• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Originally written by Bodo Moeller and Nils Larsch for the OpenSSL project.
2  * ====================================================================
3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in
14  *    the documentation and/or other materials provided with the
15  *    distribution.
16  *
17  * 3. All advertising materials mentioning features or use of this
18  *    software must display the following acknowledgment:
19  *    "This product includes software developed by the OpenSSL Project
20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
21  *
22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
23  *    endorse or promote products derived from this software without
24  *    prior written permission. For written permission, please contact
25  *    openssl-core@openssl.org.
26  *
27  * 5. Products derived from this software may not be called "OpenSSL"
28  *    nor may "OpenSSL" appear in their names without prior written
29  *    permission of the OpenSSL Project.
30  *
31  * 6. Redistributions of any form whatsoever must retain the following
32  *    acknowledgment:
33  *    "This product includes software developed by the OpenSSL Project
34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
35  *
36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
47  * OF THE POSSIBILITY OF SUCH DAMAGE.
48  * ====================================================================
49  *
50  * This product includes cryptographic software written by Eric Young
51  * (eay@cryptsoft.com).  This product includes software written by Tim
52  * Hudson (tjh@cryptsoft.com).
53  *
54  */
55 /* ====================================================================
56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
57  *
58  * Portions of the attached software ("Contribution") are developed by
59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
60  *
61  * The Contribution is licensed pursuant to the OpenSSL open source
62  * license provided above.
63  *
64  * The elliptic curve binary polynomial software is originally written by
65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
66  * Laboratories. */
67 
68 #include <openssl/ec.h>
69 
70 #include <openssl/bn.h>
71 #include <openssl/err.h>
72 #include <openssl/mem.h>
73 
74 #include "../bn/internal.h"
75 #include "../delocate.h"
76 #include "internal.h"
77 
78 
ec_GFp_mont_group_init(EC_GROUP * group)79 int ec_GFp_mont_group_init(EC_GROUP *group) {
80   int ok;
81 
82   ok = ec_GFp_simple_group_init(group);
83   group->mont = NULL;
84   return ok;
85 }
86 
ec_GFp_mont_group_finish(EC_GROUP * group)87 void ec_GFp_mont_group_finish(EC_GROUP *group) {
88   BN_MONT_CTX_free(group->mont);
89   group->mont = NULL;
90   ec_GFp_simple_group_finish(group);
91 }
92 
ec_GFp_mont_group_set_curve(EC_GROUP * group,const BIGNUM * p,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)93 int ec_GFp_mont_group_set_curve(EC_GROUP *group, const BIGNUM *p,
94                                 const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) {
95   BN_CTX *new_ctx = NULL;
96   int ret = 0;
97 
98   BN_MONT_CTX_free(group->mont);
99   group->mont = NULL;
100 
101   if (ctx == NULL) {
102     ctx = new_ctx = BN_CTX_new();
103     if (ctx == NULL) {
104       return 0;
105     }
106   }
107 
108   group->mont = BN_MONT_CTX_new_for_modulus(p, ctx);
109   if (group->mont == NULL) {
110     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
111     goto err;
112   }
113 
114   ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
115 
116   if (!ret) {
117     BN_MONT_CTX_free(group->mont);
118     group->mont = NULL;
119   }
120 
121 err:
122   BN_CTX_free(new_ctx);
123   return ret;
124 }
125 
ec_GFp_mont_field_mul(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,const BIGNUM * b,BN_CTX * ctx)126 int ec_GFp_mont_field_mul(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
127                           const BIGNUM *b, BN_CTX *ctx) {
128   if (group->mont == NULL) {
129     OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
130     return 0;
131   }
132 
133   return BN_mod_mul_montgomery(r, a, b, group->mont, ctx);
134 }
135 
ec_GFp_mont_field_sqr(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)136 int ec_GFp_mont_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
137                           BN_CTX *ctx) {
138   if (group->mont == NULL) {
139     OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
140     return 0;
141   }
142 
143   return BN_mod_mul_montgomery(r, a, a, group->mont, ctx);
144 }
145 
ec_GFp_mont_field_encode(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)146 int ec_GFp_mont_field_encode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
147                              BN_CTX *ctx) {
148   if (group->mont == NULL) {
149     OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
150     return 0;
151   }
152 
153   return BN_to_montgomery(r, a, group->mont, ctx);
154 }
155 
ec_GFp_mont_field_decode(const EC_GROUP * group,BIGNUM * r,const BIGNUM * a,BN_CTX * ctx)156 int ec_GFp_mont_field_decode(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
157                              BN_CTX *ctx) {
158   if (group->mont == NULL) {
159     OPENSSL_PUT_ERROR(EC, EC_R_NOT_INITIALIZED);
160     return 0;
161   }
162 
163   return BN_from_montgomery(r, a, group->mont, ctx);
164 }
165 
ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP * group,const EC_POINT * point,BIGNUM * x,BIGNUM * y,BN_CTX * ctx)166 static int ec_GFp_mont_point_get_affine_coordinates(const EC_GROUP *group,
167                                                     const EC_POINT *point,
168                                                     BIGNUM *x, BIGNUM *y,
169                                                     BN_CTX *ctx) {
170   if (EC_POINT_is_at_infinity(group, point)) {
171     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
172     return 0;
173   }
174 
175   BN_CTX *new_ctx = NULL;
176   if (ctx == NULL) {
177     ctx = new_ctx = BN_CTX_new();
178     if (ctx == NULL) {
179       return 0;
180     }
181   }
182 
183   int ret = 0;
184 
185   BN_CTX_start(ctx);
186 
187   if (BN_cmp(&point->Z, &group->one) == 0) {
188     // |point| is already affine.
