1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "load_store_elimination.h"
18
19 #include "base/array_ref.h"
20 #include "base/scoped_arena_allocator.h"
21 #include "base/scoped_arena_containers.h"
22 #include "escape.h"
23 #include "load_store_analysis.h"
24 #include "side_effects_analysis.h"
25
26 #include <iostream>
27
28 /**
29 * The general algorithm of load-store elimination (LSE).
30 * Load-store analysis in the previous pass collects a list of heap locations
31 * and does alias analysis of those heap locations.
32 * LSE keeps track of a list of heap values corresponding to the heap
33 * locations. It visits basic blocks in reverse post order and for
34 * each basic block, visits instructions sequentially, and processes
35 * instructions as follows:
36 * - If the instruction is a load, and the heap location for that load has a
37 * valid heap value, the load can be eliminated. In order to maintain the
38 * validity of all heap locations during the optimization phase, the real
39 * elimination is delayed till the end of LSE.
40 * - If the instruction is a store, it updates the heap value for the heap
41 * location of the store with the store instruction. The real heap value
42 * can be fetched from the store instruction. Heap values are invalidated
43 * for heap locations that may alias with the store instruction's heap
44 * location. The store instruction can be eliminated unless the value stored
45 * is later needed e.g. by a load from the same/aliased heap location or
46 * the heap location persists at method return/deoptimization.
47 * The store instruction is also needed if it's not used to track the heap
48 * value anymore, e.g. when it fails to merge with the heap values from other
49 * predecessors.
50 * - A store that stores the same value as the heap value is eliminated.
51 * - The list of heap values are merged at basic block entry from the basic
52 * block's predecessors. The algorithm is single-pass, so loop side-effects is
53 * used as best effort to decide if a heap location is stored inside the loop.
54 * - A special type of objects called singletons are instantiated in the method
55 * and have a single name, i.e. no aliases. Singletons have exclusive heap
56 * locations since they have no aliases. Singletons are helpful in narrowing
57 * down the life span of a heap location such that they do not always
58 * need to participate in merging heap values. Allocation of a singleton
59 * can be eliminated if that singleton is not used and does not persist
60 * at method return/deoptimization.
61 * - For newly instantiated instances, their heap values are initialized to
62 * language defined default values.
63 * - Some instructions such as invokes are treated as loading and invalidating
64 * all the heap values, depending on the instruction's side effects.
65 * - Finalizable objects are considered as persisting at method
66 * return/deoptimization.
67 * - Currently this LSE algorithm doesn't handle SIMD graph, e.g. with VecLoad
68 * and VecStore instructions.
69 * - Currently this LSE algorithm doesn't handle graph with try-catch, due to
70 * the special block merging structure.
71 */
72
73 namespace art {
74
75 // An unknown heap value. Loads with such a value in the heap location cannot be eliminated.
76 // A heap location can be set to kUnknownHeapValue when:
77 // - initially set a value.
78 // - killed due to aliasing, merging, invocation, or loop side effects.
79 static HInstruction* const kUnknownHeapValue =
80 reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-1));
81
82 // Default heap value after an allocation.
83 // A heap location can be set to that value right after an allocation.
84 static HInstruction* const kDefaultHeapValue =
85 reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-2));
86
87 // Use HGraphDelegateVisitor for which all VisitInvokeXXX() delegate to VisitInvoke().
88 class LSEVisitor : public HGraphDelegateVisitor {
89 public:
LSEVisitor(HGraph * graph,const HeapLocationCollector & heap_locations_collector,const SideEffectsAnalysis & side_effects,OptimizingCompilerStats * stats)90 LSEVisitor(HGraph* graph,
91 const HeapLocationCollector& heap_locations_collector,
92 const SideEffectsAnalysis& side_effects,
93 OptimizingCompilerStats* stats)
94 : HGraphDelegateVisitor(graph, stats),
95 heap_location_collector_(heap_locations_collector),
96 side_effects_(side_effects),
97 allocator_(graph->GetArenaStack()),
98 heap_values_for_(graph->GetBlocks().size(),
99 ScopedArenaVector<HInstruction*>(heap_locations_collector.
100 GetNumberOfHeapLocations(),
101 kUnknownHeapValue,
102 allocator_.Adapter(kArenaAllocLSE)),
103 allocator_.Adapter(kArenaAllocLSE)),
104 removed_loads_(allocator_.Adapter(kArenaAllocLSE)),
105 substitute_instructions_for_loads_(allocator_.Adapter(kArenaAllocLSE)),
106 possibly_removed_stores_(allocator_.Adapter(kArenaAllocLSE)),
107 singleton_new_instances_(allocator_.Adapter(kArenaAllocLSE)) {
108 }
109
VisitBasicBlock(HBasicBlock * block)110 void VisitBasicBlock(HBasicBlock* block) OVERRIDE {
111 // Populate the heap_values array for this block.
112 // TODO: try to reuse the heap_values array from one predecessor if possible.
113 if (block->IsLoopHeader()) {
114 HandleLoopSideEffects(block);
115 } else {
116 MergePredecessorValues(block);
117 }
118 HGraphVisitor::VisitBasicBlock(block);
119 }
120
AddTypeConversionIfNecessary(HInstruction * instruction,HInstruction * value,DataType::Type expected_type)121 HTypeConversion* AddTypeConversionIfNecessary(HInstruction* instruction,
122 HInstruction* value,
123 DataType::Type expected_type) {
124 HTypeConversion* type_conversion = nullptr;
125 // Should never add type conversion into boolean value.
