• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/bn.h>
58 
59 #include <assert.h>
60 #include <string.h>
61 
62 #include <openssl/err.h>
63 #include <openssl/mem.h>
64 
65 #include "internal.h"
66 #include "../../internal.h"
67 
68 
69 #define BN_MUL_RECURSIVE_SIZE_NORMAL 16
70 #define BN_SQR_RECURSIVE_SIZE_NORMAL BN_MUL_RECURSIVE_SIZE_NORMAL
71 
72 
bn_mul_normal(BN_ULONG * r,const BN_ULONG * a,size_t na,const BN_ULONG * b,size_t nb)73 static void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, size_t na,
74                           const BN_ULONG *b, size_t nb) {
75   if (na < nb) {
76     size_t itmp = na;
77     na = nb;
78     nb = itmp;
79     const BN_ULONG *ltmp = a;
80     a = b;
81     b = ltmp;
82   }
83   BN_ULONG *rr = &(r[na]);
84   if (nb == 0) {
85     OPENSSL_memset(r, 0, na * sizeof(BN_ULONG));
86     return;
87   }
88   rr[0] = bn_mul_words(r, a, na, b[0]);
89 
90   for (;;) {
91     if (--nb == 0) {
92       return;
93     }
94     rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
95     if (--nb == 0) {
96       return;
97     }
98     rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
99     if (--nb == 0) {
100       return;
101     }
102     rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
103     if (--nb == 0) {
104       return;
105     }
106     rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
107     rr += 4;
108     r += 4;
109     b += 4;
110   }
111 }
112 
113 #if !defined(OPENSSL_X86) || defined(OPENSSL_NO_ASM)
114 // Here follows specialised variants of bn_add_words() and bn_sub_words(). They
115 // have the property performing operations on arrays of different sizes. The
116 // sizes of those arrays is expressed through cl, which is the common length (
117 // basicall, min(len(a),len(b)) ), and dl, which is the delta between the two
118 // lengths, calculated as len(a)-len(b). All lengths are the number of
119 // BN_ULONGs...  For the operations that require a result array as parameter,
120 // it must have the length cl+abs(dl). These functions should probably end up
121 // in bn_asm.c as soon as there are assembler counterparts for the systems that
122 // use assembler files.
123 
bn_sub_part_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int cl,int dl)124 static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
125                                   const BN_ULONG *b, int cl, int dl) {
126   BN_ULONG c, t;
127 
128   assert(cl >= 0);
129   c = bn_sub_words(r, a, b, cl);
130 
131   if (dl == 0) {
132     return c;
133   }
134 
135   r += cl;
136   a += cl;
137   b += cl;
138 
139   if (dl < 0) {
140     for (;;) {
141       t = b[0];
142       r[0] = 0 - t - c;
143       if (t != 0) {
144         c = 1;
145       }
146       if (++dl >= 0) {
147         break;
148       }
149 
150       t = b[1];
151       r[1] = 0 - t - c;
152       if (t != 0) {
153         c = 1;
154       }
155       if (++dl >= 0) {
156         break;
157       }
158 
159       t = b[2];
160       r[2] = 0 - t - c;
161       if (t != 0) {
162         c = 1;
163       }
164       if (++dl >= 0) {
165         break;
166       }
167 
168       t = b[3];
169       r[3] = 0 - t - c;
170       if (t != 0) {
171         c = 1;
172       }
173       if (++dl >= 0) {
174         break;
175       }
176 
177       b += 4;
178       r += 4;
179     }
180   } else {
181     int save_dl = dl;
182     while (c) {
183       t = a[0];
184       r[0] = t - c;
185       if (t != 0) {
186         c = 0;
187       }
188       if (--dl <= 0) {
189         break;
190       }
191 
192       t = a[1];
193       r[1] = t - c;
194       if (t != 0) {
195         c = 0;
196       }
197       if (--dl <= 0) {
198         break;
199       }
200 
201       t = a[2];
202       r[2] = t - c;
203       if (t != 0) {
204         c = 0;
205       }
206       if (--dl <= 0) {
207         break;
208       }
209 
210       t = a[3];
211       r[3] = t - c;
212       if (t != 0) {
213         c = 0;
214       }
215       if (--dl <= 0) {
216         break;
217       }
218 
219       save_dl = dl;
220       a += 4;
221       r += 4;
222     }
223     if (dl > 0) {
224       if (save_dl > dl) {
225         switch (save_dl - dl) {
226           case 1:
227             r[1] = a[1];
228             if (--dl <= 0) {
229               break;
230             }
231             OPENSSL_FALLTHROUGH;
232           case 2:
233             r[2] = a[2];
