1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include "nodes.h"
17
18 #include <cfloat>
19
20 #include "art_method-inl.h"
21 #include "base/bit_utils.h"
22 #include "base/bit_vector-inl.h"
23 #include "base/stl_util.h"
24 #include "class_linker-inl.h"
25 #include "code_generator.h"
26 #include "common_dominator.h"
27 #include "intrinsics.h"
28 #include "mirror/class-inl.h"
29 #include "scoped_thread_state_change-inl.h"
30 #include "ssa_builder.h"
31
32 namespace art {
33
34 // Enable floating-point static evaluation during constant folding
35 // only if all floating-point operations and constants evaluate in the
36 // range and precision of the type used (i.e., 32-bit float, 64-bit
37 // double).
38 static constexpr bool kEnableFloatingPointStaticEvaluation = (FLT_EVAL_METHOD == 0);
39
InitializeInexactObjectRTI(VariableSizedHandleScope * handles)40 void HGraph::InitializeInexactObjectRTI(VariableSizedHandleScope* handles) {
41 ScopedObjectAccess soa(Thread::Current());
42 // Create the inexact Object reference type and store it in the HGraph.
43 ClassLinker* linker = Runtime::Current()->GetClassLinker();
44 inexact_object_rti_ = ReferenceTypeInfo::Create(
45 handles->NewHandle(linker->GetClassRoot(ClassLinker::kJavaLangObject)),
46 /* is_exact */ false);
47 }
48
AddBlock(HBasicBlock * block)49 void HGraph::AddBlock(HBasicBlock* block) {
50 block->SetBlockId(blocks_.size());
51 blocks_.push_back(block);
52 }
53
FindBackEdges(ArenaBitVector * visited)54 void HGraph::FindBackEdges(ArenaBitVector* visited) {
55 // "visited" must be empty on entry, it's an output argument for all visited (i.e. live) blocks.
56 DCHECK_EQ(visited->GetHighestBitSet(), -1);
57
58 // Allocate memory from local ScopedArenaAllocator.
59 ScopedArenaAllocator allocator(GetArenaStack());
60 // Nodes that we're currently visiting, indexed by block id.
61 ArenaBitVector visiting(
62 &allocator, blocks_.size(), /* expandable */ false, kArenaAllocGraphBuilder);
63 visiting.ClearAllBits();
64 // Number of successors visited from a given node, indexed by block id.
65 ScopedArenaVector<size_t> successors_visited(blocks_.size(),
66 0u,
67 allocator.Adapter(kArenaAllocGraphBuilder));
68 // Stack of nodes that we're currently visiting (same as marked in "visiting" above).
69 ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocGraphBuilder));
70 constexpr size_t kDefaultWorklistSize = 8;
71 worklist.reserve(kDefaultWorklistSize);
72 visited->SetBit(entry_block_->GetBlockId());
73 visiting.SetBit(entry_block_->GetBlockId());
74 worklist.push_back(entry_block_);
75
76 while (!worklist.empty()) {
77 HBasicBlock* current = worklist.back();
78 uint32_t current_id = current->GetBlockId();
79 if (successors_visited[current_id] == current->GetSuccessors().size()) {
80 visiting.ClearBit(current_id);
81 worklist.pop_back();
82 } else {
83 HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
84 uint32_t successor_id = successor->GetBlockId();
85 if (visiting.IsBitSet(successor_id)) {
86 DCHECK(ContainsElement(worklist, successor));
87 successor->AddBackEdge(current);
88 } else if (!visited->IsBitSet(successor_id)) {
89 visited->SetBit(successor_id);
90 visiting.SetBit(successor_id);
91 worklist.push_back(successor);
92 }
93 }
94 }
95 }
96
97 // Remove the environment use records of the instruction for users.
RemoveEnvironmentUses(HInstruction * instruction)98 void RemoveEnvironmentUses(HInstruction* instruction) {
99 for (HEnvironment* environment = instruction->GetEnvironment();
100 environment != nullptr;
101 environment = environment->GetParent()) {
102 for (size_t i = 0, e = environment->Size(); i < e; ++i) {
103 if (environment->GetInstructionAt(i) != nullptr) {
104 environment->RemoveAsUserOfInput(i);
105 }
106 }
107 }
108 }
109
110 // Return whether the instruction has an environment and it's used by others.
HasEnvironmentUsedByOthers(HInstruction * instruction)111 bool HasEnvironmentUsedByOthers(HInstruction* instruction) {
112 for (HEnvironment* environment = instruction->GetEnvironment();
113 environment != nullptr;
114 environment = environment->GetParent()) {
115 for (size_t i = 0, e = environment->Size(); i < e; ++i) {
116 HInstruction* user = environment->GetInstructionAt(i);
117 if (user != nullptr) {
118 return true;
119 }
120 }
121 }
122 return false;
123 }
124
125 // Reset environment records of the instruction itself.
ResetEnvironmentInputRecords(HInstruction * instruction)126 void ResetEnvironmentInputRecords(HInstruction* instruction) {
127 for (HEnvironment* environment = instruction->GetEnvironment();
128 environment != nullptr;
129 environment = environment->GetParent()) {
130 for (size_t i = 0, e = environment->Size(); i < e; ++i) {
131 DCHECK(environment->GetHolder() == instruction);
132 if (environment->GetInstructionAt(i) != nullptr) {
133 environment->SetRawEnvAt(i, nullptr);
134 }
135 }
136 }
137 }
138
RemoveAsUser(HInstruction * instruction)139 static void RemoveAsUser(HInstruction* instruction) {
140 instruction->RemoveAsUserOfAllInputs();
141 RemoveEnvironmentUses(instruction);
142 }
143
RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector & visited) const144 void HGraph::RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const {
145 for (size_t i = 0; i < blocks_.size(); ++i) {
146 if (!visited.IsBitSet(i)) {
147 HBasicBlock* block = blocks_[i];
148 if (block == nullptr) continue;
149 DCHECK(block->GetPhis().IsEmpty()) << "Phis are not inserted at this stage";
150 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
151 RemoveAsUser(it.Current());
152 }
153 }
154 }
155 }
156
RemoveDeadBlocks(const ArenaBitVector & visited)157 void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) {
158 for (size_t i = 0; i < blocks_.size(); ++i) {
159 if (!visited.IsBitSet(i)) {
160 HBasicBlock* block = blocks_[i];
161 if (block == nullptr) continue;
162 // We only need to update the successor, which might be live.
163 for (HBasicBlock* successor : block->GetSuccessors()) {
164 successor->RemovePredecessor(block);
165 }
166 // Remove the block from the list of blocks, so that further analyses
167 // never see it.
168 blocks_[i] = nullptr;
169 if (block->IsExitBlock()) {
170 SetExitBlock(nullptr);
171 }
172 // Mark the block as removed. This is used by the HGraphBuilder to discard
173 // the block as a branch target.
174 block->SetGraph(nullptr);
175 }
176 }
177 }
178
BuildDominatorTree()179 GraphAnalysisResult HGraph::BuildDominatorTree() {
180 // Allocate memory from local ScopedArenaAllocator.
181 ScopedArenaAllocator allocator(GetArenaStack());
182
183 ArenaBitVector visited(&allocator, blocks_.size(), false, kArenaAllocGraphBuilder);
184 visited.ClearAllBits();
185
186 // (1) Find the back edges in the graph doing a DFS traversal.
187 FindBackEdges(&visited);
188
189 // (2) Remove instructions and phis from blocks not visited during
190 // the initial DFS as users from other instructions, so that
191 // users can be safely removed before uses later.
192 RemoveInstructionsAsUsersFromDeadBlocks(visited);
193
194 // (3) Remove blocks not visited during the initial DFS.
195 // Step (5) requires dead blocks to be removed from the
196 // predecessors list of live blocks.
197 RemoveDeadBlocks(visited);
198
199 // (4) Simplify the CFG now, so that we don't need to recompute
200 // dominators and the reverse post order.
201 SimplifyCFG();
202
203 // (5) Compute the dominance information and the reverse post order.
204 ComputeDominanceInformation();
205
206 // (6) Analyze loops discovered through back edge analysis, and
207 // set the loop information on each block.
208 GraphAnalysisResult result = AnalyzeLoops();
209 if (result != kAnalysisSuccess) {
210 return result;
211 }
212
213 // (7) Precompute per-block try membership before entering the SSA builder,
214 // which needs the information to build catch block phis from values of
215 // locals at throwing instructions inside try blocks.
216 ComputeTryBlockInformation();
217
218 return kAnalysisSuccess;
219 }
220
ClearDominanceInformation()221 void HGraph::ClearDominanceInformation() {
222 for (HBasicBlock* block : GetReversePostOrder()) {
223 block->ClearDominanceInformation();
224 }
225 reverse_post_order_.clear();
226 }
227
ClearLoopInformation()228 void HGraph::ClearLoopInformation() {
229 SetHasIrreducibleLoops(false);
230 for (HBasicBlock* block : GetReversePostOrder()) {
231 block->SetLoopInformation(nullptr);
232 }
233 }
234
ClearDominanceInformation()235 void HBasicBlock::ClearDominanceInformation() {
236 dominated_blocks_.clear();
237 dominator_ = nullptr;
238 }
239
GetFirstInstructionDisregardMoves() const240 HInstruction* HBasicBlock::GetFirstInstructionDisregardMoves() const {
241 HInstruction* instruction = GetFirstInstruction();
242 while (instruction->IsParallelMove()) {
243 instruction = instruction->GetNext();
244 }
245 return instruction;
246 }
247
UpdateDominatorOfSuccessor(HBasicBlock * block,HBasicBlock * successor)248 static bool UpdateDominatorOfSuccessor(HBasicBlock* block, HBasicBlock* successor) {
249 DCHECK(ContainsElement(block->GetSuccessors(), successor));
250
251 HBasicBlock* old_dominator = successor->GetDominator();
252 HBasicBlock* new_dominator =
253 (old_dominator == nullptr) ? block
254 : CommonDominator::ForPair(old_dominator, block);
255
256 if (old_dominator == new_dominator) {
257 return false;
258 } else {
259 successor->SetDominator(new_dominator);
260 return true;
261 }
262 }
263
ComputeDominanceInformation()264 void HGraph::ComputeDominanceInformation() {
265 DCHECK(reverse_post_order_.empty());
266 reverse_post_order_.reserve(blocks_.size());
267 reverse_post_order_.push_back(entry_block_);
268
269 // Allocate memory from local ScopedArenaAllocator.
270 ScopedArenaAllocator allocator(GetArenaStack());
271 // Number of visits of a given node, indexed by block id.
272 ScopedArenaVector<size_t> visits(blocks_.size(), 0u, allocator.Adapter(kArenaAllocGraphBuilder));
273 // Number of successors visited from a given node, indexed by block id.
274 ScopedArenaVector<size_t> successors_visited(blocks_.size(),
275 0u,
276 allocator.Adapter(kArenaAllocGraphBuilder));
277 // Nodes for which we need to visit successors.
278 ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocGraphBuilder));
279 constexpr size_t kDefaultWorklistSize = 8;
280 worklist.reserve(kDefaultWorklistSize);
281 worklist.push_back(entry_block_);
282
283 while (!worklist.empty()) {
284 HBasicBlock* current = worklist.back();
285 uint32_t current_id = current->GetBlockId();
286 if (successors_visited[current_id] == current->GetSuccessors().size()) {
287 worklist.pop_back();
288 } else {
289 HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++];
290 UpdateDominatorOfSuccessor(current, successor);
291
292 // Once all the forward edges have been visited, we know the immediate
293 // dominator of the block. We can then start visiting its successors.
294 if (++visits[successor->GetBlockId()] ==
295 successor->GetPredecessors().size() - successor->NumberOfBackEdges()) {
296 reverse_post_order_.push_back(successor);
297 worklist.push_back(successor);
298 }
299 }
300 }
301
302 // Check if the graph has back edges not dominated by their respective headers.
303 // If so, we need to update the dominators of those headers and recursively of
304 // their successors. We do that with a fix-point iteration over all blocks.
305 // The algorithm is guaranteed to terminate because it loops only if the sum
306 // of all dominator chains has decreased in the current iteration.
307 bool must_run_fix_point = false;
308 for (HBasicBlock* block : blocks_) {
309 if (block != nullptr &&
310 block->IsLoopHeader() &&
311 block->GetLoopInformation()->HasBackEdgeNotDominatedByHeader()) {
312 must_run_fix_point = true;
313 break;
314 }
315 }
316 if (must_run_fix_point) {
317 bool update_occurred = true;
318 while (update_occurred) {
319 update_occurred = false;
320 for (HBasicBlock* block : GetReversePostOrder()) {
321 for (HBasicBlock* successor : block->GetSuccessors()) {
322 update_occurred |= UpdateDominatorOfSuccessor(block, successor);
323 }
324 }
325 }
326 }
327
328 // Make sure that there are no remaining blocks whose dominator information
329 // needs to be updated.
330 if (kIsDebugBuild) {
331 for (HBasicBlock* block : GetReversePostOrder()) {
332 for (HBasicBlock* successor : block->GetSuccessors()) {
333 DCHECK(!UpdateDominatorOfSuccessor(block, successor));
334 }
335 }
336 }
337
338 // Populate `dominated_blocks_` information after computing all dominators.
339 // The potential presence of irreducible loops requires to do it after.
340 for (HBasicBlock* block : GetReversePostOrder()) {
341 if (!block->IsEntryBlock()) {
342 block->GetDominator()->AddDominatedBlock(block);
343 }
344 }
345 }
346
SplitEdge(HBasicBlock * block,HBasicBlock * successor)347 HBasicBlock* HGraph::SplitEdge(HBasicBlock* block, HBasicBlock* successor) {
348 HBasicBlock* new_block = new (allocator_) HBasicBlock(this, successor->GetDexPc());
349 AddBlock(new_block);
350 // Use `InsertBetween` to ensure the predecessor index and successor index of
351 // `block` and `successor` are preserved.
352 new_block->InsertBetween(block, successor);
353 return new_block;
354 }
355
SplitCriticalEdge(HBasicBlock * block,HBasicBlock * successor)356 void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) {
357 // Insert a new node between `block` and `successor` to split the
358 // critical edge.
359 HBasicBlock* new_block = SplitEdge(block, successor);
360 new_block->AddInstruction(new (allocator_) HGoto(successor->GetDexPc()));
361 if (successor->IsLoopHeader()) {
362 // If we split at a back edge boundary, make the new block the back edge.
363 HLoopInformation* info = successor->GetLoopInformation();
364 if (info->IsBackEdge(*block)) {
365 info->RemoveBackEdge(block);
366 info->AddBackEdge(new_block);
367 }
368 }
369 }
370
371 // Reorder phi inputs to match reordering of the block's predecessors.
FixPhisAfterPredecessorsReodering(HBasicBlock * block,size_t first,size_t second)372 static void FixPhisAfterPredecessorsReodering(HBasicBlock* block, size_t first, size_t second) {
373 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
374 HPhi* phi = it.Current()->AsPhi();
375 HInstruction* first_instr = phi->InputAt(first);
376 HInstruction* second_instr = phi->InputAt(second);
377 phi->ReplaceInput(first_instr, second);
378 phi->ReplaceInput(second_instr, first);
379 }
380 }
381
382 // Make sure that the first predecessor of a loop header is the incoming block.
OrderLoopHeaderPredecessors(HBasicBlock * header)383 void HGraph::OrderLoopHeaderPredecessors(HBasicBlock* header) {
384 DCHECK(header->IsLoopHeader());
385 HLoopInformation* info = header->GetLoopInformation();
386 if (info->IsBackEdge(*header->GetPredecessors()[0])) {
387 HBasicBlock* to_swap = header->GetPredecessors()[0];
388 for (size_t pred = 1, e = header->GetPredecessors().size(); pred < e; ++pred) {
389 HBasicBlock* predecessor = header->GetPredecessors()[pred];
390 if (!info->IsBackEdge(*predecessor)) {
391 header->predecessors_[pred] = to_swap;
392 header->predecessors_[0] = predecessor;
393 FixPhisAfterPredecessorsReodering(header, 0, pred);
394 break;
395 }
396 }
397 }
398 }
399
400 // Transform control flow of the loop to a single preheader format (don't touch the data flow).
401 // New_preheader can be already among the header predecessors - this situation will be correctly
402 // processed.