126 if (expected_type != DataType::Type::kBool &&
127 !DataType::IsTypeConversionImplicit(value->GetType(), expected_type)) {
128 type_conversion = new (GetGraph()->GetAllocator()) HTypeConversion(
129 expected_type, value, instruction->GetDexPc());
130 instruction->GetBlock()->InsertInstructionBefore(type_conversion, instruction);
131 }
132 return type_conversion;
133 }
134
135 // Find an instruction's substitute if it's a removed load.
136 // Return the same instruction if it should not be removed.
FindSubstitute(HInstruction * instruction)137 HInstruction* FindSubstitute(HInstruction* instruction) {
138 if (!IsLoad(instruction)) {
139 return instruction;
140 }
141 size_t size = removed_loads_.size();
142 for (size_t i = 0; i < size; i++) {
143 if (removed_loads_[i] == instruction) {
144 HInstruction* substitute = substitute_instructions_for_loads_[i];
145 // The substitute list is a flat hierarchy.
146 DCHECK_EQ(FindSubstitute(substitute), substitute);
147 return substitute;
148 }
149 }
150 return instruction;
151 }
152
AddRemovedLoad(HInstruction * load,HInstruction * heap_value)153 void AddRemovedLoad(HInstruction* load, HInstruction* heap_value) {
154 DCHECK(IsLoad(load));
155 DCHECK_EQ(FindSubstitute(heap_value), heap_value) <<
156 "Unexpected heap_value that has a substitute " << heap_value->DebugName();
157 removed_loads_.push_back(load);
158 substitute_instructions_for_loads_.push_back(heap_value);
159 }
160
161 // Scan the list of removed loads to see if we can reuse `type_conversion`, if
162 // the other removed load has the same substitute and type and is dominated
163 // by `type_conversioni`.
TryToReuseTypeConversion(HInstruction * type_conversion,size_t index)164 void TryToReuseTypeConversion(HInstruction* type_conversion, size_t index) {
165 size_t size = removed_loads_.size();
166 HInstruction* load = removed_loads_[index];
167 HInstruction* substitute = substitute_instructions_for_loads_[index];
168 for (size_t j = index + 1; j < size; j++) {
169 HInstruction* load2 = removed_loads_[j];
170 HInstruction* substitute2 = substitute_instructions_for_loads_[j];
171 if (load2 == nullptr) {
172 DCHECK(substitute2->IsTypeConversion());
173 continue;
174 }
175 DCHECK(load2->IsInstanceFieldGet() ||
176 load2->IsStaticFieldGet() ||
177 load2->IsArrayGet());
178 DCHECK(substitute2 != nullptr);
179 if (substitute2 == substitute &&
180 load2->GetType() == load->GetType() &&
181 type_conversion->GetBlock()->Dominates(load2->GetBlock()) &&
182 // Don't share across irreducible loop headers.
183 // TODO: can be more fine-grained than this by testing each dominator.
184 (load2->GetBlock() == type_conversion->GetBlock() ||
185 !GetGraph()->HasIrreducibleLoops())) {
186 // The removed_loads_ are added in reverse post order.
187 DCHECK(type_conversion->StrictlyDominates(load2));
188 load2->ReplaceWith(type_conversion);
189 load2->GetBlock()->RemoveInstruction(load2);
190 removed_loads_[j] = nullptr;
191 substitute_instructions_for_loads_[j] = type_conversion;
192 }
193 }
194 }
195
196 // Remove recorded instructions that should be eliminated.
RemoveInstructions()197 void RemoveInstructions() {
198 size_t size = removed_loads_.size();
199 DCHECK_EQ(size, substitute_instructions_for_loads_.size());
200 for (size_t i = 0; i < size; i++) {
201 HInstruction* load = removed_loads_[i];
202 if (load == nullptr) {
203 // The load has been handled in the scan for type conversion below.
204 DCHECK(substitute_instructions_for_loads_[i]->IsTypeConversion());
205 continue;
206 }
207 DCHECK(load->IsInstanceFieldGet() ||
208 load->IsStaticFieldGet() ||
209 load->IsArrayGet());
210 HInstruction* substitute = substitute_instructions_for_loads_[i];
211 DCHECK(substitute != nullptr);
212 // We proactively retrieve the substitute for a removed load, so
213 // a load that has a substitute should not be observed as a heap
214 // location value.
215 DCHECK_EQ(FindSubstitute(substitute), substitute);
216
217 // The load expects to load the heap value as type load->GetType().
218 // However the tracked heap value may not be of that type. An explicit
219 // type conversion may be needed.
220 // There are actually three types involved here:
221 // (1) tracked heap value's type (type A)
222 // (2) heap location (field or element)'s type (type B)
223 // (3) load's type (type C)
224 // We guarantee that type A stored as type B and then fetched out as
225 // type C is the same as casting from type A to type C directly, since
226 // type B and type C will have the same size which is guarenteed in
227 // HInstanceFieldGet/HStaticFieldGet/HArrayGet's SetType().
228 // So we only need one type conversion from type A to type C.