189     if (x != NULL && !BN_from_montgomery(x, &point->X, group->mont, ctx)) {
190       goto err;
191     }
192     if (y != NULL && !BN_from_montgomery(y, &point->Y, group->mont, ctx)) {
193       goto err;
194     }
195   } else {
196     // transform  (X, Y, Z)  into  (x, y) := (X/Z^2, Y/Z^3)
197 
198     BIGNUM *Z_1 = BN_CTX_get(ctx);
199     BIGNUM *Z_2 = BN_CTX_get(ctx);
200     BIGNUM *Z_3 = BN_CTX_get(ctx);
201     if (Z_1 == NULL ||
202         Z_2 == NULL ||
203         Z_3 == NULL) {
204       goto err;
205     }
206 
207     // The straightforward way to calculate the inverse of a Montgomery-encoded
208     // value where the result is Montgomery-encoded is:
209     //
210     //    |BN_from_montgomery| + invert + |BN_to_montgomery|.
211     //
212     // This is equivalent, but more efficient, because |BN_from_montgomery|
213     // is more efficient (at least in theory) than |BN_to_montgomery|, since it
214     // doesn't have to do the multiplication before the reduction.
215     //
216     // Use Fermat's Little Theorem instead of |BN_mod_inverse_odd| since this
217     // inversion may be done as the final step of private key operations.
218     // Unfortunately, this is suboptimal for ECDSA verification.
219     if (!BN_from_montgomery(Z_1, &point->Z, group->mont, ctx) ||
220         !BN_from_montgomery(Z_1, Z_1, group->mont, ctx) ||
221         !bn_mod_inverse_prime(Z_1, Z_1, &group->field, ctx, group->mont)) {
222       goto err;
223     }
224 
225     if (!BN_mod_mul_montgomery(Z_2, Z_1, Z_1, group->mont, ctx)) {
226       goto err;
227     }
228 
229     // Instead of using |BN_from_montgomery| to convert the |x| coordinate
230     // and then calling |BN_from_montgomery| again to convert the |y|
231     // coordinate below, convert the common factor |Z_2| once now, saving one
232     // reduction.
233     if (!BN_from_montgomery(Z_2, Z_2, group->mont, ctx)) {
234       goto err;
235     }
236 
237     if (x != NULL) {
238       if (!BN_mod_mul_montgomery(x, &point->X, Z_2, group->mont, ctx)) {
239         goto err;
240       }
241     }
242 
243     if (y != NULL) {
244       if (!BN_mod_mul_montgomery(Z_3, Z_2, Z_1, group->mont, ctx) ||
245           !BN_mod_mul_montgomery(y, &point->Y, Z_3, group->mont, ctx)) {
246         goto err;
247       }
248     }
249   }
250 
251   ret = 1;
252 
253 err:
254   BN_CTX_end(ctx);
255   BN_CTX_free(new_ctx);
256   return ret;
257 }
258 
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_mont_method)259 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_mont_method) {
260   out->group_init = ec_GFp_mont_group_init;
261   out->group_finish = ec_GFp_mont_group_finish;
262   out->group_set_curve = ec_GFp_mont_group_set_curve;
263   out->point_get_affine_coordinates = ec_GFp_mont_point_get_affine_coordinates;
264   out->mul = ec_wNAF_mul /* XXX: Not constant time. */;
265   out->mul_public = ec_wNAF_mul;
266   out->field_mul = ec_GFp_mont_field_mul;
267   out->field_sqr = ec_GFp_mont_field_sqr;
268   out->field_encode = ec_GFp_mont_field_encode;
269   out->field_decode = ec_GFp_mont_field_decode;
270 }
271