FixControlForNewSinglePreheader(HBasicBlock * header,HBasicBlock * new_preheader)403 static void FixControlForNewSinglePreheader(HBasicBlock* header, HBasicBlock* new_preheader) {
404 HLoopInformation* loop_info = header->GetLoopInformation();
405 for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
406 HBasicBlock* predecessor = header->GetPredecessors()[pred];
407 if (!loop_info->IsBackEdge(*predecessor) && predecessor != new_preheader) {
408 predecessor->ReplaceSuccessor(header, new_preheader);
409 pred--;
410 }
411 }
412 }
413
414 // == Before == == After ==
415 // _________ _________ _________ _________
416 // | B0 | | B1 | (old preheaders) | B0 | | B1 |
417 // |=========| |=========| |=========| |=========|
418 // | i0 = .. | | i1 = .. | | i0 = .. | | i1 = .. |
419 // |_________| |_________| |_________| |_________|
420 // \ / \ /
421 // \ / ___v____________v___
422 // \ / (new preheader) | B20 <- B0, B1 |
423 // | | |====================|
424 // | | | i20 = phi(i0, i1) |
425 // | | |____________________|
426 // | | |
427 // /\ | | /\ /\ | /\
428 // / v_______v_________v_______v \ / v___________v_____________v \
429 // | | B10 <- B0, B1, B2, B3 | | | | B10 <- B20, B2, B3 | |
430 // | |===========================| | (header) | |===========================| |
431 // | | i10 = phi(i0, i1, i2, i3) | | | | i10 = phi(i20, i2, i3) | |
432 // | |___________________________| | | |___________________________| |
433 // | / \ | | / \ |
434 // | ... ... | | ... ... |
435 // | _________ _________ | | _________ _________ |
436 // | | B2 | | B3 | | | | B2 | | B3 | |
437 // | |=========| |=========| | (back edges) | |=========| |=========| |
438 // | | i2 = .. | | i3 = .. | | | | i2 = .. | | i3 = .. | |
439 // | |_________| |_________| | | |_________| |_________| |
440 // \ / \ / \ / \ /
441 // \___/ \___/ \___/ \___/
442 //
TransformLoopToSinglePreheaderFormat(HBasicBlock * header)443 void HGraph::TransformLoopToSinglePreheaderFormat(HBasicBlock* header) {
444 HLoopInformation* loop_info = header->GetLoopInformation();
445
446 HBasicBlock* preheader = new (allocator_) HBasicBlock(this, header->GetDexPc());
447 AddBlock(preheader);
448 preheader->AddInstruction(new (allocator_) HGoto(header->GetDexPc()));
449
450 // If the old header has no Phis then we only need to fix the control flow.
451 if (header->GetPhis().IsEmpty()) {
452 FixControlForNewSinglePreheader(header, preheader);
453 preheader->AddSuccessor(header);
454 return;
455 }
456
457 // Find the first non-back edge block in the header's predecessors list.
458 size_t first_nonbackedge_pred_pos = 0;
459 bool found = false;
460 for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) {
461 HBasicBlock* predecessor = header->GetPredecessors()[pred];
462 if (!loop_info->IsBackEdge(*predecessor)) {
463 first_nonbackedge_pred_pos = pred;
464 found = true;
465 break;
466 }
467 }
468
469 DCHECK(found);
470
471 // Fix the data-flow.
472 for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) {
473 HPhi* header_phi = it.Current()->AsPhi();
474
475 HPhi* preheader_phi = new (GetAllocator()) HPhi(GetAllocator(),
476 header_phi->GetRegNumber(),
477 0,
478 header_phi->GetType());
479 if (header_phi->GetType() == DataType::Type::kReference) {
480 preheader_phi->SetReferenceTypeInfo(header_phi->GetReferenceTypeInfo());
481 }
482 preheader->AddPhi(preheader_phi);
483
484 HInstruction* orig_input = header_phi->InputAt(first_nonbackedge_pred_pos);
485 header_phi->ReplaceInput(preheader_phi, first_nonbackedge_pred_pos);
486 preheader_phi->AddInput(orig_input);
487
488 for (size_t input_pos = first_nonbackedge_pred_pos + 1;
489 input_pos < header_phi->InputCount();
490 input_pos++) {
491 HInstruction* input = header_phi->InputAt(input_pos);
492 HBasicBlock* pred_block = header->GetPredecessors()[input_pos];
493
494 if (loop_info->Contains(*pred_block)) {
495 DCHECK(loop_info->IsBackEdge(*pred_block));
496 } else {
497 preheader_phi->AddInput(input);
498 header_phi->RemoveInputAt(input_pos);
499 input_pos--;
500 }
501 }
502 }
503
504 // Fix the control-flow.
505 HBasicBlock* first_pred = header->GetPredecessors()[first_nonbackedge_pred_pos];
506 preheader->InsertBetween(first_pred, header);
507
508 FixControlForNewSinglePreheader(header, preheader);
509 }
510
SimplifyLoop(HBasicBlock * header)511 void HGraph::SimplifyLoop(HBasicBlock* header) {
512 HLoopInformation* info = header->GetLoopInformation();
513
514 // Make sure the loop has only one pre header. This simplifies SSA building by having
515 // to just look at the pre header to know which locals are initialized at entry of the
516 // loop. Also, don't allow the entry block to be a pre header: this simplifies inlining
517 // this graph.
518 size_t number_of_incomings = header->GetPredecessors().size() - info->NumberOfBackEdges();
519 if (number_of_incomings != 1 || (GetEntryBlock()->GetSingleSuccessor() == header)) {
520 TransformLoopToSinglePreheaderFormat(header);
521 }
522
523 OrderLoopHeaderPredecessors(header);
524
525 HInstruction* first_instruction = header->GetFirstInstruction();
526 if (first_instruction != nullptr && first_instruction->IsSuspendCheck()) {
527 // Called from DeadBlockElimination. Update SuspendCheck pointer.
528 info->SetSuspendCheck(first_instruction->AsSuspendCheck());
529 }
530 }
531
ComputeTryBlockInformation()532 void HGraph::ComputeTryBlockInformation() {
533 // Iterate in reverse post order to propagate try membership information from
534 // predecessors to their successors.
535 for (HBasicBlock* block : GetReversePostOrder()) {
536 if (block->IsEntryBlock() || block->IsCatchBlock()) {
537 // Catch blocks after simplification have only exceptional predecessors
538 // and hence are never in tries.
539 continue;
540 }
541
542 // Infer try membership from the first predecessor. Having simplified loops,
543 // the first predecessor can never be a back edge and therefore it must have
544 // been visited already and had its try membership set.
545 HBasicBlock* first_predecessor = block->GetPredecessors()[0];
546 DCHECK(!block->IsLoopHeader() || !block->GetLoopInformation()->IsBackEdge(*first_predecessor));
547 const HTryBoundary* try_entry = first_predecessor->ComputeTryEntryOfSuccessors();
548 if (try_entry != nullptr &&
549 (block->GetTryCatchInformation() == nullptr ||
550 try_entry != &block->GetTryCatchInformation()->GetTryEntry())) {
551 // We are either setting try block membership for the first time or it
552 // has changed.
553 block->SetTryCatchInformation(new (allocator_) TryCatchInformation(*try_entry));
554 }
555 }
556 }
557
SimplifyCFG()558 void HGraph::SimplifyCFG() {
559 // Simplify the CFG for future analysis, and code generation:
560 // (1): Split critical edges.
561 // (2): Simplify loops by having only one preheader.
562 // NOTE: We're appending new blocks inside the loop, so we need to use index because iterators
563 // can be invalidated. We remember the initial size to avoid iterating over the new blocks.
564 for (size_t block_id = 0u, end = blocks_.size(); block_id != end; ++block_id) {
565 HBasicBlock* block = blocks_[block_id];
566 if (block == nullptr) continue;
567 if (block->GetSuccessors().size() > 1) {
568 // Only split normal-flow edges. We cannot split exceptional edges as they
569 // are synthesized (approximate real control flow), and we do not need to
570 // anyway. Moves that would be inserted there are performed by the runtime.
571 ArrayRef<HBasicBlock* const> normal_successors = block->GetNormalSuccessors();
572 for (size_t j = 0, e = normal_successors.size(); j < e; ++j) {
573 HBasicBlock* successor = normal_successors[j];
574 DCHECK(!successor->IsCatchBlock());
575 if (successor == exit_block_) {
576 // (Throw/Return/ReturnVoid)->TryBoundary->Exit. Special case which we
577 // do not want to split because Goto->Exit is not allowed.
578 DCHECK(block->IsSingleTryBoundary());
579 } else if (successor->GetPredecessors().size() > 1) {
580 SplitCriticalEdge(block, successor);
581 // SplitCriticalEdge could have invalidated the `normal_successors`
582 // ArrayRef. We must re-acquire it.
583 normal_successors = block->GetNormalSuccessors();
584 DCHECK_EQ(normal_successors[j]->GetSingleSuccessor(), successor);
585 DCHECK_EQ(e, normal_successors.size());
586 }
587 }
588 }
589 if (block->IsLoopHeader()) {
590 SimplifyLoop(block);
591 } else if (!block->IsEntryBlock() &&
592 block->GetFirstInstruction() != nullptr &&
593 block->GetFirstInstruction()->IsSuspendCheck()) {
594 // We are being called by the dead code elimiation pass, and what used to be
595 // a loop got dismantled. Just remove the suspend check.
596 block->RemoveInstruction(block->GetFirstInstruction());
597 }
598 }
599 }
600
AnalyzeLoops() const601 GraphAnalysisResult HGraph::AnalyzeLoops() const {
602 // We iterate post order to ensure we visit inner loops before outer loops.
603 // `PopulateRecursive` needs this guarantee to know whether a natural loop
604 // contains an irreducible loop.
605 for (HBasicBlock* block : GetPostOrder()) {
606 if (block->IsLoopHeader()) {
607 if (block->IsCatchBlock()) {
608 // TODO: Dealing with exceptional back edges could be tricky because
609 // they only approximate the real control flow. Bail out for now.
610 VLOG(compiler) << "Not compiled: Exceptional back edges";
611 return kAnalysisFailThrowCatchLoop;
612 }
613 block->GetLoopInformation()->Populate();
614 }
615 }
616 return kAnalysisSuccess;
617 }
618
Dump(std::ostream & os)619 void HLoopInformation::Dump(std::ostream& os) {
620 os << "header: " << header_->GetBlockId() << std::endl;
621 os << "pre header: " << GetPreHeader()->GetBlockId() << std::endl;
622 for (HBasicBlock* block : back_edges_) {
623 os << "back edge: " << block->GetBlockId() << std::endl;
624 }
625 for (HBasicBlock* block : header_->GetPredecessors()) {
626 os << "predecessor: " << block->GetBlockId() << std::endl;
627 }
628 for (uint32_t idx : blocks_.Indexes()) {
629 os << " in loop: " << idx << std::endl;
630 }
631 }
632
InsertConstant(HConstant * constant)633 void HGraph::InsertConstant(HConstant* constant) {
634 // New constants are inserted before the SuspendCheck at the bottom of the
635 // entry block. Note that this method can be called from the graph builder and
636 // the entry block therefore may not end with SuspendCheck->Goto yet.
637 HInstruction* insert_before = nullptr;
638
639 HInstruction* gota = entry_block_->GetLastInstruction();
640 if (gota != nullptr && gota->IsGoto()) {
641 HInstruction* suspend_check = gota->GetPrevious();
642 if (suspend_check != nullptr && suspend_check->IsSuspendCheck()) {
643 insert_before = suspend_check;
644 } else {
645 insert_before = gota;
646 }
647 }
648
649 if (insert_before == nullptr) {
650 entry_block_->AddInstruction(constant);
651 } else {
652 entry_block_->InsertInstructionBefore(constant, insert_before);
653 }
654 }
655
GetNullConstant(uint32_t dex_pc)656 HNullConstant* HGraph::GetNullConstant(uint32_t dex_pc) {
657 // For simplicity, don't bother reviving the cached null constant if it is
658 // not null and not in a block. Otherwise, we need to clear the instruction
659 // id and/or any invariants the graph is assuming when adding new instructions.
660 if ((cached_null_constant_ == nullptr) || (cached_null_constant_->GetBlock() == nullptr)) {
661 cached_null_constant_ = new (allocator_) HNullConstant(dex_pc);
662 cached_null_constant_->SetReferenceTypeInfo(inexact_object_rti_);
663 InsertConstant(cached_null_constant_);
664 }
665 if (kIsDebugBuild) {
666 ScopedObjectAccess soa(Thread::Current());
667 DCHECK(cached_null_constant_->GetReferenceTypeInfo().IsValid());
668 }
669 return cached_null_constant_;
670 }
671
GetCurrentMethod()672 HCurrentMethod* HGraph::GetCurrentMethod() {
673 // For simplicity, don't bother reviving the cached current method if it is
674 // not null and not in a block. Otherwise, we need to clear the instruction
675 // id and/or any invariants the graph is assuming when adding new instructions.
676 if ((cached_current_method_ == nullptr) || (cached_current_method_->GetBlock() == nullptr)) {
677 cached_current_method_ = new (allocator_) HCurrentMethod(
678 Is64BitInstructionSet(instruction_set_) ? DataType::Type::kInt64 : DataType::Type::kInt32,
679 entry_block_->GetDexPc());
680 if (entry_block_->GetFirstInstruction() == nullptr) {
681 entry_block_->AddInstruction(cached_current_method_);
682 } else {
683 entry_block_->InsertInstructionBefore(
684 cached_current_method_, entry_block_->GetFirstInstruction());
685 }
686 }
687 return cached_current_method_;
688 }
689
GetMethodName() const690 const char* HGraph::GetMethodName() const {
691 const DexFile::MethodId& method_id = dex_file_.GetMethodId(method_idx_);
692 return dex_file_.GetMethodName(method_id);
693 }
694
PrettyMethod(bool with_signature) const695 std::string HGraph::PrettyMethod(bool with_signature) const {
696 return dex_file_.PrettyMethod(method_idx_, with_signature);
697 }
698
GetConstant(DataType::Type type,int64_t value,uint32_t dex_pc)699 HConstant* HGraph::GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc) {
700 switch (type) {
701 case DataType::Type::kBool:
702 DCHECK(IsUint<1>(value));
703 FALLTHROUGH_INTENDED;
704 case DataType::Type::kUint8:
705 case DataType::Type::kInt8:
706 case DataType::Type::kUint16:
707 case DataType::Type::kInt16:
708 case DataType::Type::kInt32:
709 DCHECK(IsInt(DataType::Size(type) * kBitsPerByte, value));
710 return GetIntConstant(static_cast<int32_t>(value), dex_pc);
711
712 case DataType::Type::kInt64:
713 return GetLongConstant(value, dex_pc);
714
715 default:
716 LOG(FATAL) << "Unsupported constant type";
717 UNREACHABLE();
718 }
719 }
720
CacheFloatConstant(HFloatConstant * constant)721 void HGraph::CacheFloatConstant(HFloatConstant* constant) {
722 int32_t value = bit_cast<int32_t, float>(constant->GetValue());
723 DCHECK(cached_float_constants_.find(value) == cached_float_constants_.end());
724 cached_float_constants_.Overwrite(value, constant);
725 }
726
CacheDoubleConstant(HDoubleConstant * constant)727 void HGraph::CacheDoubleConstant(HDoubleConstant* constant) {
728 int64_t value = bit_cast<int64_t, double>(constant->GetValue());
729 DCHECK(cached_double_constants_.find(value) == cached_double_constants_.end());
730 cached_double_constants_.Overwrite(value, constant);
731 }
732
Add(HBasicBlock * block)733 void HLoopInformation::Add(HBasicBlock* block) {
734 blocks_.SetBit(block->GetBlockId());
735 }
736
Remove(HBasicBlock * block)737 void HLoopInformation::Remove(HBasicBlock* block) {
738 blocks_.ClearBit(block->GetBlockId());
739 }
740
PopulateRecursive(HBasicBlock * block)741 void HLoopInformation::PopulateRecursive(HBasicBlock* block) {
742 if (blocks_.IsBitSet(block->GetBlockId())) {
743 return;
744 }
745
746 blocks_.SetBit(block->GetBlockId());
747 block->SetInLoop(this);
748 if (block->IsLoopHeader()) {
749 // We're visiting loops in post-order, so inner loops must have been
750 // populated already.
751 DCHECK(block->GetLoopInformation()->IsPopulated());
752 if (block->GetLoopInformation()->IsIrreducible()) {
753 contains_irreducible_loop_ = true;
754 }
755 }
756 for (HBasicBlock* predecessor : block->GetPredecessors()) {
757 PopulateRecursive(predecessor);
758 }
759 }
760
PopulateIrreducibleRecursive(HBasicBlock * block,ArenaBitVector * finalized)761 void HLoopInformation::PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized) {
762 size_t block_id = block->GetBlockId();
763
764 // If `block` is in `finalized`, we know its membership in the loop has been
765 // decided and it does not need to be revisited.
766 if (finalized->IsBitSet(block_id)) {
767 return;
768 }
769
770 bool is_finalized = false;
771 if (block->IsLoopHeader()) {
772 // If we hit a loop header in an irreducible loop, we first check if the
773 // pre header of that loop belongs to the currently analyzed loop. If it does,
774 // then we visit the back edges.
775 // Note that we cannot use GetPreHeader, as the loop may have not been populated
776 // yet.
777 HBasicBlock* pre_header = block->GetPredecessors()[0];
778 PopulateIrreducibleRecursive(pre_header, finalized);
779 if (blocks_.IsBitSet(pre_header->GetBlockId())) {
780 block->SetInLoop(this);
781 blocks_.SetBit(block_id);
782 finalized->SetBit(block_id);
783 is_finalized = true;
784
785 HLoopInformation* info = block->GetLoopInformation();
786 for (HBasicBlock* back_edge : info->GetBackEdges()) {
787 PopulateIrreducibleRecursive(back_edge, finalized);
788 }
789 }
790 } else {
791 // Visit all predecessors. If one predecessor is part of the loop, this
792 // block is also part of this loop.
793 for (HBasicBlock* predecessor : block->GetPredecessors()) {
794 PopulateIrreducibleRecursive(predecessor, finalized);
795 if (!is_finalized && blocks_.IsBitSet(predecessor->GetBlockId())) {
796 block->SetInLoop(this);
797 blocks_.SetBit(block_id);
798 finalized->SetBit(block_id);
799 is_finalized = true;
800 }
801 }
802 }
803
804 // All predecessors have been recursively visited. Mark finalized if not marked yet.