229 HTypeConversion* type_conversion = AddTypeConversionIfNecessary(
230 load, substitute, load->GetType());
231 if (type_conversion != nullptr) {
232 TryToReuseTypeConversion(type_conversion, i);
233 load->ReplaceWith(type_conversion);
234 substitute_instructions_for_loads_[i] = type_conversion;
235 } else {
236 load->ReplaceWith(substitute);
237 }
238 load->GetBlock()->RemoveInstruction(load);
239 }
240
241 // At this point, stores in possibly_removed_stores_ can be safely removed.
242 for (HInstruction* store : possibly_removed_stores_) {
243 DCHECK(store->IsInstanceFieldSet() || store->IsStaticFieldSet() || store->IsArraySet());
244 store->GetBlock()->RemoveInstruction(store);
245 }
246
247 // Eliminate singleton-classified instructions:
248 // * - Constructor fences (they never escape this thread).
249 // * - Allocations (if they are unused).
250 for (HInstruction* new_instance : singleton_new_instances_) {
251 size_t removed = HConstructorFence::RemoveConstructorFences(new_instance);
252 MaybeRecordStat(stats_,
253 MethodCompilationStat::kConstructorFenceRemovedLSE,
254 removed);
255
256 if (!new_instance->HasNonEnvironmentUses()) {
257 new_instance->RemoveEnvironmentUsers();
258 new_instance->GetBlock()->RemoveInstruction(new_instance);
259 }
260 }
261 }
262
263 private:
IsLoad(HInstruction * instruction)264 static bool IsLoad(HInstruction* instruction) {
265 if (instruction == kUnknownHeapValue || instruction == kDefaultHeapValue) {
266 return false;
267 }
268 // Unresolved load is not treated as a load.
269 return instruction->IsInstanceFieldGet() ||
270 instruction->IsStaticFieldGet() ||
271 instruction->IsArrayGet();
272 }
273
IsStore(HInstruction * instruction)274 static bool IsStore(HInstruction* instruction) {
275 if (instruction == kUnknownHeapValue || instruction == kDefaultHeapValue) {
276 return false;
277 }
278 // Unresolved store is not treated as a store.
279 return instruction->IsInstanceFieldSet() ||
280 instruction->IsArraySet() ||
281 instruction->IsStaticFieldSet();
282 }
283
284 // Returns the real heap value by finding its substitute or by "peeling"
285 // a store instruction.
GetRealHeapValue(HInstruction * heap_value)286 HInstruction* GetRealHeapValue(HInstruction* heap_value) {
287 if (IsLoad(heap_value)) {
288 return FindSubstitute(heap_value);
289 }
290 if (!IsStore(heap_value)) {
291 return heap_value;
292 }
293
294 // We keep track of store instructions as the heap values which might be
295 // eliminated if the stores are later found not necessary. The real stored
296 // value needs to be fetched from the store instruction.
297 if (heap_value->IsInstanceFieldSet()) {
298 heap_value = heap_value->AsInstanceFieldSet()->GetValue();
299 } else if (heap_value->IsStaticFieldSet()) {
300 heap_value = heap_value->AsStaticFieldSet()->GetValue();
301 } else {
302 DCHECK(heap_value->IsArraySet());
303 heap_value = heap_value->AsArraySet()->GetValue();
304 }
305 // heap_value may already be a removed load.
306 return FindSubstitute(heap_value);
307 }
308
309 // If heap_value is a store, need to keep the store.
310 // This is necessary if a heap value is killed or replaced by another value,
311 // so that the store is no longer used to track heap value.
KeepIfIsStore(HInstruction * heap_value)312 void KeepIfIsStore(HInstruction* heap_value) {
313 if (!IsStore(heap_value)) {
314 return;
315 }
316 auto idx = std::find(possibly_removed_stores_.begin(),
317 possibly_removed_stores_.end(), heap_value);
318 if (idx != possibly_removed_stores_.end()) {
319 // Make sure the store is kept.
320 possibly_removed_stores_.erase(idx);
321 }
322 }
323
324 // If a heap location X may alias with heap location at `loc_index`
325 // and heap_values of that heap location X holds a store, keep that store.
326 // It's needed for a dependent load that's not eliminated since any store
327 // that may put value into the load's heap location needs to be kept.
KeepStoresIfAliasedToLocation(ScopedArenaVector<HInstruction * > & heap_values,size_t loc_index)328 void KeepStoresIfAliasedToLocation(ScopedArenaVector<HInstruction*>& heap_values,
329 size_t loc_index) {
330 for (size_t i = 0; i < heap_values.size(); i++) {
331 if ((i == loc_index) || heap_location_collector_.MayAlias(i, loc_index)) {
332 KeepIfIsStore(heap_values[i]);
333 }
334 }
335 }
336
HandleLoopSideEffects(HBasicBlock * block)337 void HandleLoopSideEffects(HBasicBlock* block) {
338 DCHECK(block->IsLoopHeader());
339 int block_id = block->GetBlockId();
340 ScopedArenaVector<HInstruction*>& heap_values = heap_values_for_[block_id];
341 HBasicBlock* pre_header = block->GetLoopInformation()->GetPreHeader();
342 ScopedArenaVector<HInstruction*>& pre_header_heap_values =
343 heap_values_for_[pre_header->GetBlockId()];
344
345 // Don't eliminate loads in irreducible loops.
346 // Also keep the stores before the loop.
