1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2 * All rights reserved.
3 *
4 * This package is an SSL implementation written
5 * by Eric Young (eay@cryptsoft.com).
6 * The implementation was written so as to conform with Netscapes SSL.
7 *
8 * This library is free for commercial and non-commercial use as long as
9 * the following conditions are aheared to. The following conditions
10 * apply to all code found in this distribution, be it the RC4, RSA,
11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
12 * included with this distribution is covered by the same copyright terms
13 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14 *
15 * Copyright remains Eric Young's, and as such any Copyright notices in
16 * the code are not to be removed.
17 * If this package is used in a product, Eric Young should be given attribution
18 * as the author of the parts of the library used.
19 * This can be in the form of a textual message at program startup or
20 * in documentation (online or textual) provided with the package.
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 * 1. Redistributions of source code must retain the copyright
26 * notice, this list of conditions and the following disclaimer.
27 * 2. Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in the
29 * documentation and/or other materials provided with the distribution.
30 * 3. All advertising materials mentioning features or use of this software
31 * must display the following acknowledgement:
32 * "This product includes cryptographic software written by
33 * Eric Young (eay@cryptsoft.com)"
34 * The word 'cryptographic' can be left out if the rouines from the library
35 * being used are not cryptographic related :-).
36 * 4. If you include any Windows specific code (or a derivative thereof) from
37 * the apps directory (application code) you must include an acknowledgement:
38 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50 * SUCH DAMAGE.
51 *
52 * The licence and distribution terms for any publically available version or
53 * derivative of this code cannot be changed. i.e. this code cannot simply be
54 * copied and put under another distribution licence
55 * [including the GNU Public Licence.] */
56
57 #include <openssl/bn.h>
58
59 #include <assert.h>
60 #include <string.h>
61
62 #include <openssl/err.h>
63 #include <openssl/mem.h>
64
65 #include "internal.h"
66 #include "../../internal.h"
67
68
69 #define BN_MUL_RECURSIVE_SIZE_NORMAL 16
70 #define BN_SQR_RECURSIVE_SIZE_NORMAL BN_MUL_RECURSIVE_SIZE_NORMAL
71
72
bn_mul_normal(BN_ULONG * r,const BN_ULONG * a,size_t na,const BN_ULONG * b,size_t nb)73 static void bn_mul_normal(BN_ULONG *r, const BN_ULONG *a, size_t na,
74 const BN_ULONG *b, size_t nb) {
75 if (na < nb) {
76 size_t itmp = na;
77 na = nb;
78 nb = itmp;
79 const BN_ULONG *ltmp = a;
80 a = b;
81 b = ltmp;
82 }
83 BN_ULONG *rr = &(r[na]);
84 if (nb == 0) {
85 OPENSSL_memset(r, 0, na * sizeof(BN_ULONG));
86 return;
87 }
88 rr[0] = bn_mul_words(r, a, na, b[0]);
89
90 for (;;) {
91 if (--nb == 0) {
92 return;
93 }
94 rr[1] = bn_mul_add_words(&(r[1]), a, na, b[1]);
95 if (--nb == 0) {
96 return;
97 }
98 rr[2] = bn_mul_add_words(&(r[2]), a, na, b[2]);
99 if (--nb == 0) {
100 return;
101 }
102 rr[3] = bn_mul_add_words(&(r[3]), a, na, b[3]);
103 if (--nb == 0) {
104 return;
105 }
106 rr[4] = bn_mul_add_words(&(r[4]), a, na, b[4]);
107 rr += 4;
108 r += 4;
109 b += 4;
110 }
111 }
112
113 #if !defined(OPENSSL_X86) || defined(OPENSSL_NO_ASM)
114 // Here follows specialised variants of bn_add_words() and bn_sub_words(). They
115 // have the property performing operations on arrays of different sizes. The
116 // sizes of those arrays is expressed through cl, which is the common length (
117 // basicall, min(len(a),len(b)) ), and dl, which is the delta between the two
118 // lengths, calculated as len(a)-len(b). All lengths are the number of
119 // BN_ULONGs... For the operations that require a result array as parameter,
120 // it must have the length cl+abs(dl). These functions should probably end up
121 // in bn_asm.c as soon as there are assembler counterparts for the systems that
122 // use assembler files.
