• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#! /usr/bin/env perl
2# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License").  You may not use
5# this file except in compliance with the License.  You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9# ====================================================================
10# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
11# project. The module is, however, dual licensed under OpenSSL and
12# CRYPTOGAMS licenses depending on where you obtain it. For further
13# details see http://www.openssl.org/~appro/cryptogams/.
14#
15# Permission to use under GPLv2 terms is granted.
16# ====================================================================
17#
18# SHA256/512 for ARMv8.
19#
20# Performance in cycles per processed byte and improvement coefficient
21# over code generated with "default" compiler:
22#
23#		SHA256-hw	SHA256(*)	SHA512
24# Apple A7	1.97		10.5 (+33%)	6.73 (-1%(**))
25# Cortex-A53	2.38		15.5 (+115%)	10.0 (+150%(***))
26# Cortex-A57	2.31		11.6 (+86%)	7.51 (+260%(***))
27# Denver	2.01		10.5 (+26%)	6.70 (+8%)
28# X-Gene			20.0 (+100%)	12.8 (+300%(***))
29# Mongoose	2.36		13.0 (+50%)	8.36 (+33%)
30#
31# (*)	Software SHA256 results are of lesser relevance, presented
32#	mostly for informational purposes.
33# (**)	The result is a trade-off: it's possible to improve it by
34#	10% (or by 1 cycle per round), but at the cost of 20% loss
35#	on Cortex-A53 (or by 4 cycles per round).
36# (***)	Super-impressive coefficients over gcc-generated code are
37#	indication of some compiler "pathology", most notably code
38#	generated with -mgeneral-regs-only is significanty faster
39#	and the gap is only 40-90%.
40
41$output=pop;
42$flavour=pop;
43
44if ($flavour && $flavour ne "void") {
45    $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
46    ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
47    ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or
48    die "can't locate arm-xlate.pl";
49
50    open OUT,"| \"$^X\" $xlate $flavour $output";
51    *STDOUT=*OUT;
52} else {
53    open STDOUT,">$output";
54}
55
56if ($output =~ /512/) {
57	$BITS=512;
58	$SZ=8;
59	@Sigma0=(28,34,39);
60	@Sigma1=(14,18,41);
61	@sigma0=(1,  8, 7);
62	@sigma1=(19,61, 6);
63	$rounds=80;
64	$reg_t="x";
65} else {
66	$BITS=256;
67	$SZ=4;
68	@Sigma0=( 2,13,22);
69	@Sigma1=( 6,11,25);
70	@sigma0=( 7,18, 3);
71	@sigma1=(17,19,10);
72	$rounds=64;
73	$reg_t="w";
74}
75
76$func="sha${BITS}_block_data_order";
77
78($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
79
80@X=map("$reg_t$_",(3..15,0..2));
81@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
82($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
83
84sub BODY_00_xx {
85my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
86my $j=($i+1)&15;
87my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
88   $T0=@X[$i+3] if ($i<11);
89
90$code.=<<___	if ($i<16);
91#ifndef	__ARMEB__
92	rev	@X[$i],@X[$i]			// $i
93#endif
94___
95$code.=<<___	if ($i<13 && ($i&1));
96	ldp	@X[$i+1],@X[$i+2],[$inp],#2*$SZ
97___
98$code.=<<___	if ($i==13);
99	ldp	@X[14],@X[15],[$inp]
100___
101$code.=<<___	if ($i>=14);
102	ldr	@X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
103___
104$code.=<<___	if ($i>0 && $i<16);
105	add	$a,$a,$t1			// h+=Sigma0(a)
106___
107$code.=<<___	if ($i>=11);
108	str	@X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
109___
110# While ARMv8 specifies merged rotate-n-logical operation such as
111# 'eor x,y,z,ror#n', it was found to negatively affect performance
112# on Apple A7. The reason seems to be that it requires even 'y' to
113# be available earlier. This means that such merged instruction is
114# not necessarily best choice on critical path... On the other hand
115# Cortex-A5x handles merged instructions much better than disjoint
116# rotate and logical... See (**) footnote above.