347 if (block->GetLoopInformation()->IsIrreducible()) {
348 if (kIsDebugBuild) {
349 for (size_t i = 0; i < heap_values.size(); i++) {
350 DCHECK_EQ(heap_values[i], kUnknownHeapValue);
351 }
352 }
353 for (size_t i = 0; i < heap_values.size(); i++) {
354 KeepIfIsStore(pre_header_heap_values[i]);
355 }
356 return;
357 }
358
359 // Inherit the values from pre-header.
360 for (size_t i = 0; i < heap_values.size(); i++) {
361 heap_values[i] = pre_header_heap_values[i];
362 }
363
364 // We do a single pass in reverse post order. For loops, use the side effects as a hint
365 // to see if the heap values should be killed.
366 if (side_effects_.GetLoopEffects(block).DoesAnyWrite()) {
367 for (size_t i = 0; i < heap_values.size(); i++) {
368 HeapLocation* location = heap_location_collector_.GetHeapLocation(i);
369 ReferenceInfo* ref_info = location->GetReferenceInfo();
370 if (ref_info->IsSingleton() && !location->IsValueKilledByLoopSideEffects()) {
371 // A singleton's field that's not stored into inside a loop is
372 // invariant throughout the loop. Nothing to do.
373 } else {
374 // heap value is killed by loop side effects.
375 KeepIfIsStore(pre_header_heap_values[i]);
376 heap_values[i] = kUnknownHeapValue;
377 }
378 }
379 } else {
380 // The loop doesn't kill any value.
381 }
382 }
383
MergePredecessorValues(HBasicBlock * block)384 void MergePredecessorValues(HBasicBlock* block) {
385 ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors());
386 if (predecessors.size() == 0) {
387 return;
388 }
389 if (block->IsExitBlock()) {
390 // Exit block doesn't really merge values since the control flow ends in
391 // its predecessors. Each predecessor needs to make sure stores are kept
392 // if necessary.
393 return;
394 }
395
396 ScopedArenaVector<HInstruction*>& heap_values = heap_values_for_[block->GetBlockId()];
397 for (size_t i = 0; i < heap_values.size(); i++) {
398 HInstruction* merged_value = nullptr;
399 // If we can merge the store itself from the predecessors, we keep
400 // the store as the heap value as long as possible. In case we cannot
401 // merge the store, we try to merge the values of the stores.
402 HInstruction* merged_store_value = nullptr;
403 // Whether merged_value is a result that's merged from all predecessors.
404 bool from_all_predecessors = true;
405 ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
406 HInstruction* ref = ref_info->GetReference();
407 HInstruction* singleton_ref = nullptr;
408 if (ref_info->IsSingleton()) {
409 // We do more analysis based on singleton's liveness when merging
410 // heap values for such cases.
411 singleton_ref = ref;
412 }
413
414 for (HBasicBlock* predecessor : predecessors) {
415 HInstruction* pred_value = heap_values_for_[predecessor->GetBlockId()][i];
416 if (!IsStore(pred_value)) {
417 pred_value = FindSubstitute(pred_value);
418 }
419 DCHECK(pred_value != nullptr);
420 HInstruction* pred_store_value = GetRealHeapValue(pred_value);
421 if ((singleton_ref != nullptr) &&
422 !singleton_ref->GetBlock()->Dominates(predecessor)) {
423 // singleton_ref is not live in this predecessor. No need to merge
424 // since singleton_ref is not live at the beginning of this block.
425 DCHECK_EQ(pred_value, kUnknownHeapValue);
426 from_all_predecessors = false;
427 break;
428 }
429 if (merged_value == nullptr) {
430 // First seen heap value.
431 DCHECK(pred_value != nullptr);
432 merged_value = pred_value;
433 } else if (pred_value != merged_value) {
434 // There are conflicting values.
435 merged_value = kUnknownHeapValue;
436 // We may still be able to merge store values.
437 }
438
439 // Conflicting stores may be storing the same value. We do another merge
440 // of real stored values.
441 if (merged_store_value == nullptr) {
442 // First seen store value.
443 DCHECK(pred_store_value != nullptr);
444 merged_store_value = pred_store_value;
445 } else if (pred_store_value != merged_store_value) {
446 // There are conflicting store values.
447 merged_store_value = kUnknownHeapValue;
448 // There must be conflicting stores also.
449 DCHECK_EQ(merged_value, kUnknownHeapValue);
450 // No need to merge anymore.
451 break;
452 }
453 }
454
455 if (merged_value == nullptr) {
456 DCHECK(!from_all_predecessors);
457 DCHECK(singleton_ref != nullptr);
458 }
459 if (from_all_predecessors) {
460 if (ref_info->IsSingletonAndRemovable() &&
461 block->IsSingleReturnOrReturnVoidAllowingPhis()) {
462 // Values in the singleton are not needed anymore.
463 } else if (!IsStore(merged_value)) {
464 // We don't track merged value as a store anymore. We have to
465 // hold the stores in predecessors live here.
466 for (HBasicBlock* predecessor : predecessors) {
467 ScopedArenaVector<HInstruction*>& pred_values =
468 heap_values_for_[predecessor->GetBlockId()];
469 KeepIfIsStore(pred_values[i]);
470 }
471 }
472 } else {
473 DCHECK(singleton_ref != nullptr);
474 // singleton_ref is non-existing at the beginning of the block. There is
475 // no need to keep the stores.