123
bn_sub_part_words(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int cl,int dl)124 static BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a,
125 const BN_ULONG *b, int cl, int dl) {
126 BN_ULONG c, t;
127
128 assert(cl >= 0);
129 c = bn_sub_words(r, a, b, cl);
130
131 if (dl == 0) {
132 return c;
133 }
134
135 r += cl;
136 a += cl;
137 b += cl;
138
139 if (dl < 0) {
140 for (;;) {
141 t = b[0];
142 r[0] = 0 - t - c;
143 if (t != 0) {
144 c = 1;
145 }
146 if (++dl >= 0) {
147 break;
148 }
149
150 t = b[1];
151 r[1] = 0 - t - c;
152 if (t != 0) {
153 c = 1;
154 }
155 if (++dl >= 0) {
156 break;
157 }
158
159 t = b[2];
160 r[2] = 0 - t - c;
161 if (t != 0) {
162 c = 1;
163 }
164 if (++dl >= 0) {
165 break;
166 }
167
168 t = b[3];
169 r[3] = 0 - t - c;
170 if (t != 0) {
171 c = 1;
172 }
173 if (++dl >= 0) {
174 break;
175 }
176
177 b += 4;
178 r += 4;
179 }
180 } else {
181 int save_dl = dl;
182 while (c) {
183 t = a[0];
184 r[0] = t - c;
185 if (t != 0) {
186 c = 0;
187 }
188 if (--dl <= 0) {
189 break;
190 }
191
192 t = a[1];
193 r[1] = t - c;
194 if (t != 0) {
195 c = 0;
196 }
197 if (--dl <= 0) {
198 break;
199 }
200
201 t = a[2];
202 r[2] = t - c;
203 if (t != 0) {
204 c = 0;
205 }
206 if (--dl <= 0) {
207 break;
208 }
209
210 t = a[3];
211 r[3] = t - c;
212 if (t != 0) {
213 c = 0;
214 }
215 if (--dl <= 0) {
216 break;
217 }
218
219 save_dl = dl;
220 a += 4;
221 r += 4;
222 }
223 if (dl > 0) {
224 if (save_dl > dl) {
225 switch (save_dl - dl) {
226 case 1:
227 r[1] = a[1];
228 if (--dl <= 0) {
229 break;
230 }
231 OPENSSL_FALLTHROUGH;
232 case 2:
233 r[2] = a[2];
234 if (--dl <= 0) {
235 break;
236 }
237 OPENSSL_FALLTHROUGH;
238 case 3:
239 r[3] = a[3];
240 if (--dl <= 0) {
241 break;
242 }
243 }
244 a += 4;
245 r += 4;
246 }
247 }
248
249 if (dl > 0) {
250 for (;;) {
251 r[0] = a[0];
252 if (--dl <= 0) {
253 break;
254 }
255 r[1] = a[1];
256 if (--dl <= 0) {
257 break;
258 }
259 r[2] = a[2];
260 if (--dl <= 0) {
261 break;
262 }
263 r[3] = a[3];
264 if (--dl <= 0) {
265 break;
266 }
267
268 a += 4;
269 r += 4;
270 }
271 }
272 }
273
274 return c;
275 }
276 #else
277 // On other platforms the function is defined in asm.
278 BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
279 int cl, int dl);
280 #endif
281
282 // Karatsuba recursive multiplication algorithm
283 // (cf. Knuth, The Art of Computer Programming, Vol. 2)
284
285 // r is 2*n2 words in size,
286 // a and b are both n2 words in size.
287 // n2 must be a power of 2.
288 // We multiply and return the result.
