1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides C++ code generation targeting the Microsoft Visual C++ ABI.
11 // The class in this file generates structures that follow the Microsoft
12 // Visual C++ ABI, which is actually not very well documented at all outside
13 // of Microsoft.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGVTables.h"
20 #include "CodeGenModule.h"
21 #include "CodeGenTypes.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/AST/VTableBuilder.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringSet.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/Intrinsics.h"
31
32 using namespace clang;
33 using namespace CodeGen;
34
35 namespace {
36
37 /// Holds all the vbtable globals for a given class.
38 struct VBTableGlobals {
39 const VPtrInfoVector *VBTables;
40 SmallVector<llvm::GlobalVariable *, 2> Globals;
41 };
42
43 class MicrosoftCXXABI : public CGCXXABI {
44 public:
MicrosoftCXXABI(CodeGenModule & CGM)45 MicrosoftCXXABI(CodeGenModule &CGM)
46 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
47 ClassHierarchyDescriptorType(nullptr),
48 CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr),
49 ThrowInfoType(nullptr) {}
50
51 bool HasThisReturn(GlobalDecl GD) const override;
52 bool hasMostDerivedReturn(GlobalDecl GD) const override;
53
54 bool classifyReturnType(CGFunctionInfo &FI) const override;
55
56 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
57
isSRetParameterAfterThis() const58 bool isSRetParameterAfterThis() const override { return true; }
59
isThisCompleteObject(GlobalDecl GD) const60 bool isThisCompleteObject(GlobalDecl GD) const override {
61 // The Microsoft ABI doesn't use separate complete-object vs.
62 // base-object variants of constructors, but it does of destructors.
63 if (isa<CXXDestructorDecl>(GD.getDecl())) {
64 switch (GD.getDtorType()) {
65 case Dtor_Complete:
66 case Dtor_Deleting:
67 return true;
68
69 case Dtor_Base:
70 return false;
71
72 case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?");
73 }
74 llvm_unreachable("bad dtor kind");
75 }
76
77 // No other kinds.
78 return false;
79 }
80
getSrcArgforCopyCtor(const CXXConstructorDecl * CD,FunctionArgList & Args) const81 size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
82 FunctionArgList &Args) const override {
83 assert(Args.size() >= 2 &&
84 "expected the arglist to have at least two args!");
85 // The 'most_derived' parameter goes second if the ctor is variadic and
86 // has v-bases.
87 if (CD->getParent()->getNumVBases() > 0 &&
88 CD->getType()->castAs<FunctionProtoType>()->isVariadic())
89 return 2;
90 return 1;
91 }
92
getVBPtrOffsets(const CXXRecordDecl * RD)93 std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override {
94 std::vector<CharUnits> VBPtrOffsets;
95 const ASTContext &Context = getContext();
96 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
97
98 const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
99 for (const VPtrInfo *VBT : *VBGlobals.VBTables) {
100 const ASTRecordLayout &SubobjectLayout =
101 Context.getASTRecordLayout(VBT->BaseWithVPtr);
102 CharUnits Offs = VBT->NonVirtualOffset;
103 Offs += SubobjectLayout.getVBPtrOffset();
104 if (VBT->getVBaseWithVPtr())
105 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
106 VBPtrOffsets.push_back(Offs);
107 }
108 llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end());
109 return VBPtrOffsets;
110 }
111
GetPureVirtualCallName()112 StringRef GetPureVirtualCallName() override { return "_purecall"; }
GetDeletedVirtualCallName()113 StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
114
115 void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
116 Address Ptr, QualType ElementType,
117 const CXXDestructorDecl *Dtor) override;
118
119 void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
120 void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
121
122 void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
123
124 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
125 const VPtrInfo *Info);
126
127 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
128 CatchTypeInfo
129 getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override;
130
131 /// MSVC needs an extra flag to indicate a catchall.
getCatchAllTypeInfo()132 CatchTypeInfo getCatchAllTypeInfo() override {
133 return CatchTypeInfo{nullptr, 0x40};
134 }
135
136 bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
137 void EmitBadTypeidCall(CodeGenFunction &CGF) override;
138 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
139 Address ThisPtr,
140 llvm::Type *StdTypeInfoPtrTy) override;
141
142 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
143 QualType SrcRecordTy) override;
144
145 llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value,
146 QualType SrcRecordTy, QualType DestTy,
147 QualType DestRecordTy,
148 llvm::BasicBlock *CastEnd) override;
149
150 llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
151 QualType SrcRecordTy,
152 QualType DestTy) override;
153
154 bool EmitBadCastCall(CodeGenFunction &CGF) override;
canSpeculativelyEmitVTable(const CXXRecordDecl * RD) const155 bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override {
156 return false;
157 }
158
159 llvm::Value *
160 GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This,
161 const CXXRecordDecl *ClassDecl,
162 const CXXRecordDecl *BaseClassDecl) override;
163
164 llvm::BasicBlock *
165 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
166 const CXXRecordDecl *RD) override;
167
168 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
169 const CXXRecordDecl *RD) override;
170
171 void EmitCXXConstructors(const CXXConstructorDecl *D) override;
172
173 // Background on MSVC destructors
174 // ==============================
175 //
176 // Both Itanium and MSVC ABIs have destructor variants. The variant names
177 // roughly correspond in the following way:
178 // Itanium Microsoft
179 // Base -> no name, just ~Class
180 // Complete -> vbase destructor
181 // Deleting -> scalar deleting destructor
182 // vector deleting destructor
183 //
184 // The base and complete destructors are the same as in Itanium, although the
185 // complete destructor does not accept a VTT parameter when there are virtual
186 // bases. A separate mechanism involving vtordisps is used to ensure that
187 // virtual methods of destroyed subobjects are not called.
188 //
189 // The deleting destructors accept an i32 bitfield as a second parameter. Bit
190 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this
191 // pointer points to an array. The scalar deleting destructor assumes that
192 // bit 2 is zero, and therefore does not contain a loop.
193 //
194 // For virtual destructors, only one entry is reserved in the vftable, and it
195 // always points to the vector deleting destructor. The vector deleting
196 // destructor is the most general, so it can be used to destroy objects in
197 // place, delete single heap objects, or delete arrays.
198 //
199 // A TU defining a non-inline destructor is only guaranteed to emit a base
200 // destructor, and all of the other variants are emitted on an as-needed basis
201 // in COMDATs. Because a non-base destructor can be emitted in a TU that
202 // lacks a definition for the destructor, non-base destructors must always
203 // delegate to or alias the base destructor.
204
205 void buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
206 SmallVectorImpl<CanQualType> &ArgTys) override;
207
208 /// Non-base dtors should be emitted as delegating thunks in this ABI.
useThunkForDtorVariant(const CXXDestructorDecl * Dtor,CXXDtorType DT) const209 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
210 CXXDtorType DT) const override {
211 return DT != Dtor_Base;
212 }
213
214 void EmitCXXDestructors(const CXXDestructorDecl *D) override;
215
216 const CXXRecordDecl *
getThisArgumentTypeForMethod(const CXXMethodDecl * MD)217 getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
218 MD = MD->getCanonicalDecl();
219 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
220 MicrosoftVTableContext::MethodVFTableLocation ML =
221 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
222 // The vbases might be ordered differently in the final overrider object
223 // and the complete object, so the "this" argument may sometimes point to
224 // memory that has no particular type (e.g. past the complete object).
225 // In this case, we just use a generic pointer type.
226 // FIXME: might want to have a more precise type in the non-virtual
227 // multiple inheritance case.
228 if (ML.VBase || !ML.VFPtrOffset.isZero())
229 return nullptr;
230 }
231 return MD->getParent();
232 }
233
234 Address
235 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
236 Address This,
237 bool VirtualCall) override;
238
239 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
240 FunctionArgList &Params) override;
241
242 llvm::Value *adjustThisParameterInVirtualFunctionPrologue(
243 CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) override;
244
245 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
246
247 unsigned addImplicitConstructorArgs(CodeGenFunction &CGF,
248 const CXXConstructorDecl *D,
249 CXXCtorType Type, bool ForVirtualBase,
250 bool Delegating,
251 CallArgList &Args) override;
252
253 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
254 CXXDtorType Type, bool ForVirtualBase,
255 bool Delegating, Address This) override;
256
257 void emitVTableTypeMetadata(VPtrInfo *Info, const CXXRecordDecl *RD,
258 llvm::GlobalVariable *VTable);
259
260 void emitVTableDefinitions(CodeGenVTables &CGVT,
261 const CXXRecordDecl *RD) override;
262
263 bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF,
264 CodeGenFunction::VPtr Vptr) override;
265
266 /// Don't initialize vptrs if dynamic class
267 /// is marked with with the 'novtable' attribute.
doStructorsInitializeVPtrs(const CXXRecordDecl * VTableClass)268 bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override {
269 return !VTableClass->hasAttr<MSNoVTableAttr>();
270 }
271
272 llvm::Constant *
273 getVTableAddressPoint(BaseSubobject Base,
274 const CXXRecordDecl *VTableClass) override;
275
276 llvm::Value *getVTableAddressPointInStructor(
277 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
278 BaseSubobject Base, const CXXRecordDecl *NearestVBase) override;
279
280 llvm::Constant *
281 getVTableAddressPointForConstExpr(BaseSubobject Base,
282 const CXXRecordDecl *VTableClass) override;
283
284 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
285 CharUnits VPtrOffset) override;
286
287 llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
288 Address This, llvm::Type *Ty,
289 SourceLocation Loc) override;
290
291 llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
292 const CXXDestructorDecl *Dtor,
293 CXXDtorType DtorType,
294 Address This,
295 const CXXMemberCallExpr *CE) override;
296
adjustCallArgsForDestructorThunk(CodeGenFunction & CGF,GlobalDecl GD,CallArgList & CallArgs)297 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
298 CallArgList &CallArgs) override {
299 assert(GD.getDtorType() == Dtor_Deleting &&
300 "Only deleting destructor thunks are available in this ABI");
301 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
302 getContext().IntTy);
303 }
304
305 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
306
307 llvm::GlobalVariable *
308 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
309 llvm::GlobalVariable::LinkageTypes Linkage);
310
311 llvm::GlobalVariable *
getAddrOfVirtualDisplacementMap(const CXXRecordDecl * SrcRD,const CXXRecordDecl * DstRD)312 getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
313 const CXXRecordDecl *DstRD) {
314 SmallString<256> OutName;
315 llvm::raw_svector_ostream Out(OutName);
316 getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out);
317 StringRef MangledName = OutName.str();
318
319 if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName))
320 return VDispMap;
321
322 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
323 unsigned NumEntries = 1 + SrcRD->getNumVBases();
324 SmallVector<llvm::Constant *, 4> Map(NumEntries,
325 llvm::UndefValue::get(CGM.IntTy));
326 Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0);
327 bool AnyDifferent = false;
328 for (const auto &I : SrcRD->vbases()) {
329 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
330 if (!DstRD->isVirtuallyDerivedFrom(VBase))
331 continue;
332
333 unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase);
334 unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase);
335 Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4);
336 AnyDifferent |= SrcVBIndex != DstVBIndex;
337 }
338 // This map would be useless, don't use it.
339 if (!AnyDifferent)
340 return nullptr;
341
342 llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size());
343 llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map);
344 llvm::GlobalValue::LinkageTypes Linkage =
345 SrcRD->isExternallyVisible() && DstRD->isExternallyVisible()
346 ? llvm::GlobalValue::LinkOnceODRLinkage
347 : llvm::GlobalValue::InternalLinkage;
348 auto *VDispMap = new llvm::GlobalVariable(
349 CGM.getModule(), VDispMapTy, /*Constant=*/true, Linkage,
350 /*Initializer=*/Init, MangledName);
351 return VDispMap;
352 }
353
354 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
355 llvm::GlobalVariable *GV) const;
356
setThunkLinkage(llvm::Function * Thunk,bool ForVTable,GlobalDecl GD,bool ReturnAdjustment)357 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
358 GlobalDecl GD, bool ReturnAdjustment) override {
359 // Never dllimport/dllexport thunks.
360 Thunk->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
361
362 GVALinkage Linkage =
363 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
364
365 if (Linkage == GVA_Internal)
366 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
367 else if (ReturnAdjustment)
368 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
369 else
370 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
371 }
372
373 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This,
374 const ThisAdjustment &TA) override;
375
376 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
377 const ReturnAdjustment &RA) override;
378
379 void EmitThreadLocalInitFuncs(
380 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
381 ArrayRef<llvm::Function *> CXXThreadLocalInits,
382 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override;
383
usesThreadWrapperFunction() const384 bool usesThreadWrapperFunction() const override { return false; }
385 LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
386 QualType LValType) override;
387
388 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
389 llvm::GlobalVariable *DeclPtr,
390 bool PerformInit) override;
391 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
392 llvm::Constant *Dtor, llvm::Constant *Addr) override;
393
394 // ==== Notes on array cookies =========
395 //
396 // MSVC seems to only use cookies when the class has a destructor; a
397 // two-argument usual array deallocation function isn't sufficient.