805 if (!is_finalized) {
806 finalized->SetBit(block_id);
807 }
808 }
809
Populate()810 void HLoopInformation::Populate() {
811 DCHECK_EQ(blocks_.NumSetBits(), 0u) << "Loop information has already been populated";
812 // Populate this loop: starting with the back edge, recursively add predecessors
813 // that are not already part of that loop. Set the header as part of the loop
814 // to end the recursion.
815 // This is a recursive implementation of the algorithm described in
816 // "Advanced Compiler Design & Implementation" (Muchnick) p192.
817 HGraph* graph = header_->GetGraph();
818 blocks_.SetBit(header_->GetBlockId());
819 header_->SetInLoop(this);
820
821 bool is_irreducible_loop = HasBackEdgeNotDominatedByHeader();
822
823 if (is_irreducible_loop) {
824 // Allocate memory from local ScopedArenaAllocator.
825 ScopedArenaAllocator allocator(graph->GetArenaStack());
826 ArenaBitVector visited(&allocator,
827 graph->GetBlocks().size(),
828 /* expandable */ false,
829 kArenaAllocGraphBuilder);
830 visited.ClearAllBits();
831 // Stop marking blocks at the loop header.
832 visited.SetBit(header_->GetBlockId());
833
834 for (HBasicBlock* back_edge : GetBackEdges()) {
835 PopulateIrreducibleRecursive(back_edge, &visited);
836 }
837 } else {
838 for (HBasicBlock* back_edge : GetBackEdges()) {
839 PopulateRecursive(back_edge);
840 }
841 }
842
843 if (!is_irreducible_loop && graph->IsCompilingOsr()) {
844 // When compiling in OSR mode, all loops in the compiled method may be entered
845 // from the interpreter. We treat this OSR entry point just like an extra entry
846 // to an irreducible loop, so we need to mark the method's loops as irreducible.
847 // This does not apply to inlined loops which do not act as OSR entry points.
848 if (suspend_check_ == nullptr) {
849 // Just building the graph in OSR mode, this loop is not inlined. We never build an
850 // inner graph in OSR mode as we can do OSR transition only from the outer method.
851 is_irreducible_loop = true;
852 } else {
853 // Look at the suspend check's environment to determine if the loop was inlined.
854 DCHECK(suspend_check_->HasEnvironment());
855 if (!suspend_check_->GetEnvironment()->IsFromInlinedInvoke()) {
856 is_irreducible_loop = true;
857 }
858 }
859 }
860 if (is_irreducible_loop) {
861 irreducible_ = true;
862 contains_irreducible_loop_ = true;
863 graph->SetHasIrreducibleLoops(true);
864 }
865 graph->SetHasLoops(true);
866 }
867
PopulateInnerLoopUpwards(HLoopInformation * inner_loop)868 void HLoopInformation::PopulateInnerLoopUpwards(HLoopInformation* inner_loop) {
869 DCHECK(inner_loop->GetPreHeader()->GetLoopInformation() == this);
870 blocks_.Union(&inner_loop->blocks_);
871 HLoopInformation* outer_loop = GetPreHeader()->GetLoopInformation();
872 if (outer_loop != nullptr) {
873 outer_loop->PopulateInnerLoopUpwards(this);
874 }
875 }
876
GetPreHeader() const877 HBasicBlock* HLoopInformation::GetPreHeader() const {
878 HBasicBlock* block = header_->GetPredecessors()[0];
879 DCHECK(irreducible_ || (block == header_->GetDominator()));
880 return block;
881 }
882
Contains(const HBasicBlock & block) const883 bool HLoopInformation::Contains(const HBasicBlock& block) const {
884 return blocks_.IsBitSet(block.GetBlockId());
885 }
886
IsIn(const HLoopInformation & other) const887 bool HLoopInformation::IsIn(const HLoopInformation& other) const {
888 return other.blocks_.IsBitSet(header_->GetBlockId());
889 }
890
IsDefinedOutOfTheLoop(HInstruction * instruction) const891 bool HLoopInformation::IsDefinedOutOfTheLoop(HInstruction* instruction) const {
892 return !blocks_.IsBitSet(instruction->GetBlock()->GetBlockId());
893 }
894
GetLifetimeEnd() const895 size_t HLoopInformation::GetLifetimeEnd() const {
896 size_t last_position = 0;
897 for (HBasicBlock* back_edge : GetBackEdges()) {
898 last_position = std::max(back_edge->GetLifetimeEnd(), last_position);
899 }
900 return last_position;
901 }
902
HasBackEdgeNotDominatedByHeader() const903 bool HLoopInformation::HasBackEdgeNotDominatedByHeader() const {
904 for (HBasicBlock* back_edge : GetBackEdges()) {
905 DCHECK(back_edge->GetDominator() != nullptr);
906 if (!header_->Dominates(back_edge)) {
907 return true;
908 }
909 }
910 return false;
911 }
912
DominatesAllBackEdges(HBasicBlock * block)913 bool HLoopInformation::DominatesAllBackEdges(HBasicBlock* block) {
914 for (HBasicBlock* back_edge : GetBackEdges()) {
915 if (!block->Dominates(back_edge)) {
916 return false;
917 }
918 }
919 return true;
920 }
921
922
HasExitEdge() const923 bool HLoopInformation::HasExitEdge() const {
924 // Determine if this loop has at least one exit edge.
925 HBlocksInLoopReversePostOrderIterator it_loop(*this);
926 for (; !it_loop.Done(); it_loop.Advance()) {
927 for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
928 if (!Contains(*successor)) {
929 return true;
930 }
931 }
932 }
933 return false;
934 }
935
Dominates(HBasicBlock * other) const936 bool HBasicBlock::Dominates(HBasicBlock* other) const {
937 // Walk up the dominator tree from `other`, to find out if `this`
938 // is an ancestor.
939 HBasicBlock* current = other;
940 while (current != nullptr) {
941 if (current == this) {
942 return true;
943 }
944 current = current->GetDominator();
945 }
946 return false;
947 }
948
UpdateInputsUsers(HInstruction * instruction)949 static void UpdateInputsUsers(HInstruction* instruction) {
950 HInputsRef inputs = instruction->GetInputs();
951 for (size_t i = 0; i < inputs.size(); ++i) {
952 inputs[i]->AddUseAt(instruction, i);
953 }
954 // Environment should be created later.
955 DCHECK(!instruction->HasEnvironment());
956 }
957
ReplaceAndRemovePhiWith(HPhi * initial,HPhi * replacement)958 void HBasicBlock::ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement) {
959 DCHECK(initial->GetBlock() == this);
960 InsertPhiAfter(replacement, initial);
961 initial->ReplaceWith(replacement);
962 RemovePhi(initial);
963 }
964
ReplaceAndRemoveInstructionWith(HInstruction * initial,HInstruction * replacement)965 void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial,
966 HInstruction* replacement) {
967 DCHECK(initial->GetBlock() == this);
968 if (initial->IsControlFlow()) {
969 // We can only replace a control flow instruction with another control flow instruction.
970 DCHECK(replacement->IsControlFlow());
971 DCHECK_EQ(replacement->GetId(), -1);
972 DCHECK_EQ(replacement->GetType(), DataType::Type::kVoid);
973 DCHECK_EQ(initial->GetBlock(), this);
974 DCHECK_EQ(initial->GetType(), DataType::Type::kVoid);
975 DCHECK(initial->GetUses().empty());
976 DCHECK(initial->GetEnvUses().empty());
977 replacement->SetBlock(this);
978 replacement->SetId(GetGraph()->GetNextInstructionId());
979 instructions_.InsertInstructionBefore(replacement, initial);
980 UpdateInputsUsers(replacement);
981 } else {
982 InsertInstructionBefore(replacement, initial);
983 initial->ReplaceWith(replacement);
984 }
985 RemoveInstruction(initial);
986 }
987
Add(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction)988 static void Add(HInstructionList* instruction_list,
989 HBasicBlock* block,
990 HInstruction* instruction) {
991 DCHECK(instruction->GetBlock() == nullptr);
992 DCHECK_EQ(instruction->GetId(), -1);
993 instruction->SetBlock(block);
994 instruction->SetId(block->GetGraph()->GetNextInstructionId());
995 UpdateInputsUsers(instruction);
996 instruction_list->AddInstruction(instruction);
997 }
998
AddInstruction(HInstruction * instruction)999 void HBasicBlock::AddInstruction(HInstruction* instruction) {
1000 Add(&instructions_, this, instruction);
1001 }
1002
AddPhi(HPhi * phi)1003 void HBasicBlock::AddPhi(HPhi* phi) {
1004 Add(&phis_, this, phi);
1005 }
1006
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)1007 void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
1008 DCHECK(!cursor->IsPhi());
1009 DCHECK(!instruction->IsPhi());
1010 DCHECK_EQ(instruction->GetId(), -1);
1011 DCHECK_NE(cursor->GetId(), -1);
1012 DCHECK_EQ(cursor->GetBlock(), this);
1013 DCHECK(!instruction->IsControlFlow());
1014 instruction->SetBlock(this);
1015 instruction->SetId(GetGraph()->GetNextInstructionId());
1016 UpdateInputsUsers(instruction);
1017 instructions_.InsertInstructionBefore(instruction, cursor);
1018 }
1019
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)1020 void HBasicBlock::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
1021 DCHECK(!cursor->IsPhi());
1022 DCHECK(!instruction->IsPhi());
1023 DCHECK_EQ(instruction->GetId(), -1);
1024 DCHECK_NE(cursor->GetId(), -1);
1025 DCHECK_EQ(cursor->GetBlock(), this);
1026 DCHECK(!instruction->IsControlFlow());
1027 DCHECK(!cursor->IsControlFlow());
1028 instruction->SetBlock(this);
1029 instruction->SetId(GetGraph()->GetNextInstructionId());
1030 UpdateInputsUsers(instruction);
1031 instructions_.InsertInstructionAfter(instruction, cursor);
1032 }
1033
InsertPhiAfter(HPhi * phi,HPhi * cursor)1034 void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) {
1035 DCHECK_EQ(phi->GetId(), -1);
1036 DCHECK_NE(cursor->GetId(), -1);
1037 DCHECK_EQ(cursor->GetBlock(), this);
1038 phi->SetBlock(this);
1039 phi->SetId(GetGraph()->GetNextInstructionId());
1040 UpdateInputsUsers(phi);
1041 phis_.InsertInstructionAfter(phi, cursor);
1042 }
1043
Remove(HInstructionList * instruction_list,HBasicBlock * block,HInstruction * instruction,bool ensure_safety)1044 static void Remove(HInstructionList* instruction_list,
1045 HBasicBlock* block,
1046 HInstruction* instruction,
1047 bool ensure_safety) {
1048 DCHECK_EQ(block, instruction->GetBlock());
1049 instruction->SetBlock(nullptr);
1050 instruction_list->RemoveInstruction(instruction);
1051 if (ensure_safety) {
1052 DCHECK(instruction->GetUses().empty());
1053 DCHECK(instruction->GetEnvUses().empty());
1054 RemoveAsUser(instruction);
1055 }
1056 }
1057
RemoveInstruction(HInstruction * instruction,bool ensure_safety)1058 void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) {
1059 DCHECK(!instruction->IsPhi());
1060 Remove(&instructions_, this, instruction, ensure_safety);
1061 }
1062
RemovePhi(HPhi * phi,bool ensure_safety)1063 void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) {
1064 Remove(&phis_, this, phi, ensure_safety);
1065 }
1066
RemoveInstructionOrPhi(HInstruction * instruction,bool ensure_safety)1067 void HBasicBlock::RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety) {
1068 if (instruction->IsPhi()) {
1069 RemovePhi(instruction->AsPhi(), ensure_safety);
1070 } else {
1071 RemoveInstruction(instruction, ensure_safety);
1072 }
1073 }
1074
CopyFrom(ArrayRef<HInstruction * const> locals)1075 void HEnvironment::CopyFrom(ArrayRef<HInstruction* const> locals) {
1076 for (size_t i = 0; i < locals.size(); i++) {
1077 HInstruction* instruction = locals[i];
1078 SetRawEnvAt(i, instruction);
1079 if (instruction != nullptr) {
1080 instruction->AddEnvUseAt(this, i);
1081 }
1082 }
1083 }
1084
CopyFrom(HEnvironment * env)1085 void HEnvironment::CopyFrom(HEnvironment* env) {
1086 for (size_t i = 0; i < env->Size(); i++) {
1087 HInstruction* instruction = env->GetInstructionAt(i);
1088 SetRawEnvAt(i, instruction);
1089 if (instruction != nullptr) {
1090 instruction->AddEnvUseAt(this, i);
1091 }
1092 }
1093 }
1094
CopyFromWithLoopPhiAdjustment(HEnvironment * env,HBasicBlock * loop_header)1095 void HEnvironment::CopyFromWithLoopPhiAdjustment(HEnvironment* env,
1096 HBasicBlock* loop_header) {
1097 DCHECK(loop_header->IsLoopHeader());
1098 for (size_t i = 0; i < env->Size(); i++) {
1099 HInstruction* instruction = env->GetInstructionAt(i);
1100 SetRawEnvAt(i, instruction);
1101 if (instruction == nullptr) {
1102 continue;
1103 }
1104 if (instruction->IsLoopHeaderPhi() && (instruction->GetBlock() == loop_header)) {
1105 // At the end of the loop pre-header, the corresponding value for instruction
1106 // is the first input of the phi.
1107 HInstruction* initial = instruction->AsPhi()->InputAt(0);
1108 SetRawEnvAt(i, initial);
1109 initial->AddEnvUseAt(this, i);
1110 } else {
1111 instruction->AddEnvUseAt(this, i);
1112 }
1113 }
1114 }
1115
RemoveAsUserOfInput(size_t index) const1116 void HEnvironment::RemoveAsUserOfInput(size_t index) const {
1117 const HUserRecord<HEnvironment*>& env_use = vregs_[index];
1118 HInstruction* user = env_use.GetInstruction();
1119 auto before_env_use_node = env_use.GetBeforeUseNode();
1120 user->env_uses_.erase_after(before_env_use_node);
1121 user->FixUpUserRecordsAfterEnvUseRemoval(before_env_use_node);
1122 }
1123
GetNextDisregardingMoves() const1124 HInstruction* HInstruction::GetNextDisregardingMoves() const {
1125 HInstruction* next = GetNext();
1126 while (next != nullptr && next->IsParallelMove()) {
1127 next = next->GetNext();
1128 }
1129 return next;
1130 }
1131
GetPreviousDisregardingMoves() const1132 HInstruction* HInstruction::GetPreviousDisregardingMoves() const {
1133 HInstruction* previous = GetPrevious();
1134 while (previous != nullptr && previous->IsParallelMove()) {
1135 previous = previous->GetPrevious();
1136 }
1137 return previous;
1138 }
1139
AddInstruction(HInstruction * instruction)1140 void HInstructionList::AddInstruction(HInstruction* instruction) {
1141 if (first_instruction_ == nullptr) {
1142 DCHECK(last_instruction_ == nullptr);
1143 first_instruction_ = last_instruction_ = instruction;
1144 } else {
1145 DCHECK(last_instruction_ != nullptr);
1146 last_instruction_->next_ = instruction;
1147 instruction->previous_ = last_instruction_;
1148 last_instruction_ = instruction;
1149 }
1150 }
1151
InsertInstructionBefore(HInstruction * instruction,HInstruction * cursor)1152 void HInstructionList::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) {
1153 DCHECK(Contains(cursor));
1154 if (cursor == first_instruction_) {
1155 cursor->previous_ = instruction;
1156 instruction->next_ = cursor;
1157 first_instruction_ = instruction;
1158 } else {
1159 instruction->previous_ = cursor->previous_;
1160 instruction->next_ = cursor;
1161 cursor->previous_ = instruction;
1162 instruction->previous_->next_ = instruction;
1163 }
1164 }
1165
InsertInstructionAfter(HInstruction * instruction,HInstruction * cursor)1166 void HInstructionList::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) {
1167 DCHECK(Contains(cursor));
1168 if (cursor == last_instruction_) {
1169 cursor->next_ = instruction;
1170 instruction->previous_ = cursor;
1171 last_instruction_ = instruction;
1172 } else {
1173 instruction->next_ = cursor->next_;
1174 instruction->previous_ = cursor;
1175 cursor->next_ = instruction;
1176 instruction->next_->previous_ = instruction;
1177 }
1178 }
1179
RemoveInstruction(HInstruction * instruction)1180 void HInstructionList::RemoveInstruction(HInstruction* instruction) {
1181 if (instruction->previous_ != nullptr) {
1182 instruction->previous_->next_ = instruction->next_;
1183 }
1184 if (instruction->next_ != nullptr) {
1185 instruction->next_->previous_ = instruction->previous_;
1186 }
1187 if (instruction == first_instruction_) {
1188 first_instruction_ = instruction->next_;
1189 }
1190 if (instruction == last_instruction_) {
1191 last_instruction_ = instruction->previous_;
1192 }
1193 }
1194
Contains(HInstruction * instruction) const1195 bool HInstructionList::Contains(HInstruction* instruction) const {
1196 for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1197 if (it.Current() == instruction) {
1198 return true;
1199 }
1200 }
1201 return false;
1202 }
1203
FoundBefore(const HInstruction * instruction1,const HInstruction * instruction2) const1204 bool HInstructionList::FoundBefore(const HInstruction* instruction1,
1205 const HInstruction* instruction2) const {
1206 DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock());
1207 for (HInstructionIterator it(*this); !it.Done(); it.Advance()) {
1208 if (it.Current() == instruction1) {
1209 return true;
1210 }
1211 if (it.Current() == instruction2) {
1212 return false;
1213 }
1214 }
1215 LOG(FATAL) << "Did not find an order between two instructions of the same block.";
1216 return true;
1217 }
1218
StrictlyDominates(HInstruction * other_instruction) const1219 bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const {
1220 if (other_instruction == this) {
1221 // An instruction does not strictly dominate itself.
