3171       uint32_t address =
3172           dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer));
3173       __ LoadConst32(calling_convention.GetRegisterAt(0), address);
3174       codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
3175       CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
3176       __ StoreConstToOffset(kStoreWord, value, out, info.value_offset, TMP);
3177       // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
3178       // one.
3179       icodegen->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
3180     }
3181   } else {
3182     Register in = locations->InAt(0).AsRegister<Register>();
3183     MipsLabel allocate, done;
3184     int32_t count = static_cast<uint32_t>(info.high) - info.low + 1;
3185 
3186     // Is (info.low <= in) && (in <= info.high)?
3187     __ Addiu32(out, in, -info.low);
3188     // As unsigned quantities is out < (info.high - info.low + 1)?
3189     if (IsInt<16>(count)) {
3190       __ Sltiu(AT, out, count);
3191     } else {
3192       __ LoadConst32(AT, count);
3193       __ Sltu(AT, out, AT);
3194     }
3195     // Branch if out >= (info.high - info.low + 1).
3196     // This means that "in" is outside of the range [info.low, info.high].
3197     __ Beqz(AT, &allocate);
3198 
3199     // If the value is within the bounds, load the j.l.Integer directly from the array.
3200     uint32_t data_offset = mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
3201     uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.cache));
3202     __ LoadConst32(TMP, data_offset + address);
3203     __ ShiftAndAdd(out, out, TMP, TIMES_4);
3204     __ Lw(out, out, 0);
3205     __ MaybeUnpoisonHeapReference(out);
3206     __ B(&done);
3207 
3208     __ Bind(&allocate);
3209     // Otherwise allocate and initialize a new j.l.Integer.
3210     address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer));
3211     __ LoadConst32(calling_convention.GetRegisterAt(0), address);
3212     codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
3213     CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
3214     __ StoreToOffset(kStoreWord, in, out, info.value_offset);
3215     // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
3216     // one.
3217     icodegen->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
3218     __ Bind(&done);
3219   }
3220 }
3221 
3222 // static boolean java.lang.Thread.interrupted()
VisitThreadInterrupted(HInvoke * invoke)3223 void IntrinsicLocationsBuilderMIPS::VisitThreadInterrupted(HInvoke* invoke) {
3224   LocationSummary* locations =
3225       new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
3226   locations->SetOut(Location::RequiresRegister());
3227 }
3228 
VisitThreadInterrupted(HInvoke * invoke)3229 void IntrinsicCodeGeneratorMIPS::VisitThreadInterrupted(HInvoke* invoke) {
3230   MipsAssembler* assembler = GetAssembler();
3231   Register out = invoke->GetLocations()->Out().AsRegister<Register>();
3232   int32_t offset = Thread::InterruptedOffset<kMipsPointerSize>().Int32Value();
3233   __ LoadFromOffset(kLoadWord, out, TR, offset);
3234   MipsLabel done;
3235   __ Beqz(out, &done);
3236   __ Sync(0);
3237   __ StoreToOffset(kStoreWord, ZERO, TR, offset);
3238   __ Sync(0);
3239   __ Bind(&done);
3240 }
3241 
VisitReachabilityFence(HInvoke * invoke)3242 void IntrinsicLocationsBuilderMIPS::VisitReachabilityFence(HInvoke* invoke) {
3243   LocationSummary* locations =
3244       new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
3245   locations->SetInAt(0, Location::Any());
3246 }
3247 
VisitReachabilityFence(HInvoke * invoke ATTRIBUTE_UNUSED)3248 void IntrinsicCodeGeneratorMIPS::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { }
3249 
3250 // Unimplemented intrinsics.
3251 
3252 UNIMPLEMENTED_INTRINSIC(MIPS, MathCeil)
3253 UNIMPLEMENTED_INTRINSIC(MIPS, MathFloor)
3254 UNIMPLEMENTED_INTRINSIC(MIPS, MathRint)
3255 UNIMPLEMENTED_INTRINSIC(MIPS, MathRoundDouble)
3256 UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetLongVolatile);
3257 UNIMPLEMENTED_INTRINSIC(MIPS, UnsafePutLongVolatile);
3258 UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeCASLong)
3259 
3260 UNIMPLEMENTED_INTRINSIC(MIPS, ReferenceGetReferent)
3261 UNIMPLEMENTED_INTRINSIC(MIPS, SystemArrayCopy)
3262 
3263 UNIMPLEMENTED_INTRINSIC(MIPS, StringStringIndexOf);
3264 UNIMPLEMENTED_INTRINSIC(MIPS, StringStringIndexOfAfter);
3265 UNIMPLEMENTED_INTRINSIC(MIPS, StringBufferAppend);
3266 UNIMPLEMENTED_INTRINSIC(MIPS, StringBufferLength);
3267 UNIMPLEMENTED_INTRINSIC(MIPS, StringBufferToString);
3268 UNIMPLEMENTED_INTRINSIC(MIPS, StringBuilderAppend);
3269 UNIMPLEMENTED_INTRINSIC(MIPS, StringBuilderLength);
3270 UNIMPLEMENTED_INTRINSIC(MIPS, StringBuilderToString);
3271 
3272 // 1.8.
3273 UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndAddInt)
3274 UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndAddLong)
3275 UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetInt)
3276 UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetLong)
3277 UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetObject)
3278 
3279 UNREACHABLE_INTRINSICS(MIPS)
3280 
3281 #undef __
3282 
3283 }  // namespace mips
3284 }  // namespace art
3285