• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* ====================================================================
2  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    openssl-core@OpenSSL.org.
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ====================================================================
48  *
49  * This product includes cryptographic software written by Eric Young
50  * (eay@cryptsoft.com).  This product includes software written by Tim
51  * Hudson (tjh@cryptsoft.com). */
52 
53 #include <openssl/ecdsa.h>
54 
55 #include <assert.h>
56 #include <string.h>
57 
58 #include <openssl/bn.h>
59 #include <openssl/err.h>
60 #include <openssl/mem.h>
61 #include <openssl/sha.h>
62 #include <openssl/type_check.h>
63 
64 #include "../bn/internal.h"
65 #include "../ec/internal.h"
66 #include "../../internal.h"
67 
68 
69 // EC_LOOSE_SCALAR is like |EC_SCALAR| but is bounded by 2^|BN_num_bits(order)|
70 // rather than |order|.
71 typedef union {
72   // bytes is the representation of the scalar in little-endian order.
73   uint8_t bytes[EC_MAX_SCALAR_BYTES];
74   BN_ULONG words[EC_MAX_SCALAR_WORDS];
75 } EC_LOOSE_SCALAR;
76 
scalar_add_loose(const EC_GROUP * group,EC_LOOSE_SCALAR * r,const EC_LOOSE_SCALAR * a,const EC_SCALAR * b)77 static void scalar_add_loose(const EC_GROUP *group, EC_LOOSE_SCALAR *r,
78                              const EC_LOOSE_SCALAR *a, const EC_SCALAR *b) {
79   // Add and subtract one copy of |order| if necessary. We have:
80   //   |a| + |b| < 2^BN_num_bits(order) + order
81   // so this leaves |r| < 2^BN_num_bits(order).
82   const BIGNUM *order = &group->order;
83   BN_ULONG carry = bn_add_words(r->words, a->words, b->words, order->top);
84   EC_LOOSE_SCALAR tmp;
85   BN_ULONG v = bn_sub_words(tmp.words, r->words, order->d, order->top) - carry;
86   v = 0u - v;
87   for (int i = 0; i < order->top; i++) {
88     OPENSSL_COMPILE_ASSERT(sizeof(BN_ULONG) <= sizeof(crypto_word_t),
89                            crypto_word_t_too_small);
90     r->words[i] = constant_time_select_w(v, r->words[i], tmp.words[i]);
91   }
92 }
93 
scalar_mod_mul_montgomery(const EC_GROUP * group,EC_SCALAR * r,const EC_SCALAR * a,const EC_SCALAR * b)94 static int scalar_mod_mul_montgomery(const EC_GROUP *group, EC_SCALAR *r,
95                                      const EC_SCALAR *a, const EC_SCALAR *b) {
96   const BIGNUM *order = &group->order;
97   return bn_mod_mul_montgomery_small(r->words, order->top, a->words, order->top,
98                                      b->words, order->top, group->order_mont);
99 }
100 
scalar_mod_mul_montgomery_loose(const EC_GROUP * group,EC_SCALAR * r,const EC_LOOSE_SCALAR * a,const EC_SCALAR * b)101 static int scalar_mod_mul_montgomery_loose(const EC_GROUP *group, EC_SCALAR *r,
102                                            const EC_LOOSE_SCALAR *a,
103                                            const EC_SCALAR *b) {
104   // Although |a| is loose, |bn_mod_mul_montgomery_small| only requires the
105   // product not exceed R * |order|. |b| is fully reduced and |a| <
106   // 2^BN_num_bits(order) <= R, so this holds.