476 }
477
478 if (!from_all_predecessors) {
479 DCHECK(singleton_ref != nullptr);
480 DCHECK((singleton_ref->GetBlock() == block) ||
481 !singleton_ref->GetBlock()->Dominates(block))
482 << "method: " << GetGraph()->GetMethodName();
483 // singleton_ref is not defined before block or defined only in some of its
484 // predecessors, so block doesn't really have the location at its entry.
485 heap_values[i] = kUnknownHeapValue;
486 } else if (predecessors.size() == 1) {
487 // Inherit heap value from the single predecessor.
488 DCHECK_EQ(heap_values_for_[predecessors[0]->GetBlockId()][i], merged_value);
489 heap_values[i] = merged_value;
490 } else {
491 DCHECK(merged_value == kUnknownHeapValue ||
492 merged_value == kDefaultHeapValue ||
493 merged_value->GetBlock()->Dominates(block));
494 if (merged_value != kUnknownHeapValue) {
495 heap_values[i] = merged_value;
496 } else {
497 // Stores in different predecessors may be storing the same value.
498 heap_values[i] = merged_store_value;
499 }
500 }
501 }
502 }
503
504 // `instruction` is being removed. Try to see if the null check on it
505 // can be removed. This can happen if the same value is set in two branches
506 // but not in dominators. Such as:
507 // int[] a = foo();
508 // if () {
509 // a[0] = 2;
510 // } else {
511 // a[0] = 2;
512 // }
513 // // a[0] can now be replaced with constant 2, and the null check on it can be removed.
TryRemovingNullCheck(HInstruction * instruction)514 void TryRemovingNullCheck(HInstruction* instruction) {
515 HInstruction* prev = instruction->GetPrevious();
516 if ((prev != nullptr) && prev->IsNullCheck() && (prev == instruction->InputAt(0))) {
517 // Previous instruction is a null check for this instruction. Remove the null check.
518 prev->ReplaceWith(prev->InputAt(0));
519 prev->GetBlock()->RemoveInstruction(prev);
520 }
521 }
522
GetDefaultValue(DataType::Type type)523 HInstruction* GetDefaultValue(DataType::Type type) {
524 switch (type) {
525 case DataType::Type::kReference:
526 return GetGraph()->GetNullConstant();
527 case DataType::Type::kBool:
528 case DataType::Type::kUint8:
529 case DataType::Type::kInt8:
530 case DataType::Type::kUint16:
531 case DataType::Type::kInt16:
532 case DataType::Type::kInt32:
533 return GetGraph()->GetIntConstant(0);
534 case DataType::Type::kInt64:
535 return GetGraph()->GetLongConstant(0);
536 case DataType::Type::kFloat32:
537 return GetGraph()->GetFloatConstant(0);
538 case DataType::Type::kFloat64:
539 return GetGraph()->GetDoubleConstant(0);
540 default:
541 UNREACHABLE();
542 }
543 }
544
VisitGetLocation(HInstruction * instruction,HInstruction * ref,size_t offset,HInstruction * index,size_t vector_length,int16_t declaring_class_def_index)545 void VisitGetLocation(HInstruction* instruction,
546 HInstruction* ref,
547 size_t offset,
548 HInstruction* index,
549 size_t vector_length,
550 int16_t declaring_class_def_index) {
551 HInstruction* original_ref = heap_location_collector_.HuntForOriginalReference(ref);
552 ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(original_ref);
553 size_t idx = heap_location_collector_.FindHeapLocationIndex(
554 ref_info, offset, index, vector_length, declaring_class_def_index);
555 DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound);
556 ScopedArenaVector<HInstruction*>& heap_values =
557 heap_values_for_[instruction->GetBlock()->GetBlockId()];
558 HInstruction* heap_value = heap_values[idx];
559 if (heap_value == kDefaultHeapValue) {
560 HInstruction* constant = GetDefaultValue(instruction->GetType());
561 AddRemovedLoad(instruction, constant);
562 heap_values[idx] = constant;
563 return;
564 }
565 heap_value = GetRealHeapValue(heap_value);
566 if (heap_value == kUnknownHeapValue) {
567 // Load isn't eliminated. Put the load as the value into the HeapLocation.
568 // This acts like GVN but with better aliasing analysis.
569 heap_values[idx] = instruction;
570 KeepStoresIfAliasedToLocation(heap_values, idx);
571 } else {
572 if (DataType::Kind(heap_value->GetType()) != DataType::Kind(instruction->GetType())) {
573 // The only situation where the same heap location has different type is when
574 // we do an array get on an instruction that originates from the null constant
575 // (the null could be behind a field access, an array access, a null check or
576 // a bound type).
577 // In order to stay properly typed on primitive types, we do not eliminate
578 // the array gets.
579 if (kIsDebugBuild) {
580 DCHECK(heap_value->IsArrayGet()) << heap_value->DebugName();
581 DCHECK(instruction->IsArrayGet()) << instruction->DebugName();
582 }
583 // Load isn't eliminated. Put the load as the value into the HeapLocation.
584 // This acts like GVN but with better aliasing analysis.