1222 return false;
1223 }
1224 HBasicBlock* block = GetBlock();
1225 HBasicBlock* other_block = other_instruction->GetBlock();
1226 if (block != other_block) {
1227 return GetBlock()->Dominates(other_instruction->GetBlock());
1228 } else {
1229 // If both instructions are in the same block, ensure this
1230 // instruction comes before `other_instruction`.
1231 if (IsPhi()) {
1232 if (!other_instruction->IsPhi()) {
1233 // Phis appear before non phi-instructions so this instruction
1234 // dominates `other_instruction`.
1235 return true;
1236 } else {
1237 // There is no order among phis.
1238 LOG(FATAL) << "There is no dominance between phis of a same block.";
1239 return false;
1240 }
1241 } else {
1242 // `this` is not a phi.
1243 if (other_instruction->IsPhi()) {
1244 // Phis appear before non phi-instructions so this instruction
1245 // does not dominate `other_instruction`.
1246 return false;
1247 } else {
1248 // Check whether this instruction comes before
1249 // `other_instruction` in the instruction list.
1250 return block->GetInstructions().FoundBefore(this, other_instruction);
1251 }
1252 }
1253 }
1254 }
1255
RemoveEnvironment()1256 void HInstruction::RemoveEnvironment() {
1257 RemoveEnvironmentUses(this);
1258 environment_ = nullptr;
1259 }
1260
ReplaceWith(HInstruction * other)1261 void HInstruction::ReplaceWith(HInstruction* other) {
1262 DCHECK(other != nullptr);
1263 // Note: fixup_end remains valid across splice_after().
1264 auto fixup_end = other->uses_.empty() ? other->uses_.begin() : ++other->uses_.begin();
1265 other->uses_.splice_after(other->uses_.before_begin(), uses_);
1266 other->FixUpUserRecordsAfterUseInsertion(fixup_end);
1267
1268 // Note: env_fixup_end remains valid across splice_after().
1269 auto env_fixup_end =
1270 other->env_uses_.empty() ? other->env_uses_.begin() : ++other->env_uses_.begin();
1271 other->env_uses_.splice_after(other->env_uses_.before_begin(), env_uses_);
1272 other->FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
1273
1274 DCHECK(uses_.empty());
1275 DCHECK(env_uses_.empty());
1276 }
1277
ReplaceUsesDominatedBy(HInstruction * dominator,HInstruction * replacement)1278 void HInstruction::ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement) {
1279 const HUseList<HInstruction*>& uses = GetUses();
1280 for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
1281 HInstruction* user = it->GetUser();
1282 size_t index = it->GetIndex();
1283 // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
1284 ++it;
1285 if (dominator->StrictlyDominates(user)) {
1286 user->ReplaceInput(replacement, index);
1287 }
1288 }
1289 }
1290
ReplaceInput(HInstruction * replacement,size_t index)1291 void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) {
1292 HUserRecord<HInstruction*> input_use = InputRecordAt(index);
1293 if (input_use.GetInstruction() == replacement) {
1294 // Nothing to do.
1295 return;
1296 }
1297 HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
1298 // Note: fixup_end remains valid across splice_after().
1299 auto fixup_end =
1300 replacement->uses_.empty() ? replacement->uses_.begin() : ++replacement->uses_.begin();
1301 replacement->uses_.splice_after(replacement->uses_.before_begin(),
1302 input_use.GetInstruction()->uses_,
1303 before_use_node);
1304 replacement->FixUpUserRecordsAfterUseInsertion(fixup_end);
1305 input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
1306 }
1307
EnvironmentSize() const1308 size_t HInstruction::EnvironmentSize() const {
1309 return HasEnvironment() ? environment_->Size() : 0;
1310 }
1311
AddInput(HInstruction * input)1312 void HVariableInputSizeInstruction::AddInput(HInstruction* input) {
1313 DCHECK(input->GetBlock() != nullptr);
1314 inputs_.push_back(HUserRecord<HInstruction*>(input));
1315 input->AddUseAt(this, inputs_.size() - 1);
1316 }
1317
InsertInputAt(size_t index,HInstruction * input)1318 void HVariableInputSizeInstruction::InsertInputAt(size_t index, HInstruction* input) {
1319 inputs_.insert(inputs_.begin() + index, HUserRecord<HInstruction*>(input));
1320 input->AddUseAt(this, index);
1321 // Update indexes in use nodes of inputs that have been pushed further back by the insert().
1322 for (size_t i = index + 1u, e = inputs_.size(); i < e; ++i) {
1323 DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i - 1u);
1324 inputs_[i].GetUseNode()->SetIndex(i);
1325 }
1326 }
1327
RemoveInputAt(size_t index)1328 void HVariableInputSizeInstruction::RemoveInputAt(size_t index) {
1329 RemoveAsUserOfInput(index);
1330 inputs_.erase(inputs_.begin() + index);
1331 // Update indexes in use nodes of inputs that have been pulled forward by the erase().
1332 for (size_t i = index, e = inputs_.size(); i < e; ++i) {
1333 DCHECK_EQ(inputs_[i].GetUseNode()->GetIndex(), i + 1u);
1334 inputs_[i].GetUseNode()->SetIndex(i);
1335 }
1336 }
1337
RemoveAllInputs()1338 void HVariableInputSizeInstruction::RemoveAllInputs() {
1339 RemoveAsUserOfAllInputs();
1340 DCHECK(!HasNonEnvironmentUses());
1341
1342 inputs_.clear();
1343 DCHECK_EQ(0u, InputCount());
1344 }
1345
RemoveConstructorFences(HInstruction * instruction)1346 size_t HConstructorFence::RemoveConstructorFences(HInstruction* instruction) {
1347 DCHECK(instruction->GetBlock() != nullptr);
1348 // Removing constructor fences only makes sense for instructions with an object return type.
1349 DCHECK_EQ(DataType::Type::kReference, instruction->GetType());
1350
1351 // Return how many instructions were removed for statistic purposes.
1352 size_t remove_count = 0;
1353
1354 // Efficient implementation that simultaneously (in one pass):
1355 // * Scans the uses list for all constructor fences.
1356 // * Deletes that constructor fence from the uses list of `instruction`.
1357 // * Deletes `instruction` from the constructor fence's inputs.
1358 // * Deletes the constructor fence if it now has 0 inputs.
1359
1360 const HUseList<HInstruction*>& uses = instruction->GetUses();
1361 // Warning: Although this is "const", we might mutate the list when calling RemoveInputAt.
1362 for (auto it = uses.begin(), end = uses.end(); it != end; ) {
1363 const HUseListNode<HInstruction*>& use_node = *it;
1364 HInstruction* const use_instruction = use_node.GetUser();
1365
1366 // Advance the iterator immediately once we fetch the use_node.
1367 // Warning: If the input is removed, the current iterator becomes invalid.
1368 ++it;
1369
1370 if (use_instruction->IsConstructorFence()) {
1371 HConstructorFence* ctor_fence = use_instruction->AsConstructorFence();
1372 size_t input_index = use_node.GetIndex();
1373
1374 // Process the candidate instruction for removal
1375 // from the graph.
1376
1377 // Constructor fence instructions are never
1378 // used by other instructions.
1379 //
1380 // If we wanted to make this more generic, it
1381 // could be a runtime if statement.
1382 DCHECK(!ctor_fence->HasUses());
1383
1384 // A constructor fence's return type is "kPrimVoid"
1385 // and therefore it can't have any environment uses.
1386 DCHECK(!ctor_fence->HasEnvironmentUses());
1387
1388 // Remove the inputs first, otherwise removing the instruction
1389 // will try to remove its uses while we are already removing uses
1390 // and this operation will fail.
1391 DCHECK_EQ(instruction, ctor_fence->InputAt(input_index));
1392
1393 // Removing the input will also remove the `use_node`.
1394 // (Do not look at `use_node` after this, it will be a dangling reference).
1395 ctor_fence->RemoveInputAt(input_index);
1396
1397 // Once all inputs are removed, the fence is considered dead and
1398 // is removed.
1399 if (ctor_fence->InputCount() == 0u) {
1400 ctor_fence->GetBlock()->RemoveInstruction(ctor_fence);
1401 ++remove_count;
1402 }
1403 }
1404 }
1405
1406 if (kIsDebugBuild) {
1407 // Post-condition checks:
1408 // * None of the uses of `instruction` are a constructor fence.
1409 // * The `instruction` itself did not get removed from a block.
1410 for (const HUseListNode<HInstruction*>& use_node : instruction->GetUses()) {
1411 CHECK(!use_node.GetUser()->IsConstructorFence());
1412 }
1413 CHECK(instruction->GetBlock() != nullptr);
1414 }
1415
1416 return remove_count;
1417 }
1418
Merge(HConstructorFence * other)1419 void HConstructorFence::Merge(HConstructorFence* other) {
1420 // Do not delete yourself from the graph.
1421 DCHECK(this != other);
1422 // Don't try to merge with an instruction not associated with a block.
1423 DCHECK(other->GetBlock() != nullptr);
1424 // A constructor fence's return type is "kPrimVoid"
1425 // and therefore it cannot have any environment uses.
1426 DCHECK(!other->HasEnvironmentUses());
1427
1428 auto has_input = [](HInstruction* haystack, HInstruction* needle) {
1429 // Check if `haystack` has `needle` as any of its inputs.
1430 for (size_t input_count = 0; input_count < haystack->InputCount(); ++input_count) {
1431 if (haystack->InputAt(input_count) == needle) {
1432 return true;
1433 }
1434 }
1435 return false;
1436 };
1437
1438 // Add any inputs from `other` into `this` if it wasn't already an input.
1439 for (size_t input_count = 0; input_count < other->InputCount(); ++input_count) {
1440 HInstruction* other_input = other->InputAt(input_count);
1441 if (!has_input(this, other_input)) {
1442 AddInput(other_input);
1443 }
1444 }
1445
1446 other->GetBlock()->RemoveInstruction(other);
1447 }
1448
GetAssociatedAllocation(bool ignore_inputs)1449 HInstruction* HConstructorFence::GetAssociatedAllocation(bool ignore_inputs) {
1450 HInstruction* new_instance_inst = GetPrevious();
1451 // Check if the immediately preceding instruction is a new-instance/new-array.
1452 // Otherwise this fence is for protecting final fields.
1453 if (new_instance_inst != nullptr &&
1454 (new_instance_inst->IsNewInstance() || new_instance_inst->IsNewArray())) {
1455 if (ignore_inputs) {
1456 // If inputs are ignored, simply check if the predecessor is
1457 // *any* HNewInstance/HNewArray.
1458 //
1459 // Inputs are normally only ignored for prepare_for_register_allocation,
1460 // at which point *any* prior HNewInstance/Array can be considered
1461 // associated.
1462 return new_instance_inst;
1463 } else {
1464 // Normal case: There must be exactly 1 input and the previous instruction
1465 // must be that input.
1466 if (InputCount() == 1u && InputAt(0) == new_instance_inst) {
1467 return new_instance_inst;
1468 }
1469 }
1470 }
1471 return nullptr;
1472 }
1473
1474 #define DEFINE_ACCEPT(name, super) \
1475 void H##name::Accept(HGraphVisitor* visitor) { \
1476 visitor->Visit##name(this); \
1477 }
1478
FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)1479 FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT)
1480
1481 #undef DEFINE_ACCEPT
1482
1483 void HGraphVisitor::VisitInsertionOrder() {
1484 const ArenaVector<HBasicBlock*>& blocks = graph_->GetBlocks();
1485 for (HBasicBlock* block : blocks) {
1486 if (block != nullptr) {
1487 VisitBasicBlock(block);
1488 }
1489 }
1490 }
1491
VisitReversePostOrder()1492 void HGraphVisitor::VisitReversePostOrder() {
1493 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
1494 VisitBasicBlock(block);
1495 }
1496 }
1497
VisitBasicBlock(HBasicBlock * block)1498 void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) {
1499 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
1500 it.Current()->Accept(this);
1501 }
1502 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1503 it.Current()->Accept(this);
1504 }
1505 }
1506
TryStaticEvaluation() const1507 HConstant* HTypeConversion::TryStaticEvaluation() const {
1508 HGraph* graph = GetBlock()->GetGraph();
1509 if (GetInput()->IsIntConstant()) {
1510 int32_t value = GetInput()->AsIntConstant()->GetValue();
1511 switch (GetResultType()) {
1512 case DataType::Type::kInt8:
1513 return graph->GetIntConstant(static_cast<int8_t>(value), GetDexPc());
1514 case DataType::Type::kUint8:
1515 return graph->GetIntConstant(static_cast<uint8_t>(value), GetDexPc());
1516 case DataType::Type::kInt16:
1517 return graph->GetIntConstant(static_cast<int16_t>(value), GetDexPc());
1518 case DataType::Type::kUint16:
1519 return graph->GetIntConstant(static_cast<uint16_t>(value), GetDexPc());
1520 case DataType::Type::kInt64:
1521 return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1522 case DataType::Type::kFloat32:
1523 return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1524 case DataType::Type::kFloat64:
1525 return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1526 default:
1527 return nullptr;
1528 }
1529 } else if (GetInput()->IsLongConstant()) {
1530 int64_t value = GetInput()->AsLongConstant()->GetValue();
1531 switch (GetResultType()) {
1532 case DataType::Type::kInt8:
1533 return graph->GetIntConstant(static_cast<int8_t>(value), GetDexPc());
1534 case DataType::Type::kUint8:
1535 return graph->GetIntConstant(static_cast<uint8_t>(value), GetDexPc());
1536 case DataType::Type::kInt16:
1537 return graph->GetIntConstant(static_cast<int16_t>(value), GetDexPc());
1538 case DataType::Type::kUint16:
1539 return graph->GetIntConstant(static_cast<uint16_t>(value), GetDexPc());
1540 case DataType::Type::kInt32:
1541 return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1542 case DataType::Type::kFloat32:
1543 return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1544 case DataType::Type::kFloat64:
1545 return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1546 default:
1547 return nullptr;
1548 }
1549 } else if (GetInput()->IsFloatConstant()) {
1550 float value = GetInput()->AsFloatConstant()->GetValue();
1551 switch (GetResultType()) {
1552 case DataType::Type::kInt32:
1553 if (std::isnan(value))
1554 return graph->GetIntConstant(0, GetDexPc());
1555 if (value >= kPrimIntMax)
1556 return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1557 if (value <= kPrimIntMin)
1558 return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1559 return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1560 case DataType::Type::kInt64:
1561 if (std::isnan(value))
1562 return graph->GetLongConstant(0, GetDexPc());
1563 if (value >= kPrimLongMax)
1564 return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1565 if (value <= kPrimLongMin)
1566 return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1567 return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1568 case DataType::Type::kFloat64:
1569 return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc());
1570 default:
1571 return nullptr;
1572 }
1573 } else if (GetInput()->IsDoubleConstant()) {
1574 double value = GetInput()->AsDoubleConstant()->GetValue();
1575 switch (GetResultType()) {
1576 case DataType::Type::kInt32:
1577 if (std::isnan(value))
1578 return graph->GetIntConstant(0, GetDexPc());
1579 if (value >= kPrimIntMax)
1580 return graph->GetIntConstant(kPrimIntMax, GetDexPc());
1581 if (value <= kPrimLongMin)
1582 return graph->GetIntConstant(kPrimIntMin, GetDexPc());
1583 return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc());
1584 case DataType::Type::kInt64:
1585 if (std::isnan(value))
1586 return graph->GetLongConstant(0, GetDexPc());
1587 if (value >= kPrimLongMax)
1588 return graph->GetLongConstant(kPrimLongMax, GetDexPc());
1589 if (value <= kPrimLongMin)
1590 return graph->GetLongConstant(kPrimLongMin, GetDexPc());
1591 return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc());
1592 case DataType::Type::kFloat32:
1593 return graph->GetFloatConstant(static_cast<float>(value), GetDexPc());
1594 default:
1595 return nullptr;
1596 }
1597 }
1598 return nullptr;
1599 }
1600
TryStaticEvaluation() const1601 HConstant* HUnaryOperation::TryStaticEvaluation() const {
1602 if (GetInput()->IsIntConstant()) {
1603 return Evaluate(GetInput()->AsIntConstant());
1604 } else if (GetInput()->IsLongConstant()) {
1605 return Evaluate(GetInput()->AsLongConstant());
1606 } else if (kEnableFloatingPointStaticEvaluation) {
1607 if (GetInput()->IsFloatConstant()) {
1608 return Evaluate(GetInput()->AsFloatConstant());
1609 } else if (GetInput()->IsDoubleConstant()) {
1610 return Evaluate(GetInput()->AsDoubleConstant());
1611 }
1612 }
1613 return nullptr;
1614 }
1615
TryStaticEvaluation() const1616 HConstant* HBinaryOperation::TryStaticEvaluation() const {
1617 if (GetLeft()->IsIntConstant() && GetRight()->IsIntConstant()) {
1618 return Evaluate(GetLeft()->AsIntConstant(), GetRight()->AsIntConstant());
1619 } else if (GetLeft()->IsLongConstant()) {
1620 if (GetRight()->IsIntConstant()) {
1621 // The binop(long, int) case is only valid for shifts and rotations.
