• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* ====================================================================
2  * Copyright (c) 2008 The OpenSSL Project.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in
13  *    the documentation and/or other materials provided with the
14  *    distribution.
15  *
16  * 3. All advertising materials mentioning features or use of this
17  *    software must display the following acknowledgment:
18  *    "This product includes software developed by the OpenSSL Project
19  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
20  *
21  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22  *    endorse or promote products derived from this software without
23  *    prior written permission. For written permission, please contact
24  *    openssl-core@openssl.org.
25  *
26  * 5. Products derived from this software may not be called "OpenSSL"
27  *    nor may "OpenSSL" appear in their names without prior written
28  *    permission of the OpenSSL Project.
29  *
30  * 6. Redistributions of any form whatsoever must retain the following
31  *    acknowledgment:
32  *    "This product includes software developed by the OpenSSL Project
33  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
34  *
35  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
39  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46  * OF THE POSSIBILITY OF SUCH DAMAGE.
47  * ==================================================================== */
48 
49 #ifndef OPENSSL_HEADER_MODES_INTERNAL_H
50 #define OPENSSL_HEADER_MODES_INTERNAL_H
51 
52 #include <openssl/base.h>
53 
54 #include <string.h>
55 
56 #include "../../internal.h"
57 
58 #if defined(__cplusplus)
59 extern "C" {
60 #endif
61 
62 
63 #define STRICT_ALIGNMENT 1
64 #if defined(OPENSSL_X86_64) || defined(OPENSSL_X86) || defined(OPENSSL_AARCH64)
65 #undef STRICT_ALIGNMENT
66 #define STRICT_ALIGNMENT 0
67 #endif
68 
GETU32(const void * in)69 static inline uint32_t GETU32(const void *in) {
70   uint32_t v;
71   OPENSSL_memcpy(&v, in, sizeof(v));
72   return CRYPTO_bswap4(v);
73 }
74 
PUTU32(void * out,uint32_t v)75 static inline void PUTU32(void *out, uint32_t v) {
76   v = CRYPTO_bswap4(v);
77   OPENSSL_memcpy(out, &v, sizeof(v));
78 }
79 
load_word_le(const void * in)80 static inline size_t load_word_le(const void *in) {
81   size_t v;
82   OPENSSL_memcpy(&v, in, sizeof(v));
83   return v;
84 }
85 
store_word_le(void * out,size_t v)86 static inline void store_word_le(void *out, size_t v) {
87   OPENSSL_memcpy(out, &v, sizeof(v));
88 }
89 
90 // block128_f is the type of a 128-bit, block cipher.
91 typedef void (*block128_f)(const uint8_t in[16], uint8_t out[16],
92                            const void *key);
93 
94 // GCM definitions
95 typedef struct { uint64_t hi,lo; } u128;
96 
97 // gmult_func multiplies |Xi| by the GCM key and writes the result back to
98 // |Xi|.
99 typedef void (*gmult_func)(uint64_t Xi[2], const u128 Htable[16]);
100 
101 // ghash_func repeatedly multiplies |Xi| by the GCM key and adds in blocks from
102 // |inp|. The result is written back to |Xi| and the |len| argument must be a
103 // multiple of 16.
104 typedef void (*ghash_func)(uint64_t Xi[2], const u128 Htable[16],
105                            const uint8_t *inp, size_t len);
106 
107 // This differs from upstream's |gcm128_context| in that it does not have the
108 // |key| pointer, in order to make it |memcpy|-friendly. Rather the key is
109 // passed into each call that needs it.
110 struct gcm128_context {
111   // Following 6 names follow names in GCM specification
112   union {
113     uint64_t u[2];
114     uint32_t d[4];
115     uint8_t c[16];
116     size_t t[16 / sizeof(size_t)];
117   } Yi, EKi, EK0, len, Xi;
118 
119   // Note that the order of |Xi|, |H| and |Htable| is fixed by the MOVBE-based,
120   // x86-64, GHASH assembly.
121   u128 H;
122   u128 Htable[16];
123   gmult_func gmult;
124   ghash_func ghash;
125 
126   unsigned int mres, ares;
127   block128_f block;
128 
129   // use_aesni_gcm_crypt is true if this context should use the assembly
130   // functions |aesni_gcm_encrypt| and |aesni_gcm_decrypt| to process data.
131   unsigned use_aesni_gcm_crypt:1;
132 };
133 
134 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
135 // crypto_gcm_clmul_enabled returns one if the CLMUL implementation of GCM is
136 // used.
137 int crypto_gcm_clmul_enabled(void);
138 #endif
139 
140 
141 // CTR.
142 
143 // ctr128_f is the type of a function that performs CTR-mode encryption.
144 typedef void (*ctr128_f)(const uint8_t *in, uint8_t *out, size_t blocks,
145                          const void *key, const uint8_t ivec[16]);
146 
147 // CRYPTO_ctr128_encrypt encrypts (or decrypts, it's the same in CTR mode)
148 // |len| bytes from |in| to |out| using |block| in counter mode. There's no
149 // requirement that |len| be a multiple of any value and any partial blocks are
150 // stored in |ecount_buf| and |*num|, which must be zeroed before the initial
151 // call. The counter is a 128-bit, big-endian value in |ivec| and is
152 // incremented by this function.