234             if (--dl <= 0) {
235               break;
236             }
237             OPENSSL_FALLTHROUGH;
238           case 3:
239             r[3] = a[3];
240             if (--dl <= 0) {
241               break;
242             }
243         }
244         a += 4;
245         r += 4;
246       }
247     }
248 
249     if (dl > 0) {
250       for (;;) {
251         r[0] = a[0];
252         if (--dl <= 0) {
253           break;
254         }
255         r[1] = a[1];
256         if (--dl <= 0) {
257           break;
258         }
259         r[2] = a[2];
260         if (--dl <= 0) {
261           break;
262         }
263         r[3] = a[3];
264         if (--dl <= 0) {
265           break;
266         }
267 
268         a += 4;
269         r += 4;
270       }
271     }
272   }
273 
274   return c;
275 }
276 #else
277 // On other platforms the function is defined in asm.
278 BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
279                            int cl, int dl);
280 #endif
281 
282 // Karatsuba recursive multiplication algorithm
283 // (cf. Knuth, The Art of Computer Programming, Vol. 2)
284 
285 // r is 2*n2 words in size,
286 // a and b are both n2 words in size.
287 // n2 must be a power of 2.
288 // We multiply and return the result.
289 // t must be 2*n2 words in size
290 // We calculate
291 // a[0]*b[0]
292 // a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
293 // a[1]*b[1]
294 // dnX may not be positive, but n2/2+dnX has to be
bn_mul_recursive(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int n2,int dna,int dnb,BN_ULONG * t)295 static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
296                              int n2, int dna, int dnb, BN_ULONG *t) {
297   int n = n2 / 2, c1, c2;
298   int tna = n + dna, tnb = n + dnb;
299   unsigned int neg, zero;
300   BN_ULONG ln, lo, *p;
301 
302   // Only call bn_mul_comba 8 if n2 == 8 and the
303   // two arrays are complete [steve]
304   if (n2 == 8 && dna == 0 && dnb == 0) {
305     bn_mul_comba8(r, a, b);
306     return;
307   }
308 
309   // Else do normal multiply
310   if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
311     bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
312     if ((dna + dnb) < 0) {
313       OPENSSL_memset(&r[2 * n2 + dna + dnb], 0,
314                      sizeof(BN_ULONG) * -(dna + dnb));
315     }
316     return;
317   }
318 
319   // r=(a[0]-a[1])*(b[1]-b[0])
320   c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
321   c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
322   zero = neg = 0;
323   switch (c1 * 3 + c2) {
324     case -4:
325       bn_sub_part_words(t, &(a[n]), a, tna, tna - n);        // -
326       bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb);  // -
327       break;
328     case -3:
329       zero = 1;
330       break;
331     case -2:
332       bn_sub_part_words(t, &(a[n]), a, tna, tna - n);        // -
333       bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);  // +
334       neg = 1;
335       break;
336     case -1:
337     case 0:
338     case 1:
339       zero = 1;
340       break;
341     case 2:
342       bn_sub_part_words(t, a, &(a[n]), tna, n - tna);        // +
343       bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb);  // -
344       neg = 1;
345       break;
346     case 3:
347       zero = 1;
348       break;
349     case 4:
350       bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
351       bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
352       break;
353   }
354 
355   if (n == 4 && dna == 0 && dnb == 0) {
356     // XXX: bn_mul_comba4 could take extra args to do this well
357     if (!zero) {
358       bn_mul_comba4(&(t[n2]), t, &(t[n]));
359     } else {
360       OPENSSL_memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG));
361     }
362 
363     bn_mul_comba4(r, a, b);
364     bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
365   } else if (n == 8 && dna == 0 && dnb == 0) {
366     // XXX: bn_mul_comba8 could take extra args to do this well
367     if (!zero) {
368       bn_mul_comba8(&(t[n2]), t, &(t[n]));
369     } else {
370       OPENSSL_memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG));
371     }
372 
373     bn_mul_comba8(r, a, b);
374     bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
375   } else {
376     p = &(t[n2 * 2]);
377     if (!zero) {
378       bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