585 heap_values[idx] = instruction;
586 KeepStoresIfAliasedToLocation(heap_values, idx);
587 return;
588 }
589 AddRemovedLoad(instruction, heap_value);
590 TryRemovingNullCheck(instruction);
591 }
592 }
593
Equal(HInstruction * heap_value,HInstruction * value)594 bool Equal(HInstruction* heap_value, HInstruction* value) {
595 DCHECK(!IsStore(value)) << value->DebugName();
596 if (heap_value == kUnknownHeapValue) {
597 // Don't compare kUnknownHeapValue with other values.
598 return false;
599 }
600 if (heap_value == value) {
601 return true;
602 }
603 if (heap_value == kDefaultHeapValue && GetDefaultValue(value->GetType()) == value) {
604 return true;
605 }
606 HInstruction* real_heap_value = GetRealHeapValue(heap_value);
607 if (real_heap_value != heap_value) {
608 return Equal(real_heap_value, value);
609 }
610 return false;
611 }
612
VisitSetLocation(HInstruction * instruction,HInstruction * ref,size_t offset,HInstruction * index,size_t vector_length,int16_t declaring_class_def_index,HInstruction * value)613 void VisitSetLocation(HInstruction* instruction,
614 HInstruction* ref,
615 size_t offset,
616 HInstruction* index,
617 size_t vector_length,
618 int16_t declaring_class_def_index,
619 HInstruction* value) {
620 DCHECK(!IsStore(value)) << value->DebugName();
621 // value may already have a substitute.
622 value = FindSubstitute(value);
623 HInstruction* original_ref = heap_location_collector_.HuntForOriginalReference(ref);
624 ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(original_ref);
625 size_t idx = heap_location_collector_.FindHeapLocationIndex(
626 ref_info, offset, index, vector_length, declaring_class_def_index);
627 DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound);
628 ScopedArenaVector<HInstruction*>& heap_values =
629 heap_values_for_[instruction->GetBlock()->GetBlockId()];
630 HInstruction* heap_value = heap_values[idx];
631 bool possibly_redundant = false;
632
633 if (Equal(heap_value, value)) {
634 // Store into the heap location with the same value.
635 // This store can be eliminated right away.
636 instruction->GetBlock()->RemoveInstruction(instruction);
637 return;
638 } else {
639 HLoopInformation* loop_info = instruction->GetBlock()->GetLoopInformation();
640 if (loop_info == nullptr) {
641 // Store is not in a loop. We try to precisely track the heap value by
642 // the store.
643 possibly_redundant = true;
644 } else if (!loop_info->IsIrreducible()) {
645 // instruction is a store in the loop so the loop must do write.
646 DCHECK(side_effects_.GetLoopEffects(loop_info->GetHeader()).DoesAnyWrite());
647 if (ref_info->IsSingleton() && !loop_info->IsDefinedOutOfTheLoop(original_ref)) {
648 // original_ref is created inside the loop. Value stored to it isn't needed at
649 // the loop header. This is true for outer loops also.
650 possibly_redundant = true;
651 } else {
652 // Keep the store since its value may be needed at the loop header.
653 }
654 } else {
655 // Keep the store inside irreducible loops.
656 }
657 }
658 if (possibly_redundant) {
659 possibly_removed_stores_.push_back(instruction);
660 }
661
662 // Put the store as the heap value. If the value is loaded or needed after
663 // return/deoptimization later, this store isn't really redundant.
664 heap_values[idx] = instruction;
665
666 // This store may kill values in other heap locations due to aliasing.
667 for (size_t i = 0; i < heap_values.size(); i++) {
668 if (i == idx) {
669 continue;
670 }
671 if (Equal(heap_values[i], value)) {
672 // Same value should be kept even if aliasing happens.
673 continue;
674 }
675 if (heap_values[i] == kUnknownHeapValue) {
676 // Value is already unknown, no need for aliasing check.
677 continue;
678 }
679 if (heap_location_collector_.MayAlias(i, idx)) {
680 // Kill heap locations that may alias and as a result if the heap value
681 // is a store, the store needs to be kept.