117$code.=<<___	if ($i<15);
118	ror	$t0,$e,#$Sigma1[0]
119	add	$h,$h,$t2			// h+=K[i]
120	eor	$T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
121	and	$t1,$f,$e
122	bic	$t2,$g,$e
123	add	$h,$h,@X[$i&15]			// h+=X[i]
124	orr	$t1,$t1,$t2			// Ch(e,f,g)
125	eor	$t2,$a,$b			// a^b, b^c in next round
126	eor	$t0,$t0,$T0,ror#$Sigma1[1]	// Sigma1(e)
127	ror	$T0,$a,#$Sigma0[0]
128	add	$h,$h,$t1			// h+=Ch(e,f,g)
129	eor	$t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
130	add	$h,$h,$t0			// h+=Sigma1(e)
131	and	$t3,$t3,$t2			// (b^c)&=(a^b)
132	add	$d,$d,$h			// d+=h
133	eor	$t3,$t3,$b			// Maj(a,b,c)
134	eor	$t1,$T0,$t1,ror#$Sigma0[1]	// Sigma0(a)
135	add	$h,$h,$t3			// h+=Maj(a,b,c)
136	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
137	//add	$h,$h,$t1			// h+=Sigma0(a)
138___
139$code.=<<___	if ($i>=15);
140	ror	$t0,$e,#$Sigma1[0]
141	add	$h,$h,$t2			// h+=K[i]
142	ror	$T1,@X[($j+1)&15],#$sigma0[0]
143	and	$t1,$f,$e
144	ror	$T2,@X[($j+14)&15],#$sigma1[0]
145	bic	$t2,$g,$e
146	ror	$T0,$a,#$Sigma0[0]
147	add	$h,$h,@X[$i&15]			// h+=X[i]
148	eor	$t0,$t0,$e,ror#$Sigma1[1]
149	eor	$T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
150	orr	$t1,$t1,$t2			// Ch(e,f,g)
151	eor	$t2,$a,$b			// a^b, b^c in next round
152	eor	$t0,$t0,$e,ror#$Sigma1[2]	// Sigma1(e)
153	eor	$T0,$T0,$a,ror#$Sigma0[1]
154	add	$h,$h,$t1			// h+=Ch(e,f,g)
155	and	$t3,$t3,$t2			// (b^c)&=(a^b)
156	eor	$T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
157	eor	$T1,$T1,@X[($j+1)&15],lsr#$sigma0[2]	// sigma0(X[i+1])
158	add	$h,$h,$t0			// h+=Sigma1(e)
159	eor	$t3,$t3,$b			// Maj(a,b,c)
160	eor	$t1,$T0,$a,ror#$Sigma0[2]	// Sigma0(a)
161	eor	$T2,$T2,@X[($j+14)&15],lsr#$sigma1[2]	// sigma1(X[i+14])
162	add	@X[$j],@X[$j],@X[($j+9)&15]
163	add	$d,$d,$h			// d+=h
164	add	$h,$h,$t3			// h+=Maj(a,b,c)
165	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
166	add	@X[$j],@X[$j],$T1
167	add	$h,$h,$t1			// h+=Sigma0(a)
168	add	@X[$j],@X[$j],$T2
169___
170	($t2,$t3)=($t3,$t2);
171}
172
173$code.=<<___;
174#ifndef	__KERNEL__
175# include <openssl/arm_arch.h>
176#endif
177
178.text
179
180.extern	OPENSSL_armcap_P
181.globl	$func
182.type	$func,%function
183.align	6
184$func:
185___
186$code.=<<___	if ($SZ==4);
187#ifndef	__KERNEL__
188# ifdef	__ILP32__
189	ldrsw	x16,.LOPENSSL_armcap_P
190# else
191	ldr	x16,.LOPENSSL_armcap_P
192# endif
193	adr	x17,.LOPENSSL_armcap_P
194	add	x16,x16,x17
195	ldr	w16,[x16]
196	tst	w16,#ARMV8_SHA256
197	b.ne	.Lv8_entry
198#endif
199___
200$code.=<<___;
201	stp	x29,x30,[sp,#-128]!