379     } else {
380       OPENSSL_memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
381     }
382     bn_mul_recursive(r, a, b, n, 0, 0, p);
383     bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
384   }
385 
386   // t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
387   // r[10] holds (a[0]*b[0])
388   // r[32] holds (b[1]*b[1])
389 
390   c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
391 
392   if (neg) {
393     // if t[32] is negative
394     c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
395   } else {
396     // Might have a carry
397     c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
398   }
399 
400   // t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
401   // r[10] holds (a[0]*b[0])
402   // r[32] holds (b[1]*b[1])
403   // c1 holds the carry bits
404   c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
405   if (c1) {
406     p = &(r[n + n2]);
407     lo = *p;
408     ln = lo + c1;
409     *p = ln;
410 
411     // The overflow will stop before we over write
412     // words we should not overwrite
413     if (ln < (BN_ULONG)c1) {
414       do {
415         p++;
416         lo = *p;
417         ln = lo + 1;
418         *p = ln;
419       } while (ln == 0);
420     }
421   }
422 }
423 
424 // n+tn is the word length
425 // t needs to be n*4 is size, as does r
426 // tnX may not be negative but less than n
bn_mul_part_recursive(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int n,int tna,int tnb,BN_ULONG * t)427 static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a,
428                                   const BN_ULONG *b, int n, int tna, int tnb,
429                                   BN_ULONG *t) {
430   int i, j, n2 = n * 2;
431   int c1, c2, neg;
432   BN_ULONG ln, lo, *p;
433 
434   if (n < 8) {
435     bn_mul_normal(r, a, n + tna, b, n + tnb);
436     return;
437   }
438 
439   // r=(a[0]-a[1])*(b[1]-b[0])
440   c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
441   c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
442   neg = 0;
443   switch (c1 * 3 + c2) {
444     case -4:
445       bn_sub_part_words(t, &(a[n]), a, tna, tna - n);        // -
446       bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb);  // -
447       break;
448     case -3:
449       // break;
450     case -2:
451       bn_sub_part_words(t, &(a[n]), a, tna, tna - n);        // -
452       bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);  // +
453       neg = 1;
454       break;
455     case -1:
456     case 0:
457     case 1:
458       // break;
459     case 2:
460       bn_sub_part_words(t, a, &(a[n]), tna, n - tna);        // +
461       bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb);  // -
462       neg = 1;
463       break;
464     case 3:
465       // break;
466     case 4:
467       bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
468       bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
469       break;
470   }
471 
472   if (n == 8) {
473     bn_mul_comba8(&(t[n2]), t, &(t[n]));
474     bn_mul_comba8(r, a, b);
475     bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
476     OPENSSL_memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
477   } else {
478     p = &(t[n2 * 2]);
479     bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
480     bn_mul_recursive(r, a, b, n, 0, 0, p);
481     i = n / 2;
482     // If there is only a bottom half to the number,
483     // just do it
484     if (tna > tnb) {
485       j = tna - i;
486     } else {
487       j = tnb - i;
488     }
489 
490     if (j == 0) {
491       bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p);
492       OPENSSL_memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2));
493     } else if (j > 0) {
494       // eg, n == 16, i == 8 and tn == 11
495       bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p);
496       OPENSSL_memset(&(r[n2 + tna + tnb]), 0,
497                      sizeof(BN_ULONG) * (n2 - tna - tnb));
498     } else {
499       // (j < 0) eg, n == 16, i == 8 and tn == 5
500       OPENSSL_memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2);
501       if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
502           tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
503         bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
504       } else {
505         for (;;) {
506           i /= 2;