398 //
399 // For example, this code prints "100" and "1":
400 // struct A {
401 // char x;
402 // void *operator new[](size_t sz) {
403 // printf("%u\n", sz);
404 // return malloc(sz);
405 // }
406 // void operator delete[](void *p, size_t sz) {
407 // printf("%u\n", sz);
408 // free(p);
409 // }
410 // };
411 // int main() {
412 // A *p = new A[100];
413 // delete[] p;
414 // }
415 // Whereas it prints "104" and "104" if you give A a destructor.
416
417 bool requiresArrayCookie(const CXXDeleteExpr *expr,
418 QualType elementType) override;
419 bool requiresArrayCookie(const CXXNewExpr *expr) override;
420 CharUnits getArrayCookieSizeImpl(QualType type) override;
421 Address InitializeArrayCookie(CodeGenFunction &CGF,
422 Address NewPtr,
423 llvm::Value *NumElements,
424 const CXXNewExpr *expr,
425 QualType ElementType) override;
426 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
427 Address allocPtr,
428 CharUnits cookieSize) override;
429
430 friend struct MSRTTIBuilder;
431
isImageRelative() const432 bool isImageRelative() const {
433 return CGM.getTarget().getPointerWidth(/*AddressSpace=*/0) == 64;
434 }
435
436 // 5 routines for constructing the llvm types for MS RTTI structs.
getTypeDescriptorType(StringRef TypeInfoString)437 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
438 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
439 TDTypeName += llvm::utostr(TypeInfoString.size());
440 llvm::StructType *&TypeDescriptorType =
441 TypeDescriptorTypeMap[TypeInfoString.size()];
442 if (TypeDescriptorType)
443 return TypeDescriptorType;
444 llvm::Type *FieldTypes[] = {
445 CGM.Int8PtrPtrTy,
446 CGM.Int8PtrTy,
447 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
448 TypeDescriptorType =
449 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
450 return TypeDescriptorType;
451 }
452
getImageRelativeType(llvm::Type * PtrType)453 llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
454 if (!isImageRelative())
455 return PtrType;
456 return CGM.IntTy;
457 }
458
getBaseClassDescriptorType()459 llvm::StructType *getBaseClassDescriptorType() {
460 if (BaseClassDescriptorType)
461 return BaseClassDescriptorType;
462 llvm::Type *FieldTypes[] = {
463 getImageRelativeType(CGM.Int8PtrTy),
464 CGM.IntTy,
465 CGM.IntTy,
466 CGM.IntTy,
467 CGM.IntTy,
468 CGM.IntTy,
469 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
470 };
471 BaseClassDescriptorType = llvm::StructType::create(
472 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
473 return BaseClassDescriptorType;
474 }
475
getClassHierarchyDescriptorType()476 llvm::StructType *getClassHierarchyDescriptorType() {
477 if (ClassHierarchyDescriptorType)
478 return ClassHierarchyDescriptorType;
479 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
480 ClassHierarchyDescriptorType = llvm::StructType::create(
481 CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
482 llvm::Type *FieldTypes[] = {
483 CGM.IntTy,
484 CGM.IntTy,
485 CGM.IntTy,
486 getImageRelativeType(
487 getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
488 };
489 ClassHierarchyDescriptorType->setBody(FieldTypes);
490 return ClassHierarchyDescriptorType;
491 }
492
getCompleteObjectLocatorType()493 llvm::StructType *getCompleteObjectLocatorType() {
494 if (CompleteObjectLocatorType)
495 return CompleteObjectLocatorType;
496 CompleteObjectLocatorType = llvm::StructType::create(
497 CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
498 llvm::Type *FieldTypes[] = {
499 CGM.IntTy,
500 CGM.IntTy,
501 CGM.IntTy,
502 getImageRelativeType(CGM.Int8PtrTy),
503 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
504 getImageRelativeType(CompleteObjectLocatorType),
505 };
506 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
507 if (!isImageRelative())
508 FieldTypesRef = FieldTypesRef.drop_back();
509 CompleteObjectLocatorType->setBody(FieldTypesRef);
510 return CompleteObjectLocatorType;
511 }
512
getImageBase()513 llvm::GlobalVariable *getImageBase() {
514 StringRef Name = "__ImageBase";
515 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
516 return GV;
517
518 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
519 /*isConstant=*/true,
520 llvm::GlobalValue::ExternalLinkage,
521 /*Initializer=*/nullptr, Name);
522 }
523
getImageRelativeConstant(llvm::Constant * PtrVal)524 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
525 if (!isImageRelative())
526 return PtrVal;
527
528 if (PtrVal->isNullValue())
529 return llvm::Constant::getNullValue(CGM.IntTy);
530
531 llvm::Constant *ImageBaseAsInt =
532 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
533 llvm::Constant *PtrValAsInt =
534 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
535 llvm::Constant *Diff =
536 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
537 /*HasNUW=*/true, /*HasNSW=*/true);
538 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
539 }
540
541 private:
getMangleContext()542 MicrosoftMangleContext &getMangleContext() {
543 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
544 }
545
getZeroInt()546 llvm::Constant *getZeroInt() {
547 return llvm::ConstantInt::get(CGM.IntTy, 0);
548 }
549
getAllOnesInt()550 llvm::Constant *getAllOnesInt() {
551 return llvm::Constant::getAllOnesValue(CGM.IntTy);
552 }
553
554 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override;
555
556 void
557 GetNullMemberPointerFields(const MemberPointerType *MPT,
558 llvm::SmallVectorImpl<llvm::Constant *> &fields);
559
560 /// \brief Shared code for virtual base adjustment. Returns the offset from
561 /// the vbptr to the virtual base. Optionally returns the address of the
562 /// vbptr itself.
563 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
564 Address Base,
565 llvm::Value *VBPtrOffset,
566 llvm::Value *VBTableOffset,
567 llvm::Value **VBPtr = nullptr);
568
GetVBaseOffsetFromVBPtr(CodeGenFunction & CGF,Address Base,int32_t VBPtrOffset,int32_t VBTableOffset,llvm::Value ** VBPtr=nullptr)569 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
570 Address Base,
571 int32_t VBPtrOffset,
572 int32_t VBTableOffset,
573 llvm::Value **VBPtr = nullptr) {
574 assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
575 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
576 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
577 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
578 }
579
580 std::pair<Address, llvm::Value *>
581 performBaseAdjustment(CodeGenFunction &CGF, Address Value,
582 QualType SrcRecordTy);
583
584 /// \brief Performs a full virtual base adjustment. Used to dereference
585 /// pointers to members of virtual bases.
586 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
587 const CXXRecordDecl *RD, Address Base,
588 llvm::Value *VirtualBaseAdjustmentOffset,
589 llvm::Value *VBPtrOffset /* optional */);
590
591 /// \brief Emits a full member pointer with the fields common to data and
592 /// function member pointers.
593 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
594 bool IsMemberFunction,
595 const CXXRecordDecl *RD,
596 CharUnits NonVirtualBaseAdjustment,
597 unsigned VBTableIndex);
598
599 bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
600 llvm::Constant *MP);
601
602 /// \brief - Initialize all vbptrs of 'this' with RD as the complete type.
603 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
604
605 /// \brief Caching wrapper around VBTableBuilder::enumerateVBTables().
606 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
607
608 /// \brief Generate a thunk for calling a virtual member function MD.
609 llvm::Function *EmitVirtualMemPtrThunk(
610 const CXXMethodDecl *MD,
611 const MicrosoftVTableContext::MethodVFTableLocation &ML);
612
613 public:
614 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
615
616 bool isZeroInitializable(const MemberPointerType *MPT) override;
617
isMemberPointerConvertible(const MemberPointerType * MPT) const618 bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
619 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
620 return RD->hasAttr<MSInheritanceAttr>();
621 }
622
623 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
624
625 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
626 CharUnits offset) override;
627 llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override;
628 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
629
630 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
631 llvm::Value *L,
632 llvm::Value *R,
633 const MemberPointerType *MPT,
634 bool Inequality) override;
635
636 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
637 llvm::Value *MemPtr,
638 const MemberPointerType *MPT) override;
639
640 llvm::Value *
641 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
642 Address Base, llvm::Value *MemPtr,
643 const MemberPointerType *MPT) override;
644
645 llvm::Value *EmitNonNullMemberPointerConversion(
646 const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
647 CastKind CK, CastExpr::path_const_iterator PathBegin,
648 CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
649 CGBuilderTy &Builder);
650
651 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
652 const CastExpr *E,
653 llvm::Value *Src) override;
654
655 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
656 llvm::Constant *Src) override;
657
658 llvm::Constant *EmitMemberPointerConversion(
659 const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
660 CastKind CK, CastExpr::path_const_iterator PathBegin,
661 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src);
662
663 llvm::Value *
664 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
665 Address This, llvm::Value *&ThisPtrForCall,
666 llvm::Value *MemPtr,
667 const MemberPointerType *MPT) override;
668
669 void emitCXXStructor(const CXXMethodDecl *MD, StructorType Type) override;
670
getCatchableTypeType()671 llvm::StructType *getCatchableTypeType() {
672 if (CatchableTypeType)
673 return CatchableTypeType;
674 llvm::Type *FieldTypes[] = {
675 CGM.IntTy, // Flags
676 getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor
677 CGM.IntTy, // NonVirtualAdjustment
678 CGM.IntTy, // OffsetToVBPtr
679 CGM.IntTy, // VBTableIndex
680 CGM.IntTy, // Size
681 getImageRelativeType(CGM.Int8PtrTy) // CopyCtor
682 };
683 CatchableTypeType = llvm::StructType::create(
684 CGM.getLLVMContext(), FieldTypes, "eh.CatchableType");
685 return CatchableTypeType;
686 }
687
getCatchableTypeArrayType(uint32_t NumEntries)688 llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) {
689 llvm::StructType *&CatchableTypeArrayType =
690 CatchableTypeArrayTypeMap[NumEntries];
691 if (CatchableTypeArrayType)
692 return CatchableTypeArrayType;
693
694 llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray.");
695 CTATypeName += llvm::utostr(NumEntries);
696 llvm::Type *CTType =
697 getImageRelativeType(getCatchableTypeType()->getPointerTo());
698 llvm::Type *FieldTypes[] = {
699 CGM.IntTy, // NumEntries
700 llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes
701 };
702 CatchableTypeArrayType =
703 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName);
704 return CatchableTypeArrayType;
705 }
706
getThrowInfoType()707 llvm::StructType *getThrowInfoType() {
708 if (ThrowInfoType)
709 return ThrowInfoType;
710 llvm::Type *FieldTypes[] = {
711 CGM.IntTy, // Flags
712 getImageRelativeType(CGM.Int8PtrTy), // CleanupFn
713 getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat
714 getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray
715 };
716 ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes,
717 "eh.ThrowInfo");
718 return ThrowInfoType;
719 }
720
getThrowFn()721 llvm::Constant *getThrowFn() {
722 // _CxxThrowException is passed an exception object and a ThrowInfo object
723 // which describes the exception.
724 llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()};
725 llvm::FunctionType *FTy =
726 llvm::FunctionType::get(CGM.VoidTy, Args, /*IsVarArgs=*/false);
727 auto *Fn = cast<llvm::Function>(
728 CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"));
729 // _CxxThrowException is stdcall on 32-bit x86 platforms.
730 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86)
731 Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
732 return Fn;
733 }
734
735 llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
736 CXXCtorType CT);
737
738 llvm::Constant *getCatchableType(QualType T,
739 uint32_t NVOffset = 0,
740 int32_t VBPtrOffset = -1,
741 uint32_t VBIndex = 0);
742
743 llvm::GlobalVariable *getCatchableTypeArray(QualType T);
744
745 llvm::GlobalVariable *getThrowInfo(QualType T) override;
746
747 private:
748 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
749 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
750 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
751 /// \brief All the vftables that have been referenced.
752 VFTablesMapTy VFTablesMap;
753 VTablesMapTy VTablesMap;
754
755 /// \brief This set holds the record decls we've deferred vtable emission for.
756 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
757
758
759 /// \brief All the vbtables which have been referenced.
760 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
761
762 /// Info on the global variable used to guard initialization of static locals.
763 /// The BitIndex field is only used for externally invisible declarations.
