1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
2 * project 1999-2004.
3 */
4 /* ====================================================================
5 * Copyright (c) 1999 The OpenSSL Project. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 *
19 * 3. All advertising materials mentioning features or use of this
20 * software must display the following acknowledgment:
21 * "This product includes software developed by the OpenSSL Project
22 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
23 *
24 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
25 * endorse or promote products derived from this software without
26 * prior written permission. For written permission, please contact
27 * licensing@OpenSSL.org.
28 *
29 * 5. Products derived from this software may not be called "OpenSSL"
30 * nor may "OpenSSL" appear in their names without prior written
31 * permission of the OpenSSL Project.
32 *
33 * 6. Redistributions of any form whatsoever must retain the following
34 * acknowledgment:
35 * "This product includes software developed by the OpenSSL Project
36 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
39 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
41 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
42 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
43 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
44 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
45 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
46 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
47 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
49 * OF THE POSSIBILITY OF SUCH DAMAGE.
50 * ====================================================================
51 *
52 * This product includes cryptographic software written by Eric Young
53 * (eay@cryptsoft.com). This product includes software written by Tim
54 * Hudson (tjh@cryptsoft.com). */
55
56 #include <openssl/pkcs8.h>
57
58 #include <limits.h>
59 #include <string.h>
60
61 #include <openssl/bytestring.h>
62 #include <openssl/cipher.h>
63 #include <openssl/err.h>
64 #include <openssl/mem.h>
65 #include <openssl/nid.h>
66 #include <openssl/rand.h>
67
68 #include "internal.h"
69 #include "../internal.h"
70
71
72 // 1.2.840.113549.1.5.12
73 static const uint8_t kPBKDF2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
74 0x0d, 0x01, 0x05, 0x0c};
75
76 // 1.2.840.113549.1.5.13
77 static const uint8_t kPBES2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
78 0x0d, 0x01, 0x05, 0x0d};
79
80 // 1.2.840.113549.2.7
81 static const uint8_t kHMACWithSHA1[] = {0x2a, 0x86, 0x48, 0x86,
82 0xf7, 0x0d, 0x02, 0x07};
83
84 static const struct {
85 uint8_t oid[9];
86 uint8_t oid_len;
87 int nid;
88 const EVP_CIPHER *(*cipher_func)(void);
89 } kCipherOIDs[] = {
90 // 1.2.840.113549.3.2
91 {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02},
92 8,
93 NID_rc2_cbc,
94 &EVP_rc2_cbc},
95 // 1.2.840.113549.3.7
96 {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x07},
97 8,
98 NID_des_ede3_cbc,
99 &EVP_des_ede3_cbc},
100 // 2.16.840.1.101.3.4.1.2
101 {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x02},
102 9,
103 NID_aes_128_cbc,
104 &EVP_aes_128_cbc},
105 // 2.16.840.1.101.3.4.1.22
106 {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x16},
107 9,
108 NID_aes_192_cbc,
109 &EVP_aes_192_cbc},
110 // 2.16.840.1.101.3.4.1.42
111 {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x2a},
112 9,
113 NID_aes_256_cbc,
114 &EVP_aes_256_cbc},
115 };
116
cbs_to_cipher(const CBS * cbs)117 static const EVP_CIPHER *cbs_to_cipher(const CBS *cbs) {