507           // these simplified conditions work
508           // exclusively because difference
509           // between tna and tnb is 1 or 0
510           if (i < tna || i < tnb) {
511             bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i,
512                                   tnb - i, p);
513             break;
514           } else if (i == tna || i == tnb) {
515             bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i,
516                              p);
517             break;
518           }
519         }
520       }
521     }
522   }
523 
524   // t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
525   // r[10] holds (a[0]*b[0])
526   // r[32] holds (b[1]*b[1])
527 
528   c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
529 
530   if (neg) {
531     // if t[32] is negative
532     c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
533   } else {
534     // Might have a carry
535     c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
536   }
537 
538   // t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
539   // r[10] holds (a[0]*b[0])
540   // r[32] holds (b[1]*b[1])
541   // c1 holds the carry bits
542   c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
543   if (c1) {
544     p = &(r[n + n2]);
545     lo = *p;
546     ln = lo + c1;
547     *p = ln;
548 
549     // The overflow will stop before we over write
550     // words we should not overwrite
551     if (ln < (BN_ULONG)c1) {
552       do {
553         p++;
554         lo = *p;
555         ln = lo + 1;
556         *p = ln;
557       } while (ln == 0);
558     }
559   }
560 }
561 
BN_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)562 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
563   int ret = 0;
564   int top, al, bl;
565   BIGNUM *rr;
566   int i;
567   BIGNUM *t = NULL;
568   int j = 0, k;
569 
570   al = a->top;
571   bl = b->top;
572 
573   if ((al == 0) || (bl == 0)) {
574     BN_zero(r);
575     return 1;
576   }
577   top = al + bl;
578 
579   BN_CTX_start(ctx);
580   if ((r == a) || (r == b)) {
581     if ((rr = BN_CTX_get(ctx)) == NULL) {
582       goto err;
583     }
584   } else {
585     rr = r;
586   }
587   rr->neg = a->neg ^ b->neg;
588 
589   i = al - bl;
590   if (i == 0) {
591     if (al == 8) {
592       if (!bn_wexpand(rr, 16)) {
593         goto err;
594       }
595       rr->top = 16;
596       bn_mul_comba8(rr->d, a->d, b->d);
597       goto end;
598     }
599   }
600 
601   static const int kMulNormalSize = 16;
602   if (al >= kMulNormalSize && bl >= kMulNormalSize) {
603     if (i >= -1 && i <= 1) {
604       /* Find out the power of two lower or equal
605          to the longest of the two numbers */
606       if (i >= 0) {
607         j = BN_num_bits_word((BN_ULONG)al);
608       }
609       if (i == -1) {
610         j = BN_num_bits_word((BN_ULONG)bl);
611       }
612       j = 1 << (j - 1);
613       assert(j <= al || j <= bl);
614       k = j + j;
615       t = BN_CTX_get(ctx);
616       if (t == NULL) {
617         goto err;
618       }
619       if (al > j || bl > j) {
620         if (!bn_wexpand(t, k * 4)) {
621           goto err;
622         }
623         if (!bn_wexpand(rr, k * 4)) {
624           goto err;
625         }
626         bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
627       } else {
628         // al <= j || bl <= j
629         if (!bn_wexpand(t, k * 2)) {
630           goto err;
631         }
632         if (!bn_wexpand(rr, k * 2)) {
633           goto err;
634         }
635         bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
636       }
637       rr->top = top;
638       goto end;
639     }
640   }
641 
642   if (!bn_wexpand(rr, top)) {
643     goto err;
644   }
645   rr->top = top;
646   bn_mul_normal(rr->d, a->d, al, b->d, bl);
647 
648 end:
649   bn_correct_top(rr);
650   if (r != rr && !BN_copy(r, rr)) {
651     goto err;
652   }
653   ret = 1;
654 
655 err:
656   BN_CTX_end(ctx);
657   return ret;
658 }
659 
bn_mul_small(BN_ULONG * r,size_t num_r,const BN_ULONG * a,size_t num_a,const BN_ULONG * b,size_t num_b)660 int bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
661                  const BN_ULONG *b, size_t num_b) {
662   if (num_r != num_a + num_b) {
663     OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
664     return 0;
665   }
666   // TODO(davidben): Should this call |bn_mul_comba4| too? |BN_mul| does not
667   // hit that code.