107   const BIGNUM *order = &group->order;
108   return bn_mod_mul_montgomery_small(r->words, order->top, a->words, order->top,
109                                      b->words, order->top, group->order_mont);
110 }
111 
112 // digest_to_scalar interprets |digest_len| bytes from |digest| as a scalar for
113 // ECDSA. Note this value is not fully reduced modulo the order, only the
114 // correct number of bits.
digest_to_scalar(const EC_GROUP * group,EC_LOOSE_SCALAR * out,const uint8_t * digest,size_t digest_len)115 static void digest_to_scalar(const EC_GROUP *group, EC_LOOSE_SCALAR *out,
116                              const uint8_t *digest, size_t digest_len) {
117   const BIGNUM *order = &group->order;
118   size_t num_bits = BN_num_bits(order);
119   // Need to truncate digest if it is too long: first truncate whole bytes.
120   if (8 * digest_len > num_bits) {
121     digest_len = (num_bits + 7) / 8;
122   }
123   OPENSSL_memset(out, 0, sizeof(EC_SCALAR));
124   for (size_t i = 0; i < digest_len; i++) {
125     out->bytes[i] = digest[digest_len - 1 - i];
126   }
127 
128   // If still too long truncate remaining bits with a shift
129   if (8 * digest_len > num_bits) {
130     size_t shift = 8 - (num_bits & 0x7);
131     for (int i = 0; i < order->top - 1; i++) {
132       out->words[i] =
133           (out->words[i] >> shift) | (out->words[i + 1] << (BN_BITS2 - shift));
134     }
135     out->words[order->top - 1] >>= shift;
136   }
137 }
138 
139 // field_element_to_scalar reduces |r| modulo |group->order|. |r| must
140 // previously have been reduced modulo |group->field|.
field_element_to_scalar(const EC_GROUP * group,BIGNUM * r)141 static int field_element_to_scalar(const EC_GROUP *group, BIGNUM *r) {
142   // We must have p < 2×order, assuming p is not tiny (p >= 17). Thus rather we
143   // can reduce by performing at most one subtraction.
144   //
145   // Proof: We only work with prime order curves, so the number of points on
146   // the curve is the order. Thus Hasse's theorem gives:
147   //
148   //     |order - (p + 1)| <= 2×sqrt(p)
149   //         p + 1 - order <= 2×sqrt(p)
150   //     p + 1 - 2×sqrt(p) <= order
151   //       p + 1 - 2×(p/4)  < order       (p/4 > sqrt(p) for p >= 17)
152   //         p/2 < p/2 + 1  < order
153   //                     p  < 2×order
154   //
155   // Additionally, one can manually check this property for built-in curves. It
156   // is enforced for legacy custom curves in |EC_GROUP_set_generator|.
157   //
158   // TODO(davidben): Introduce |EC_FIELD_ELEMENT|, make this a function from
159   // |EC_FIELD_ELEMENT| to |EC_SCALAR|, and cut out the |BIGNUM|. Does this need
160   // to be constant-time for signing? |r| is the x-coordinate for kG, which is
161   // public unless k was rerolled because |s| was zero.