289 // t must be 2*n2 words in size
290 // We calculate
291 // a[0]*b[0]
292 // a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
293 // a[1]*b[1]
294 // dnX may not be positive, but n2/2+dnX has to be
bn_mul_recursive(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int n2,int dna,int dnb,BN_ULONG * t)295 static void bn_mul_recursive(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
296 int n2, int dna, int dnb, BN_ULONG *t) {
297 int n = n2 / 2, c1, c2;
298 int tna = n + dna, tnb = n + dnb;
299 unsigned int neg, zero;
300 BN_ULONG ln, lo, *p;
301
302 // Only call bn_mul_comba 8 if n2 == 8 and the
303 // two arrays are complete [steve]
304 if (n2 == 8 && dna == 0 && dnb == 0) {
305 bn_mul_comba8(r, a, b);
306 return;
307 }
308
309 // Else do normal multiply
310 if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL) {
311 bn_mul_normal(r, a, n2 + dna, b, n2 + dnb);
312 if ((dna + dnb) < 0) {
313 OPENSSL_memset(&r[2 * n2 + dna + dnb], 0,
314 sizeof(BN_ULONG) * -(dna + dnb));
315 }
316 return;
317 }
318
319 // r=(a[0]-a[1])*(b[1]-b[0])
320 c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
321 c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
322 zero = neg = 0;
323 switch (c1 * 3 + c2) {
324 case -4:
325 bn_sub_part_words(t, &(a[n]), a, tna, tna - n); // -
326 bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); // -
327 break;
328 case -3:
329 zero = 1;
330 break;
331 case -2:
332 bn_sub_part_words(t, &(a[n]), a, tna, tna - n); // -
333 bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); // +
334 neg = 1;
335 break;
336 case -1:
337 case 0:
338 case 1:
339 zero = 1;
340 break;
341 case 2:
342 bn_sub_part_words(t, a, &(a[n]), tna, n - tna); // +
343 bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); // -
344 neg = 1;
345 break;
346 case 3:
347 zero = 1;
348 break;
349 case 4:
350 bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
351 bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
352 break;
353 }
354
355 if (n == 4 && dna == 0 && dnb == 0) {
356 // XXX: bn_mul_comba4 could take extra args to do this well
357 if (!zero) {
358 bn_mul_comba4(&(t[n2]), t, &(t[n]));
359 } else {
360 OPENSSL_memset(&(t[n2]), 0, 8 * sizeof(BN_ULONG));
361 }
362
363 bn_mul_comba4(r, a, b);
364 bn_mul_comba4(&(r[n2]), &(a[n]), &(b[n]));
365 } else if (n == 8 && dna == 0 && dnb == 0) {
366 // XXX: bn_mul_comba8 could take extra args to do this well
367 if (!zero) {
368 bn_mul_comba8(&(t[n2]), t, &(t[n]));
369 } else {
370 OPENSSL_memset(&(t[n2]), 0, 16 * sizeof(BN_ULONG));
371 }
372
373 bn_mul_comba8(r, a, b);
374 bn_mul_comba8(&(r[n2]), &(a[n]), &(b[n]));
375 } else {
376 p = &(t[n2 * 2]);
377 if (!zero) {
378 bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
379 } else {
380 OPENSSL_memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
381 }
382 bn_mul_recursive(r, a, b, n, 0, 0, p);
383 bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), n, dna, dnb, p);
384 }
385
386 // t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
387 // r[10] holds (a[0]*b[0])
388 // r[32] holds (b[1]*b[1])
389
390 c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
391
392 if (neg) {
393 // if t[32] is negative
394 c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
395 } else {
396 // Might have a carry
397 c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
398 }
399
400 // t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