668   if (num_a == 8 && num_b == 8) {
669     bn_mul_comba8(r, a, b);
670   } else {
671     bn_mul_normal(r, a, num_a, b, num_b);
672   }
673   return 1;
674 }
675 
676 // tmp must have 2*n words
bn_sqr_normal(BN_ULONG * r,const BN_ULONG * a,size_t n,BN_ULONG * tmp)677 static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, size_t n,
678                           BN_ULONG *tmp) {
679   if (n == 0) {
680     return;
681   }
682 
683   size_t max = n * 2;
684   const BN_ULONG *ap = a;
685   BN_ULONG *rp = r;
686   rp[0] = rp[max - 1] = 0;
687   rp++;
688 
689   // Compute the contribution of a[i] * a[j] for all i < j.
690   if (n > 1) {
691     ap++;
692     rp[n - 1] = bn_mul_words(rp, ap, n - 1, ap[-1]);
693     rp += 2;
694   }
695   if (n > 2) {
696     for (size_t i = n - 2; i > 0; i--) {
697       ap++;
698       rp[i] = bn_mul_add_words(rp, ap, i, ap[-1]);
699       rp += 2;
700     }
701   }
702 
703   // The final result fits in |max| words, so none of the following operations
704   // will overflow.
705 
706   // Double |r|, giving the contribution of a[i] * a[j] for all i != j.
707   bn_add_words(r, r, r, max);
708 
709   // Add in the contribution of a[i] * a[i] for all i.
710   bn_sqr_words(tmp, a, n);
711   bn_add_words(r, r, tmp, max);
712 }
713 
714 // r is 2*n words in size,
715 // a and b are both n words in size.    (There's not actually a 'b' here ...)
716 // n must be a power of 2.
717 // We multiply and return the result.
718 // t must be 2*n words in size
719 // We calculate
720 // a[0]*b[0]
721 // a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
722 // a[1]*b[1]
bn_sqr_recursive(BN_ULONG * r,const BN_ULONG * a,int n2,BN_ULONG * t)723 static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2,
724                              BN_ULONG *t) {
725   int n = n2 / 2;
726   int zero, c1;
727   BN_ULONG ln, lo, *p;
728 
729   if (n2 == 4) {
730     bn_sqr_comba4(r, a);
731     return;
732   } else if (n2 == 8) {
733     bn_sqr_comba8(r, a);
734     return;
735   }
736   if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
737     bn_sqr_normal(r, a, n2, t);
738     return;
739   }
740   // r=(a[0]-a[1])*(a[1]-a[0])
741   c1 = bn_cmp_words(a, &(a[n]), n);
742   zero = 0;
743   if (c1 > 0) {
744     bn_sub_words(t, a, &(a[n]), n);
745   } else if (c1 < 0) {
746     bn_sub_words(t, &(a[n]), a, n);
747   } else {
748     zero = 1;
749   }
750 
751   // The result will always be negative unless it is zero
752   p = &(t[n2 * 2]);
753 
754   if (!zero) {
755     bn_sqr_recursive(&(t[n2]), t, n, p);
756   } else {
757     OPENSSL_memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
758   }
759   bn_sqr_recursive(r, a, n, p);
760   bn_sqr_recursive(&(r[n2]), &(a[n]), n, p);
761 
762   // t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero
763   // r[10] holds (a[0]*b[0])
764   // r[32] holds (b[1]*b[1])
765 
766   c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
767 
768   // t[32] is negative
769   c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
770 
771   // t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1])
772   // r[10] holds (a[0]*a[0])
773   // r[32] holds (a[1]*a[1])
774   // c1 holds the carry bits