162   assert(!BN_is_negative(r));
163   assert(BN_cmp(r, &group->field) < 0);
164   if (BN_cmp(r, &group->order) >= 0 &&
165       !BN_sub(r, r, &group->order)) {
166     return 0;
167   }
168   assert(!BN_is_negative(r));
169   assert(BN_cmp(r, &group->order) < 0);
170   return 1;
171 }
172 
ECDSA_SIG_new(void)173 ECDSA_SIG *ECDSA_SIG_new(void) {
174   ECDSA_SIG *sig = OPENSSL_malloc(sizeof(ECDSA_SIG));
175   if (sig == NULL) {
176     return NULL;
177   }
178   sig->r = BN_new();
179   sig->s = BN_new();
180   if (sig->r == NULL || sig->s == NULL) {
181     ECDSA_SIG_free(sig);
182     return NULL;
183   }
184   return sig;
185 }
186 
ECDSA_SIG_free(ECDSA_SIG * sig)187 void ECDSA_SIG_free(ECDSA_SIG *sig) {
188   if (sig == NULL) {
189     return;
190   }
191 
192   BN_free(sig->r);
193   BN_free(sig->s);
194   OPENSSL_free(sig);
195 }
196 
ECDSA_SIG_get0(const ECDSA_SIG * sig,const BIGNUM ** out_r,const BIGNUM ** out_s)197 void ECDSA_SIG_get0(const ECDSA_SIG *sig, const BIGNUM **out_r,
198                     const BIGNUM **out_s) {
199   if (out_r != NULL) {
200     *out_r = sig->r;
201   }
202   if (out_s != NULL) {
203     *out_s = sig->s;
204   }
205 }
206 
ECDSA_SIG_set0(ECDSA_SIG * sig,BIGNUM * r,BIGNUM * s)207 int ECDSA_SIG_set0(ECDSA_SIG *sig, BIGNUM *r, BIGNUM *s) {
208   if (r == NULL || s == NULL) {
209     return 0;
210   }
211   BN_free(sig->r);
212   BN_free(sig->s);
213   sig->r = r;
214   sig->s = s;
215   return 1;
216 }
217 
ECDSA_do_verify(const uint8_t * digest,size_t digest_len,const ECDSA_SIG * sig,const EC_KEY * eckey)218 int ECDSA_do_verify(const uint8_t *digest, size_t digest_len,
219                     const ECDSA_SIG *sig, const EC_KEY *eckey) {
220   const EC_GROUP *group = EC_KEY_get0_group(eckey);
221   const EC_POINT *pub_key = EC_KEY_get0_public_key(eckey);
222   if (group == NULL || pub_key == NULL || sig == NULL) {
223     OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS);
224     return 0;
225   }
226 
227   BN_CTX *ctx = BN_CTX_new();
228   if (!ctx) {
229     OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
230     return 0;
231   }
232   int ret = 0;
233   EC_POINT *point = NULL;
234   BN_CTX_start(ctx);
235   BIGNUM *X = BN_CTX_get(ctx);
236   if (X == NULL) {
237     OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
238     goto err;
239   }
240 
241   EC_SCALAR r, s, u1, u2, s_inv_mont;
242   EC_LOOSE_SCALAR m;
243   const BIGNUM *order = EC_GROUP_get0_order(group);
244   if (BN_is_zero(sig->r) ||
245       !ec_bignum_to_scalar(group, &r, sig->r) ||
246       BN_is_zero(sig->s) ||
247       !ec_bignum_to_scalar(group, &s, sig->s)) {
248     OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
249     goto err;
250   }
251   // s_inv_mont = s^-1 mod order. We convert the result to Montgomery form for
252   // the products below.
253   int no_inverse;
254   if (!BN_mod_inverse_odd(X, &no_inverse, sig->s, order, ctx) ||
255       // TODO(davidben): Add a words version of |BN_mod_inverse_odd| and write
256       // into |s_inv_mont| directly.
257       !ec_bignum_to_scalar_unchecked(group, &s_inv_mont, X) ||
258       !bn_to_montgomery_small(s_inv_mont.words, order->top, s_inv_mont.words,
259                               order->top, group->order_mont)) {
260     goto err;
261   }
262   // u1 = m * s^-1 mod order
263   // u2 = r * s^-1 mod order
264   //
265   // |s_inv_mont| is in Montgomery form while |m| and |r| are not, so |u1| and
266   // |u2| will be taken out of Montgomery form, as desired.
267   digest_to_scalar(group, &m, digest, digest_len);
268   if (!scalar_mod_mul_montgomery_loose(group, &u1, &m, &s_inv_mont) ||
269       !scalar_mod_mul_montgomery(group, &u2, &r, &s_inv_mont)) {
270     goto err;
271   }
272 
273   point = EC_POINT_new(group);
274   if (point == NULL) {
275     OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
276     goto err;
277   }
278   if (!ec_point_mul_scalar_public(group, point, &u1, pub_key, &u2, ctx)) {
279     OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
280     goto err;
281   }
282   if (!EC_POINT_get_affine_coordinates_GFp(group, point, X, NULL, ctx)) {
283     OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
284     goto err;
285   }
286   if (!field_element_to_scalar(group, X)) {
287     OPENSSL_PUT_ERROR(ECDSA, ERR_R_BN_LIB);
288     goto err;
289   }
290   // The signature is correct iff |X| is equal to |sig->r|.