401 // r[10] holds (a[0]*b[0])
402 // r[32] holds (b[1]*b[1])
403 // c1 holds the carry bits
404 c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
405 if (c1) {
406 p = &(r[n + n2]);
407 lo = *p;
408 ln = lo + c1;
409 *p = ln;
410
411 // The overflow will stop before we over write
412 // words we should not overwrite
413 if (ln < (BN_ULONG)c1) {
414 do {
415 p++;
416 lo = *p;
417 ln = lo + 1;
418 *p = ln;
419 } while (ln == 0);
420 }
421 }
422 }
423
424 // n+tn is the word length
425 // t needs to be n*4 is size, as does r
426 // tnX may not be negative but less than n
bn_mul_part_recursive(BN_ULONG * r,const BN_ULONG * a,const BN_ULONG * b,int n,int tna,int tnb,BN_ULONG * t)427 static void bn_mul_part_recursive(BN_ULONG *r, const BN_ULONG *a,
428 const BN_ULONG *b, int n, int tna, int tnb,
429 BN_ULONG *t) {
430 int i, j, n2 = n * 2;
431 int c1, c2, neg;
432 BN_ULONG ln, lo, *p;
433
434 if (n < 8) {
435 bn_mul_normal(r, a, n + tna, b, n + tnb);
436 return;
437 }
438
439 // r=(a[0]-a[1])*(b[1]-b[0])
440 c1 = bn_cmp_part_words(a, &(a[n]), tna, n - tna);
441 c2 = bn_cmp_part_words(&(b[n]), b, tnb, tnb - n);
442 neg = 0;
443 switch (c1 * 3 + c2) {
444 case -4:
445 bn_sub_part_words(t, &(a[n]), a, tna, tna - n); // -
446 bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); // -
447 break;
448 case -3:
449 // break;
450 case -2:
451 bn_sub_part_words(t, &(a[n]), a, tna, tna - n); // -
452 bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n); // +
453 neg = 1;
454 break;
455 case -1:
456 case 0:
457 case 1:
458 // break;
459 case 2:
460 bn_sub_part_words(t, a, &(a[n]), tna, n - tna); // +
461 bn_sub_part_words(&(t[n]), b, &(b[n]), tnb, n - tnb); // -
462 neg = 1;
463 break;
464 case 3:
465 // break;
466 case 4:
467 bn_sub_part_words(t, a, &(a[n]), tna, n - tna);
468 bn_sub_part_words(&(t[n]), &(b[n]), b, tnb, tnb - n);
469 break;
470 }
471
472 if (n == 8) {
473 bn_mul_comba8(&(t[n2]), t, &(t[n]));
474 bn_mul_comba8(r, a, b);
475 bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
476 OPENSSL_memset(&(r[n2 + tna + tnb]), 0, sizeof(BN_ULONG) * (n2 - tna - tnb));
477 } else {
478 p = &(t[n2 * 2]);
479 bn_mul_recursive(&(t[n2]), t, &(t[n]), n, 0, 0, p);
480 bn_mul_recursive(r, a, b, n, 0, 0, p);
481 i = n / 2;
482 // If there is only a bottom half to the number,
483 // just do it
484 if (tna > tnb) {
485 j = tna - i;
486 } else {
487 j = tnb - i;
488 }
489
490 if (j == 0) {
491 bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p);
492 OPENSSL_memset(&(r[n2 + i * 2]), 0, sizeof(BN_ULONG) * (n2 - i * 2));
493 } else if (j > 0) {
494 // eg, n == 16, i == 8 and tn == 11
495 bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i, p);
496 OPENSSL_memset(&(r[n2 + tna + tnb]), 0,
497 sizeof(BN_ULONG) * (n2 - tna - tnb));
498 } else {
499 // (j < 0) eg, n == 16, i == 8 and tn == 5
500 OPENSSL_memset(&(r[n2]), 0, sizeof(BN_ULONG) * n2);
501 if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL &&
502 tnb < BN_MUL_RECURSIVE_SIZE_NORMAL) {
503 bn_mul_normal(&(r[n2]), &(a[n]), tna, &(b[n]), tnb);
504 } else {
505 for (;;) {
506 i /= 2;
507 // these simplified conditions work
508 // exclusively because difference
509 // between tna and tnb is 1 or 0
510 if (i < tna || i < tnb) {
511 bn_mul_part_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i,
512 tnb - i, p);
513 break;
514 } else if (i == tna || i == tnb) {