764 struct GuardInfo {
GuardInfo__anon6e1e7a720111::MicrosoftCXXABI::GuardInfo765 GuardInfo() : Guard(nullptr), BitIndex(0) {}
766 llvm::GlobalVariable *Guard;
767 unsigned BitIndex;
768 };
769
770 /// Map from DeclContext to the current guard variable. We assume that the
771 /// AST is visited in source code order.
772 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
773 llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap;
774 llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap;
775
776 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
777 llvm::StructType *BaseClassDescriptorType;
778 llvm::StructType *ClassHierarchyDescriptorType;
779 llvm::StructType *CompleteObjectLocatorType;
780
781 llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays;
782
783 llvm::StructType *CatchableTypeType;
784 llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap;
785 llvm::StructType *ThrowInfoType;
786 };
787
788 }
789
790 CGCXXABI::RecordArgABI
getRecordArgABI(const CXXRecordDecl * RD) const791 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
792 switch (CGM.getTarget().getTriple().getArch()) {
793 default:
794 // FIXME: Implement for other architectures.
795 return RAA_Default;
796
797 case llvm::Triple::x86:
798 // All record arguments are passed in memory on x86. Decide whether to
799 // construct the object directly in argument memory, or to construct the
800 // argument elsewhere and copy the bytes during the call.
801
802 // If C++ prohibits us from making a copy, construct the arguments directly
803 // into argument memory.
804 if (!canCopyArgument(RD))
805 return RAA_DirectInMemory;
806
807 // Otherwise, construct the argument into a temporary and copy the bytes
808 // into the outgoing argument memory.
809 return RAA_Default;
810
811 case llvm::Triple::x86_64:
812 // Win64 passes objects with non-trivial copy ctors indirectly.
813 if (RD->hasNonTrivialCopyConstructor())
814 return RAA_Indirect;
815
816 // If an object has a destructor, we'd really like to pass it indirectly
817 // because it allows us to elide copies. Unfortunately, MSVC makes that
818 // impossible for small types, which it will pass in a single register or
819 // stack slot. Most objects with dtors are large-ish, so handle that early.
820 // We can't call out all large objects as being indirect because there are
821 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
822 // how we pass large POD types.
823 if (RD->hasNonTrivialDestructor() &&
824 getContext().getTypeSize(RD->getTypeForDecl()) > 64)
825 return RAA_Indirect;
826
827 // We have a trivial copy constructor or no copy constructors, but we have
828 // to make sure it isn't deleted.
829 bool CopyDeleted = false;
830 for (const CXXConstructorDecl *CD : RD->ctors()) {
831 if (CD->isCopyConstructor()) {
832 assert(CD->isTrivial());
833 // We had at least one undeleted trivial copy ctor. Return directly.
834 if (!CD->isDeleted())
835 return RAA_Default;
836 CopyDeleted = true;
837 }
838 }
839
840 // The trivial copy constructor was deleted. Return indirectly.
841 if (CopyDeleted)
842 return RAA_Indirect;
843
844 // There were no copy ctors. Return in RAX.
845 return RAA_Default;
846 }
847
848 llvm_unreachable("invalid enum");
849 }
850
emitVirtualObjectDelete(CodeGenFunction & CGF,const CXXDeleteExpr * DE,Address Ptr,QualType ElementType,const CXXDestructorDecl * Dtor)851 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
852 const CXXDeleteExpr *DE,
853 Address Ptr,
854 QualType ElementType,
855 const CXXDestructorDecl *Dtor) {
856 // FIXME: Provide a source location here even though there's no
857 // CXXMemberCallExpr for dtor call.
858 bool UseGlobalDelete = DE->isGlobalDelete();
859 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
860 llvm::Value *MDThis =
861 EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, /*CE=*/nullptr);
862 if (UseGlobalDelete)
863 CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
864 }
865
emitRethrow(CodeGenFunction & CGF,bool isNoReturn)866 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
867 llvm::Value *Args[] = {
868 llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
869 llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())};
870 auto *Fn = getThrowFn();
871 if (isNoReturn)
872 CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
873 else
874 CGF.EmitRuntimeCallOrInvoke(Fn, Args);
875 }
876
877 namespace {
878 struct CatchRetScope final : EHScopeStack::Cleanup {
879 llvm::CatchPadInst *CPI;
880
CatchRetScope__anon6e1e7a720211::CatchRetScope881 CatchRetScope(llvm::CatchPadInst *CPI) : CPI(CPI) {}
882
Emit__anon6e1e7a720211::CatchRetScope883 void Emit(CodeGenFunction &CGF, Flags flags) override {
884 llvm::BasicBlock *BB = CGF.createBasicBlock("catchret.dest");
885 CGF.Builder.CreateCatchRet(CPI, BB);
886 CGF.EmitBlock(BB);
887 }
888 };
889 }
890
emitBeginCatch(CodeGenFunction & CGF,const CXXCatchStmt * S)891 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF,
892 const CXXCatchStmt *S) {
893 // In the MS ABI, the runtime handles the copy, and the catch handler is
894 // responsible for destruction.
895 VarDecl *CatchParam = S->getExceptionDecl();
896 llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock();
897 llvm::CatchPadInst *CPI =
898 cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI());
899 CGF.CurrentFuncletPad = CPI;
900
901 // If this is a catch-all or the catch parameter is unnamed, we don't need to
902 // emit an alloca to the object.
903 if (!CatchParam || !CatchParam->getDeclName()) {
904 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
905 return;
906 }
907
908 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
909 CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer());
910 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
911 CGF.EmitAutoVarCleanups(var);
912 }
913
914 /// We need to perform a generic polymorphic operation (like a typeid
915 /// or a cast), which requires an object with a vfptr. Adjust the
916 /// address to point to an object with a vfptr.
917 std::pair<Address, llvm::Value *>
performBaseAdjustment(CodeGenFunction & CGF,Address Value,QualType SrcRecordTy)918 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value,
919 QualType SrcRecordTy) {
920 Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy);
921 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
922 const ASTContext &Context = getContext();
923
924 // If the class itself has a vfptr, great. This check implicitly
925 // covers non-virtual base subobjects: a class with its own virtual
926 // functions would be a candidate to be a primary base.
927 if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
928 return std::make_pair(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0));
929
930 // Okay, one of the vbases must have a vfptr, or else this isn't
931 // actually a polymorphic class.
932 const CXXRecordDecl *PolymorphicBase = nullptr;
933 for (auto &Base : SrcDecl->vbases()) {
934 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
935 if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) {
936 PolymorphicBase = BaseDecl;
937 break;
938 }
939 }
940 assert(PolymorphicBase && "polymorphic class has no apparent vfptr?");
941
942 llvm::Value *Offset =
943 GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase);
944 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(Value.getPointer(), Offset);
945 CharUnits VBaseAlign =
946 CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase);
947 return std::make_pair(Address(Ptr, VBaseAlign), Offset);
948 }
949
shouldTypeidBeNullChecked(bool IsDeref,QualType SrcRecordTy)950 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
951 QualType SrcRecordTy) {
952 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
953 return IsDeref &&
954 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
955 }
956
emitRTtypeidCall(CodeGenFunction & CGF,llvm::Value * Argument)957 static llvm::CallSite emitRTtypeidCall(CodeGenFunction &CGF,
958 llvm::Value *Argument) {
959 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
960 llvm::FunctionType *FTy =
961 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
962 llvm::Value *Args[] = {Argument};
963 llvm::Constant *Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
964 return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
965 }
966
EmitBadTypeidCall(CodeGenFunction & CGF)967 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
968 llvm::CallSite Call =
969 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
970 Call.setDoesNotReturn();
971 CGF.Builder.CreateUnreachable();
972 }
973
EmitTypeid(CodeGenFunction & CGF,QualType SrcRecordTy,Address ThisPtr,llvm::Type * StdTypeInfoPtrTy)974 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
975 QualType SrcRecordTy,
976 Address ThisPtr,
977 llvm::Type *StdTypeInfoPtrTy) {
978 std::tie(ThisPtr, std::ignore) =
979 performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
980 auto Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer()).getInstruction();
981 return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy);
982 }
983
shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,QualType SrcRecordTy)984 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
985 QualType SrcRecordTy) {
986 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
987 return SrcIsPtr &&
988 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
989 }
990
EmitDynamicCastCall(CodeGenFunction & CGF,Address This,QualType SrcRecordTy,QualType DestTy,QualType DestRecordTy,llvm::BasicBlock * CastEnd)991 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
992 CodeGenFunction &CGF, Address This, QualType SrcRecordTy,
993 QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
994 llvm::Type *DestLTy = CGF.ConvertType(DestTy);
995
996 llvm::Value *SrcRTTI =
997 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
998 llvm::Value *DestRTTI =
999 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1000
1001 llvm::Value *Offset;
1002 std::tie(This, Offset) = performBaseAdjustment(CGF, This, SrcRecordTy);
1003 llvm::Value *ThisPtr = This.getPointer();
1004 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
1005
1006 // PVOID __RTDynamicCast(
1007 // PVOID inptr,
1008 // LONG VfDelta,
1009 // PVOID SrcType,
1010 // PVOID TargetType,
1011 // BOOL isReference)
1012 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
1013 CGF.Int8PtrTy, CGF.Int32Ty};
1014 llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
1015 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1016 "__RTDynamicCast");
1017 llvm::Value *Args[] = {
1018 ThisPtr, Offset, SrcRTTI, DestRTTI,
1019 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
1020 ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args).getInstruction();
1021 return CGF.Builder.CreateBitCast(ThisPtr, DestLTy);
1022 }
1023
1024 llvm::Value *
EmitDynamicCastToVoid(CodeGenFunction & CGF,Address Value,QualType SrcRecordTy,QualType DestTy)1025 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
1026 QualType SrcRecordTy,
1027 QualType DestTy) {
1028 std::tie(Value, std::ignore) = performBaseAdjustment(CGF, Value, SrcRecordTy);
1029
1030 // PVOID __RTCastToVoid(
1031 // PVOID inptr)
1032 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
1033 llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
1034 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1035 "__RTCastToVoid");
1036 llvm::Value *Args[] = {Value.getPointer()};
1037 return CGF.EmitRuntimeCall(Function, Args);
1038 }
1039
EmitBadCastCall(CodeGenFunction & CGF)1040 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
1041 return false;
1042 }
1043
GetVirtualBaseClassOffset(CodeGenFunction & CGF,Address This,const CXXRecordDecl * ClassDecl,const CXXRecordDecl * BaseClassDecl)1044 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
1045 CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl,
1046 const CXXRecordDecl *BaseClassDecl) {
1047 const ASTContext &Context = getContext();
1048 int64_t VBPtrChars =
1049 Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
1050 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
1051 CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy);
1052 CharUnits VBTableChars =
1053 IntSize *
1054 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
1055 llvm::Value *VBTableOffset =
1056 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
1057
1058 llvm::Value *VBPtrToNewBase =
1059 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
1060 VBPtrToNewBase =
1061 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
1062 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
1063 }
1064
HasThisReturn(GlobalDecl GD) const1065 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
1066 return isa<CXXConstructorDecl>(GD.getDecl());
1067 }
1068
isDeletingDtor(GlobalDecl GD)1069 static bool isDeletingDtor(GlobalDecl GD) {
1070 return isa<CXXDestructorDecl>(GD.getDecl()) &&
1071 GD.getDtorType() == Dtor_Deleting;
1072 }
1073
hasMostDerivedReturn(GlobalDecl GD) const1074 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
1075 return isDeletingDtor(GD);
1076 }
1077
classifyReturnType(CGFunctionInfo & FI) const1078 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
1079 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
1080 if (!RD)
1081 return false;
1082
1083 CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType());
1084 if (FI.isInstanceMethod()) {
1085 // If it's an instance method, aggregates are always returned indirectly via
1086 // the second parameter.
1087 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
1088 FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod());
1089 return true;
1090 } else if (!RD->isPOD()) {
1091 // If it's a free function, non-POD types are returned indirectly.
1092 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
1093 return true;
1094 }
1095
1096 // Otherwise, use the C ABI rules.
1097 return false;
1098 }
1099
1100 llvm::BasicBlock *
EmitCtorCompleteObjectHandler(CodeGenFunction & CGF,const CXXRecordDecl * RD)1101 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
1102 const CXXRecordDecl *RD) {
1103 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1104 assert(IsMostDerivedClass &&
1105 "ctor for a class with virtual bases must have an implicit parameter");
1106 llvm::Value *IsCompleteObject =
1107 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1108
1109 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
1110 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
1111 CGF.Builder.CreateCondBr(IsCompleteObject,
1112 CallVbaseCtorsBB, SkipVbaseCtorsBB);
1113
1114 CGF.EmitBlock(CallVbaseCtorsBB);
1115
1116 // Fill in the vbtable pointers here.