1622 DCHECK(IsShl() || IsShr() || IsUShr() || IsRor()) << DebugName();
1623 return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsIntConstant());
1624 } else if (GetRight()->IsLongConstant()) {
1625 return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsLongConstant());
1626 }
1627 } else if (GetLeft()->IsNullConstant() && GetRight()->IsNullConstant()) {
1628 // The binop(null, null) case is only valid for equal and not-equal conditions.
1629 DCHECK(IsEqual() || IsNotEqual()) << DebugName();
1630 return Evaluate(GetLeft()->AsNullConstant(), GetRight()->AsNullConstant());
1631 } else if (kEnableFloatingPointStaticEvaluation) {
1632 if (GetLeft()->IsFloatConstant() && GetRight()->IsFloatConstant()) {
1633 return Evaluate(GetLeft()->AsFloatConstant(), GetRight()->AsFloatConstant());
1634 } else if (GetLeft()->IsDoubleConstant() && GetRight()->IsDoubleConstant()) {
1635 return Evaluate(GetLeft()->AsDoubleConstant(), GetRight()->AsDoubleConstant());
1636 }
1637 }
1638 return nullptr;
1639 }
1640
GetConstantRight() const1641 HConstant* HBinaryOperation::GetConstantRight() const {
1642 if (GetRight()->IsConstant()) {
1643 return GetRight()->AsConstant();
1644 } else if (IsCommutative() && GetLeft()->IsConstant()) {
1645 return GetLeft()->AsConstant();
1646 } else {
1647 return nullptr;
1648 }
1649 }
1650
1651 // If `GetConstantRight()` returns one of the input, this returns the other
1652 // one. Otherwise it returns null.
GetLeastConstantLeft() const1653 HInstruction* HBinaryOperation::GetLeastConstantLeft() const {
1654 HInstruction* most_constant_right = GetConstantRight();
1655 if (most_constant_right == nullptr) {
1656 return nullptr;
1657 } else if (most_constant_right == GetLeft()) {
1658 return GetRight();
1659 } else {
1660 return GetLeft();
1661 }
1662 }
1663
operator <<(std::ostream & os,const ComparisonBias & rhs)1664 std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs) {
1665 switch (rhs) {
1666 case ComparisonBias::kNoBias:
1667 return os << "no_bias";
1668 case ComparisonBias::kGtBias:
1669 return os << "gt_bias";
1670 case ComparisonBias::kLtBias:
1671 return os << "lt_bias";
1672 default:
1673 LOG(FATAL) << "Unknown ComparisonBias: " << static_cast<int>(rhs);
1674 UNREACHABLE();
1675 }
1676 }
1677
IsBeforeWhenDisregardMoves(HInstruction * instruction) const1678 bool HCondition::IsBeforeWhenDisregardMoves(HInstruction* instruction) const {
1679 return this == instruction->GetPreviousDisregardingMoves();
1680 }
1681
Equals(const HInstruction * other) const1682 bool HInstruction::Equals(const HInstruction* other) const {
1683 if (!InstructionTypeEquals(other)) return false;
1684 DCHECK_EQ(GetKind(), other->GetKind());
1685 if (!InstructionDataEquals(other)) return false;
1686 if (GetType() != other->GetType()) return false;
1687 HConstInputsRef inputs = GetInputs();
1688 HConstInputsRef other_inputs = other->GetInputs();
1689 if (inputs.size() != other_inputs.size()) return false;
1690 for (size_t i = 0; i != inputs.size(); ++i) {
1691 if (inputs[i] != other_inputs[i]) return false;
1692 }
1693
1694 DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode());
1695 return true;
1696 }
1697
operator <<(std::ostream & os,const HInstruction::InstructionKind & rhs)1698 std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs) {
1699 #define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break;
1700 switch (rhs) {
1701 FOR_EACH_INSTRUCTION(DECLARE_CASE)
1702 default:
1703 os << "Unknown instruction kind " << static_cast<int>(rhs);
1704 break;
1705 }
1706 #undef DECLARE_CASE
1707 return os;
1708 }
1709
MoveBefore(HInstruction * cursor,bool do_checks)1710 void HInstruction::MoveBefore(HInstruction* cursor, bool do_checks) {
1711 if (do_checks) {
1712 DCHECK(!IsPhi());
1713 DCHECK(!IsControlFlow());
1714 DCHECK(CanBeMoved() ||
1715 // HShouldDeoptimizeFlag can only be moved by CHAGuardOptimization.
1716 IsShouldDeoptimizeFlag());
1717 DCHECK(!cursor->IsPhi());
1718 }
1719
1720 next_->previous_ = previous_;
1721 if (previous_ != nullptr) {
1722 previous_->next_ = next_;
1723 }
1724 if (block_->instructions_.first_instruction_ == this) {
1725 block_->instructions_.first_instruction_ = next_;
1726 }
1727 DCHECK_NE(block_->instructions_.last_instruction_, this);
1728
1729 previous_ = cursor->previous_;
1730 if (previous_ != nullptr) {
1731 previous_->next_ = this;
1732 }
1733 next_ = cursor;
1734 cursor->previous_ = this;
1735 block_ = cursor->block_;
1736
1737 if (block_->instructions_.first_instruction_ == cursor) {
1738 block_->instructions_.first_instruction_ = this;
1739 }
1740 }
1741
MoveBeforeFirstUserAndOutOfLoops()1742 void HInstruction::MoveBeforeFirstUserAndOutOfLoops() {
1743 DCHECK(!CanThrow());
1744 DCHECK(!HasSideEffects());
1745 DCHECK(!HasEnvironmentUses());
1746 DCHECK(HasNonEnvironmentUses());
1747 DCHECK(!IsPhi()); // Makes no sense for Phi.
1748 DCHECK_EQ(InputCount(), 0u);
1749
1750 // Find the target block.
1751 auto uses_it = GetUses().begin();
1752 auto uses_end = GetUses().end();
1753 HBasicBlock* target_block = uses_it->GetUser()->GetBlock();
1754 ++uses_it;
1755 while (uses_it != uses_end && uses_it->GetUser()->GetBlock() == target_block) {
1756 ++uses_it;
1757 }
1758 if (uses_it != uses_end) {
1759 // This instruction has uses in two or more blocks. Find the common dominator.
1760 CommonDominator finder(target_block);
1761 for (; uses_it != uses_end; ++uses_it) {
1762 finder.Update(uses_it->GetUser()->GetBlock());
1763 }
1764 target_block = finder.Get();
1765 DCHECK(target_block != nullptr);
1766 }
1767 // Move to the first dominator not in a loop.
1768 while (target_block->IsInLoop()) {
1769 target_block = target_block->GetDominator();
1770 DCHECK(target_block != nullptr);
1771 }
1772
1773 // Find insertion position.
1774 HInstruction* insert_pos = nullptr;
1775 for (const HUseListNode<HInstruction*>& use : GetUses()) {
1776 if (use.GetUser()->GetBlock() == target_block &&
1777 (insert_pos == nullptr || use.GetUser()->StrictlyDominates(insert_pos))) {
1778 insert_pos = use.GetUser();
1779 }
1780 }
1781 if (insert_pos == nullptr) {
1782 // No user in `target_block`, insert before the control flow instruction.
1783 insert_pos = target_block->GetLastInstruction();
1784 DCHECK(insert_pos->IsControlFlow());
1785 // Avoid splitting HCondition from HIf to prevent unnecessary materialization.
1786 if (insert_pos->IsIf()) {
1787 HInstruction* if_input = insert_pos->AsIf()->InputAt(0);
1788 if (if_input == insert_pos->GetPrevious()) {
1789 insert_pos = if_input;
1790 }
1791 }
1792 }
1793 MoveBefore(insert_pos);
1794 }
1795
SplitBefore(HInstruction * cursor)1796 HBasicBlock* HBasicBlock::SplitBefore(HInstruction* cursor) {
1797 DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
1798 DCHECK_EQ(cursor->GetBlock(), this);
1799
1800 HBasicBlock* new_block =
1801 new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), cursor->GetDexPc());
1802 new_block->instructions_.first_instruction_ = cursor;
1803 new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1804 instructions_.last_instruction_ = cursor->previous_;
1805 if (cursor->previous_ == nullptr) {
1806 instructions_.first_instruction_ = nullptr;
1807 } else {
1808 cursor->previous_->next_ = nullptr;
1809 cursor->previous_ = nullptr;
1810 }
1811
1812 new_block->instructions_.SetBlockOfInstructions(new_block);
1813 AddInstruction(new (GetGraph()->GetAllocator()) HGoto(new_block->GetDexPc()));
1814
1815 for (HBasicBlock* successor : GetSuccessors()) {
1816 successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1817 }
1818 new_block->successors_.swap(successors_);
1819 DCHECK(successors_.empty());
1820 AddSuccessor(new_block);
1821
1822 GetGraph()->AddBlock(new_block);
1823 return new_block;
1824 }
1825
CreateImmediateDominator()1826 HBasicBlock* HBasicBlock::CreateImmediateDominator() {
1827 DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented.";
1828 DCHECK(!IsCatchBlock()) << "Support for updating try/catch information not implemented.";
1829
1830 HBasicBlock* new_block = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), GetDexPc());
1831
1832 for (HBasicBlock* predecessor : GetPredecessors()) {
1833 predecessor->successors_[predecessor->GetSuccessorIndexOf(this)] = new_block;
1834 }
1835 new_block->predecessors_.swap(predecessors_);
1836 DCHECK(predecessors_.empty());
1837 AddPredecessor(new_block);
1838
1839 GetGraph()->AddBlock(new_block);
1840 return new_block;
1841 }
1842
SplitBeforeForInlining(HInstruction * cursor)1843 HBasicBlock* HBasicBlock::SplitBeforeForInlining(HInstruction* cursor) {
1844 DCHECK_EQ(cursor->GetBlock(), this);
1845
1846 HBasicBlock* new_block =
1847 new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), cursor->GetDexPc());
1848 new_block->instructions_.first_instruction_ = cursor;
1849 new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1850 instructions_.last_instruction_ = cursor->previous_;
1851 if (cursor->previous_ == nullptr) {
1852 instructions_.first_instruction_ = nullptr;
1853 } else {
1854 cursor->previous_->next_ = nullptr;
1855 cursor->previous_ = nullptr;
1856 }
1857
1858 new_block->instructions_.SetBlockOfInstructions(new_block);
1859
1860 for (HBasicBlock* successor : GetSuccessors()) {
1861 successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1862 }
1863 new_block->successors_.swap(successors_);
1864 DCHECK(successors_.empty());
1865
1866 for (HBasicBlock* dominated : GetDominatedBlocks()) {
1867 dominated->dominator_ = new_block;
1868 }
1869 new_block->dominated_blocks_.swap(dominated_blocks_);
1870 DCHECK(dominated_blocks_.empty());
1871 return new_block;
1872 }
1873
SplitAfterForInlining(HInstruction * cursor)1874 HBasicBlock* HBasicBlock::SplitAfterForInlining(HInstruction* cursor) {
1875 DCHECK(!cursor->IsControlFlow());
1876 DCHECK_NE(instructions_.last_instruction_, cursor);
1877 DCHECK_EQ(cursor->GetBlock(), this);
1878
1879 HBasicBlock* new_block = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph(), GetDexPc());
1880 new_block->instructions_.first_instruction_ = cursor->GetNext();
1881 new_block->instructions_.last_instruction_ = instructions_.last_instruction_;
1882 cursor->next_->previous_ = nullptr;
1883 cursor->next_ = nullptr;
1884 instructions_.last_instruction_ = cursor;
1885
1886 new_block->instructions_.SetBlockOfInstructions(new_block);
1887 for (HBasicBlock* successor : GetSuccessors()) {
1888 successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block;
1889 }
1890 new_block->successors_.swap(successors_);
1891 DCHECK(successors_.empty());
1892
1893 for (HBasicBlock* dominated : GetDominatedBlocks()) {
1894 dominated->dominator_ = new_block;
1895 }
1896 new_block->dominated_blocks_.swap(dominated_blocks_);
1897 DCHECK(dominated_blocks_.empty());
1898 return new_block;
1899 }
1900
ComputeTryEntryOfSuccessors() const1901 const HTryBoundary* HBasicBlock::ComputeTryEntryOfSuccessors() const {
1902 if (EndsWithTryBoundary()) {
1903 HTryBoundary* try_boundary = GetLastInstruction()->AsTryBoundary();
1904 if (try_boundary->IsEntry()) {
1905 DCHECK(!IsTryBlock());
1906 return try_boundary;
1907 } else {
1908 DCHECK(IsTryBlock());
1909 DCHECK(try_catch_information_->GetTryEntry().HasSameExceptionHandlersAs(*try_boundary));
1910 return nullptr;
1911 }
1912 } else if (IsTryBlock()) {
1913 return &try_catch_information_->GetTryEntry();
1914 } else {
1915 return nullptr;
1916 }
1917 }
1918
HasThrowingInstructions() const1919 bool HBasicBlock::HasThrowingInstructions() const {
1920 for (HInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
1921 if (it.Current()->CanThrow()) {
1922 return true;
1923 }
1924 }
1925 return false;
1926 }
1927
HasOnlyOneInstruction(const HBasicBlock & block)1928 static bool HasOnlyOneInstruction(const HBasicBlock& block) {
1929 return block.GetPhis().IsEmpty()
1930 && !block.GetInstructions().IsEmpty()
1931 && block.GetFirstInstruction() == block.GetLastInstruction();
1932 }
1933
IsSingleGoto() const1934 bool HBasicBlock::IsSingleGoto() const {
1935 return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsGoto();
1936 }
1937
IsSingleReturn() const1938 bool HBasicBlock::IsSingleReturn() const {
1939 return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsReturn();
1940 }
1941
IsSingleReturnOrReturnVoidAllowingPhis() const1942 bool HBasicBlock::IsSingleReturnOrReturnVoidAllowingPhis() const {
1943 return (GetFirstInstruction() == GetLastInstruction()) &&
1944 (GetLastInstruction()->IsReturn() || GetLastInstruction()->IsReturnVoid());
1945 }
1946
IsSingleTryBoundary() const1947 bool HBasicBlock::IsSingleTryBoundary() const {
1948 return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsTryBoundary();
1949 }
1950
EndsWithControlFlowInstruction() const1951 bool HBasicBlock::EndsWithControlFlowInstruction() const {
1952 return !GetInstructions().IsEmpty() && GetLastInstruction()->IsControlFlow();
1953 }
1954
EndsWithIf() const1955 bool HBasicBlock::EndsWithIf() const {
1956 return !GetInstructions().IsEmpty() && GetLastInstruction()->IsIf();
1957 }
1958
EndsWithTryBoundary() const1959 bool HBasicBlock::EndsWithTryBoundary() const {
1960 return !GetInstructions().IsEmpty() && GetLastInstruction()->IsTryBoundary();
1961 }
1962
HasSinglePhi() const1963 bool HBasicBlock::HasSinglePhi() const {
1964 return !GetPhis().IsEmpty() && GetFirstPhi()->GetNext() == nullptr;
1965 }
1966
GetNormalSuccessors() const1967 ArrayRef<HBasicBlock* const> HBasicBlock::GetNormalSuccessors() const {
1968 if (EndsWithTryBoundary()) {
1969 // The normal-flow successor of HTryBoundary is always stored at index zero.
1970 DCHECK_EQ(successors_[0], GetLastInstruction()->AsTryBoundary()->GetNormalFlowSuccessor());
1971 return ArrayRef<HBasicBlock* const>(successors_).SubArray(0u, 1u);
1972 } else {
1973 // All successors of blocks not ending with TryBoundary are normal.
1974 return ArrayRef<HBasicBlock* const>(successors_);
1975 }
1976 }
1977
GetExceptionalSuccessors() const1978 ArrayRef<HBasicBlock* const> HBasicBlock::GetExceptionalSuccessors() const {
1979 if (EndsWithTryBoundary()) {
1980 return GetLastInstruction()->AsTryBoundary()->GetExceptionHandlers();
1981 } else {
1982 // Blocks not ending with TryBoundary do not have exceptional successors.
1983 return ArrayRef<HBasicBlock* const>();
1984 }
1985 }
1986
HasSameExceptionHandlersAs(const HTryBoundary & other) const1987 bool HTryBoundary::HasSameExceptionHandlersAs(const HTryBoundary& other) const {
1988 ArrayRef<HBasicBlock* const> handlers1 = GetExceptionHandlers();
1989 ArrayRef<HBasicBlock* const> handlers2 = other.GetExceptionHandlers();
1990
1991 size_t length = handlers1.size();
1992 if (length != handlers2.size()) {
1993 return false;
1994 }
1995
1996 // Exception handlers need to be stored in the same order.