291   if (BN_ucmp(X, sig->r) != 0) {
292     OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE);
293     goto err;
294   }
295 
296   ret = 1;
297 
298 err:
299   BN_CTX_end(ctx);
300   BN_CTX_free(ctx);
301   EC_POINT_free(point);
302   return ret;
303 }
304 
ecdsa_sign_setup(const EC_KEY * eckey,BN_CTX * ctx,EC_SCALAR * out_kinv_mont,BIGNUM ** rp,const uint8_t * digest,size_t digest_len,const EC_SCALAR * priv_key)305 static int ecdsa_sign_setup(const EC_KEY *eckey, BN_CTX *ctx,
306                             EC_SCALAR *out_kinv_mont, BIGNUM **rp,
307                             const uint8_t *digest, size_t digest_len,
308                             const EC_SCALAR *priv_key) {
309   EC_POINT *tmp_point = NULL;
310   int ret = 0;
311   EC_SCALAR k;
312   BIGNUM *r = BN_new();  // this value is later returned in *rp
313   if (r == NULL) {
314     OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
315     goto err;
316   }
317   const EC_GROUP *group = EC_KEY_get0_group(eckey);
318   const BIGNUM *order = EC_GROUP_get0_order(group);
319   tmp_point = EC_POINT_new(group);
320   if (tmp_point == NULL) {
321     OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB);
322     goto err;
323   }
324 
325   // Check that the size of the group order is FIPS compliant (FIPS 186-4
326   // B.5.2).
327   if (BN_num_bits(order) < 160) {
328     OPENSSL_PUT_ERROR(ECDSA, EC_R_INVALID_GROUP_ORDER);
329     goto err;
330   }
331 
332   do {
333     // Include the private key and message digest in the k generation.
334     if (eckey->fixed_k != NULL) {
335       if (!ec_bignum_to_scalar(group, &k, eckey->fixed_k)) {
336         goto err;
337       }
338     } else {
339       // Pass a SHA512 hash of the private key and digest as additional data
340       // into the RBG. This is a hardening measure against entropy failure.
341       OPENSSL_COMPILE_ASSERT(SHA512_DIGEST_LENGTH >= 32,
342                              additional_data_is_too_large_for_sha512);
343       SHA512_CTX sha;
344       uint8_t additional_data[SHA512_DIGEST_LENGTH];
345       SHA512_Init(&sha);
346       SHA512_Update(&sha, priv_key->words, order->top * sizeof(BN_ULONG));
347       SHA512_Update(&sha, digest, digest_len);
348       SHA512_Final(additional_data, &sha);
349       if (!ec_random_nonzero_scalar(group, &k, additional_data)) {
350         goto err;
351       }
352     }
353 
354     // Compute k^-1. We leave it in the Montgomery domain as an optimization for
355     // later operations.
356     if (!bn_to_montgomery_small(out_kinv_mont->words, order->top, k.words,
357                                 order->top, group->order_mont) ||
358         !bn_mod_inverse_prime_mont_small(out_kinv_mont->words, order->top,
359                                          out_kinv_mont->words, order->top,
360                                          group->order_mont)) {
361       goto err;
362     }
363 
364     // Compute r, the x-coordinate of generator * k.