1117 EmitVBPtrStores(CGF, RD);
1118
1119 // CGF will put the base ctor calls in this basic block for us later.
1120
1121 return SkipVbaseCtorsBB;
1122 }
1123
initializeHiddenVirtualInheritanceMembers(CodeGenFunction & CGF,const CXXRecordDecl * RD)1124 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
1125 CodeGenFunction &CGF, const CXXRecordDecl *RD) {
1126 // In most cases, an override for a vbase virtual method can adjust
1127 // the "this" parameter by applying a constant offset.
1128 // However, this is not enough while a constructor or a destructor of some
1129 // class X is being executed if all the following conditions are met:
1130 // - X has virtual bases, (1)
1131 // - X overrides a virtual method M of a vbase Y, (2)
1132 // - X itself is a vbase of the most derived class.
1133 //
1134 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
1135 // which holds the extra amount of "this" adjustment we must do when we use
1136 // the X vftables (i.e. during X ctor or dtor).
1137 // Outside the ctors and dtors, the values of vtorDisps are zero.
1138
1139 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1140 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
1141 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
1142 CGBuilderTy &Builder = CGF.Builder;
1143
1144 unsigned AS = getThisAddress(CGF).getAddressSpace();
1145 llvm::Value *Int8This = nullptr; // Initialize lazily.
1146
1147 for (VBOffsets::const_iterator I = VBaseMap.begin(), E = VBaseMap.end();
1148 I != E; ++I) {
1149 if (!I->second.hasVtorDisp())
1150 continue;
1151
1152 llvm::Value *VBaseOffset =
1153 GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, I->first);
1154 uint64_t ConstantVBaseOffset =
1155 Layout.getVBaseClassOffset(I->first).getQuantity();
1156
1157 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
1158 llvm::Value *VtorDispValue = Builder.CreateSub(
1159 VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset),
1160 "vtordisp.value");
1161 VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty);
1162
1163 if (!Int8This)
1164 Int8This = Builder.CreateBitCast(getThisValue(CGF),
1165 CGF.Int8Ty->getPointerTo(AS));
1166 llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset);
1167 // vtorDisp is always the 32-bits before the vbase in the class layout.
1168 VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4);
1169 VtorDispPtr = Builder.CreateBitCast(
1170 VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");
1171
1172 Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr,
1173 CharUnits::fromQuantity(4));
1174 }
1175 }
1176
hasDefaultCXXMethodCC(ASTContext & Context,const CXXMethodDecl * MD)1177 static bool hasDefaultCXXMethodCC(ASTContext &Context,
1178 const CXXMethodDecl *MD) {
1179 CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention(
1180 /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1181 CallingConv ActualCallingConv =
1182 MD->getType()->getAs<FunctionProtoType>()->getCallConv();
1183 return ExpectedCallingConv == ActualCallingConv;
1184 }
1185
EmitCXXConstructors(const CXXConstructorDecl * D)1186 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
1187 // There's only one constructor type in this ABI.
1188 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
1189
1190 // Exported default constructors either have a simple call-site where they use
1191 // the typical calling convention and have a single 'this' pointer for an
1192 // argument -or- they get a wrapper function which appropriately thunks to the
1193 // real default constructor. This thunk is the default constructor closure.
1194 if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor())
1195 if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) {
1196 llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure);
1197 Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage);
1198 Fn->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1199 }
1200 }
1201
EmitVBPtrStores(CodeGenFunction & CGF,const CXXRecordDecl * RD)1202 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
1203 const CXXRecordDecl *RD) {
1204 Address This = getThisAddress(CGF);
1205 This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8");
1206 const ASTContext &Context = getContext();
1207 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1208
1209 const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1210 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1211 const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
1212 llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1213 const ASTRecordLayout &SubobjectLayout =
1214 Context.getASTRecordLayout(VBT->BaseWithVPtr);
1215 CharUnits Offs = VBT->NonVirtualOffset;
1216 Offs += SubobjectLayout.getVBPtrOffset();
1217 if (VBT->getVBaseWithVPtr())
1218 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
1219 Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs);
1220 llvm::Value *GVPtr =
1221 CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0);
1222 VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(),
1223 "vbptr." + VBT->ReusingBase->getName());
1224 CGF.Builder.CreateStore(GVPtr, VBPtr);
1225 }
1226 }
1227
1228 void
buildStructorSignature(const CXXMethodDecl * MD,StructorType T,SmallVectorImpl<CanQualType> & ArgTys)1229 MicrosoftCXXABI::buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
1230 SmallVectorImpl<CanQualType> &ArgTys) {
1231 // TODO: 'for base' flag
1232 if (T == StructorType::Deleting) {
1233 // The scalar deleting destructor takes an implicit int parameter.
1234 ArgTys.push_back(getContext().IntTy);
1235 }
1236 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
1237 if (!CD)
1238 return;
1239
1240 // All parameters are already in place except is_most_derived, which goes
1241 // after 'this' if it's variadic and last if it's not.
1242
1243 const CXXRecordDecl *Class = CD->getParent();
1244 const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
1245 if (Class->getNumVBases()) {
1246 if (FPT->isVariadic())
1247 ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy);
1248 else
1249 ArgTys.push_back(getContext().IntTy);
1250 }
1251 }
1252
EmitCXXDestructors(const CXXDestructorDecl * D)1253 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
1254 // The TU defining a dtor is only guaranteed to emit a base destructor. All
1255 // other destructor variants are delegating thunks.
1256 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
1257 }
1258
1259 CharUnits
getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD)1260 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
1261 GD = GD.getCanonicalDecl();
1262 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1263
1264 GlobalDecl LookupGD = GD;
1265 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1266 // Complete destructors take a pointer to the complete object as a
1267 // parameter, thus don't need this adjustment.
1268 if (GD.getDtorType() == Dtor_Complete)
1269 return CharUnits();
1270
1271 // There's no Dtor_Base in vftable but it shares the this adjustment with
1272 // the deleting one, so look it up instead.
1273 LookupGD = GlobalDecl(DD, Dtor_Deleting);
1274 }
1275
1276 MicrosoftVTableContext::MethodVFTableLocation ML =
1277 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1278 CharUnits Adjustment = ML.VFPtrOffset;
1279
1280 // Normal virtual instance methods need to adjust from the vfptr that first
1281 // defined the virtual method to the virtual base subobject, but destructors
1282 // do not. The vector deleting destructor thunk applies this adjustment for
1283 // us if necessary.
1284 if (isa<CXXDestructorDecl>(MD))
1285 Adjustment = CharUnits::Zero();
1286
1287 if (ML.VBase) {
1288 const ASTRecordLayout &DerivedLayout =
1289 getContext().getASTRecordLayout(MD->getParent());
1290 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
1291 }
1292
1293 return Adjustment;
1294 }
1295
adjustThisArgumentForVirtualFunctionCall(CodeGenFunction & CGF,GlobalDecl GD,Address This,bool VirtualCall)1296 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
1297 CodeGenFunction &CGF, GlobalDecl GD, Address This,
1298 bool VirtualCall) {
1299 if (!VirtualCall) {
1300 // If the call of a virtual function is not virtual, we just have to
1301 // compensate for the adjustment the virtual function does in its prologue.
1302 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1303 if (Adjustment.isZero())
1304 return This;
1305
1306 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
1307 assert(Adjustment.isPositive());
1308 return CGF.Builder.CreateConstByteGEP(This, Adjustment);
1309 }
1310
1311 GD = GD.getCanonicalDecl();
1312 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1313
1314 GlobalDecl LookupGD = GD;
1315 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1316 // Complete dtors take a pointer to the complete object,
1317 // thus don't need adjustment.
1318 if (GD.getDtorType() == Dtor_Complete)
1319 return This;
1320
1321 // There's only Dtor_Deleting in vftable but it shares the this adjustment
1322 // with the base one, so look up the deleting one instead.
1323 LookupGD = GlobalDecl(DD, Dtor_Deleting);
1324 }
1325 MicrosoftVTableContext::MethodVFTableLocation ML =
1326 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1327
1328 CharUnits StaticOffset = ML.VFPtrOffset;
1329
1330 // Base destructors expect 'this' to point to the beginning of the base
1331 // subobject, not the first vfptr that happens to contain the virtual dtor.
1332 // However, we still need to apply the virtual base adjustment.
1333 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
1334 StaticOffset = CharUnits::Zero();
1335
1336 Address Result = This;
1337 if (ML.VBase) {
1338 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
1339
1340 const CXXRecordDecl *Derived = MD->getParent();
1341 const CXXRecordDecl *VBase = ML.VBase;
1342 llvm::Value *VBaseOffset =
1343 GetVirtualBaseClassOffset(CGF, Result, Derived, VBase);
1344 llvm::Value *VBasePtr =
1345 CGF.Builder.CreateInBoundsGEP(Result.getPointer(), VBaseOffset);
1346 CharUnits VBaseAlign =
1347 CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase);
1348 Result = Address(VBasePtr, VBaseAlign);
1349 }
1350 if (!StaticOffset.isZero()) {
1351 assert(StaticOffset.isPositive());
1352 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
1353 if (ML.VBase) {
1354 // Non-virtual adjustment might result in a pointer outside the allocated
1355 // object, e.g. if the final overrider class is laid out after the virtual
1356 // base that declares a method in the most derived class.
1357 // FIXME: Update the code that emits this adjustment in thunks prologues.
1358 Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset);
1359 } else {
1360 Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset);
1361 }
1362 }
1363 return Result;
1364 }
1365
addImplicitStructorParams(CodeGenFunction & CGF,QualType & ResTy,FunctionArgList & Params)1366 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
1367 QualType &ResTy,
1368 FunctionArgList &Params) {
1369 ASTContext &Context = getContext();
1370 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1371 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
1372 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1373 ImplicitParamDecl *IsMostDerived
1374 = ImplicitParamDecl::Create(Context, nullptr,
1375 CGF.CurGD.getDecl()->getLocation(),
1376 &Context.Idents.get("is_most_derived"),
1377 Context.IntTy);
1378 // The 'most_derived' parameter goes second if the ctor is variadic and last
1379 // if it's not. Dtors can't be variadic.
1380 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1381 if (FPT->isVariadic())
1382 Params.insert(Params.begin() + 1, IsMostDerived);
1383 else
1384 Params.push_back(IsMostDerived);
1385 getStructorImplicitParamDecl(CGF) = IsMostDerived;
1386 } else if (isDeletingDtor(CGF.CurGD)) {
1387 ImplicitParamDecl *ShouldDelete
1388 = ImplicitParamDecl::Create(Context, nullptr,
1389 CGF.CurGD.getDecl()->getLocation(),
1390 &Context.Idents.get("should_call_delete"),
1391 Context.IntTy);
1392 Params.push_back(ShouldDelete);
1393 getStructorImplicitParamDecl(CGF) = ShouldDelete;
1394 }
1395 }
1396
adjustThisParameterInVirtualFunctionPrologue(CodeGenFunction & CGF,GlobalDecl GD,llvm::Value * This)1397 llvm::Value *MicrosoftCXXABI::adjustThisParameterInVirtualFunctionPrologue(
1398 CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) {
1399 // In this ABI, every virtual function takes a pointer to one of the
1400 // subobjects that first defines it as the 'this' parameter, rather than a
1401 // pointer to the final overrider subobject. Thus, we need to adjust it back
1402 // to the final overrider subobject before use.
1403 // See comments in the MicrosoftVFTableContext implementation for the details.
1404 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1405 if (Adjustment.isZero())
1406 return This;
1407
1408 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
1409 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
1410 *thisTy = This->getType();
1411
1412 This = CGF.Builder.CreateBitCast(This, charPtrTy);
1413 assert(Adjustment.isPositive());
1414 This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
1415 -Adjustment.getQuantity());
1416 return CGF.Builder.CreateBitCast(This, thisTy);
1417 }
1418
EmitInstanceFunctionProlog(CodeGenFunction & CGF)1419 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
1420 EmitThisParam(CGF);
1421
1422 /// If this is a function that the ABI specifies returns 'this', initialize
1423 /// the return slot to 'this' at the start of the function.