118 for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kCipherOIDs); i++) {
119 if (CBS_mem_equal(cbs, kCipherOIDs[i].oid, kCipherOIDs[i].oid_len)) {
120 return kCipherOIDs[i].cipher_func();
121 }
122 }
123
124 return NULL;
125 }
126
add_cipher_oid(CBB * out,int nid)127 static int add_cipher_oid(CBB *out, int nid) {
128 for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kCipherOIDs); i++) {
129 if (kCipherOIDs[i].nid == nid) {
130 CBB child;
131 return CBB_add_asn1(out, &child, CBS_ASN1_OBJECT) &&
132 CBB_add_bytes(&child, kCipherOIDs[i].oid,
133 kCipherOIDs[i].oid_len) &&
134 CBB_flush(out);
135 }
136 }
137
138 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER);
139 return 0;
140 }
141
pkcs5_pbe2_cipher_init(EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,unsigned iterations,const char * pass,size_t pass_len,const uint8_t * salt,size_t salt_len,const uint8_t * iv,size_t iv_len,int enc)142 static int pkcs5_pbe2_cipher_init(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
143 unsigned iterations, const char *pass,
144 size_t pass_len, const uint8_t *salt,
145 size_t salt_len, const uint8_t *iv,
146 size_t iv_len, int enc) {
147 if (iv_len != EVP_CIPHER_iv_length(cipher)) {
148 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ERROR_SETTING_CIPHER_PARAMS);
149 return 0;
150 }
151
152 uint8_t key[EVP_MAX_KEY_LENGTH];
153 int ret = PKCS5_PBKDF2_HMAC_SHA1(pass, pass_len, salt, salt_len, iterations,
154 EVP_CIPHER_key_length(cipher), key) &&
155 EVP_CipherInit_ex(ctx, cipher, NULL /* engine */, key, iv, enc);
156 OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH);
157 return ret;
158 }
159
PKCS5_pbe2_encrypt_init(CBB * out,EVP_CIPHER_CTX * ctx,const EVP_CIPHER * cipher,unsigned iterations,const char * pass,size_t pass_len,const uint8_t * salt,size_t salt_len)160 int PKCS5_pbe2_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx,
161 const EVP_CIPHER *cipher, unsigned iterations,
162 const char *pass, size_t pass_len,
163 const uint8_t *salt, size_t salt_len) {
164 int cipher_nid = EVP_CIPHER_nid(cipher);
165 if (cipher_nid == NID_undef) {
166 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER);
167 return 0;
168 }
169
170 // Generate a random IV.
171 uint8_t iv[EVP_MAX_IV_LENGTH];
172 if (!RAND_bytes(iv, EVP_CIPHER_iv_length(cipher))) {
173 return 0;
174 }
175
176 // See RFC 2898, appendix A.
177 CBB algorithm, oid, param, kdf, kdf_oid, kdf_param, salt_cbb, cipher_cbb,
178 iv_cbb;
179 if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) ||
180 !CBB_add_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) ||
181 !CBB_add_bytes(&oid, kPBES2, sizeof(kPBES2)) ||
182 !CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) ||
183 !CBB_add_asn1(¶m, &kdf, CBS_ASN1_SEQUENCE) ||
184 !CBB_add_asn1(&kdf, &kdf_oid, CBS_ASN1_OBJECT) ||
185 !CBB_add_bytes(&kdf_oid, kPBKDF2, sizeof(kPBKDF2)) ||
186 !CBB_add_asn1(&kdf, &kdf_param, CBS_ASN1_SEQUENCE) ||
187 !CBB_add_asn1(&kdf_param, &salt_cbb, CBS_ASN1_OCTETSTRING) ||
188 !CBB_add_bytes(&salt_cbb, salt, salt_len) ||
189 !CBB_add_asn1_uint64(&kdf_param, iterations) ||
190 // Specify a key length for RC2.
191 (cipher_nid == NID_rc2_cbc &&
192 !CBB_add_asn1_uint64(&kdf_param, EVP_CIPHER_key_length(cipher))) ||
193 // Omit the PRF. We use the default hmacWithSHA1.
194 !CBB_add_asn1(¶m, &cipher_cbb, CBS_ASN1_SEQUENCE) ||
195 !add_cipher_oid(&cipher_cbb, cipher_nid) ||
196 // RFC 2898 says RC2-CBC and RC5-CBC-Pad use a SEQUENCE with version and
197 // IV, but OpenSSL always uses an OCTET STRING IV, so we do the same.