1997 for (size_t i = 0; i < length; ++i) {
1998 if (handlers1[i] != handlers2[i]) {
1999 return false;
2000 }
2001 }
2002 return true;
2003 }
2004
CountSize() const2005 size_t HInstructionList::CountSize() const {
2006 size_t size = 0;
2007 HInstruction* current = first_instruction_;
2008 for (; current != nullptr; current = current->GetNext()) {
2009 size++;
2010 }
2011 return size;
2012 }
2013
SetBlockOfInstructions(HBasicBlock * block) const2014 void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const {
2015 for (HInstruction* current = first_instruction_;
2016 current != nullptr;
2017 current = current->GetNext()) {
2018 current->SetBlock(block);
2019 }
2020 }
2021
AddAfter(HInstruction * cursor,const HInstructionList & instruction_list)2022 void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) {
2023 DCHECK(Contains(cursor));
2024 if (!instruction_list.IsEmpty()) {
2025 if (cursor == last_instruction_) {
2026 last_instruction_ = instruction_list.last_instruction_;
2027 } else {
2028 cursor->next_->previous_ = instruction_list.last_instruction_;
2029 }
2030 instruction_list.last_instruction_->next_ = cursor->next_;
2031 cursor->next_ = instruction_list.first_instruction_;
2032 instruction_list.first_instruction_->previous_ = cursor;
2033 }
2034 }
2035
AddBefore(HInstruction * cursor,const HInstructionList & instruction_list)2036 void HInstructionList::AddBefore(HInstruction* cursor, const HInstructionList& instruction_list) {
2037 DCHECK(Contains(cursor));
2038 if (!instruction_list.IsEmpty()) {
2039 if (cursor == first_instruction_) {
2040 first_instruction_ = instruction_list.first_instruction_;
2041 } else {
2042 cursor->previous_->next_ = instruction_list.first_instruction_;
2043 }
2044 instruction_list.last_instruction_->next_ = cursor;
2045 instruction_list.first_instruction_->previous_ = cursor->previous_;
2046 cursor->previous_ = instruction_list.last_instruction_;
2047 }
2048 }
2049
Add(const HInstructionList & instruction_list)2050 void HInstructionList::Add(const HInstructionList& instruction_list) {
2051 if (IsEmpty()) {
2052 first_instruction_ = instruction_list.first_instruction_;
2053 last_instruction_ = instruction_list.last_instruction_;
2054 } else {
2055 AddAfter(last_instruction_, instruction_list);
2056 }
2057 }
2058
2059 // Should be called on instructions in a dead block in post order. This method
2060 // assumes `insn` has been removed from all users with the exception of catch
2061 // phis because of missing exceptional edges in the graph. It removes the
2062 // instruction from catch phi uses, together with inputs of other catch phis in
2063 // the catch block at the same index, as these must be dead too.
RemoveUsesOfDeadInstruction(HInstruction * insn)2064 static void RemoveUsesOfDeadInstruction(HInstruction* insn) {
2065 DCHECK(!insn->HasEnvironmentUses());
2066 while (insn->HasNonEnvironmentUses()) {
2067 const HUseListNode<HInstruction*>& use = insn->GetUses().front();
2068 size_t use_index = use.GetIndex();
2069 HBasicBlock* user_block = use.GetUser()->GetBlock();
2070 DCHECK(use.GetUser()->IsPhi() && user_block->IsCatchBlock());
2071 for (HInstructionIterator phi_it(user_block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
2072 phi_it.Current()->AsPhi()->RemoveInputAt(use_index);
2073 }
2074 }
2075 }
2076
DisconnectAndDelete()2077 void HBasicBlock::DisconnectAndDelete() {
2078 // Dominators must be removed after all the blocks they dominate. This way
2079 // a loop header is removed last, a requirement for correct loop information
2080 // iteration.
2081 DCHECK(dominated_blocks_.empty());
2082
2083 // The following steps gradually remove the block from all its dependants in
2084 // post order (b/27683071).
2085
2086 // (1) Store a basic block that we'll use in step (5) to find loops to be updated.
2087 // We need to do this before step (4) which destroys the predecessor list.
2088 HBasicBlock* loop_update_start = this;
2089 if (IsLoopHeader()) {
2090 HLoopInformation* loop_info = GetLoopInformation();
2091 // All other blocks in this loop should have been removed because the header
2092 // was their dominator.
2093 // Note that we do not remove `this` from `loop_info` as it is unreachable.
2094 DCHECK(!loop_info->IsIrreducible());
2095 DCHECK_EQ(loop_info->GetBlocks().NumSetBits(), 1u);
2096 DCHECK_EQ(static_cast<uint32_t>(loop_info->GetBlocks().GetHighestBitSet()), GetBlockId());
2097 loop_update_start = loop_info->GetPreHeader();
2098 }
2099
2100 // (2) Disconnect the block from its successors and update their phis.
2101 for (HBasicBlock* successor : successors_) {
2102 // Delete this block from the list of predecessors.
2103 size_t this_index = successor->GetPredecessorIndexOf(this);
2104 successor->predecessors_.erase(successor->predecessors_.begin() + this_index);
2105
2106 // Check that `successor` has other predecessors, otherwise `this` is the
2107 // dominator of `successor` which violates the order DCHECKed at the top.
2108 DCHECK(!successor->predecessors_.empty());
2109
2110 // Remove this block's entries in the successor's phis. Skip exceptional
2111 // successors because catch phi inputs do not correspond to predecessor
2112 // blocks but throwing instructions. The inputs of the catch phis will be
2113 // updated in step (3).
2114 if (!successor->IsCatchBlock()) {
2115 if (successor->predecessors_.size() == 1u) {
2116 // The successor has just one predecessor left. Replace phis with the only
2117 // remaining input.
2118 for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
2119 HPhi* phi = phi_it.Current()->AsPhi();
2120 phi->ReplaceWith(phi->InputAt(1 - this_index));
2121 successor->RemovePhi(phi);
2122 }
2123 } else {
2124 for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
2125 phi_it.Current()->AsPhi()->RemoveInputAt(this_index);
2126 }
2127 }
2128 }
2129 }
2130 successors_.clear();
2131
2132 // (3) Remove instructions and phis. Instructions should have no remaining uses
2133 // except in catch phis. If an instruction is used by a catch phi at `index`,
2134 // remove `index`-th input of all phis in the catch block since they are
2135 // guaranteed dead. Note that we may miss dead inputs this way but the
2136 // graph will always remain consistent.
2137 for (HBackwardInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) {
2138 HInstruction* insn = it.Current();
2139 RemoveUsesOfDeadInstruction(insn);
2140 RemoveInstruction(insn);
2141 }
2142 for (HInstructionIterator it(GetPhis()); !it.Done(); it.Advance()) {
2143 HPhi* insn = it.Current()->AsPhi();
2144 RemoveUsesOfDeadInstruction(insn);
2145 RemovePhi(insn);
2146 }
2147
2148 // (4) Disconnect the block from its predecessors and update their
2149 // control-flow instructions.
2150 for (HBasicBlock* predecessor : predecessors_) {
2151 // We should not see any back edges as they would have been removed by step (3).
2152 DCHECK(!IsInLoop() || !GetLoopInformation()->IsBackEdge(*predecessor));
2153
2154 HInstruction* last_instruction = predecessor->GetLastInstruction();
2155 if (last_instruction->IsTryBoundary() && !IsCatchBlock()) {
2156 // This block is the only normal-flow successor of the TryBoundary which
2157 // makes `predecessor` dead. Since DCE removes blocks in post order,
2158 // exception handlers of this TryBoundary were already visited and any
2159 // remaining handlers therefore must be live. We remove `predecessor` from
2160 // their list of predecessors.
2161 DCHECK_EQ(last_instruction->AsTryBoundary()->GetNormalFlowSuccessor(), this);
2162 while (predecessor->GetSuccessors().size() > 1) {
2163 HBasicBlock* handler = predecessor->GetSuccessors()[1];
2164 DCHECK(handler->IsCatchBlock());
2165 predecessor->RemoveSuccessor(handler);
2166 handler->RemovePredecessor(predecessor);
2167 }
2168 }
2169
2170 predecessor->RemoveSuccessor(this);
2171 uint32_t num_pred_successors = predecessor->GetSuccessors().size();
2172 if (num_pred_successors == 1u) {
2173 // If we have one successor after removing one, then we must have
2174 // had an HIf, HPackedSwitch or HTryBoundary, as they have more than one
2175 // successor. Replace those with a HGoto.
2176 DCHECK(last_instruction->IsIf() ||
2177 last_instruction->IsPackedSwitch() ||
2178 (last_instruction->IsTryBoundary() && IsCatchBlock()));
2179 predecessor->RemoveInstruction(last_instruction);
2180 predecessor->AddInstruction(new (graph_->GetAllocator()) HGoto(last_instruction->GetDexPc()));
2181 } else if (num_pred_successors == 0u) {
2182 // The predecessor has no remaining successors and therefore must be dead.
2183 // We deliberately leave it without a control-flow instruction so that the
2184 // GraphChecker fails unless it is not removed during the pass too.
2185 predecessor->RemoveInstruction(last_instruction);
2186 } else {
2187 // There are multiple successors left. The removed block might be a successor
2188 // of a PackedSwitch which will be completely removed (perhaps replaced with
2189 // a Goto), or we are deleting a catch block from a TryBoundary. In either
2190 // case, leave `last_instruction` as is for now.
2191 DCHECK(last_instruction->IsPackedSwitch() ||
2192 (last_instruction->IsTryBoundary() && IsCatchBlock()));
2193 }
2194 }
2195 predecessors_.clear();
2196
2197 // (5) Remove the block from all loops it is included in. Skip the inner-most
2198 // loop if this is the loop header (see definition of `loop_update_start`)
2199 // because the loop header's predecessor list has been destroyed in step (4).
2200 for (HLoopInformationOutwardIterator it(*loop_update_start); !it.Done(); it.Advance()) {
2201 HLoopInformation* loop_info = it.Current();
2202 loop_info->Remove(this);
2203 if (loop_info->IsBackEdge(*this)) {
2204 // If this was the last back edge of the loop, we deliberately leave the
2205 // loop in an inconsistent state and will fail GraphChecker unless the
2206 // entire loop is removed during the pass.
2207 loop_info->RemoveBackEdge(this);
2208 }
2209 }
2210
2211 // (6) Disconnect from the dominator.
2212 dominator_->RemoveDominatedBlock(this);
2213 SetDominator(nullptr);
2214
2215 // (7) Delete from the graph, update reverse post order.
2216 graph_->DeleteDeadEmptyBlock(this);
2217 SetGraph(nullptr);
2218 }
2219
MergeInstructionsWith(HBasicBlock * other)2220 void HBasicBlock::MergeInstructionsWith(HBasicBlock* other) {
2221 DCHECK(EndsWithControlFlowInstruction());
2222 RemoveInstruction(GetLastInstruction());
2223 instructions_.Add(other->GetInstructions());
2224 other->instructions_.SetBlockOfInstructions(this);
2225 other->instructions_.Clear();
2226 }
2227
MergeWith(HBasicBlock * other)2228 void HBasicBlock::MergeWith(HBasicBlock* other) {
2229 DCHECK_EQ(GetGraph(), other->GetGraph());
2230 DCHECK(ContainsElement(dominated_blocks_, other));
2231 DCHECK_EQ(GetSingleSuccessor(), other);
2232 DCHECK_EQ(other->GetSinglePredecessor(), this);
2233 DCHECK(other->GetPhis().IsEmpty());
2234
2235 // Move instructions from `other` to `this`.
2236 MergeInstructionsWith(other);
2237
2238 // Remove `other` from the loops it is included in.
2239 for (HLoopInformationOutwardIterator it(*other); !it.Done(); it.Advance()) {
2240 HLoopInformation* loop_info = it.Current();
2241 loop_info->Remove(other);
2242 if (loop_info->IsBackEdge(*other)) {
2243 loop_info->ReplaceBackEdge(other, this);
2244 }
2245 }
2246
2247 // Update links to the successors of `other`.
2248 successors_.clear();
2249 for (HBasicBlock* successor : other->GetSuccessors()) {
2250 successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
2251 }
2252 successors_.swap(other->successors_);
2253 DCHECK(other->successors_.empty());
2254
2255 // Update the dominator tree.
2256 RemoveDominatedBlock(other);
2257 for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
2258 dominated->SetDominator(this);
2259 }
2260 dominated_blocks_.insert(
2261 dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
2262 other->dominated_blocks_.clear();
2263 other->dominator_ = nullptr;
2264
2265 // Clear the list of predecessors of `other` in preparation of deleting it.
2266 other->predecessors_.clear();
2267
2268 // Delete `other` from the graph. The function updates reverse post order.
2269 graph_->DeleteDeadEmptyBlock(other);
2270 other->SetGraph(nullptr);
2271 }
2272
MergeWithInlined(HBasicBlock * other)2273 void HBasicBlock::MergeWithInlined(HBasicBlock* other) {
2274 DCHECK_NE(GetGraph(), other->GetGraph());
2275 DCHECK(GetDominatedBlocks().empty());
2276 DCHECK(GetSuccessors().empty());
2277 DCHECK(!EndsWithControlFlowInstruction());
2278 DCHECK(other->GetSinglePredecessor()->IsEntryBlock());
2279 DCHECK(other->GetPhis().IsEmpty());
2280 DCHECK(!other->IsInLoop());
2281
2282 // Move instructions from `other` to `this`.
2283 instructions_.Add(other->GetInstructions());
2284 other->instructions_.SetBlockOfInstructions(this);
2285
2286 // Update links to the successors of `other`.
2287 successors_.clear();
2288 for (HBasicBlock* successor : other->GetSuccessors()) {
2289 successor->predecessors_[successor->GetPredecessorIndexOf(other)] = this;
2290 }
2291 successors_.swap(other->successors_);
2292 DCHECK(other->successors_.empty());
2293
2294 // Update the dominator tree.
2295 for (HBasicBlock* dominated : other->GetDominatedBlocks()) {
2296 dominated->SetDominator(this);
2297 }
2298 dominated_blocks_.insert(
2299 dominated_blocks_.end(), other->dominated_blocks_.begin(), other->dominated_blocks_.end());
2300 other->dominated_blocks_.clear();
2301 other->dominator_ = nullptr;
2302 other->graph_ = nullptr;
2303 }
2304
ReplaceWith(HBasicBlock * other)2305 void HBasicBlock::ReplaceWith(HBasicBlock* other) {
2306 while (!GetPredecessors().empty()) {
2307 HBasicBlock* predecessor = GetPredecessors()[0];
2308 predecessor->ReplaceSuccessor(this, other);
2309 }
2310 while (!GetSuccessors().empty()) {
2311 HBasicBlock* successor = GetSuccessors()[0];
2312 successor->ReplacePredecessor(this, other);
2313 }
2314 for (HBasicBlock* dominated : GetDominatedBlocks()) {
2315 other->AddDominatedBlock(dominated);
2316 }
2317 GetDominator()->ReplaceDominatedBlock(this, other);
2318 other->SetDominator(GetDominator());
2319 dominator_ = nullptr;
2320 graph_ = nullptr;
2321 }
2322
DeleteDeadEmptyBlock(HBasicBlock * block)2323 void HGraph::DeleteDeadEmptyBlock(HBasicBlock* block) {
2324 DCHECK_EQ(block->GetGraph(), this);
2325 DCHECK(block->GetSuccessors().empty());
2326 DCHECK(block->GetPredecessors().empty());
2327 DCHECK(block->GetDominatedBlocks().empty());
2328 DCHECK(block->GetDominator() == nullptr);
2329 DCHECK(block->GetInstructions().IsEmpty());
2330 DCHECK(block->GetPhis().IsEmpty());
2331
2332 if (block->IsExitBlock()) {
2333 SetExitBlock(nullptr);
2334 }
2335
2336 RemoveElement(reverse_post_order_, block);
2337 blocks_[block->GetBlockId()] = nullptr;
2338 block->SetGraph(nullptr);
2339 }
2340
UpdateLoopAndTryInformationOfNewBlock(HBasicBlock * block,HBasicBlock * reference,bool replace_if_back_edge)2341 void HGraph::UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
2342 HBasicBlock* reference,
2343 bool replace_if_back_edge) {
2344 if (block->IsLoopHeader()) {
2345 // Clear the information of which blocks are contained in that loop. Since the
2346 // information is stored as a bit vector based on block ids, we have to update
2347 // it, as those block ids were specific to the callee graph and we are now adding
2348 // these blocks to the caller graph.
2349 block->GetLoopInformation()->ClearAllBlocks();
2350 }
2351
2352 // If not already in a loop, update the loop information.
2353 if (!block->IsInLoop()) {
2354 block->SetLoopInformation(reference->GetLoopInformation());
2355 }
2356
2357 // If the block is in a loop, update all its outward loops.
2358 HLoopInformation* loop_info = block->GetLoopInformation();
2359 if (loop_info != nullptr) {
2360 for (HLoopInformationOutwardIterator loop_it(*block);
2361 !loop_it.Done();
2362 loop_it.Advance()) {
2363 loop_it.Current()->Add(block);
2364 }
2365 if (replace_if_back_edge && loop_info->IsBackEdge(*reference)) {
2366 loop_info->ReplaceBackEdge(reference, block);
2367 }
2368 }
2369
2370 // Copy TryCatchInformation if `reference` is a try block, not if it is a catch block.
2371 TryCatchInformation* try_catch_info = reference->IsTryBlock()
2372 ? reference->GetTryCatchInformation()
2373 : nullptr;
2374 block->SetTryCatchInformation(try_catch_info);
2375 }
2376
InlineInto(HGraph * outer_graph,HInvoke * invoke)2377 HInstruction* HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) {
2378 DCHECK(HasExitBlock()) << "Unimplemented scenario";
2379 // Update the environments in this graph to have the invoke's environment
2380 // as parent.
2381 {
2382 // Skip the entry block, we do not need to update the entry's suspend check.