202	add	x29,sp,#0
203
204	stp	x19,x20,[sp,#16]
205	stp	x21,x22,[sp,#32]
206	stp	x23,x24,[sp,#48]
207	stp	x25,x26,[sp,#64]
208	stp	x27,x28,[sp,#80]
209	sub	sp,sp,#4*$SZ
210
211	ldp	$A,$B,[$ctx]				// load context
212	ldp	$C,$D,[$ctx,#2*$SZ]
213	ldp	$E,$F,[$ctx,#4*$SZ]
214	add	$num,$inp,$num,lsl#`log(16*$SZ)/log(2)`	// end of input
215	ldp	$G,$H,[$ctx,#6*$SZ]
216	adr	$Ktbl,.LK$BITS
217	stp	$ctx,$num,[x29,#96]
218
219.Loop:
220	ldp	@X[0],@X[1],[$inp],#2*$SZ
221	ldr	$t2,[$Ktbl],#$SZ			// *K++
222	eor	$t3,$B,$C				// magic seed
223	str	$inp,[x29,#112]
224___
225for ($i=0;$i<16;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
226$code.=".Loop_16_xx:\n";
227for (;$i<32;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
228$code.=<<___;
229	cbnz	$t2,.Loop_16_xx
230
231	ldp	$ctx,$num,[x29,#96]
232	ldr	$inp,[x29,#112]
233	sub	$Ktbl,$Ktbl,#`$SZ*($rounds+1)`		// rewind
234
235	ldp	@X[0],@X[1],[$ctx]
236	ldp	@X[2],@X[3],[$ctx,#2*$SZ]
237	add	$inp,$inp,#14*$SZ			// advance input pointer
238	ldp	@X[4],@X[5],[$ctx,#4*$SZ]
239	add	$A,$A,@X[0]
240	ldp	@X[6],@X[7],[$ctx,#6*$SZ]
241	add	$B,$B,@X[1]
242	add	$C,$C,@X[2]
243	add	$D,$D,@X[3]
244	stp	$A,$B,[$ctx]
245	add	$E,$E,@X[4]
246	add	$F,$F,@X[5]
247	stp	$C,$D,[$ctx,#2*$SZ]
248	add	$G,$G,@X[6]
249	add	$H,$H,@X[7]
250	cmp	$inp,$num
251	stp	$E,$F,[$ctx,#4*$SZ]
252	stp	$G,$H,[$ctx,#6*$SZ]
253	b.ne	.Loop
254
255	ldp	x19,x20,[x29,#16]
256	add	sp,sp,#4*$SZ
257	ldp	x21,x22,[x29,#32]
258	ldp	x23,x24,[x29,#48]
259	ldp	x25,x26,[x29,#64]
260	ldp	x27,x28,[x29,#80]
261	ldp	x29,x30,[sp],#128
262	ret
263.size	$func,.-$func
264
265.align	6
266.type	.LK$BITS,%object
267.LK$BITS:
268___
269$code.=<<___ if ($SZ==8);
270	.quad	0x428a2f98d728ae22,0x7137449123ef65cd
271	.quad	0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
272	.quad	0x3956c25bf348b538,0x59f111f1b605d019
273	.quad	0x923f82a4af194f9b,0xab1c5ed5da6d8118
274	.quad	0xd807aa98a3030242,0x12835b0145706fbe
275	.quad	0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
276	.quad	0x72be5d74f27b896f,0x80deb1fe3b1696b1
277	.quad	0x9bdc06a725c71235,0xc19bf174cf692694
278	.quad	0xe49b69c19ef14ad2,0xefbe4786384f25e3
279	.quad	0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
280	.quad	0x2de92c6f592b0275,0x4a7484aa6ea6e483
281	.quad	0x5cb0a9dcbd41fbd4,0x76f988da831153b5
282	.quad	0x983e5152ee66dfab,0xa831c66d2db43210
283	.quad	0xb00327c898fb213f,0xbf597fc7beef0ee4
284	.quad	0xc6e00bf33da88fc2,0xd5a79147930aa725
285	.quad	0x06ca6351e003826f,0x142929670a0e6e70
286	.quad	0x27b70a8546d22ffc,0x2e1b21385c26c926
287	.quad	0x4d2c6dfc5ac42aed,0x53380d139d95b3df
288	.quad	0x650a73548baf63de,0x766a0abb3c77b2a8
289	.quad	0x81c2c92e47edaee6,0x92722c851482353b
290	.quad	0xa2bfe8a14cf10364,0xa81a664bbc423001
291	.quad	0xc24b8b70d0f89791,0xc76c51a30654be30