198 !CBB_add_asn1(&cipher_cbb, &iv_cbb, CBS_ASN1_OCTETSTRING) ||
199 !CBB_add_bytes(&iv_cbb, iv, EVP_CIPHER_iv_length(cipher)) ||
200 !CBB_flush(out)) {
201 return 0;
202 }
203
204 return pkcs5_pbe2_cipher_init(ctx, cipher, iterations, pass, pass_len, salt,
205 salt_len, iv, EVP_CIPHER_iv_length(cipher),
206 1 /* encrypt */);
207 }
208
PKCS5_pbe2_decrypt_init(const struct pbe_suite * suite,EVP_CIPHER_CTX * ctx,const char * pass,size_t pass_len,CBS * param)209 int PKCS5_pbe2_decrypt_init(const struct pbe_suite *suite, EVP_CIPHER_CTX *ctx,
210 const char *pass, size_t pass_len, CBS *param) {
211 CBS pbe_param, kdf, kdf_obj, enc_scheme, enc_obj;
212 if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) ||
213 CBS_len(param) != 0 ||
214 !CBS_get_asn1(&pbe_param, &kdf, CBS_ASN1_SEQUENCE) ||
215 !CBS_get_asn1(&pbe_param, &enc_scheme, CBS_ASN1_SEQUENCE) ||
216 CBS_len(&pbe_param) != 0 ||
217 !CBS_get_asn1(&kdf, &kdf_obj, CBS_ASN1_OBJECT) ||
218 !CBS_get_asn1(&enc_scheme, &enc_obj, CBS_ASN1_OBJECT)) {
219 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
220 return 0;
221 }
222
223 // Only PBKDF2 is supported.
224 if (!CBS_mem_equal(&kdf_obj, kPBKDF2, sizeof(kPBKDF2))) {
225 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION);
226 return 0;
227 }
228
229 // See if we recognise the encryption algorithm.
230 const EVP_CIPHER *cipher = cbs_to_cipher(&enc_obj);
231 if (cipher == NULL) {
232 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER);
233 return 0;
234 }
235
236 // Parse the KDF parameters. See RFC 8018, appendix A.2.
237 CBS pbkdf2_params, salt;
238 uint64_t iterations;
239 if (!CBS_get_asn1(&kdf, &pbkdf2_params, CBS_ASN1_SEQUENCE) ||
240 CBS_len(&kdf) != 0 ||
241 !CBS_get_asn1(&pbkdf2_params, &salt, CBS_ASN1_OCTETSTRING) ||
242 !CBS_get_asn1_uint64(&pbkdf2_params, &iterations)) {
243 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
244 return 0;
245 }
246
247 if (iterations == 0 || iterations > UINT_MAX) {
248 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
249 return 0;
250 }
251
252 // The optional keyLength parameter, if present, must match the key length of
253 // the cipher.
254 if (CBS_peek_asn1_tag(&pbkdf2_params, CBS_ASN1_INTEGER)) {
255 uint64_t key_len;
256 if (!CBS_get_asn1_uint64(&pbkdf2_params, &key_len)) {
257 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
258 return 0;
259 }
260
261 if (key_len != EVP_CIPHER_key_length(cipher)) {
262 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEYLENGTH);
263 return 0;
264 }
265 }
266
267 if (CBS_len(&pbkdf2_params) != 0) {
268 CBS alg_id, prf;
269 if (!CBS_get_asn1(&pbkdf2_params, &alg_id, CBS_ASN1_SEQUENCE) ||
270 !CBS_get_asn1(&alg_id, &prf, CBS_ASN1_OBJECT) ||
271 CBS_len(&pbkdf2_params) != 0) {
272 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
273 return 0;
274 }
275
276 // We only support hmacWithSHA1. It is the DEFAULT, so DER requires it be
277 // omitted, but we match OpenSSL in tolerating it being present.
278 if (!CBS_mem_equal(&prf, kHMACWithSHA1, sizeof(kHMACWithSHA1))) {
279 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF);
280 return 0;
281 }
282
283 // hmacWithSHA1 has a NULL parameter.
284 CBS null;
285 if (!CBS_get_asn1(&alg_id, &null, CBS_ASN1_NULL) ||
286 CBS_len(&null) != 0 ||
287 CBS_len(&alg_id) != 0) {
288 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
289 return 0;
290 }
291 }
292
293 // Parse the encryption scheme parameters. Note OpenSSL does not match the
294 // specification. Per RFC 2898, this should depend on the encryption scheme.
295 // In particular, RC2-CBC uses a SEQUENCE with version and IV. We align with
296 // OpenSSL.
297 CBS iv;
298 if (!CBS_get_asn1(&enc_scheme, &iv, CBS_ASN1_OCTETSTRING) ||
299 CBS_len(&enc_scheme) != 0) {
300 OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF);
301 return 0;
302 }
303
304 return pkcs5_pbe2_cipher_init(ctx, cipher, (unsigned)iterations, pass,
305 pass_len, CBS_data(&salt), CBS_len(&salt),
306 CBS_data(&iv), CBS_len(&iv), 0 /* decrypt */);
307 }
308