2383 for (HBasicBlock* block : GetReversePostOrderSkipEntryBlock()) {
2384 for (HInstructionIterator instr_it(block->GetInstructions());
2385 !instr_it.Done();
2386 instr_it.Advance()) {
2387 HInstruction* current = instr_it.Current();
2388 if (current->NeedsEnvironment()) {
2389 DCHECK(current->HasEnvironment());
2390 current->GetEnvironment()->SetAndCopyParentChain(
2391 outer_graph->GetAllocator(), invoke->GetEnvironment());
2392 }
2393 }
2394 }
2395 }
2396 outer_graph->UpdateMaximumNumberOfOutVRegs(GetMaximumNumberOfOutVRegs());
2397
2398 if (HasBoundsChecks()) {
2399 outer_graph->SetHasBoundsChecks(true);
2400 }
2401 if (HasLoops()) {
2402 outer_graph->SetHasLoops(true);
2403 }
2404 if (HasIrreducibleLoops()) {
2405 outer_graph->SetHasIrreducibleLoops(true);
2406 }
2407 if (HasTryCatch()) {
2408 outer_graph->SetHasTryCatch(true);
2409 }
2410 if (HasSIMD()) {
2411 outer_graph->SetHasSIMD(true);
2412 }
2413
2414 HInstruction* return_value = nullptr;
2415 if (GetBlocks().size() == 3) {
2416 // Inliner already made sure we don't inline methods that always throw.
2417 DCHECK(!GetBlocks()[1]->GetLastInstruction()->IsThrow());
2418 // Simple case of an entry block, a body block, and an exit block.
2419 // Put the body block's instruction into `invoke`'s block.
2420 HBasicBlock* body = GetBlocks()[1];
2421 DCHECK(GetBlocks()[0]->IsEntryBlock());
2422 DCHECK(GetBlocks()[2]->IsExitBlock());
2423 DCHECK(!body->IsExitBlock());
2424 DCHECK(!body->IsInLoop());
2425 HInstruction* last = body->GetLastInstruction();
2426
2427 // Note that we add instructions before the invoke only to simplify polymorphic inlining.
2428 invoke->GetBlock()->instructions_.AddBefore(invoke, body->GetInstructions());
2429 body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock());
2430
2431 // Replace the invoke with the return value of the inlined graph.
2432 if (last->IsReturn()) {
2433 return_value = last->InputAt(0);
2434 } else {
2435 DCHECK(last->IsReturnVoid());
2436 }
2437
2438 invoke->GetBlock()->RemoveInstruction(last);
2439 } else {
2440 // Need to inline multiple blocks. We split `invoke`'s block
2441 // into two blocks, merge the first block of the inlined graph into
2442 // the first half, and replace the exit block of the inlined graph
2443 // with the second half.
2444 ArenaAllocator* allocator = outer_graph->GetAllocator();
2445 HBasicBlock* at = invoke->GetBlock();
2446 // Note that we split before the invoke only to simplify polymorphic inlining.
2447 HBasicBlock* to = at->SplitBeforeForInlining(invoke);
2448
2449 HBasicBlock* first = entry_block_->GetSuccessors()[0];
2450 DCHECK(!first->IsInLoop());
2451 at->MergeWithInlined(first);
2452 exit_block_->ReplaceWith(to);
2453
2454 // Update the meta information surrounding blocks:
2455 // (1) the graph they are now in,
2456 // (2) the reverse post order of that graph,
2457 // (3) their potential loop information, inner and outer,
2458 // (4) try block membership.
2459 // Note that we do not need to update catch phi inputs because they
2460 // correspond to the register file of the outer method which the inlinee
2461 // cannot modify.
2462
2463 // We don't add the entry block, the exit block, and the first block, which
2464 // has been merged with `at`.
2465 static constexpr int kNumberOfSkippedBlocksInCallee = 3;
2466
2467 // We add the `to` block.
2468 static constexpr int kNumberOfNewBlocksInCaller = 1;
2469 size_t blocks_added = (reverse_post_order_.size() - kNumberOfSkippedBlocksInCallee)
2470 + kNumberOfNewBlocksInCaller;
2471
2472 // Find the location of `at` in the outer graph's reverse post order. The new
2473 // blocks will be added after it.
2474 size_t index_of_at = IndexOfElement(outer_graph->reverse_post_order_, at);
2475 MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at);
2476
2477 // Do a reverse post order of the blocks in the callee and do (1), (2), (3)
2478 // and (4) to the blocks that apply.
2479 for (HBasicBlock* current : GetReversePostOrder()) {
2480 if (current != exit_block_ && current != entry_block_ && current != first) {
2481 DCHECK(current->GetTryCatchInformation() == nullptr);
2482 DCHECK(current->GetGraph() == this);
2483 current->SetGraph(outer_graph);
2484 outer_graph->AddBlock(current);
2485 outer_graph->reverse_post_order_[++index_of_at] = current;
2486 UpdateLoopAndTryInformationOfNewBlock(current, at, /* replace_if_back_edge */ false);
2487 }
2488 }
2489
2490 // Do (1), (2), (3) and (4) to `to`.
2491 to->SetGraph(outer_graph);
2492 outer_graph->AddBlock(to);
2493 outer_graph->reverse_post_order_[++index_of_at] = to;
2494 // Only `to` can become a back edge, as the inlined blocks
2495 // are predecessors of `to`.
2496 UpdateLoopAndTryInformationOfNewBlock(to, at, /* replace_if_back_edge */ true);
2497
2498 // Update all predecessors of the exit block (now the `to` block)
2499 // to not `HReturn` but `HGoto` instead. Special case throwing blocks
2500 // to now get the outer graph exit block as successor. Note that the inliner
2501 // currently doesn't support inlining methods with try/catch.
2502 HPhi* return_value_phi = nullptr;
2503 bool rerun_dominance = false;
2504 bool rerun_loop_analysis = false;
2505 for (size_t pred = 0; pred < to->GetPredecessors().size(); ++pred) {
2506 HBasicBlock* predecessor = to->GetPredecessors()[pred];
2507 HInstruction* last = predecessor->GetLastInstruction();
2508 if (last->IsThrow()) {
2509 DCHECK(!at->IsTryBlock());
2510 predecessor->ReplaceSuccessor(to, outer_graph->GetExitBlock());
2511 --pred;
2512 // We need to re-run dominance information, as the exit block now has
2513 // a new dominator.
2514 rerun_dominance = true;
2515 if (predecessor->GetLoopInformation() != nullptr) {
2516 // The exit block and blocks post dominated by the exit block do not belong
2517 // to any loop. Because we do not compute the post dominators, we need to re-run
2518 // loop analysis to get the loop information correct.
2519 rerun_loop_analysis = true;
2520 }
2521 } else {
2522 if (last->IsReturnVoid()) {
2523 DCHECK(return_value == nullptr);
2524 DCHECK(return_value_phi == nullptr);
2525 } else {
2526 DCHECK(last->IsReturn());
2527 if (return_value_phi != nullptr) {
2528 return_value_phi->AddInput(last->InputAt(0));
2529 } else if (return_value == nullptr) {
2530 return_value = last->InputAt(0);
2531 } else {
2532 // There will be multiple returns.
2533 return_value_phi = new (allocator) HPhi(
2534 allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke->GetType()), to->GetDexPc());
2535 to->AddPhi(return_value_phi);
2536 return_value_phi->AddInput(return_value);
2537 return_value_phi->AddInput(last->InputAt(0));
2538 return_value = return_value_phi;
2539 }
2540 }
2541 predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc()));
2542 predecessor->RemoveInstruction(last);
2543 }
2544 }
2545 if (rerun_loop_analysis) {
2546 DCHECK(!outer_graph->HasIrreducibleLoops())
2547 << "Recomputing loop information in graphs with irreducible loops "
2548 << "is unsupported, as it could lead to loop header changes";
2549 outer_graph->ClearLoopInformation();
2550 outer_graph->ClearDominanceInformation();
2551 outer_graph->BuildDominatorTree();
2552 } else if (rerun_dominance) {
2553 outer_graph->ClearDominanceInformation();
2554 outer_graph->ComputeDominanceInformation();
2555 }
2556 }
2557
2558 // Walk over the entry block and:
2559 // - Move constants from the entry block to the outer_graph's entry block,
2560 // - Replace HParameterValue instructions with their real value.
2561 // - Remove suspend checks, that hold an environment.
2562 // We must do this after the other blocks have been inlined, otherwise ids of
2563 // constants could overlap with the inner graph.
2564 size_t parameter_index = 0;
2565 for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) {
2566 HInstruction* current = it.Current();
2567 HInstruction* replacement = nullptr;
2568 if (current->IsNullConstant()) {
2569 replacement = outer_graph->GetNullConstant(current->GetDexPc());
2570 } else if (current->IsIntConstant()) {
2571 replacement = outer_graph->GetIntConstant(
2572 current->AsIntConstant()->GetValue(), current->GetDexPc());
2573 } else if (current->IsLongConstant()) {
2574 replacement = outer_graph->GetLongConstant(
2575 current->AsLongConstant()->GetValue(), current->GetDexPc());
2576 } else if (current->IsFloatConstant()) {
2577 replacement = outer_graph->GetFloatConstant(
2578 current->AsFloatConstant()->GetValue(), current->GetDexPc());
2579 } else if (current->IsDoubleConstant()) {
2580 replacement = outer_graph->GetDoubleConstant(
2581 current->AsDoubleConstant()->GetValue(), current->GetDexPc());
2582 } else if (current->IsParameterValue()) {
2583 if (kIsDebugBuild
2584 && invoke->IsInvokeStaticOrDirect()
2585 && invoke->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck()) {
2586 // Ensure we do not use the last input of `invoke`, as it
2587 // contains a clinit check which is not an actual argument.
2588 size_t last_input_index = invoke->InputCount() - 1;
2589 DCHECK(parameter_index != last_input_index);
2590 }
2591 replacement = invoke->InputAt(parameter_index++);
2592 } else if (current->IsCurrentMethod()) {
2593 replacement = outer_graph->GetCurrentMethod();
2594 } else {
2595 DCHECK(current->IsGoto() || current->IsSuspendCheck());
2596 entry_block_->RemoveInstruction(current);
2597 }
2598 if (replacement != nullptr) {
2599 current->ReplaceWith(replacement);
2600 // If the current is the return value then we need to update the latter.
2601 if (current == return_value) {
2602 DCHECK_EQ(entry_block_, return_value->GetBlock());
2603 return_value = replacement;
2604 }
2605 }
2606 }
2607
2608 return return_value;
2609 }
2610
2611 /*
2612 * Loop will be transformed to:
2613 * old_pre_header
2614 * |
2615 * if_block
2616 * / \
2617 * true_block false_block
2618 * \ /
2619 * new_pre_header
2620 * |
2621 * header
2622 */
TransformLoopHeaderForBCE(HBasicBlock * header)2623 void HGraph::TransformLoopHeaderForBCE(HBasicBlock* header) {
2624 DCHECK(header->IsLoopHeader());
2625 HBasicBlock* old_pre_header = header->GetDominator();
2626
2627 // Need extra block to avoid critical edge.
2628 HBasicBlock* if_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
2629 HBasicBlock* true_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
2630 HBasicBlock* false_block = new (allocator_) HBasicBlock(this, header->GetDexPc());
2631 HBasicBlock* new_pre_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
2632 AddBlock(if_block);
2633 AddBlock(true_block);
2634 AddBlock(false_block);
2635 AddBlock(new_pre_header);
2636
2637 header->ReplacePredecessor(old_pre_header, new_pre_header);
2638 old_pre_header->successors_.clear();
2639 old_pre_header->dominated_blocks_.clear();
2640
2641 old_pre_header->AddSuccessor(if_block);
2642 if_block->AddSuccessor(true_block); // True successor
2643 if_block->AddSuccessor(false_block); // False successor
2644 true_block->AddSuccessor(new_pre_header);
2645 false_block->AddSuccessor(new_pre_header);
2646
2647 old_pre_header->dominated_blocks_.push_back(if_block);
2648 if_block->SetDominator(old_pre_header);
2649 if_block->dominated_blocks_.push_back(true_block);
2650 true_block->SetDominator(if_block);
2651 if_block->dominated_blocks_.push_back(false_block);
2652 false_block->SetDominator(if_block);
2653 if_block->dominated_blocks_.push_back(new_pre_header);
2654 new_pre_header->SetDominator(if_block);
2655 new_pre_header->dominated_blocks_.push_back(header);
2656 header->SetDominator(new_pre_header);
2657
2658 // Fix reverse post order.
2659 size_t index_of_header = IndexOfElement(reverse_post_order_, header);
2660 MakeRoomFor(&reverse_post_order_, 4, index_of_header - 1);
2661 reverse_post_order_[index_of_header++] = if_block;
2662 reverse_post_order_[index_of_header++] = true_block;
2663 reverse_post_order_[index_of_header++] = false_block;
2664 reverse_post_order_[index_of_header++] = new_pre_header;
2665
2666 // The pre_header can never be a back edge of a loop.
2667 DCHECK((old_pre_header->GetLoopInformation() == nullptr) ||
2668 !old_pre_header->GetLoopInformation()->IsBackEdge(*old_pre_header));
2669 UpdateLoopAndTryInformationOfNewBlock(
2670 if_block, old_pre_header, /* replace_if_back_edge */ false);
2671 UpdateLoopAndTryInformationOfNewBlock(
2672 true_block, old_pre_header, /* replace_if_back_edge */ false);
2673 UpdateLoopAndTryInformationOfNewBlock(
2674 false_block, old_pre_header, /* replace_if_back_edge */ false);
2675 UpdateLoopAndTryInformationOfNewBlock(
2676 new_pre_header, old_pre_header, /* replace_if_back_edge */ false);
2677 }
2678
TransformLoopForVectorization(HBasicBlock * header,HBasicBlock * body,HBasicBlock * exit)2679 HBasicBlock* HGraph::TransformLoopForVectorization(HBasicBlock* header,
2680 HBasicBlock* body,
2681 HBasicBlock* exit) {
2682 DCHECK(header->IsLoopHeader());
2683 HLoopInformation* loop = header->GetLoopInformation();
2684
2685 // Add new loop blocks.
2686 HBasicBlock* new_pre_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
2687 HBasicBlock* new_header = new (allocator_) HBasicBlock(this, header->GetDexPc());
2688 HBasicBlock* new_body = new (allocator_) HBasicBlock(this, header->GetDexPc());
2689 AddBlock(new_pre_header);
2690 AddBlock(new_header);
2691 AddBlock(new_body);
2692
2693 // Set up control flow.
2694 header->ReplaceSuccessor(exit, new_pre_header);
2695 new_pre_header->AddSuccessor(new_header);
2696 new_header->AddSuccessor(exit);
2697 new_header->AddSuccessor(new_body);
2698 new_body->AddSuccessor(new_header);
2699
2700 // Set up dominators.
2701 header->ReplaceDominatedBlock(exit, new_pre_header);
2702 new_pre_header->SetDominator(header);
2703 new_pre_header->dominated_blocks_.push_back(new_header);
2704 new_header->SetDominator(new_pre_header);
2705 new_header->dominated_blocks_.push_back(new_body);
2706 new_body->SetDominator(new_header);
2707 new_header->dominated_blocks_.push_back(exit);
2708 exit->SetDominator(new_header);
2709
2710 // Fix reverse post order.
2711 size_t index_of_header = IndexOfElement(reverse_post_order_, header);
2712 MakeRoomFor(&reverse_post_order_, 2, index_of_header);
2713 reverse_post_order_[++index_of_header] = new_pre_header;
2714 reverse_post_order_[++index_of_header] = new_header;
2715 size_t index_of_body = IndexOfElement(reverse_post_order_, body);
2716 MakeRoomFor(&reverse_post_order_, 1, index_of_body - 1);
2717 reverse_post_order_[index_of_body] = new_body;
2718
2719 // Add gotos and suspend check (client must add conditional in header).
2720 new_pre_header->AddInstruction(new (allocator_) HGoto());
2721 HSuspendCheck* suspend_check = new (allocator_) HSuspendCheck(header->GetDexPc());
2722 new_header->AddInstruction(suspend_check);
2723 new_body->AddInstruction(new (allocator_) HGoto());
2724 suspend_check->CopyEnvironmentFromWithLoopPhiAdjustment(
2725 loop->GetSuspendCheck()->GetEnvironment(), header);
2726
2727 // Update loop information.
2728 new_header->AddBackEdge(new_body);
2729 new_header->GetLoopInformation()->SetSuspendCheck(suspend_check);
2730 new_header->GetLoopInformation()->Populate();
2731 new_pre_header->SetLoopInformation(loop->GetPreHeader()->GetLoopInformation()); // outward
2732 HLoopInformationOutwardIterator it(*new_header);
2733 for (it.Advance(); !it.Done(); it.Advance()) {
2734 it.Current()->Add(new_pre_header);
2735 it.Current()->Add(new_header);
2736 it.Current()->Add(new_body);
2737 }
2738 return new_pre_header;
2739 }
2740
CheckAgainstUpperBound(ReferenceTypeInfo rti,ReferenceTypeInfo upper_bound_rti)2741 static void CheckAgainstUpperBound(ReferenceTypeInfo rti, ReferenceTypeInfo upper_bound_rti)
2742 REQUIRES_SHARED(Locks::mutator_lock_) {
2743 if (rti.IsValid()) {
2744 DCHECK(upper_bound_rti.IsSupertypeOf(rti))
2745 << " upper_bound_rti: " << upper_bound_rti
2746 << " rti: " << rti;
2747 DCHECK(!upper_bound_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes() || rti.IsExact())
2748 << " upper_bound_rti: " << upper_bound_rti
2749 << " rti: " << rti;
2750 }
2751 }
2752
SetReferenceTypeInfo(ReferenceTypeInfo rti)2753 void HInstruction::SetReferenceTypeInfo(ReferenceTypeInfo rti) {
2754 if (kIsDebugBuild) {
2755 DCHECK_EQ(GetType(), DataType::Type::kReference);
2756 ScopedObjectAccess soa(Thread::Current());
2757 DCHECK(rti.IsValid()) << "Invalid RTI for " << DebugName();
2758 if (IsBoundType()) {
2759 // Having the test here spares us from making the method virtual just for
2760 // the sake of a DCHECK.