515 bn_mul_recursive(&(r[n2]), &(a[n]), &(b[n]), i, tna - i, tnb - i,
516 p);
517 break;
518 }
519 }
520 }
521 }
522 }
523
524 // t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
525 // r[10] holds (a[0]*b[0])
526 // r[32] holds (b[1]*b[1])
527
528 c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
529
530 if (neg) {
531 // if t[32] is negative
532 c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
533 } else {
534 // Might have a carry
535 c1 += (int)(bn_add_words(&(t[n2]), &(t[n2]), t, n2));
536 }
537
538 // t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
539 // r[10] holds (a[0]*b[0])
540 // r[32] holds (b[1]*b[1])
541 // c1 holds the carry bits
542 c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
543 if (c1) {
544 p = &(r[n + n2]);
545 lo = *p;
546 ln = lo + c1;
547 *p = ln;
548
549 // The overflow will stop before we over write
550 // words we should not overwrite
551 if (ln < (BN_ULONG)c1) {
552 do {
553 p++;
554 lo = *p;
555 ln = lo + 1;
556 *p = ln;
557 } while (ln == 0);
558 }
559 }
560 }
561
BN_mul(BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)562 int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
563 int ret = 0;
564 int top, al, bl;
565 BIGNUM *rr;
566 int i;
567 BIGNUM *t = NULL;
568 int j = 0, k;
569
570 al = a->top;
571 bl = b->top;
572
573 if ((al == 0) || (bl == 0)) {
574 BN_zero(r);
575 return 1;
576 }
577 top = al + bl;
578
579 BN_CTX_start(ctx);
580 if ((r == a) || (r == b)) {
581 if ((rr = BN_CTX_get(ctx)) == NULL) {
582 goto err;
583 }
584 } else {
585 rr = r;
586 }
587 rr->neg = a->neg ^ b->neg;
588
589 i = al - bl;
590 if (i == 0) {
591 if (al == 8) {
592 if (!bn_wexpand(rr, 16)) {
593 goto err;
594 }
595 rr->top = 16;
596 bn_mul_comba8(rr->d, a->d, b->d);
597 goto end;
598 }
599 }
600
601 static const int kMulNormalSize = 16;
602 if (al >= kMulNormalSize && bl >= kMulNormalSize) {
603 if (i >= -1 && i <= 1) {
604 /* Find out the power of two lower or equal
605 to the longest of the two numbers */
606 if (i >= 0) {
607 j = BN_num_bits_word((BN_ULONG)al);
608 }
609 if (i == -1) {
610 j = BN_num_bits_word((BN_ULONG)bl);
611 }
612 j = 1 << (j - 1);
613 assert(j <= al || j <= bl);
614 k = j + j;
615 t = BN_CTX_get(ctx);
616 if (t == NULL) {
617 goto err;
618 }
619 if (al > j || bl > j) {
620 if (!bn_wexpand(t, k * 4)) {
621 goto err;
622 }
623 if (!bn_wexpand(rr, k * 4)) {
624 goto err;
625 }
626 bn_mul_part_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
627 } else {
628 // al <= j || bl <= j
629 if (!bn_wexpand(t, k * 2)) {
630 goto err;
631 }
632 if (!bn_wexpand(rr, k * 2)) {
633 goto err;
634 }
635 bn_mul_recursive(rr->d, a->d, b->d, j, al - j, bl - j, t->d);
636 }
637 rr->top = top;
638 goto end;
639 }
640 }
641
642 if (!bn_wexpand(rr, top)) {
643 goto err;
644 }
645 rr->top = top;
646 bn_mul_normal(rr->d, a->d, al, b->d, bl);
647
648 end:
649 bn_correct_top(rr);
650 if (r != rr && !BN_copy(r, rr)) {
651 goto err;
652 }
653 ret = 1;
654
655 err:
656 BN_CTX_end(ctx);
657 return ret;
658 }
659
bn_mul_small(BN_ULONG * r,size_t num_r,const BN_ULONG * a,size_t num_a,const BN_ULONG * b,size_t num_b)660 int bn_mul_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a,
661 const BN_ULONG *b, size_t num_b) {
662 if (num_r != num_a + num_b) {
663 OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
664 return 0;
665 }
666 // TODO(davidben): Should this call |bn_mul_comba4| too? |BN_mul| does not
667 // hit that code.