365     if (!ec_point_mul_scalar(group, tmp_point, &k, NULL, NULL, ctx) ||
366         !EC_POINT_get_affine_coordinates_GFp(group, tmp_point, r, NULL,
367                                              ctx)) {
368       goto err;
369     }
370 
371     if (!field_element_to_scalar(group, r)) {
372       goto err;
373     }
374   } while (BN_is_zero(r));
375 
376   BN_clear_free(*rp);
377   *rp = r;
378   r = NULL;
379   ret = 1;
380 
381 err:
382   OPENSSL_cleanse(&k, sizeof(k));
383   BN_clear_free(r);
384   EC_POINT_free(tmp_point);
385   return ret;
386 }
387 
ECDSA_do_sign(const uint8_t * digest,size_t digest_len,const EC_KEY * eckey)388 ECDSA_SIG *ECDSA_do_sign(const uint8_t *digest, size_t digest_len,
389                          const EC_KEY *eckey) {
390   if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) {
391     OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED);
392     return NULL;
393   }
394 
395   const EC_GROUP *group = EC_KEY_get0_group(eckey);
396   const BIGNUM *priv_key_bn = EC_KEY_get0_private_key(eckey);
397   if (group == NULL || priv_key_bn == NULL) {
398     OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER);
399     return NULL;
400   }
401   const BIGNUM *order = EC_GROUP_get0_order(group);
402 
403   int ok = 0;
404   ECDSA_SIG *ret = ECDSA_SIG_new();
405   BN_CTX *ctx = BN_CTX_new();
406   EC_SCALAR kinv_mont, priv_key, r_mont, s;
407   EC_LOOSE_SCALAR m, tmp;
408   if (ret == NULL || ctx == NULL) {
409     OPENSSL_PUT_ERROR(ECDSA, ERR_R_MALLOC_FAILURE);
410     return NULL;
411   }
412 
413   digest_to_scalar(group, &m, digest, digest_len);
414   // TODO(davidben): Store the private key as an |EC_SCALAR| so this is obvious
415   // via the type system.
416   if (!ec_bignum_to_scalar_unchecked(group, &priv_key, priv_key_bn)) {
417     goto err;
418   }
419   for (;;) {
420     if (!ecdsa_sign_setup(eckey, ctx, &kinv_mont, &ret->r, digest, digest_len,
421                           &priv_key)) {
422       goto err;
423     }
424 
425     // Compute priv_key * r (mod order). Note if only one parameter is in the
426     // Montgomery domain, |scalar_mod_mul_montgomery| will compute the answer in
427     // the normal domain.
428     if (!ec_bignum_to_scalar(group, &r_mont, ret->r) ||
429         !bn_to_montgomery_small(r_mont.words, order->top, r_mont.words,
430                                 order->top, group->order_mont) ||
431         !scalar_mod_mul_montgomery(group, &s, &priv_key, &r_mont)) {
432       goto err;
433     }
434 
435     // Compute tmp = m + priv_key * r.
436     scalar_add_loose(group, &tmp, &m, &s);
437 
438     // Finally, multiply s by k^-1. That was retained in Montgomery form, so the
439     // same technique as the previous multiplication works.
440     if (!scalar_mod_mul_montgomery_loose(group, &s, &tmp, &kinv_mont) ||
441         !bn_set_words(ret->s, s.words, order->top)) {
442       goto err;
443     }
444     if (!BN_is_zero(ret->s)) {
445       // s != 0 => we have a valid signature
446       break;
447     }
448   }
449 
450   ok = 1;
451 
452 err:
453   if (!ok) {
454     ECDSA_SIG_free(ret);
455     ret = NULL;
456   }
457   BN_CTX_free(ctx);
458   OPENSSL_cleanse(&kinv_mont, sizeof(kinv_mont));
459   OPENSSL_cleanse(&priv_key, sizeof(priv_key));
460   OPENSSL_cleanse(&r_mont, sizeof(r_mont));
461   OPENSSL_cleanse(&s, sizeof(s));
462   OPENSSL_cleanse(&tmp, sizeof(tmp));
463   OPENSSL_cleanse(&m, sizeof(m));
464   return ret;
465 }
466