2761 CheckAgainstUpperBound(rti, AsBoundType()->GetUpperBound());
2762 }
2763 }
2764 reference_type_handle_ = rti.GetTypeHandle();
2765 SetPackedFlag<kFlagReferenceTypeIsExact>(rti.IsExact());
2766 }
2767
SetUpperBound(const ReferenceTypeInfo & upper_bound,bool can_be_null)2768 void HBoundType::SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null) {
2769 if (kIsDebugBuild) {
2770 ScopedObjectAccess soa(Thread::Current());
2771 DCHECK(upper_bound.IsValid());
2772 DCHECK(!upper_bound_.IsValid()) << "Upper bound should only be set once.";
2773 CheckAgainstUpperBound(GetReferenceTypeInfo(), upper_bound);
2774 }
2775 upper_bound_ = upper_bound;
2776 SetPackedFlag<kFlagUpperCanBeNull>(can_be_null);
2777 }
2778
Create(TypeHandle type_handle,bool is_exact)2779 ReferenceTypeInfo ReferenceTypeInfo::Create(TypeHandle type_handle, bool is_exact) {
2780 if (kIsDebugBuild) {
2781 ScopedObjectAccess soa(Thread::Current());
2782 DCHECK(IsValidHandle(type_handle));
2783 if (!is_exact) {
2784 DCHECK(!type_handle->CannotBeAssignedFromOtherTypes())
2785 << "Callers of ReferenceTypeInfo::Create should ensure is_exact is properly computed";
2786 }
2787 }
2788 return ReferenceTypeInfo(type_handle, is_exact);
2789 }
2790
operator <<(std::ostream & os,const ReferenceTypeInfo & rhs)2791 std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs) {
2792 ScopedObjectAccess soa(Thread::Current());
2793 os << "["
2794 << " is_valid=" << rhs.IsValid()
2795 << " type=" << (!rhs.IsValid() ? "?" : mirror::Class::PrettyClass(rhs.GetTypeHandle().Get()))
2796 << " is_exact=" << rhs.IsExact()
2797 << " ]";
2798 return os;
2799 }
2800
HasAnyEnvironmentUseBefore(HInstruction * other)2801 bool HInstruction::HasAnyEnvironmentUseBefore(HInstruction* other) {
2802 // For now, assume that instructions in different blocks may use the
2803 // environment.
2804 // TODO: Use the control flow to decide if this is true.
2805 if (GetBlock() != other->GetBlock()) {
2806 return true;
2807 }
2808
2809 // We know that we are in the same block. Walk from 'this' to 'other',
2810 // checking to see if there is any instruction with an environment.
2811 HInstruction* current = this;
2812 for (; current != other && current != nullptr; current = current->GetNext()) {
2813 // This is a conservative check, as the instruction result may not be in
2814 // the referenced environment.
2815 if (current->HasEnvironment()) {
2816 return true;
2817 }
2818 }
2819
2820 // We should have been called with 'this' before 'other' in the block.
2821 // Just confirm this.
2822 DCHECK(current != nullptr);
2823 return false;
2824 }
2825
SetIntrinsic(Intrinsics intrinsic,IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,IntrinsicSideEffects side_effects,IntrinsicExceptions exceptions)2826 void HInvoke::SetIntrinsic(Intrinsics intrinsic,
2827 IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
2828 IntrinsicSideEffects side_effects,
2829 IntrinsicExceptions exceptions) {
2830 intrinsic_ = intrinsic;
2831 IntrinsicOptimizations opt(this);
2832
2833 // Adjust method's side effects from intrinsic table.
2834 switch (side_effects) {
2835 case kNoSideEffects: SetSideEffects(SideEffects::None()); break;
2836 case kReadSideEffects: SetSideEffects(SideEffects::AllReads()); break;
2837 case kWriteSideEffects: SetSideEffects(SideEffects::AllWrites()); break;
2838 case kAllSideEffects: SetSideEffects(SideEffects::AllExceptGCDependency()); break;
2839 }
2840
2841 if (needs_env_or_cache == kNoEnvironmentOrCache) {
2842 opt.SetDoesNotNeedDexCache();
2843 opt.SetDoesNotNeedEnvironment();
2844 } else {
2845 // If we need an environment, that means there will be a call, which can trigger GC.
2846 SetSideEffects(GetSideEffects().Union(SideEffects::CanTriggerGC()));
2847 }
2848 // Adjust method's exception status from intrinsic table.
2849 SetCanThrow(exceptions == kCanThrow);
2850 }
2851
IsStringAlloc() const2852 bool HNewInstance::IsStringAlloc() const {
2853 ScopedObjectAccess soa(Thread::Current());
2854 return GetReferenceTypeInfo().IsStringClass();
2855 }
2856
NeedsEnvironment() const2857 bool HInvoke::NeedsEnvironment() const {
2858 if (!IsIntrinsic()) {
2859 return true;
2860 }
2861 IntrinsicOptimizations opt(*this);
2862 return !opt.GetDoesNotNeedEnvironment();
2863 }
2864
GetDexFileForPcRelativeDexCache() const2865 const DexFile& HInvokeStaticOrDirect::GetDexFileForPcRelativeDexCache() const {
2866 ArtMethod* caller = GetEnvironment()->GetMethod();
2867 ScopedObjectAccess soa(Thread::Current());
2868 // `caller` is null for a top-level graph representing a method whose declaring
2869 // class was not resolved.
2870 return caller == nullptr ? GetBlock()->GetGraph()->GetDexFile() : *caller->GetDexFile();
2871 }
2872
NeedsDexCacheOfDeclaringClass() const2873 bool HInvokeStaticOrDirect::NeedsDexCacheOfDeclaringClass() const {
2874 if (GetMethodLoadKind() != MethodLoadKind::kRuntimeCall) {
2875 return false;
2876 }
2877 if (!IsIntrinsic()) {
2878 return true;
2879 }
2880 IntrinsicOptimizations opt(*this);
2881 return !opt.GetDoesNotNeedDexCache();
2882 }
2883
operator <<(std::ostream & os,HInvokeStaticOrDirect::MethodLoadKind rhs)2884 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs) {
2885 switch (rhs) {
2886 case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
2887 return os << "StringInit";
2888 case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
2889 return os << "Recursive";
2890 case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative:
2891 return os << "BootImageLinkTimePcRelative";
2892 case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
2893 return os << "DirectAddress";
2894 case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry:
2895 return os << "BssEntry";
2896 case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall:
2897 return os << "RuntimeCall";
2898 default:
2899 LOG(FATAL) << "Unknown MethodLoadKind: " << static_cast<int>(rhs);
2900 UNREACHABLE();
2901 }
2902 }
2903
operator <<(std::ostream & os,HInvokeStaticOrDirect::ClinitCheckRequirement rhs)2904 std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs) {
2905 switch (rhs) {
2906 case HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit:
2907 return os << "explicit";
2908 case HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit:
2909 return os << "implicit";
2910 case HInvokeStaticOrDirect::ClinitCheckRequirement::kNone:
2911 return os << "none";
2912 default:
2913 LOG(FATAL) << "Unknown ClinitCheckRequirement: " << static_cast<int>(rhs);
2914 UNREACHABLE();
2915 }
2916 }
2917
InstructionDataEquals(const HInstruction * other) const2918 bool HLoadClass::InstructionDataEquals(const HInstruction* other) const {
2919 const HLoadClass* other_load_class = other->AsLoadClass();
2920 // TODO: To allow GVN for HLoadClass from different dex files, we should compare the type
2921 // names rather than type indexes. However, we shall also have to re-think the hash code.
2922 if (type_index_ != other_load_class->type_index_ ||
2923 GetPackedFields() != other_load_class->GetPackedFields()) {
2924 return false;
2925 }
2926 switch (GetLoadKind()) {
2927 case LoadKind::kBootImageAddress:
2928 case LoadKind::kBootImageClassTable:
2929 case LoadKind::kJitTableAddress: {
2930 ScopedObjectAccess soa(Thread::Current());
2931 return GetClass().Get() == other_load_class->GetClass().Get();
2932 }
2933 default:
2934 DCHECK(HasTypeReference(GetLoadKind()));
2935 return IsSameDexFile(GetDexFile(), other_load_class->GetDexFile());
2936 }
2937 }
2938
operator <<(std::ostream & os,HLoadClass::LoadKind rhs)2939 std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs) {
2940 switch (rhs) {
2941 case HLoadClass::LoadKind::kReferrersClass:
2942 return os << "ReferrersClass";
2943 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
2944 return os << "BootImageLinkTimePcRelative";
2945 case HLoadClass::LoadKind::kBootImageAddress:
2946 return os << "BootImageAddress";
2947 case HLoadClass::LoadKind::kBootImageClassTable:
2948 return os << "BootImageClassTable";
2949 case HLoadClass::LoadKind::kBssEntry:
2950 return os << "BssEntry";
2951 case HLoadClass::LoadKind::kJitTableAddress:
2952 return os << "JitTableAddress";
2953 case HLoadClass::LoadKind::kRuntimeCall:
2954 return os << "RuntimeCall";
2955 default:
2956 LOG(FATAL) << "Unknown HLoadClass::LoadKind: " << static_cast<int>(rhs);
2957 UNREACHABLE();
2958 }
2959 }
2960
InstructionDataEquals(const HInstruction * other) const2961 bool HLoadString::InstructionDataEquals(const HInstruction* other) const {
2962 const HLoadString* other_load_string = other->AsLoadString();
2963 // TODO: To allow GVN for HLoadString from different dex files, we should compare the strings
2964 // rather than their indexes. However, we shall also have to re-think the hash code.
2965 if (string_index_ != other_load_string->string_index_ ||
2966 GetPackedFields() != other_load_string->GetPackedFields()) {
2967 return false;
2968 }
2969 switch (GetLoadKind()) {
2970 case LoadKind::kBootImageAddress:
2971 case LoadKind::kBootImageInternTable:
2972 case LoadKind::kJitTableAddress: {
2973 ScopedObjectAccess soa(Thread::Current());
2974 return GetString().Get() == other_load_string->GetString().Get();
2975 }
2976 default:
2977 return IsSameDexFile(GetDexFile(), other_load_string->GetDexFile());
2978 }
2979 }
2980
operator <<(std::ostream & os,HLoadString::LoadKind rhs)2981 std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs) {
2982 switch (rhs) {
2983 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
2984 return os << "BootImageLinkTimePcRelative";
2985 case HLoadString::LoadKind::kBootImageAddress:
2986 return os << "BootImageAddress";
2987 case HLoadString::LoadKind::kBootImageInternTable:
2988 return os << "BootImageInternTable";
2989 case HLoadString::LoadKind::kBssEntry:
2990 return os << "BssEntry";
2991 case HLoadString::LoadKind::kJitTableAddress:
2992 return os << "JitTableAddress";
2993 case HLoadString::LoadKind::kRuntimeCall:
2994 return os << "RuntimeCall";
2995 default:
2996 LOG(FATAL) << "Unknown HLoadString::LoadKind: " << static_cast<int>(rhs);
2997 UNREACHABLE();
2998 }
2999 }
3000
RemoveEnvironmentUsers()3001 void HInstruction::RemoveEnvironmentUsers() {
3002 for (const HUseListNode<HEnvironment*>& use : GetEnvUses()) {
3003 HEnvironment* user = use.GetUser();
3004 user->SetRawEnvAt(use.GetIndex(), nullptr);
3005 }
3006 env_uses_.clear();
3007 }
3008
ReplaceInstrOrPhiByClone(HInstruction * instr)3009 HInstruction* ReplaceInstrOrPhiByClone(HInstruction* instr) {
3010 HInstruction* clone = instr->Clone(instr->GetBlock()->GetGraph()->GetAllocator());
3011 HBasicBlock* block = instr->GetBlock();
3012
3013 if (instr->IsPhi()) {
3014 HPhi* phi = instr->AsPhi();
3015 DCHECK(!phi->HasEnvironment());
3016 HPhi* phi_clone = clone->AsPhi();
3017 block->ReplaceAndRemovePhiWith(phi, phi_clone);
3018 } else {
3019 block->ReplaceAndRemoveInstructionWith(instr, clone);
3020 if (instr->HasEnvironment()) {
3021 clone->CopyEnvironmentFrom(instr->GetEnvironment());
3022 HLoopInformation* loop_info = block->GetLoopInformation();
3023 if (instr->IsSuspendCheck() && loop_info != nullptr) {
3024 loop_info->SetSuspendCheck(clone->AsSuspendCheck());
3025 }
3026 }
3027 }
3028 return clone;
3029 }
3030
3031 // Returns an instruction with the opposite Boolean value from 'cond'.
InsertOppositeCondition(HInstruction * cond,HInstruction * cursor)3032 HInstruction* HGraph::InsertOppositeCondition(HInstruction* cond, HInstruction* cursor) {
3033 ArenaAllocator* allocator = GetAllocator();
3034
3035 if (cond->IsCondition() &&
3036 !DataType::IsFloatingPointType(cond->InputAt(0)->GetType())) {
3037 // Can't reverse floating point conditions. We have to use HBooleanNot in that case.
3038 HInstruction* lhs = cond->InputAt(0);
3039 HInstruction* rhs = cond->InputAt(1);
3040 HInstruction* replacement = nullptr;
3041 switch (cond->AsCondition()->GetOppositeCondition()) { // get *opposite*
3042 case kCondEQ: replacement = new (allocator) HEqual(lhs, rhs); break;
3043 case kCondNE: replacement = new (allocator) HNotEqual(lhs, rhs); break;
3044 case kCondLT: replacement = new (allocator) HLessThan(lhs, rhs); break;
3045 case kCondLE: replacement = new (allocator) HLessThanOrEqual(lhs, rhs); break;
3046 case kCondGT: replacement = new (allocator) HGreaterThan(lhs, rhs); break;
3047 case kCondGE: replacement = new (allocator) HGreaterThanOrEqual(lhs, rhs); break;
3048 case kCondB: replacement = new (allocator) HBelow(lhs, rhs); break;
3049 case kCondBE: replacement = new (allocator) HBelowOrEqual(lhs, rhs); break;
3050 case kCondA: replacement = new (allocator) HAbove(lhs, rhs); break;
3051 case kCondAE: replacement = new (allocator) HAboveOrEqual(lhs, rhs); break;
3052 default:
3053 LOG(FATAL) << "Unexpected condition";
3054 UNREACHABLE();
3055 }
3056 cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
3057 return replacement;
3058 } else if (cond->IsIntConstant()) {
3059 HIntConstant* int_const = cond->AsIntConstant();
3060 if (int_const->IsFalse()) {
3061 return GetIntConstant(1);
3062 } else {
3063 DCHECK(int_const->IsTrue()) << int_const->GetValue();
3064 return GetIntConstant(0);
3065 }
3066 } else {
3067 HInstruction* replacement = new (allocator) HBooleanNot(cond);
3068 cursor->GetBlock()->InsertInstructionBefore(replacement, cursor);
3069 return replacement;
3070 }
3071 }
3072
operator <<(std::ostream & os,const MoveOperands & rhs)3073 std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs) {
3074 os << "["
3075 << " source=" << rhs.GetSource()
3076 << " destination=" << rhs.GetDestination()
3077 << " type=" << rhs.GetType()
3078 << " instruction=";
3079 if (rhs.GetInstruction() != nullptr) {
3080 os << rhs.GetInstruction()->DebugName() << ' ' << rhs.GetInstruction()->GetId();
3081 } else {
3082 os << "null";
3083 }
3084 os << " ]";
3085 return os;
3086 }
3087
operator <<(std::ostream & os,TypeCheckKind rhs)3088 std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs) {
3089 switch (rhs) {
3090 case TypeCheckKind::kUnresolvedCheck:
3091 return os << "unresolved_check";
3092 case TypeCheckKind::kExactCheck:
3093 return os << "exact_check";
3094 case TypeCheckKind::kClassHierarchyCheck:
3095 return os << "class_hierarchy_check";
3096 case TypeCheckKind::kAbstractClassCheck:
3097 return os << "abstract_class_check";
3098 case TypeCheckKind::kInterfaceCheck:
3099 return os << "interface_check";
3100 case TypeCheckKind::kArrayObjectCheck:
3101 return os << "array_object_check";
3102 case TypeCheckKind::kArrayCheck:
3103 return os << "array_check";
3104 default:
3105 LOG(FATAL) << "Unknown TypeCheckKind: " << static_cast<int>(rhs);
3106 UNREACHABLE();
3107 }
3108 }
3109
operator <<(std::ostream & os,const MemBarrierKind & kind)3110 std::ostream& operator<<(std::ostream& os, const MemBarrierKind& kind) {
3111 switch (kind) {
3112 case MemBarrierKind::kAnyStore:
3113 return os << "AnyStore";
3114 case MemBarrierKind::kLoadAny:
3115 return os << "LoadAny";
3116 case MemBarrierKind::kStoreStore:
3117 return os << "StoreStore";
3118 case MemBarrierKind::kAnyAny:
3119 return os << "AnyAny";
3120 case MemBarrierKind::kNTStoreStore:
3121 return os << "NTStoreStore";
3122
3123 default:
3124 LOG(FATAL) << "Unknown MemBarrierKind: " << static_cast<int>(kind);
3125 UNREACHABLE();
3126 }
3127 }
3128
3129 } // namespace art
3130