668 if (num_a == 8 && num_b == 8) {
669 bn_mul_comba8(r, a, b);
670 } else {
671 bn_mul_normal(r, a, num_a, b, num_b);
672 }
673 return 1;
674 }
675
676 // tmp must have 2*n words
bn_sqr_normal(BN_ULONG * r,const BN_ULONG * a,size_t n,BN_ULONG * tmp)677 static void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, size_t n,
678 BN_ULONG *tmp) {
679 if (n == 0) {
680 return;
681 }
682
683 size_t max = n * 2;
684 const BN_ULONG *ap = a;
685 BN_ULONG *rp = r;
686 rp[0] = rp[max - 1] = 0;
687 rp++;
688
689 // Compute the contribution of a[i] * a[j] for all i < j.
690 if (n > 1) {
691 ap++;
692 rp[n - 1] = bn_mul_words(rp, ap, n - 1, ap[-1]);
693 rp += 2;
694 }
695 if (n > 2) {
696 for (size_t i = n - 2; i > 0; i--) {
697 ap++;
698 rp[i] = bn_mul_add_words(rp, ap, i, ap[-1]);
699 rp += 2;
700 }
701 }
702
703 // The final result fits in |max| words, so none of the following operations
704 // will overflow.
705
706 // Double |r|, giving the contribution of a[i] * a[j] for all i != j.
707 bn_add_words(r, r, r, max);
708
709 // Add in the contribution of a[i] * a[i] for all i.
710 bn_sqr_words(tmp, a, n);
711 bn_add_words(r, r, tmp, max);
712 }
713
714 // r is 2*n words in size,
715 // a and b are both n words in size. (There's not actually a 'b' here ...)
716 // n must be a power of 2.
717 // We multiply and return the result.
718 // t must be 2*n words in size
719 // We calculate
720 // a[0]*b[0]
721 // a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
722 // a[1]*b[1]
bn_sqr_recursive(BN_ULONG * r,const BN_ULONG * a,int n2,BN_ULONG * t)723 static void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2,
724 BN_ULONG *t) {
725 int n = n2 / 2;
726 int zero, c1;
727 BN_ULONG ln, lo, *p;
728
729 if (n2 == 4) {
730 bn_sqr_comba4(r, a);
731 return;
732 } else if (n2 == 8) {
733 bn_sqr_comba8(r, a);
734 return;
735 }
736 if (n2 < BN_SQR_RECURSIVE_SIZE_NORMAL) {
737 bn_sqr_normal(r, a, n2, t);
738 return;
739 }
740 // r=(a[0]-a[1])*(a[1]-a[0])
741 c1 = bn_cmp_words(a, &(a[n]), n);
742 zero = 0;
743 if (c1 > 0) {
744 bn_sub_words(t, a, &(a[n]), n);
745 } else if (c1 < 0) {
746 bn_sub_words(t, &(a[n]), a, n);
747 } else {
748 zero = 1;
749 }
750
751 // The result will always be negative unless it is zero
752 p = &(t[n2 * 2]);
753
754 if (!zero) {
755 bn_sqr_recursive(&(t[n2]), t, n, p);
756 } else {
757 OPENSSL_memset(&(t[n2]), 0, n2 * sizeof(BN_ULONG));
758 }
759 bn_sqr_recursive(r, a, n, p);
760 bn_sqr_recursive(&(r[n2]), &(a[n]), n, p);
761
762 // t[32] holds (a[0]-a[1])*(a[1]-a[0]), it is negative or zero
763 // r[10] holds (a[0]*b[0])
764 // r[32] holds (b[1]*b[1])
765
766 c1 = (int)(bn_add_words(t, r, &(r[n2]), n2));
767
768 // t[32] is negative
769 c1 -= (int)(bn_sub_words(&(t[n2]), t, &(t[n2]), n2));
770
771 // t[32] holds (a[0]-a[1])*(a[1]-a[0])+(a[0]*a[0])+(a[1]*a[1])
772 // r[10] holds (a[0]*a[0])
773 // r[32] holds (a[1]*a[1])