682 KeepIfIsStore(heap_values[i]);
683 heap_values[i] = kUnknownHeapValue;
684 }
685 }
686 }
687
VisitInstanceFieldGet(HInstanceFieldGet * instruction)688 void VisitInstanceFieldGet(HInstanceFieldGet* instruction) OVERRIDE {
689 HInstruction* obj = instruction->InputAt(0);
690 size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue();
691 int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex();
692 VisitGetLocation(instruction,
693 obj,
694 offset,
695 nullptr,
696 HeapLocation::kScalar,
697 declaring_class_def_index);
698 }
699
VisitInstanceFieldSet(HInstanceFieldSet * instruction)700 void VisitInstanceFieldSet(HInstanceFieldSet* instruction) OVERRIDE {
701 HInstruction* obj = instruction->InputAt(0);
702 size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue();
703 int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex();
704 HInstruction* value = instruction->InputAt(1);
705 VisitSetLocation(instruction,
706 obj,
707 offset,
708 nullptr,
709 HeapLocation::kScalar,
710 declaring_class_def_index,
711 value);
712 }
713
VisitStaticFieldGet(HStaticFieldGet * instruction)714 void VisitStaticFieldGet(HStaticFieldGet* instruction) OVERRIDE {
715 HInstruction* cls = instruction->InputAt(0);
716 size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue();
717 int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex();
718 VisitGetLocation(instruction,
719 cls,
720 offset,
721 nullptr,
722 HeapLocation::kScalar,
723 declaring_class_def_index);
724 }
725
VisitStaticFieldSet(HStaticFieldSet * instruction)726 void VisitStaticFieldSet(HStaticFieldSet* instruction) OVERRIDE {
727 HInstruction* cls = instruction->InputAt(0);
728 size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue();
729 int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex();
730 HInstruction* value = instruction->InputAt(1);
731 VisitSetLocation(instruction,
732 cls,
733 offset,
734 nullptr,
735 HeapLocation::kScalar,
736 declaring_class_def_index,
737 value);
738 }
739
VisitArrayGet(HArrayGet * instruction)740 void VisitArrayGet(HArrayGet* instruction) OVERRIDE {
741 HInstruction* array = instruction->InputAt(0);
742 HInstruction* index = instruction->InputAt(1);
743 VisitGetLocation(instruction,
744 array,
745 HeapLocation::kInvalidFieldOffset,
746 index,
747 HeapLocation::kScalar,
748 HeapLocation::kDeclaringClassDefIndexForArrays);
749 }
750
VisitArraySet(HArraySet * instruction)751 void VisitArraySet(HArraySet* instruction) OVERRIDE {
752 HInstruction* array = instruction->InputAt(0);
753 HInstruction* index = instruction->InputAt(1);
754 HInstruction* value = instruction->InputAt(2);
755 VisitSetLocation(instruction,
756 array,
757 HeapLocation::kInvalidFieldOffset,
758 index,
759 HeapLocation::kScalar,
760 HeapLocation::kDeclaringClassDefIndexForArrays,
761 value);
762 }
763
VisitDeoptimize(HDeoptimize * instruction)764 void VisitDeoptimize(HDeoptimize* instruction) {
765 const ScopedArenaVector<HInstruction*>& heap_values =
766 heap_values_for_[instruction->GetBlock()->GetBlockId()];
767 for (HInstruction* heap_value : heap_values) {
768 // A store is kept as the heap value for possibly removed stores.
769 // That value stored is generally observeable after deoptimization, except
770 // for singletons that don't escape after deoptimization.
771 if (IsStore(heap_value)) {
772 if (heap_value->IsStaticFieldSet()) {
773 KeepIfIsStore(heap_value);
774 continue;
775 }
776 HInstruction* reference = heap_value->InputAt(0);
777 if (heap_location_collector_.FindReferenceInfoOf(reference)->IsSingleton()) {
778 if (reference->IsNewInstance() && reference->AsNewInstance()->IsFinalizable()) {
779 // Finalizable objects alway escape.
780 KeepIfIsStore(heap_value);
781 continue;
782 }
783 // Check whether the reference for a store is used by an environment local of
784 // HDeoptimize. If not, the singleton is not observed after
785 // deoptimizion.
786 for (const HUseListNode<HEnvironment*>& use : reference->GetEnvUses()) {
787 HEnvironment* user = use.GetUser();
788 if (user->GetHolder() == instruction) {
789 // The singleton for the store is visible at this deoptimization
790 // point. Need to keep the store so that the heap value is
791 // seen by the interpreter.
792 KeepIfIsStore(heap_value);
793 }
794 }
795 } else {
796 KeepIfIsStore(heap_value);
797 }
798 }
799 }
800 }
801
802 // Keep necessary stores before exiting a method via return/throw.
HandleExit(HBasicBlock * block)803 void HandleExit(HBasicBlock* block) {
804 const ScopedArenaVector<HInstruction*>& heap_values =
805 heap_values_for_[block->GetBlockId()];
806 for (size_t i = 0; i < heap_values.size(); i++) {
807 HInstruction* heap_value = heap_values[i];
808 ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
809 if (!ref_info->IsSingletonAndRemovable()) {
810 KeepIfIsStore(heap_value);
811 }
812 }
813 }
814
VisitReturn(HReturn * instruction)815 void VisitReturn(HReturn* instruction) OVERRIDE {
816 HandleExit(instruction->GetBlock());
817 }
818
VisitReturnVoid(HReturnVoid * return_void)819 void VisitReturnVoid(HReturnVoid* return_void) OVERRIDE {
820 HandleExit(return_void->GetBlock());
821 }
822
VisitThrow(HThrow * throw_instruction)823 void VisitThrow(HThrow* throw_instruction) OVERRIDE {
824 HandleExit(throw_instruction->GetBlock());
825 }
826
HandleInvoke(HInstruction * instruction)827 void HandleInvoke(HInstruction* instruction) {
828 SideEffects side_effects = instruction->GetSideEffects();
829 ScopedArenaVector<HInstruction*>& heap_values =
830 heap_values_for_[instruction->GetBlock()->GetBlockId()];
831 for (size_t i = 0; i < heap_values.size(); i++) {
832 ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
833 if (ref_info->IsSingleton()) {
834 // Singleton references cannot be seen by the callee.
835 } else {
836 if (side_effects.DoesAnyRead()) {
837 // Invocation may read the heap value.
838 KeepIfIsStore(heap_values[i]);
839 }
840 if (side_effects.DoesAnyWrite()) {
841 // Keep the store since it's not used to track the heap value anymore.