292	.quad	0xd192e819d6ef5218,0xd69906245565a910
293	.quad	0xf40e35855771202a,0x106aa07032bbd1b8
294	.quad	0x19a4c116b8d2d0c8,0x1e376c085141ab53
295	.quad	0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
296	.quad	0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
297	.quad	0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
298	.quad	0x748f82ee5defb2fc,0x78a5636f43172f60
299	.quad	0x84c87814a1f0ab72,0x8cc702081a6439ec
300	.quad	0x90befffa23631e28,0xa4506cebde82bde9
301	.quad	0xbef9a3f7b2c67915,0xc67178f2e372532b
302	.quad	0xca273eceea26619c,0xd186b8c721c0c207
303	.quad	0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
304	.quad	0x06f067aa72176fba,0x0a637dc5a2c898a6
305	.quad	0x113f9804bef90dae,0x1b710b35131c471b
306	.quad	0x28db77f523047d84,0x32caab7b40c72493
307	.quad	0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
308	.quad	0x4cc5d4becb3e42b6,0x597f299cfc657e2a
309	.quad	0x5fcb6fab3ad6faec,0x6c44198c4a475817
310	.quad	0	// terminator
311___
312$code.=<<___ if ($SZ==4);
313	.long	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
314	.long	0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
315	.long	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
316	.long	0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
317	.long	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
318	.long	0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
319	.long	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
320	.long	0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
321	.long	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
322	.long	0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
323	.long	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
324	.long	0xd192e819,0xd6990624,0xf40e3585,0x106aa070
325	.long	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
326	.long	0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
327	.long	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
328	.long	0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
329	.long	0	//terminator
330___
331$code.=<<___;
332.size	.LK$BITS,.-.LK$BITS
333#ifndef	__KERNEL__
334.align	3
335.LOPENSSL_armcap_P:
336# ifdef	__ILP32__
337	.long	OPENSSL_armcap_P-.
338# else
339	.quad	OPENSSL_armcap_P-.
340# endif
341#endif
342.asciz	"SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
343.align	2
344___
345
346if ($SZ==4) {
347my $Ktbl="x3";
348
349my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
350my @MSG=map("v$_.16b",(4..7));
351my ($W0,$W1)=("v16.4s","v17.4s");
352my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
353
354$code.=<<___;
355#ifndef	__KERNEL__
356.type	sha256_block_armv8,%function
357.align	6
358sha256_block_armv8:
359.Lv8_entry:
360	stp		x29,x30,[sp,#-16]!