774 // c1 holds the carry bits
775 c1 += (int)(bn_add_words(&(r[n]), &(r[n]), &(t[n2]), n2));
776 if (c1) {
777 p = &(r[n + n2]);
778 lo = *p;
779 ln = lo + c1;
780 *p = ln;
781
782 // The overflow will stop before we over write
783 // words we should not overwrite
784 if (ln < (BN_ULONG)c1) {
785 do {
786 p++;
787 lo = *p;
788 ln = lo + 1;
789 *p = ln;
790 } while (ln == 0);
791 }
792 }
793 }
794
BN_mul_word(BIGNUM * bn,BN_ULONG w)795 int BN_mul_word(BIGNUM *bn, BN_ULONG w) {
796 if (!bn->top) {
797 return 1;
798 }
799
800 if (w == 0) {
801 BN_zero(bn);
802 return 1;
803 }
804
805 BN_ULONG ll = bn_mul_words(bn->d, bn->d, bn->top, w);
806 if (ll) {
807 if (!bn_wexpand(bn, bn->top + 1)) {
808 return 0;
809 }
810 bn->d[bn->top++] = ll;
811 }
812
813 return 1;
814 }
815
BN_sqr(BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)816 int BN_sqr(BIGNUM *r, const BIGNUM *a, BN_CTX *ctx) {
817 int max, al;
818 int ret = 0;
819 BIGNUM *tmp, *rr;
820
821 al = a->top;
822 if (al <= 0) {
823 r->top = 0;
824 r->neg = 0;
825 return 1;
826 }
827
828 BN_CTX_start(ctx);
829 rr = (a != r) ? r : BN_CTX_get(ctx);
830 tmp = BN_CTX_get(ctx);
831 if (!rr || !tmp) {
832 goto err;
833 }
834
835 max = 2 * al; // Non-zero (from above)
836 if (!bn_wexpand(rr, max)) {
837 goto err;
838 }
839
840 if (al == 4) {
841 bn_sqr_comba4(rr->d, a->d);
842 } else if (al == 8) {
843 bn_sqr_comba8(rr->d, a->d);
844 } else {
845 if (al < BN_SQR_RECURSIVE_SIZE_NORMAL) {
846 BN_ULONG t[BN_SQR_RECURSIVE_SIZE_NORMAL * 2];
847 bn_sqr_normal(rr->d, a->d, al, t);
848 } else {
849 int j, k;
850
851 j = BN_num_bits_word((BN_ULONG)al);
852 j = 1 << (j - 1);
853 k = j + j;
854 if (al == j) {
855 if (!bn_wexpand(tmp, k * 2)) {
856 goto err;
857 }
858 bn_sqr_recursive(rr->d, a->d, al, tmp->d);
859 } else {
860 if (!bn_wexpand(tmp, max)) {
861 goto err;
862 }
863 bn_sqr_normal(rr->d, a->d, al, tmp->d);
864 }
865 }
866 }
867
868 rr->neg = 0;
869 // If the most-significant half of the top word of 'a' is zero, then
870 // the square of 'a' will max-1 words.
871 if (a->d[al - 1] == (a->d[al - 1] & BN_MASK2l)) {
872 rr->top = max - 1;
873 } else {
874 rr->top = max;
875 }
876
877 if (rr != r && !BN_copy(r, rr)) {
878 goto err;
879 }
880 ret = 1;
881
882 err:
883 BN_CTX_end(ctx);
884 return ret;
885 }
886
bn_sqr_small(BN_ULONG * r,size_t num_r,const BN_ULONG * a,size_t num_a)887 int bn_sqr_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, size_t num_a) {
888 if (num_r != 2 * num_a || num_a > BN_SMALL_MAX_WORDS) {
889 OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
890 return 0;
891 }
892 if (num_a == 4) {
893 bn_sqr_comba4(r, a);
894 } else if (num_a == 8) {
895 bn_sqr_comba8(r, a);
896 } else {
897 BN_ULONG tmp[2 * BN_SMALL_MAX_WORDS];
898 bn_sqr_normal(r, a, num_a, tmp);
899 OPENSSL_cleanse(tmp, 2 * num_a * sizeof(BN_ULONG));
900 }
901 return 1;
902 }
903