153 void CRYPTO_ctr128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
154                            const void *key, uint8_t ivec[16],
155                            uint8_t ecount_buf[16], unsigned *num,
156                            block128_f block);
157 
158 // CRYPTO_ctr128_encrypt_ctr32 acts like |CRYPTO_ctr128_encrypt| but takes
159 // |ctr|, a function that performs CTR mode but only deals with the lower 32
160 // bits of the counter. This is useful when |ctr| can be an optimised
161 // function.
162 void CRYPTO_ctr128_encrypt_ctr32(const uint8_t *in, uint8_t *out, size_t len,
163                                  const void *key, uint8_t ivec[16],
164                                  uint8_t ecount_buf[16], unsigned *num,
165                                  ctr128_f ctr);
166 
167 #if !defined(OPENSSL_NO_ASM) && \
168     (defined(OPENSSL_X86) || defined(OPENSSL_X86_64))
169 void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks,
170                                 const void *key, const uint8_t *ivec);
171 #endif
172 
173 
174 // GCM.
175 //
176 // This API differs from the upstream API slightly. The |GCM128_CONTEXT| does
177 // not have a |key| pointer that points to the key as upstream's version does.
178 // Instead, every function takes a |key| parameter. This way |GCM128_CONTEXT|
179 // can be safely copied.
180 
181 typedef struct gcm128_context GCM128_CONTEXT;
182 
183 // CRYPTO_ghash_init writes a precomputed table of powers of |gcm_key| to
184 // |out_table| and sets |*out_mult| and |*out_hash| to (potentially hardware
185 // accelerated) functions for performing operations in the GHASH field. If the
186 // AVX implementation was used |*out_is_avx| will be true.
187 void CRYPTO_ghash_init(gmult_func *out_mult, ghash_func *out_hash,
188                        u128 *out_key, u128 out_table[16], int *out_is_avx,
189                        const uint8_t *gcm_key);
190 
191 // CRYPTO_gcm128_init initialises |ctx| to use |block| (typically AES) with
192 // the given key. |is_aesni_encrypt| is one if |block| is |aesni_encrypt|.
193 OPENSSL_EXPORT void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx, const void *key,
194                                        block128_f block, int is_aesni_encrypt);
195 
196 // CRYPTO_gcm128_setiv sets the IV (nonce) for |ctx|. The |key| must be the
197 // same key that was passed to |CRYPTO_gcm128_init|.
198 OPENSSL_EXPORT void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx, const void *key,
199                                         const uint8_t *iv, size_t iv_len);
200 
201 // CRYPTO_gcm128_aad sets the authenticated data for an instance of GCM.
202 // This must be called before and data is encrypted. It returns one on success
203 // and zero otherwise.
204 OPENSSL_EXPORT int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx, const uint8_t *aad,
205                                      size_t len);
206 
207 // CRYPTO_gcm128_encrypt encrypts |len| bytes from |in| to |out|. The |key|
208 // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
209 // on success and zero otherwise.
210 OPENSSL_EXPORT int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx, const void *key,
211                                          const uint8_t *in, uint8_t *out,
212                                          size_t len);
213 
214 // CRYPTO_gcm128_decrypt decrypts |len| bytes from |in| to |out|. The |key|
215 // must be the same key that was passed to |CRYPTO_gcm128_init|. It returns one
216 // on success and zero otherwise.
217 OPENSSL_EXPORT int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx, const void *key,
218                                          const uint8_t *in, uint8_t *out,
219                                          size_t len);
220 
221 // CRYPTO_gcm128_encrypt_ctr32 encrypts |len| bytes from |in| to |out| using
222 // a CTR function that only handles the bottom 32 bits of the nonce, like
223 // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
224 // passed to |CRYPTO_gcm128_init|. It returns one on success and zero
225 // otherwise.
226 OPENSSL_EXPORT int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
227                                                const void *key,
228                                                const uint8_t *in, uint8_t *out,
229                                                size_t len, ctr128_f stream);
230 
231 // CRYPTO_gcm128_decrypt_ctr32 decrypts |len| bytes from |in| to |out| using
232 // a CTR function that only handles the bottom 32 bits of the nonce, like
233 // |CRYPTO_ctr128_encrypt_ctr32|. The |key| must be the same key that was
234 // passed to |CRYPTO_gcm128_init|. It returns one on success and zero
235 // otherwise.
236 OPENSSL_EXPORT int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
237                                                const void *key,
238                                                const uint8_t *in, uint8_t *out,
239                                                size_t len, ctr128_f stream);
240 
241 // CRYPTO_gcm128_finish calculates the authenticator and compares it against
242 // |len| bytes of |tag|. It returns one on success and zero otherwise.
243 OPENSSL_EXPORT int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx, const uint8_t *tag,
244                                         size_t len);
245 
246 // CRYPTO_gcm128_tag calculates the authenticator and copies it into |tag|.