1424 ///
1425 /// Unlike the setting of return types, this is done within the ABI
1426 /// implementation instead of by clients of CGCXXABI because:
1427 /// 1) getThisValue is currently protected
1428 /// 2) in theory, an ABI could implement 'this' returns some other way;
1429 /// HasThisReturn only specifies a contract, not the implementation
1430 if (HasThisReturn(CGF.CurGD))
1431 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
1432 else if (hasMostDerivedReturn(CGF.CurGD))
1433 CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)),
1434 CGF.ReturnValue);
1435
1436 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1437 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1438 assert(getStructorImplicitParamDecl(CGF) &&
1439 "no implicit parameter for a constructor with virtual bases?");
1440 getStructorImplicitParamValue(CGF)
1441 = CGF.Builder.CreateLoad(
1442 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1443 "is_most_derived");
1444 }
1445
1446 if (isDeletingDtor(CGF.CurGD)) {
1447 assert(getStructorImplicitParamDecl(CGF) &&
1448 "no implicit parameter for a deleting destructor?");
1449 getStructorImplicitParamValue(CGF)
1450 = CGF.Builder.CreateLoad(
1451 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1452 "should_call_delete");
1453 }
1454 }
1455
addImplicitConstructorArgs(CodeGenFunction & CGF,const CXXConstructorDecl * D,CXXCtorType Type,bool ForVirtualBase,bool Delegating,CallArgList & Args)1456 unsigned MicrosoftCXXABI::addImplicitConstructorArgs(
1457 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
1458 bool ForVirtualBase, bool Delegating, CallArgList &Args) {
1459 assert(Type == Ctor_Complete || Type == Ctor_Base);
1460
1461 // Check if we need a 'most_derived' parameter.
1462 if (!D->getParent()->getNumVBases())
1463 return 0;
1464
1465 // Add the 'most_derived' argument second if we are variadic or last if not.
1466 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1467 llvm::Value *MostDerivedArg;
1468 if (Delegating) {
1469 MostDerivedArg = getStructorImplicitParamValue(CGF);
1470 } else {
1471 MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
1472 }
1473 RValue RV = RValue::get(MostDerivedArg);
1474 if (FPT->isVariadic())
1475 Args.insert(Args.begin() + 1,
1476 CallArg(RV, getContext().IntTy, /*needscopy=*/false));
1477 else
1478 Args.add(RV, getContext().IntTy);
1479
1480 return 1; // Added one arg.
1481 }
1482
EmitDestructorCall(CodeGenFunction & CGF,const CXXDestructorDecl * DD,CXXDtorType Type,bool ForVirtualBase,bool Delegating,Address This)1483 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
1484 const CXXDestructorDecl *DD,
1485 CXXDtorType Type, bool ForVirtualBase,
1486 bool Delegating, Address This) {
1487 llvm::Value *Callee = CGM.getAddrOfCXXStructor(DD, getFromDtorType(Type));
1488
1489 if (DD->isVirtual()) {
1490 assert(Type != CXXDtorType::Dtor_Deleting &&
1491 "The deleting destructor should only be called via a virtual call");
1492 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
1493 This, false);
1494 }
1495
1496 CGF.EmitCXXDestructorCall(DD, Callee, This.getPointer(),
1497 /*ImplicitParam=*/nullptr,
1498 /*ImplicitParamTy=*/QualType(), nullptr,
1499 getFromDtorType(Type));
1500 }
1501
emitVTableTypeMetadata(VPtrInfo * Info,const CXXRecordDecl * RD,llvm::GlobalVariable * VTable)1502 void MicrosoftCXXABI::emitVTableTypeMetadata(VPtrInfo *Info,
1503 const CXXRecordDecl *RD,
1504 llvm::GlobalVariable *VTable) {
1505 if (!CGM.getCodeGenOpts().PrepareForLTO)
1506 return;
1507
1508 // The location of the first virtual function pointer in the virtual table,
1509 // aka the "address point" on Itanium. This is at offset 0 if RTTI is
1510 // disabled, or sizeof(void*) if RTTI is enabled.
1511 CharUnits AddressPoint =
1512 getContext().getLangOpts().RTTIData
1513 ? getContext().toCharUnitsFromBits(
1514 getContext().getTargetInfo().getPointerWidth(0))
1515 : CharUnits::Zero();
1516
1517 if (Info->PathToBaseWithVPtr.empty()) {
1518 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1519 return;
1520 }
1521
1522 // Add a bitset entry for the least derived base belonging to this vftable.
1523 CGM.AddVTableTypeMetadata(VTable, AddressPoint,
1524 Info->PathToBaseWithVPtr.back());
1525
1526 // Add a bitset entry for each derived class that is laid out at the same
1527 // offset as the least derived base.
1528 for (unsigned I = Info->PathToBaseWithVPtr.size() - 1; I != 0; --I) {
1529 const CXXRecordDecl *DerivedRD = Info->PathToBaseWithVPtr[I - 1];
1530 const CXXRecordDecl *BaseRD = Info->PathToBaseWithVPtr[I];
1531
1532 const ASTRecordLayout &Layout =
1533 getContext().getASTRecordLayout(DerivedRD);
1534 CharUnits Offset;
1535 auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD);
1536 if (VBI == Layout.getVBaseOffsetsMap().end())
1537 Offset = Layout.getBaseClassOffset(BaseRD);
1538 else
1539 Offset = VBI->second.VBaseOffset;
1540 if (!Offset.isZero())
1541 return;
1542 CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD);
1543 }
1544
1545 // Finally do the same for the most derived class.
1546 if (Info->FullOffsetInMDC.isZero())
1547 CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1548 }
1549
emitVTableDefinitions(CodeGenVTables & CGVT,const CXXRecordDecl * RD)1550 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
1551 const CXXRecordDecl *RD) {
1552 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1553 const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
1554
1555 for (VPtrInfo *Info : VFPtrs) {
1556 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
1557 if (VTable->hasInitializer())
1558 continue;
1559
1560 const VTableLayout &VTLayout =
1561 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
1562
1563 llvm::Constant *RTTI = nullptr;
1564 if (any_of(VTLayout.vtable_components(),
1565 [](const VTableComponent &VTC) { return VTC.isRTTIKind(); }))
1566 RTTI = getMSCompleteObjectLocator(RD, Info);
1567
1568 llvm::Constant *Init = CGVT.CreateVTableInitializer(
1569 RD, VTLayout.vtable_component_begin(),
1570 VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(),
1571 VTLayout.getNumVTableThunks(), RTTI);
1572
1573 VTable->setInitializer(Init);
1574
1575 emitVTableTypeMetadata(Info, RD, VTable);
1576 }
1577 }
1578
isVirtualOffsetNeededForVTableField(CodeGenFunction & CGF,CodeGenFunction::VPtr Vptr)1579 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField(
1580 CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) {
1581 return Vptr.NearestVBase != nullptr;
1582 }
1583
getVTableAddressPointInStructor(CodeGenFunction & CGF,const CXXRecordDecl * VTableClass,BaseSubobject Base,const CXXRecordDecl * NearestVBase)1584 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
1585 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
1586 const CXXRecordDecl *NearestVBase) {
1587 llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass);
1588 if (!VTableAddressPoint) {
1589 assert(Base.getBase()->getNumVBases() &&
1590 !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
1591 }
1592 return VTableAddressPoint;
1593 }
1594
mangleVFTableName(MicrosoftMangleContext & MangleContext,const CXXRecordDecl * RD,const VPtrInfo * VFPtr,SmallString<256> & Name)1595 static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
1596 const CXXRecordDecl *RD, const VPtrInfo *VFPtr,
1597 SmallString<256> &Name) {
1598 llvm::raw_svector_ostream Out(Name);
1599 MangleContext.mangleCXXVFTable(RD, VFPtr->MangledPath, Out);
1600 }
1601
1602 llvm::Constant *
getVTableAddressPoint(BaseSubobject Base,const CXXRecordDecl * VTableClass)1603 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base,
1604 const CXXRecordDecl *VTableClass) {
1605 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1606 VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1607 return VFTablesMap[ID];
1608 }
1609
getVTableAddressPointForConstExpr(BaseSubobject Base,const CXXRecordDecl * VTableClass)1610 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
1611 BaseSubobject Base, const CXXRecordDecl *VTableClass) {
1612 llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass);
1613 assert(VFTable && "Couldn't find a vftable for the given base?");
1614 return VFTable;
1615 }
1616
getAddrOfVTable(const CXXRecordDecl * RD,CharUnits VPtrOffset)1617 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
1618 CharUnits VPtrOffset) {
1619 // getAddrOfVTable may return 0 if asked to get an address of a vtable which
1620 // shouldn't be used in the given record type. We want to cache this result in
1621 // VFTablesMap, thus a simple zero check is not sufficient.
1622
1623 VFTableIdTy ID(RD, VPtrOffset);
1624 VTablesMapTy::iterator I;
1625 bool Inserted;
1626 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
1627 if (!Inserted)
1628 return I->second;
1629
1630 llvm::GlobalVariable *&VTable = I->second;
1631
1632 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
1633 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
1634
1635 if (DeferredVFTables.insert(RD).second) {
1636 // We haven't processed this record type before.
1637 // Queue up this vtable for possible deferred emission.
1638 CGM.addDeferredVTable(RD);
1639
1640 #ifndef NDEBUG
1641 // Create all the vftables at once in order to make sure each vftable has
1642 // a unique mangled name.
1643 llvm::StringSet<> ObservedMangledNames;
1644 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1645 SmallString<256> Name;
1646 mangleVFTableName(getMangleContext(), RD, VFPtrs[J], Name);
1647 if (!ObservedMangledNames.insert(Name.str()).second)
1648 llvm_unreachable("Already saw this mangling before?");
1649 }
1650 #endif
1651 }
1652
1653 VPtrInfo *const *VFPtrI =
1654 std::find_if(VFPtrs.begin(), VFPtrs.end(), [&](VPtrInfo *VPI) {
1655 return VPI->FullOffsetInMDC == VPtrOffset;
1656 });
1657 if (VFPtrI == VFPtrs.end()) {
1658 VFTablesMap[ID] = nullptr;
1659 return nullptr;
1660 }
1661 VPtrInfo *VFPtr = *VFPtrI;
1662
1663 SmallString<256> VFTableName;
1664 mangleVFTableName(getMangleContext(), RD, VFPtr, VFTableName);
1665
1666 // Classes marked __declspec(dllimport) need vftables generated on the
1667 // import-side in order to support features like constexpr. No other
1668 // translation unit relies on the emission of the local vftable, translation
1669 // units are expected to generate them as needed.
1670 //
1671 // Because of this unique behavior, we maintain this logic here instead of
1672 // getVTableLinkage.
1673 llvm::GlobalValue::LinkageTypes VFTableLinkage =
1674 RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage
1675 : CGM.getVTableLinkage(RD);
1676 bool VFTableComesFromAnotherTU =
1677 llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) ||
1678 llvm::GlobalValue::isExternalLinkage(VFTableLinkage);
1679 bool VTableAliasIsRequred =
1680 !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData;
1681
1682 if (llvm::GlobalValue *VFTable =
1683 CGM.getModule().getNamedGlobal(VFTableName)) {
1684 VFTablesMap[ID] = VFTable;
1685 VTable = VTableAliasIsRequred
1686 ? cast<llvm::GlobalVariable>(
1687 cast<llvm::GlobalAlias>(VFTable)->getBaseObject())
1688 : cast<llvm::GlobalVariable>(VFTable);
1689 return VTable;
1690 }
1691
1692 uint64_t NumVTableSlots =
1693 VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC)
1694 .getNumVTableComponents();
1695 llvm::GlobalValue::LinkageTypes VTableLinkage =
1696 VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage;
1697
1698 StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str();
1699
1700 llvm::ArrayType *VTableType =
1701 llvm::ArrayType::get(CGM.Int8PtrTy, NumVTableSlots);
1702
1703 // Create a backing variable for the contents of VTable. The VTable may
1704 // or may not include space for a pointer to RTTI data.
1705 llvm::GlobalValue *VFTable;
1706 VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType,
1707 /*isConstant=*/true, VTableLinkage,
1708 /*Initializer=*/nullptr, VTableName);
1709 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1710
1711 llvm::Comdat *C = nullptr;
1712 if (!VFTableComesFromAnotherTU &&
1713 (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) ||
1714 (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) &&
1715 VTableAliasIsRequred)))
1716 C = CGM.getModule().getOrInsertComdat(VFTableName.str());
1717
1718 // Only insert a pointer into the VFTable for RTTI data if we are not
1719 // importing it. We never reference the RTTI data directly so there is no
1720 // need to make room for it.
1721 if (VTableAliasIsRequred) {
1722 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
1723 llvm::ConstantInt::get(CGM.IntTy, 1)};
1724 // Create a GEP which points just after the first entry in the VFTable,
1725 // this should be the location of the first virtual method.