361	add		x29,sp,#0
362
363	ld1.32		{$ABCD,$EFGH},[$ctx]
364	adr		$Ktbl,.LK256
365
366.Loop_hw:
367	ld1		{@MSG[0]-@MSG[3]},[$inp],#64
368	sub		$num,$num,#1
369	ld1.32		{$W0},[$Ktbl],#16
370	rev32		@MSG[0],@MSG[0]
371	rev32		@MSG[1],@MSG[1]
372	rev32		@MSG[2],@MSG[2]
373	rev32		@MSG[3],@MSG[3]
374	orr		$ABCD_SAVE,$ABCD,$ABCD		// offload
375	orr		$EFGH_SAVE,$EFGH,$EFGH
376___
377for($i=0;$i<12;$i++) {
378$code.=<<___;
379	ld1.32		{$W1},[$Ktbl],#16
380	add.i32		$W0,$W0,@MSG[0]
381	sha256su0	@MSG[0],@MSG[1]
382	orr		$abcd,$ABCD,$ABCD
383	sha256h		$ABCD,$EFGH,$W0
384	sha256h2	$EFGH,$abcd,$W0
385	sha256su1	@MSG[0],@MSG[2],@MSG[3]
386___
387	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
388}
389$code.=<<___;
390	ld1.32		{$W1},[$Ktbl],#16
391	add.i32		$W0,$W0,@MSG[0]
392	orr		$abcd,$ABCD,$ABCD
393	sha256h		$ABCD,$EFGH,$W0
394	sha256h2	$EFGH,$abcd,$W0
395
396	ld1.32		{$W0},[$Ktbl],#16
397	add.i32		$W1,$W1,@MSG[1]
398	orr		$abcd,$ABCD,$ABCD
399	sha256h		$ABCD,$EFGH,$W1
400	sha256h2	$EFGH,$abcd,$W1
401
402	ld1.32		{$W1},[$Ktbl]
403	add.i32		$W0,$W0,@MSG[2]
404	sub		$Ktbl,$Ktbl,#$rounds*$SZ-16	// rewind
405	orr		$abcd,$ABCD,$ABCD
406	sha256h		$ABCD,$EFGH,$W0
407	sha256h2	$EFGH,$abcd,$W0
408
409	add.i32		$W1,$W1,@MSG[3]
410	orr		$abcd,$ABCD,$ABCD
411	sha256h		$ABCD,$EFGH,$W1
412	sha256h2	$EFGH,$abcd,$W1
413
414	add.i32		$ABCD,$ABCD,$ABCD_SAVE
415	add.i32		$EFGH,$EFGH,$EFGH_SAVE
416
417	cbnz		$num,.Loop_hw
418
419	st1.32		{$ABCD,$EFGH},[$ctx]
420
421	ldr		x29,[sp],#16
422	ret
423.size	sha256_block_armv8,.-sha256_block_armv8
424#endif
425___
426}
427
428$code.=<<___;
429#ifndef	__KERNEL__
430.comm	OPENSSL_armcap_P,4,4
431#endif
432___
433
434{   my  %opcode = (
435	"sha256h"	=> 0x5e004000,	"sha256h2"	=> 0x5e005000,
436	"sha256su0"	=> 0x5e282800,	"sha256su1"	=> 0x5e006000	);
437
438    sub unsha256 {
439	my ($mnemonic,$arg)=@_;
440
441	$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
442	&&
443	sprintf ".inst\t0x%08x\t//%s %s",
444			$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
445			$mnemonic,$arg;
446    }
447}
448
449open SELF,$0;
450while(<SELF>) {
451        next if (/^#!/);
452        last if (!s/^#/\/\// and !/^$/);
453        print;
454}
455close SELF;
456
457foreach(split("\n",$code)) {
458
459	s/\`([^\`]*)\`/eval($1)/geo;
460
461	s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/geo;
462
463	s/\.\w?32\b//o		and s/\.16b/\.4s/go;
464	m/(ld|st)1[^\[]+\[0\]/o	and s/\.4s/\.s/go;
465
466	print $_,"\n";
467}
468
469close STDOUT;
470