775   c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
776   if (c1) {
777     p = &(r[n + n2]);
778     lo = *p;
779     ln = lo + c1;
780     *p = ln;
781 
782     // The overflow will stop before we over write
783     // words we should not overwrite
784     if (ln < (BN_ULONG)c1) {
785       do {
786         p++;
787         lo = *p;
788         ln = lo + 1;
789         *p = ln;
790       } while (ln == 0);
791     }
792   }
793 }
794 
BN_mul_word(BIGNUM * bn,BN_ULONG w)795 int BN_mul_word(BIGNUM *bn, BN_ULONG w) {
796   if (!bn->top) {
797     return 1;
798   }
799 
800   if (w == 0) {
801     BN_zero(bn);
802     return 1;
803   }
804 
805   BN_ULONG ll = bn_mul_words(bn->d, bn->d, bn->top, w);
806   if (ll) {
807     if (!bn_wexpand(bn, bn->top + 1)) {
808       return 0;
809     }
810     bn->d[bn->top++] = ll;
811   }
812 
813   return 1;
814 }
815 
BN_sqr(BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)816 int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
817   int max, al;
818   int ret = 0;
819   BIGNUM *tmp, *rr;
820 
821   al = a->top;
822   if (al <= 0) {
823     r->top = 0;
824     r->neg = 0;
825     return 1;
826   }
827 
828   BN_CTX_start(ctx);
829   rr = (a != r) ? r : BN_CTX_get(ctx);
830   tmp = BN_CTX_get(ctx);
831   if (!rr || !tmp) {
832     goto err;
833   }
834 
835   max = 2 * al;  // Non-zero (from above)
836   if (!bn_wexpand(rr, max)) {
837     goto err;
838   }
839 
840   if (al == 4) {
841     bn_sqr_comba4(rr->d, a->d);
842   } else if (al == 8) {
843     bn_sqr_comba8(rr->d, a->d);
844   } else {
845     if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
846       BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
847       bn_sqr_normal(rr->d, a->d, al, t);
848     } else {
849       int j, k;
850 
851       j = BN_num_bits_word((BN_ULONG)al);
852       j = 1 << (j - 1);
853       k = j + j;
854       if (al == j) {
855         if (!bn_wexpand(tmp, k * 2)) {
856           goto err;
857         }
858         bn_sqr_recursive(rr->d, a->d, al, tmp->d);
859       } else {
860         if (!bn_wexpand(tmp, max)) {
861           goto err;
862         }
863         bn_sqr_normal(rr->d, a->d, al, tmp->d);
864       }
865     }
866   }
867 
868   rr->neg = 0;
869   // If the most-significant half of the top word of 'a' is zero, then
870   // the square of 'a' will max-1 words.
871   if (a->d[al - 1] == (a->d[al - 1] & BN_MASK2l)) {
872     rr->top = max - 1;
873   } else {
874     rr->top = max;
875   }
876 
877   if (rr != r && !BN_copy(r, rr)) {
878     goto err;
879   }
880   ret = 1;
881 
882 err:
883   BN_CTX_end(ctx);
884   return ret;
885 }
886 
bn_sqr_small(BN_ULONG * r,size_t num_r,const BN_ULONG * a,size_t num_a)887 int bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a) {
888   if (num_r != 2 * num_a || num_a > BN_SMALL_MAX_WORDS) {
889     OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
890     return 0;
891   }
892   if (num_a == 4) {
893     bn_sqr_comba4(r, a);
894   } else if (num_a == 8) {
895     bn_sqr_comba8(r, a);
896   } else {
897     BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS];
898     bn_sqr_normal(r, a, num_a, tmp);
899     OPENSSL_cleanse(tmp, 2 * num_a * sizeof(BN_ULONG));
900   }
901   return 1;
902 }
903