1726 llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr(
1727 VTable->getValueType(), VTable, GEPIndices);
1728 if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) {
1729 VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
1730 if (C)
1731 C->setSelectionKind(llvm::Comdat::Largest);
1732 }
1733 VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy,
1734 /*AddressSpace=*/0, VFTableLinkage,
1735 VFTableName.str(), VTableGEP,
1736 &CGM.getModule());
1737 VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1738 } else {
1739 // We don't need a GlobalAlias to be a symbol for the VTable if we won't
1740 // be referencing any RTTI data.
1741 // The GlobalVariable will end up being an appropriate definition of the
1742 // VFTable.
1743 VFTable = VTable;
1744 }
1745 if (C)
1746 VTable->setComdat(C);
1747
1748 if (RD->hasAttr<DLLExportAttr>())
1749 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1750
1751 VFTablesMap[ID] = VFTable;
1752 return VTable;
1753 }
1754
1755 // Compute the identity of the most derived class whose virtual table is located
1756 // at the given offset into RD.
getClassAtVTableLocation(ASTContext & Ctx,const CXXRecordDecl * RD,CharUnits Offset)1757 static const CXXRecordDecl *getClassAtVTableLocation(ASTContext &Ctx,
1758 const CXXRecordDecl *RD,
1759 CharUnits Offset) {
1760 if (Offset.isZero())
1761 return RD;
1762
1763 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
1764 const CXXRecordDecl *MaxBase = nullptr;
1765 CharUnits MaxBaseOffset;
1766 for (auto &&B : RD->bases()) {
1767 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
1768 CharUnits BaseOffset = Layout.getBaseClassOffset(Base);
1769 if (BaseOffset <= Offset && BaseOffset >= MaxBaseOffset) {
1770 MaxBase = Base;
1771 MaxBaseOffset = BaseOffset;
1772 }
1773 }
1774 for (auto &&B : RD->vbases()) {
1775 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
1776 CharUnits BaseOffset = Layout.getVBaseClassOffset(Base);
1777 if (BaseOffset <= Offset && BaseOffset >= MaxBaseOffset) {
1778 MaxBase = Base;
1779 MaxBaseOffset = BaseOffset;
1780 }
1781 }
1782 assert(MaxBase);
1783 return getClassAtVTableLocation(Ctx, MaxBase, Offset - MaxBaseOffset);
1784 }
1785
1786 // Compute the identity of the most derived class whose virtual table is located
1787 // at the MethodVFTableLocation ML.
1788 static const CXXRecordDecl *
getClassAtVTableLocation(ASTContext & Ctx,GlobalDecl GD,MicrosoftVTableContext::MethodVFTableLocation & ML)1789 getClassAtVTableLocation(ASTContext &Ctx, GlobalDecl GD,
1790 MicrosoftVTableContext::MethodVFTableLocation &ML) {
1791 const CXXRecordDecl *RD = ML.VBase;
1792 if (!RD)
1793 RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
1794
1795 return getClassAtVTableLocation(Ctx, RD, ML.VFPtrOffset);
1796 }
1797
getVirtualFunctionPointer(CodeGenFunction & CGF,GlobalDecl GD,Address This,llvm::Type * Ty,SourceLocation Loc)1798 llvm::Value *MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
1799 GlobalDecl GD,
1800 Address This,
1801 llvm::Type *Ty,
1802 SourceLocation Loc) {
1803 GD = GD.getCanonicalDecl();
1804 CGBuilderTy &Builder = CGF.Builder;
1805
1806 Ty = Ty->getPointerTo()->getPointerTo();
1807 Address VPtr =
1808 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1809
1810 auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl());
1811 llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty, MethodDecl->getParent());
1812
1813 MicrosoftVTableContext::MethodVFTableLocation ML =
1814 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
1815
1816 if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) {
1817 return CGF.EmitVTableTypeCheckedLoad(
1818 getClassAtVTableLocation(getContext(), GD, ML), VTable,
1819 ML.Index * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8);
1820 } else {
1821 if (CGM.getCodeGenOpts().PrepareForLTO)
1822 CGF.EmitTypeMetadataCodeForVCall(
1823 getClassAtVTableLocation(getContext(), GD, ML), VTable, Loc);
1824
1825 llvm::Value *VFuncPtr =
1826 Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
1827 return Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
1828 }
1829 }
1830
EmitVirtualDestructorCall(CodeGenFunction & CGF,const CXXDestructorDecl * Dtor,CXXDtorType DtorType,Address This,const CXXMemberCallExpr * CE)1831 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
1832 CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
1833 Address This, const CXXMemberCallExpr *CE) {
1834 assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
1835 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
1836
1837 // We have only one destructor in the vftable but can get both behaviors
1838 // by passing an implicit int parameter.
1839 GlobalDecl GD(Dtor, Dtor_Deleting);
1840 const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
1841 Dtor, StructorType::Deleting);
1842 llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
1843 llvm::Value *Callee = getVirtualFunctionPointer(
1844 CGF, GD, This, Ty, CE ? CE->getLocStart() : SourceLocation());
1845
1846 ASTContext &Context = getContext();
1847 llvm::Value *ImplicitParam = llvm::ConstantInt::get(
1848 llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
1849 DtorType == Dtor_Deleting);
1850
1851 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1852 RValue RV =
1853 CGF.EmitCXXDestructorCall(Dtor, Callee, This.getPointer(), ImplicitParam,
1854 Context.IntTy, CE, StructorType::Deleting);
1855 return RV.getScalarVal();
1856 }
1857
1858 const VBTableGlobals &
enumerateVBTables(const CXXRecordDecl * RD)1859 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
1860 // At this layer, we can key the cache off of a single class, which is much
1861 // easier than caching each vbtable individually.
1862 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
1863 bool Added;
1864 std::tie(Entry, Added) =
1865 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
1866 VBTableGlobals &VBGlobals = Entry->second;
1867 if (!Added)
1868 return VBGlobals;
1869
1870 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
1871 VBGlobals.VBTables = &Context.enumerateVBTables(RD);
1872
1873 // Cache the globals for all vbtables so we don't have to recompute the
1874 // mangled names.
1875 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
1876 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
1877 E = VBGlobals.VBTables->end();
1878 I != E; ++I) {
1879 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
1880 }
1881
1882 return VBGlobals;
1883 }
1884
EmitVirtualMemPtrThunk(const CXXMethodDecl * MD,const MicrosoftVTableContext::MethodVFTableLocation & ML)1885 llvm::Function *MicrosoftCXXABI::EmitVirtualMemPtrThunk(
1886 const CXXMethodDecl *MD,
1887 const MicrosoftVTableContext::MethodVFTableLocation &ML) {
1888 assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
1889 "can't form pointers to ctors or virtual dtors");
1890
1891 // Calculate the mangled name.
1892 SmallString<256> ThunkName;
1893 llvm::raw_svector_ostream Out(ThunkName);
1894 getMangleContext().mangleVirtualMemPtrThunk(MD, Out);
1895
1896 // If the thunk has been generated previously, just return it.
1897 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
1898 return cast<llvm::Function>(GV);
1899
1900 // Create the llvm::Function.
1901 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSMemberPointerThunk(MD);
1902 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
1903 llvm::Function *ThunkFn =
1904 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
1905 ThunkName.str(), &CGM.getModule());
1906 assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
1907
1908 ThunkFn->setLinkage(MD->isExternallyVisible()
1909 ? llvm::GlobalValue::LinkOnceODRLinkage
1910 : llvm::GlobalValue::InternalLinkage);
1911 if (MD->isExternallyVisible())
1912 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
1913
1914 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
1915 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
1916
1917 // Add the "thunk" attribute so that LLVM knows that the return type is
1918 // meaningless. These thunks can be used to call functions with differing
1919 // return types, and the caller is required to cast the prototype
1920 // appropriately to extract the correct value.
1921 ThunkFn->addFnAttr("thunk");
1922
1923 // These thunks can be compared, so they are not unnamed.
1924 ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
1925
1926 // Start codegen.
1927 CodeGenFunction CGF(CGM);
1928 CGF.CurGD = GlobalDecl(MD);
1929 CGF.CurFuncIsThunk = true;
1930
1931 // Build FunctionArgs, but only include the implicit 'this' parameter
1932 // declaration.
1933 FunctionArgList FunctionArgs;
1934 buildThisParam(CGF, FunctionArgs);
1935
1936 // Start defining the function.
1937 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
1938 FunctionArgs, MD->getLocation(), SourceLocation());
1939 EmitThisParam(CGF);
1940
1941 // Load the vfptr and then callee from the vftable. The callee should have
1942 // adjusted 'this' so that the vfptr is at offset zero.
1943 llvm::Value *VTable = CGF.GetVTablePtr(
1944 getThisAddress(CGF), ThunkTy->getPointerTo()->getPointerTo(), MD->getParent());
1945
1946 llvm::Value *VFuncPtr =
1947 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
1948 llvm::Value *Callee =
1949 CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
1950
1951 CGF.EmitMustTailThunk(MD, getThisValue(CGF), Callee);
1952
1953 return ThunkFn;
1954 }
1955
emitVirtualInheritanceTables(const CXXRecordDecl * RD)1956 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
1957 const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1958 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1959 const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
1960 llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1961 if (GV->isDeclaration())
1962 emitVBTableDefinition(*VBT, RD, GV);
1963 }
1964 }
1965
1966 llvm::GlobalVariable *
getAddrOfVBTable(const VPtrInfo & VBT,const CXXRecordDecl * RD,llvm::GlobalVariable::LinkageTypes Linkage)1967 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
1968 llvm::GlobalVariable::LinkageTypes Linkage) {
1969 SmallString<256> OutName;
1970 llvm::raw_svector_ostream Out(OutName);
1971 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
1972 StringRef Name = OutName.str();
1973
1974 llvm::ArrayType *VBTableType =
1975 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ReusingBase->getNumVBases());
1976
1977 assert(!CGM.getModule().getNamedGlobal(Name) &&
1978 "vbtable with this name already exists: mangling bug?");
1979 llvm::GlobalVariable *GV =
1980 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VBTableType, Linkage);
1981 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1982
1983 if (RD->hasAttr<DLLImportAttr>())
1984 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
1985 else if (RD->hasAttr<DLLExportAttr>())
1986 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1987
1988 if (!GV->hasExternalLinkage())
1989 emitVBTableDefinition(VBT, RD, GV);
1990
1991 return GV;
1992 }
1993
emitVBTableDefinition(const VPtrInfo & VBT,const CXXRecordDecl * RD,llvm::GlobalVariable * GV) const1994 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
1995 const CXXRecordDecl *RD,
1996 llvm::GlobalVariable *GV) const {
1997 const CXXRecordDecl *ReusingBase = VBT.ReusingBase;
1998
1999 assert(RD->getNumVBases() && ReusingBase->getNumVBases() &&
2000 "should only emit vbtables for classes with vbtables");
2001
2002 const ASTRecordLayout &BaseLayout =
2003 getContext().getASTRecordLayout(VBT.BaseWithVPtr);
2004 const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD);
2005
2006 SmallVector<llvm::Constant *, 4> Offsets(1 + ReusingBase->getNumVBases(),
2007 nullptr);
2008
2009 // The offset from ReusingBase's vbptr to itself always leads.
2010 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
2011 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
2012
2013 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
2014 for (const auto &I : ReusingBase->vbases()) {
2015 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
2016 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
2017 assert(!Offset.isNegative());
2018
2019 // Make it relative to the subobject vbptr.
2020 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
2021 if (VBT.getVBaseWithVPtr())
2022 CompleteVBPtrOffset +=
2023 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
2024 Offset -= CompleteVBPtrOffset;
2025
2026 unsigned VBIndex = Context.getVBTableIndex(ReusingBase, VBase);
2027 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
2028 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
2029 }
2030
2031 assert(Offsets.size() ==
2032 cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType())
2033 ->getElementType())->getNumElements());
2034 llvm::ArrayType *VBTableType =
2035 llvm::ArrayType::get(CGM.IntTy, Offsets.size());
2036 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
2037 GV->setInitializer(Init);
2038
2039 if (RD->hasAttr<DLLImportAttr>())
2040 GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage);
2041 }
2042
performThisAdjustment(CodeGenFunction & CGF,Address This,const ThisAdjustment & TA)2043 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
2044 Address This,
2045 const ThisAdjustment &TA) {
2046 if (TA.isEmpty())
2047 return This.getPointer();
2048
2049 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
2050
2051 llvm::Value *V;
2052 if (TA.Virtual.isEmpty()) {
2053 V = This.getPointer();
2054 } else {
2055 assert(TA.Virtual.Microsoft.VtordispOffset < 0);
2056 // Adjust the this argument based on the vtordisp value.