842 KeepIfIsStore(heap_values[i]);
843 heap_values[i] = kUnknownHeapValue;
844 }
845 }
846 }
847 }
848
VisitInvoke(HInvoke * invoke)849 void VisitInvoke(HInvoke* invoke) OVERRIDE {
850 HandleInvoke(invoke);
851 }
852
VisitClinitCheck(HClinitCheck * clinit)853 void VisitClinitCheck(HClinitCheck* clinit) OVERRIDE {
854 HandleInvoke(clinit);
855 }
856
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)857 void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instruction) OVERRIDE {
858 // Conservatively treat it as an invocation.
859 HandleInvoke(instruction);
860 }
861
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)862 void VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet* instruction) OVERRIDE {
863 // Conservatively treat it as an invocation.
864 HandleInvoke(instruction);
865 }
866
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)867 void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instruction) OVERRIDE {
868 // Conservatively treat it as an invocation.
869 HandleInvoke(instruction);
870 }
871
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)872 void VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet* instruction) OVERRIDE {
873 // Conservatively treat it as an invocation.
874 HandleInvoke(instruction);
875 }
876
VisitNewInstance(HNewInstance * new_instance)877 void VisitNewInstance(HNewInstance* new_instance) OVERRIDE {
878 ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_instance);
879 if (ref_info == nullptr) {
880 // new_instance isn't used for field accesses. No need to process it.
881 return;
882 }
883 if (ref_info->IsSingletonAndRemovable() && !new_instance->NeedsChecks()) {
884 DCHECK(!new_instance->IsFinalizable());
885 // new_instance can potentially be eliminated.
886 singleton_new_instances_.push_back(new_instance);
887 }
888 ScopedArenaVector<HInstruction*>& heap_values =
889 heap_values_for_[new_instance->GetBlock()->GetBlockId()];
890 for (size_t i = 0; i < heap_values.size(); i++) {
891 HInstruction* ref =
892 heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo()->GetReference();
893 size_t offset = heap_location_collector_.GetHeapLocation(i)->GetOffset();
894 if (ref == new_instance && offset >= mirror::kObjectHeaderSize) {
895 // Instance fields except the header fields are set to default heap values.
896 heap_values[i] = kDefaultHeapValue;
897 }
898 }
899 }
900
VisitNewArray(HNewArray * new_array)901 void VisitNewArray(HNewArray* new_array) OVERRIDE {
902 ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_array);
903 if (ref_info == nullptr) {
904 // new_array isn't used for array accesses. No need to process it.
905 return;
906 }
907 if (ref_info->IsSingletonAndRemovable()) {
908 if (new_array->GetLength()->IsIntConstant() &&
909 new_array->GetLength()->AsIntConstant()->GetValue() >= 0) {
910 // new_array can potentially be eliminated.
911 singleton_new_instances_.push_back(new_array);
912 } else {
913 // new_array may throw NegativeArraySizeException. Keep it.
914 }
915 }
916 ScopedArenaVector<HInstruction*>& heap_values =
917 heap_values_for_[new_array->GetBlock()->GetBlockId()];
918 for (size_t i = 0; i < heap_values.size(); i++) {
919 HeapLocation* location = heap_location_collector_.GetHeapLocation(i);
920 HInstruction* ref = location->GetReferenceInfo()->GetReference();
921 if (ref == new_array && location->GetIndex() != nullptr) {
922 // Array elements are set to default heap values.
923 heap_values[i] = kDefaultHeapValue;
924 }
925 }
926 }
927
928 const HeapLocationCollector& heap_location_collector_;
929 const SideEffectsAnalysis& side_effects_;
930
931 // Use local allocator for allocating memory.
932 ScopedArenaAllocator allocator_;
933
934 // One array of heap values for each block.
935 ScopedArenaVector<ScopedArenaVector<HInstruction*>> heap_values_for_;
936
937 // We record the instructions that should be eliminated but may be
938 // used by heap locations. They'll be removed in the end.
939 ScopedArenaVector<HInstruction*> removed_loads_;
940 ScopedArenaVector<HInstruction*> substitute_instructions_for_loads_;
941
942 // Stores in this list may be removed from the list later when it's
943 // found that the store cannot be eliminated.
944 ScopedArenaVector<HInstruction*> possibly_removed_stores_;
945
946 ScopedArenaVector<HInstruction*> singleton_new_instances_;
947
948 DISALLOW_COPY_AND_ASSIGN(LSEVisitor);
949 };
950
Run()951 void LoadStoreElimination::Run() {
952 if (graph_->IsDebuggable() || graph_->HasTryCatch()) {
953 // Debugger may set heap values or trigger deoptimization of callers.
954 // Try/catch support not implemented yet.
955 // Skip this optimization.
956 return;
957 }
958 const HeapLocationCollector& heap_location_collector = lsa_.GetHeapLocationCollector();
959 if (heap_location_collector.GetNumberOfHeapLocations() == 0) {
960 // No HeapLocation information from LSA, skip this optimization.
961 return;
962 }
963
964 // TODO: analyze VecLoad/VecStore better.
965 if (graph_->HasSIMD()) {
966 return;
967 }
968
969 LSEVisitor lse_visitor(graph_, heap_location_collector, side_effects_, stats_);
970 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
971 lse_visitor.VisitBasicBlock(block);
972 }
973 lse_visitor.RemoveInstructions();
974 }
975
976 } // namespace art
977