247 // The minimum of |len| and 16 bytes are copied into |tag|.
248 OPENSSL_EXPORT void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, uint8_t *tag,
249                                       size_t len);
250 
251 
252 // CBC.
253 
254 // cbc128_f is the type of a function that performs CBC-mode encryption.
255 typedef void (*cbc128_f)(const uint8_t *in, uint8_t *out, size_t len,
256                          const void *key, uint8_t ivec[16], int enc);
257 
258 // CRYPTO_cbc128_encrypt encrypts |len| bytes from |in| to |out| using the
259 // given IV and block cipher in CBC mode. The input need not be a multiple of
260 // 128 bits long, but the output will round up to the nearest 128 bit multiple,
261 // zero padding the input if needed. The IV will be updated on return.
262 void CRYPTO_cbc128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
263                            const void *key, uint8_t ivec[16], block128_f block);
264 
265 // CRYPTO_cbc128_decrypt decrypts |len| bytes from |in| to |out| using the
266 // given IV and block cipher in CBC mode. If |len| is not a multiple of 128
267 // bits then only that many bytes will be written, but a multiple of 128 bits
268 // is always read from |in|. The IV will be updated on return.
269 void CRYPTO_cbc128_decrypt(const uint8_t *in, uint8_t *out, size_t len,
270                            const void *key, uint8_t ivec[16], block128_f block);
271 
272 
273 // OFB.
274 
275 // CRYPTO_ofb128_encrypt encrypts (or decrypts, it's the same with OFB mode)
276 // |len| bytes from |in| to |out| using |block| in OFB mode. There's no
277 // requirement that |len| be a multiple of any value and any partial blocks are
278 // stored in |ivec| and |*num|, the latter must be zero before the initial
279 // call.
280 void CRYPTO_ofb128_encrypt(const uint8_t *in, uint8_t *out,
281                            size_t len, const void *key, uint8_t ivec[16],
282                            unsigned *num, block128_f block);
283 
284 
285 // CFB.
286 
287 // CRYPTO_cfb128_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
288 // from |in| to |out| using |block| in CFB mode. There's no requirement that
289 // |len| be a multiple of any value and any partial blocks are stored in |ivec|
290 // and |*num|, the latter must be zero before the initial call.
291 void CRYPTO_cfb128_encrypt(const uint8_t *in, uint8_t *out, size_t len,
292                            const void *key, uint8_t ivec[16], unsigned *num,
293                            int enc, block128_f block);
294 
295 // CRYPTO_cfb128_8_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
296 // from |in| to |out| using |block| in CFB-8 mode. Prior to the first call
297 // |num| should be set to zero.
298 void CRYPTO_cfb128_8_encrypt(const uint8_t *in, uint8_t *out, size_t len,
299                              const void *key, uint8_t ivec[16], unsigned *num,
300                              int enc, block128_f block);
301 
302 // CRYPTO_cfb128_1_encrypt encrypts (or decrypts, if |enc| is zero) |len| bytes
303 // from |in| to |out| using |block| in CFB-1 mode. Prior to the first call
304 // |num| should be set to zero.
305 void CRYPTO_cfb128_1_encrypt(const uint8_t *in, uint8_t *out, size_t bits,
306                              const void *key, uint8_t ivec[16], unsigned *num,
307                              int enc, block128_f block);
308 
309 size_t CRYPTO_cts128_encrypt_block(const uint8_t *in, uint8_t *out, size_t len,
310                                    const void *key, uint8_t ivec[16],
311                                    block128_f block);
312 
313 
314 // POLYVAL.
315 //
316 // POLYVAL is a polynomial authenticator that operates over a field very
317 // similar to the one that GHASH uses. See
318 // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02#section-3.
319 
320 typedef union {
321   uint64_t u[2];
322   uint8_t c[16];
323 } polyval_block;
324 
325 struct polyval_ctx {
326   // Note that the order of |S|, |H| and |Htable| is fixed by the MOVBE-based,
327   // x86-64, GHASH assembly.
328   polyval_block S;
329   u128 H;
330   u128 Htable[16];
331   gmult_func gmult;
332   ghash_func ghash;
333 };
334 
335 // CRYPTO_POLYVAL_init initialises |ctx| using |key|.
336 void CRYPTO_POLYVAL_init(struct polyval_ctx *ctx, const uint8_t key[16]);
337 
338 // CRYPTO_POLYVAL_update_blocks updates the accumulator in |ctx| given the
339 // blocks from |in|. Only a whole number of blocks can be processed so |in_len|
340 // must be a multiple of 16.
341 void CRYPTO_POLYVAL_update_blocks(struct polyval_ctx *ctx, const uint8_t *in,
342                                   size_t in_len);
343 
344 // CRYPTO_POLYVAL_finish writes the accumulator from |ctx| to |out|.
345 void CRYPTO_POLYVAL_finish(const struct polyval_ctx *ctx, uint8_t out[16]);
346 
347 
348 #if defined(__cplusplus)
349 }  // extern C
350 #endif
351 
352 #endif  // OPENSSL_HEADER_MODES_INTERNAL_H
353