2057 Address VtorDispPtr =
2058 CGF.Builder.CreateConstInBoundsByteGEP(This,
2059 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset));
2060 VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty);
2061 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
2062 V = CGF.Builder.CreateGEP(This.getPointer(),
2063 CGF.Builder.CreateNeg(VtorDisp));
2064
2065 // Unfortunately, having applied the vtordisp means that we no
2066 // longer really have a known alignment for the vbptr step.
2067 // We'll assume the vbptr is pointer-aligned.
2068
2069 if (TA.Virtual.Microsoft.VBPtrOffset) {
2070 // If the final overrider is defined in a virtual base other than the one
2071 // that holds the vfptr, we have to use a vtordispex thunk which looks up
2072 // the vbtable of the derived class.
2073 assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
2074 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
2075 llvm::Value *VBPtr;
2076 llvm::Value *VBaseOffset =
2077 GetVBaseOffsetFromVBPtr(CGF, Address(V, CGF.getPointerAlign()),
2078 -TA.Virtual.Microsoft.VBPtrOffset,
2079 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
2080 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
2081 }
2082 }
2083
2084 if (TA.NonVirtual) {
2085 // Non-virtual adjustment might result in a pointer outside the allocated
2086 // object, e.g. if the final overrider class is laid out after the virtual
2087 // base that declares a method in the most derived class.
2088 V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual);
2089 }
2090
2091 // Don't need to bitcast back, the call CodeGen will handle this.
2092 return V;
2093 }
2094
2095 llvm::Value *
performReturnAdjustment(CodeGenFunction & CGF,Address Ret,const ReturnAdjustment & RA)2096 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
2097 const ReturnAdjustment &RA) {
2098 if (RA.isEmpty())
2099 return Ret.getPointer();
2100
2101 auto OrigTy = Ret.getType();
2102 Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty);
2103
2104 llvm::Value *V = Ret.getPointer();
2105 if (RA.Virtual.Microsoft.VBIndex) {
2106 assert(RA.Virtual.Microsoft.VBIndex > 0);
2107 int32_t IntSize = CGF.getIntSize().getQuantity();
2108 llvm::Value *VBPtr;
2109 llvm::Value *VBaseOffset =
2110 GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset,
2111 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
2112 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
2113 }
2114
2115 if (RA.NonVirtual)
2116 V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual);
2117
2118 // Cast back to the original type.
2119 return CGF.Builder.CreateBitCast(V, OrigTy);
2120 }
2121
requiresArrayCookie(const CXXDeleteExpr * expr,QualType elementType)2122 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
2123 QualType elementType) {
2124 // Microsoft seems to completely ignore the possibility of a
2125 // two-argument usual deallocation function.
2126 return elementType.isDestructedType();
2127 }
2128
requiresArrayCookie(const CXXNewExpr * expr)2129 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
2130 // Microsoft seems to completely ignore the possibility of a
2131 // two-argument usual deallocation function.
2132 return expr->getAllocatedType().isDestructedType();
2133 }
2134
getArrayCookieSizeImpl(QualType type)2135 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
2136 // The array cookie is always a size_t; we then pad that out to the
2137 // alignment of the element type.
2138 ASTContext &Ctx = getContext();
2139 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
2140 Ctx.getTypeAlignInChars(type));
2141 }
2142
readArrayCookieImpl(CodeGenFunction & CGF,Address allocPtr,CharUnits cookieSize)2143 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
2144 Address allocPtr,
2145 CharUnits cookieSize) {
2146 Address numElementsPtr =
2147 CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy);
2148 return CGF.Builder.CreateLoad(numElementsPtr);
2149 }
2150
InitializeArrayCookie(CodeGenFunction & CGF,Address newPtr,llvm::Value * numElements,const CXXNewExpr * expr,QualType elementType)2151 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
2152 Address newPtr,
2153 llvm::Value *numElements,
2154 const CXXNewExpr *expr,
2155 QualType elementType) {
2156 assert(requiresArrayCookie(expr));
2157
2158 // The size of the cookie.
2159 CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
2160
2161 // Compute an offset to the cookie.
2162 Address cookiePtr = newPtr;
2163
2164 // Write the number of elements into the appropriate slot.
2165 Address numElementsPtr
2166 = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy);
2167 CGF.Builder.CreateStore(numElements, numElementsPtr);
2168
2169 // Finally, compute a pointer to the actual data buffer by skipping
2170 // over the cookie completely.
2171 return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize);
2172 }
2173
emitGlobalDtorWithTLRegDtor(CodeGenFunction & CGF,const VarDecl & VD,llvm::Constant * Dtor,llvm::Constant * Addr)2174 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
2175 llvm::Constant *Dtor,
2176 llvm::Constant *Addr) {
2177 // Create a function which calls the destructor.
2178 llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
2179
2180 // extern "C" int __tlregdtor(void (*f)(void));
2181 llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
2182 CGF.IntTy, DtorStub->getType(), /*IsVarArg=*/false);
2183
2184 llvm::Constant *TLRegDtor =
2185 CGF.CGM.CreateRuntimeFunction(TLRegDtorTy, "__tlregdtor");
2186 if (llvm::Function *TLRegDtorFn = dyn_cast<llvm::Function>(TLRegDtor))
2187 TLRegDtorFn->setDoesNotThrow();
2188
2189 CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
2190 }
2191
registerGlobalDtor(CodeGenFunction & CGF,const VarDecl & D,llvm::Constant * Dtor,llvm::Constant * Addr)2192 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
2193 llvm::Constant *Dtor,
2194 llvm::Constant *Addr) {
2195 if (D.getTLSKind())
2196 return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
2197
2198 // The default behavior is to use atexit.
2199 CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
2200 }
2201
EmitThreadLocalInitFuncs(CodeGenModule & CGM,ArrayRef<const VarDecl * > CXXThreadLocals,ArrayRef<llvm::Function * > CXXThreadLocalInits,ArrayRef<const VarDecl * > CXXThreadLocalInitVars)2202 void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
2203 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
2204 ArrayRef<llvm::Function *> CXXThreadLocalInits,
2205 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) {
2206 // This will create a GV in the .CRT$XDU section. It will point to our
2207 // initialization function. The CRT will call all of these function
2208 // pointers at start-up time and, eventually, at thread-creation time.
2209 auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
2210 llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
2211 CGM.getModule(), InitFunc->getType(), /*IsConstant=*/true,
2212 llvm::GlobalVariable::InternalLinkage, InitFunc,
2213 Twine(InitFunc->getName(), "$initializer$"));
2214 InitFuncPtr->setSection(".CRT$XDU");
2215 // This variable has discardable linkage, we have to add it to @llvm.used to
2216 // ensure it won't get discarded.
2217 CGM.addUsedGlobal(InitFuncPtr);
2218 return InitFuncPtr;
2219 };
2220
2221 std::vector<llvm::Function *> NonComdatInits;
2222 for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
2223 llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>(
2224 CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I])));
2225 llvm::Function *F = CXXThreadLocalInits[I];
2226
2227 // If the GV is already in a comdat group, then we have to join it.
2228 if (llvm::Comdat *C = GV->getComdat())
2229 AddToXDU(F)->setComdat(C);
2230 else
2231 NonComdatInits.push_back(F);
2232 }
2233
2234 if (!NonComdatInits.empty()) {
2235 llvm::FunctionType *FTy =
2236 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
2237 llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction(
2238 FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(),
2239 SourceLocation(), /*TLS=*/true);
2240 CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
2241
2242 AddToXDU(InitFunc);
2243 }
2244 }
2245
EmitThreadLocalVarDeclLValue(CodeGenFunction & CGF,const VarDecl * VD,QualType LValType)2246 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
2247 const VarDecl *VD,
2248 QualType LValType) {
2249 CGF.CGM.ErrorUnsupported(VD, "thread wrappers");
2250 return LValue();
2251 }
2252
getInitThreadEpochPtr(CodeGenModule & CGM)2253 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) {
2254 StringRef VarName("_Init_thread_epoch");
2255 CharUnits Align = CGM.getIntAlign();
2256 if (auto *GV = CGM.getModule().getNamedGlobal(VarName))
2257 return ConstantAddress(GV, Align);
2258 auto *GV = new llvm::GlobalVariable(
2259 CGM.getModule(), CGM.IntTy,
2260 /*Constant=*/false, llvm::GlobalVariable::ExternalLinkage,
2261 /*Initializer=*/nullptr, VarName,
2262 /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel);
2263 GV->setAlignment(Align.getQuantity());
2264 return ConstantAddress(GV, Align);
2265 }
2266
getInitThreadHeaderFn(CodeGenModule & CGM)2267 static llvm::Constant *getInitThreadHeaderFn(CodeGenModule &CGM) {
2268 llvm::FunctionType *FTy =
2269 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2270 CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2271 return CGM.CreateRuntimeFunction(
2272 FTy, "_Init_thread_header",
2273 llvm::AttributeSet::get(CGM.getLLVMContext(),
2274 llvm::AttributeSet::FunctionIndex,
2275 llvm::Attribute::NoUnwind));
2276 }
2277
getInitThreadFooterFn(CodeGenModule & CGM)2278 static llvm::Constant *getInitThreadFooterFn(CodeGenModule &CGM) {
2279 llvm::FunctionType *FTy =
2280 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2281 CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2282 return CGM.CreateRuntimeFunction(
2283 FTy, "_Init_thread_footer",
2284 llvm::AttributeSet::get(CGM.getLLVMContext(),
2285 llvm::AttributeSet::FunctionIndex,
2286 llvm::Attribute::NoUnwind));
2287 }
2288
getInitThreadAbortFn(CodeGenModule & CGM)2289 static llvm::Constant *getInitThreadAbortFn(CodeGenModule &CGM) {
2290 llvm::FunctionType *FTy =
2291 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2292 CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2293 return CGM.CreateRuntimeFunction(
2294 FTy, "_Init_thread_abort",
2295 llvm::AttributeSet::get(CGM.getLLVMContext(),
2296 llvm::AttributeSet::FunctionIndex,
2297 llvm::Attribute::NoUnwind));
2298 }
2299
2300 namespace {
2301 struct ResetGuardBit final : EHScopeStack::Cleanup {
2302 Address Guard;
2303 unsigned GuardNum;
ResetGuardBit__anon6e1e7a720611::ResetGuardBit2304 ResetGuardBit(Address Guard, unsigned GuardNum)
2305 : Guard(Guard), GuardNum(GuardNum) {}
2306
Emit__anon6e1e7a720611::ResetGuardBit2307 void Emit(CodeGenFunction &CGF, Flags flags) override {
2308 // Reset the bit in the mask so that the static variable may be
2309 // reinitialized.
2310 CGBuilderTy &Builder = CGF.Builder;
2311 llvm::LoadInst *LI = Builder.CreateLoad(Guard);
2312 llvm::ConstantInt *Mask =
2313 llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum));
2314 Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard);
2315 }
2316 };
2317
2318 struct CallInitThreadAbort final : EHScopeStack::Cleanup {
2319 llvm::Value *Guard;
CallInitThreadAbort__anon6e1e7a720611::CallInitThreadAbort2320 CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {}
2321
Emit__anon6e1e7a720611::CallInitThreadAbort2322 void Emit(CodeGenFunction &CGF, Flags flags) override {
2323 // Calling _Init_thread_abort will reset the guard's state.
2324 CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard);
2325 }
2326 };
2327 }
2328
EmitGuardedInit(CodeGenFunction & CGF,const VarDecl & D,llvm::GlobalVariable * GV,bool PerformInit)2329 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
2330 llvm::GlobalVariable *GV,
2331 bool PerformInit) {
2332 // MSVC only uses guards for static locals.
2333 if (!D.isStaticLocal()) {
2334 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
2335 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
2336 llvm::Function *F = CGF.CurFn;
2337 F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
2338 F->setComdat(CGM.getModule().getOrInsertComdat(F->getName()));
2339 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2340 return;
2341 }
2342
2343 bool ThreadlocalStatic = D.getTLSKind();
2344 bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics;
2345
2346 // Thread-safe static variables which aren't thread-specific have a
2347 // per-variable guard.
2348 bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic;
2349
2350 CGBuilderTy &Builder = CGF.Builder;
2351 llvm::IntegerType *GuardTy = CGF.Int32Ty;
2352 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
2353 CharUnits GuardAlign = CharUnits::fromQuantity(4);
2354
2355 // Get the guard variable for this function if we have one already.
2356 GuardInfo *GI = nullptr;
2357 if (ThreadlocalStatic)
2358 GI = &ThreadLocalGuardVariableMap[D.getDeclContext()];
2359 else if (!ThreadsafeStatic)
2360 GI = &GuardVariableMap[D.getDeclContext()];
2361
2362 llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr;
2363 unsigned GuardNum;
2364 if (D.isExternallyVisible()) {
2365 // Externally visible variables have to be numbered in Sema to properly
2366 // handle unreachable VarDecls.
2367 GuardNum = getContext().getStaticLocalNumber(&D);
2368 assert(GuardNum > 0);
2369 GuardNum--;
2370 } else if (HasPerVariableGuard) {
2371 GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++;
2372 } else {
2373 // Non-externally visible variables are numbered here in CodeGen.
2374 GuardNum = GI->BitIndex++;
2375 }
2376
2377 if (!HasPerVariableGuard && GuardNum >= 32) {
2378 if (D.isExternallyVisible())
2379 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
2380 GuardNum %= 32;
2381 GuardVar = nullptr;
2382 }
2383
2384 if (!GuardVar) {
2385 // Mangle the name for the guard.
2386 SmallString<256> GuardName;
2387 {
2388 llvm::raw_svector_ostream Out(GuardName);
2389 if (HasPerVariableGuard)
2390 getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum,
2391 Out);
2392 else
2393 getMangleContext().mangleStaticGuardVariable(&D, Out);
2394 }
2395
2396 // Create the guard variable with a zero-initializer. Just absorb linkage,
2397 // visibility and dll storage class from the guarded variable.
2398 GuardVar =
2399 new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false,
2400 GV->getLinkage(), Zero, GuardName.str());
2401 GuardVar->setVisibility(GV->getVisibility());
2402 GuardVar->setDLLStorageClass(GV->getDLLStorageClass());
2403 GuardVar->setAlignment(GuardAlign.getQuantity());
2404 if (GuardVar->isWeakForLinker())
2405 GuardVar->setComdat(
2406 CGM.getModule().getOrInsertComdat(GuardVar->getName()));
2407 if (D.getTLSKind())
2408 GuardVar->setThreadLocal(true);
2409 if (GI && !HasPerVariableGuard)
2410 GI->Guard = GuardVar;
2411 }
2412
2413 ConstantAddress GuardAddr(GuardVar, GuardAlign);
2414
2415 assert(GuardVar->getLinkage() == GV->getLinkage() &&
2416 "static local from the same function had different linkage");
2417
2418 if (!HasPerVariableGuard) {
2419 // Pseudo code for the test:
2420 // if (!(GuardVar & MyGuardBit)) {
2421 // GuardVar |= MyGuardBit;
2422 // ... initialize the object ...;
2423 // }
2424
2425 // Test our bit from the guard variable.
2426 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum);
2427 llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr);
2428 llvm::Value *IsInitialized =
2429 Builder.CreateICmpNE(Builder.CreateAnd(LI, Bit), Zero);
2430 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2431 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2432 Builder.CreateCondBr(IsInitialized, EndBlock, InitBlock);
2433
2434 // Set our bit in the guard variable and emit the initializer and add a global
2435 // destructor if appropriate.
2436 CGF.EmitBlock(InitBlock);
2437 Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr);
2438 CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum);
2439 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2440 CGF.PopCleanupBlock();
2441 Builder.CreateBr(EndBlock);
2442
2443 // Continue.
2444 CGF.EmitBlock(EndBlock);
2445 } else {
2446 // Pseudo code for the test:
2447 // if (TSS > _Init_thread_epoch) {
2448 // _Init_thread_header(&TSS);
2449 // if (TSS == -1) {
2450 // ... initialize the object ...;
2451 // _Init_thread_footer(&TSS);
2452 // }
2453 // }
2454 //
2455 // The algorithm is almost identical to what can be found in the appendix
2456 // found in N2325.
2457
2458 // This BasicBLock determines whether or not we have any work to do.
2459 llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr);
2460 FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2461 llvm::LoadInst *InitThreadEpoch =
2462 Builder.CreateLoad(getInitThreadEpochPtr(CGM));
2463 llvm::Value *IsUninitialized =
2464 Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch);
2465 llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt");
2466 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2467 Builder.CreateCondBr(IsUninitialized, AttemptInitBlock, EndBlock);
2468
2469 // This BasicBlock attempts to determine whether or not this thread is
2470 // responsible for doing the initialization.
2471 CGF.EmitBlock(AttemptInitBlock);
2472 CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM),
2473 GuardAddr.getPointer());
2474 llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr);
2475 SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2476 llvm::Value *ShouldDoInit =
2477 Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt());
2478 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2479 Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock);
2480
2481 // Ok, we ended up getting selected as the initializing thread.
2482 CGF.EmitBlock(InitBlock);
2483 CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr);
2484 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2485 CGF.PopCleanupBlock();
2486 CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM),
2487 GuardAddr.getPointer());
2488 Builder.CreateBr(EndBlock);
2489
2490 CGF.EmitBlock(EndBlock);
2491 }
2492 }
2493
isZeroInitializable(const MemberPointerType * MPT)2494 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
2495 // Null-ness for function memptrs only depends on the first field, which is
2496 // the function pointer. The rest don't matter, so we can zero initialize.
2497 if (MPT->isMemberFunctionPointer())
2498 return true;
2499
2500 // The virtual base adjustment field is always -1 for null, so if we have one
2501 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a
2502 // valid field offset.
2503 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2504 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2505 return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) &&
2506 RD->nullFieldOffsetIsZero());
2507 }
2508
2509 llvm::Type *
ConvertMemberPointerType(const MemberPointerType * MPT)2510 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
2511 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2512 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2513 llvm::SmallVector<llvm::Type *, 4> fields;
2514 if (MPT->isMemberFunctionPointer())
2515 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk
2516 else
2517 fields.push_back(CGM.IntTy); // FieldOffset
2518
2519 if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
2520 Inheritance))
2521 fields.push_back(CGM.IntTy);
2522 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2523 fields.push_back(CGM.IntTy);
2524 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2525 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset
2526
2527 if (fields.size() == 1)
2528 return fields[0];
2529 return llvm::StructType::get(CGM.getLLVMContext(), fields);
2530 }
2531
2532 void MicrosoftCXXABI::
GetNullMemberPointerFields(const MemberPointerType * MPT,llvm::SmallVectorImpl<llvm::Constant * > & fields)2533 GetNullMemberPointerFields(const MemberPointerType *MPT,
2534 llvm::SmallVectorImpl<llvm::Constant *> &fields) {
2535 assert(fields.empty());
2536 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2537 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2538 if (MPT->isMemberFunctionPointer()) {
2539 // FunctionPointerOrVirtualThunk
2540 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2541 } else {
2542 if (RD->nullFieldOffsetIsZero())
2543 fields.push_back(getZeroInt()); // FieldOffset
2544 else
2545 fields.push_back(getAllOnesInt()); // FieldOffset
2546 }
2547
2548 if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
2549 Inheritance))
2550 fields.push_back(getZeroInt());
2551 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2552 fields.push_back(getZeroInt());
2553 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2554 fields.push_back(getAllOnesInt());
2555 }
2556
2557 llvm::Constant *
EmitNullMemberPointer(const MemberPointerType * MPT)2558 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
2559 llvm::SmallVector<llvm::Constant *, 4> fields;
2560 GetNullMemberPointerFields(MPT, fields);
2561 if (fields.size() == 1)
2562 return fields[0];
2563 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
2564 assert(Res->getType() == ConvertMemberPointerType(MPT));
2565 return Res;
2566 }
2567
2568 llvm::Constant *
EmitFullMemberPointer(llvm::Constant * FirstField,bool IsMemberFunction,const CXXRecordDecl * RD,CharUnits NonVirtualBaseAdjustment,unsigned VBTableIndex)2569 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
2570 bool IsMemberFunction,
2571 const CXXRecordDecl *RD,
2572 CharUnits NonVirtualBaseAdjustment,
2573 unsigned VBTableIndex) {
2574 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2575
2576 // Single inheritance class member pointer are represented as scalars instead
2577 // of aggregates.
2578 if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance))
2579 return FirstField;
2580
2581 llvm::SmallVector<llvm::Constant *, 4> fields;
2582 fields.push_back(FirstField);
2583
2584 if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance))
2585 fields.push_back(llvm::ConstantInt::get(
2586 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
2587
2588 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) {
2589 CharUnits Offs = CharUnits::Zero();
2590 if (VBTableIndex)
2591 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2592 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
2593 }
2594
2595 // The rest of the fields are adjusted by conversions to a more derived class.
2596 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2597 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex));
2598
2599 return llvm::ConstantStruct::getAnon(fields);
2600 }
2601
2602 llvm::Constant *
EmitMemberDataPointer(const MemberPointerType * MPT,CharUnits offset)2603 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
2604 CharUnits offset) {
2605 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2606 if (RD->getMSInheritanceModel() ==
2607 MSInheritanceAttr::Keyword_virtual_inheritance)
2608 offset -= getContext().getOffsetOfBaseWithVBPtr(RD);
2609 llvm::Constant *FirstField =
2610 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
2611 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
2612 CharUnits::Zero(), /*VBTableIndex=*/0);
2613 }
2614
EmitMemberPointer(const APValue & MP,QualType MPType)2615 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
2616 QualType MPType) {
2617 const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>();
2618 const ValueDecl *MPD = MP.getMemberPointerDecl();
2619 if (!MPD)
2620 return EmitNullMemberPointer(DstTy);
2621
2622 ASTContext &Ctx = getContext();
2623 ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath();
2624
2625 llvm::Constant *C;
2626 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) {
2627 C = EmitMemberFunctionPointer(MD);
2628 } else {
2629 CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD));
2630 C = EmitMemberDataPointer(DstTy, FieldOffset);
2631 }
2632
2633 if (!MemberPointerPath.empty()) {
2634 const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext());
2635 const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr();
2636 const MemberPointerType *SrcTy =
2637 Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy)
2638 ->castAs<MemberPointerType>();
2639
2640 bool DerivedMember = MP.isMemberPointerToDerivedMember();
2641 SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath;
2642 const CXXRecordDecl *PrevRD = SrcRD;
2643 for (const CXXRecordDecl *PathElem : MemberPointerPath) {
2644 const CXXRecordDecl *Base = nullptr;
2645 const CXXRecordDecl *Derived = nullptr;
2646 if (DerivedMember) {
2647 Base = PathElem;
2648 Derived = PrevRD;
2649 } else {
2650 Base = PrevRD;
2651 Derived = PathElem;
2652 }
2653 for (const CXXBaseSpecifier &BS : Derived->bases())
2654 if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() ==
2655 Base->getCanonicalDecl())
2656 DerivedToBasePath.push_back(&BS);
2657 PrevRD = PathElem;
2658 }
2659 assert(DerivedToBasePath.size() == MemberPointerPath.size());
2660
2661 CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer
2662 : CK_BaseToDerivedMemberPointer;
2663 C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(),
2664 DerivedToBasePath.end(), C);
2665 }
2666 return C;
2667 }
2668
2669 llvm::Constant *
EmitMemberFunctionPointer(const CXXMethodDecl * MD)2670 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) {
2671 assert(MD->isInstance() && "Member function must not be static!");
2672
2673 MD = MD->getCanonicalDecl();
2674 CharUnits NonVirtualBaseAdjustment = CharUnits::Zero();
2675 const CXXRecordDecl *RD = MD->getParent()->getMostRecentDecl();
2676 CodeGenTypes &Types = CGM.getTypes();
2677
2678 unsigned VBTableIndex = 0;
2679 llvm::Constant *FirstField;
2680 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
2681 if (!MD->isVirtual()) {
2682 llvm::Type *Ty;
2683 // Check whether the function has a computable LLVM signature.
2684 if (Types.isFuncTypeConvertible(FPT)) {
2685 // The function has a computable LLVM signature; use the correct type.
2686 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
2687 } else {
2688 // Use an arbitrary non-function type to tell GetAddrOfFunction that the
2689 // function type is incomplete.
2690 Ty = CGM.PtrDiffTy;
2691 }
2692 FirstField = CGM.GetAddrOfFunction(MD, Ty);
2693 } else {
2694 auto &VTableContext = CGM.getMicrosoftVTableContext();
2695 MicrosoftVTableContext::MethodVFTableLocation ML =
2696 VTableContext.getMethodVFTableLocation(MD);
2697 FirstField = EmitVirtualMemPtrThunk(MD, ML);
2698 // Include the vfptr adjustment if the method is in a non-primary vftable.
2699 NonVirtualBaseAdjustment += ML.VFPtrOffset;
2700 if (ML.VBase)
2701 VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4;
2702 }
2703
2704 if (VBTableIndex == 0 &&
2705 RD->getMSInheritanceModel() ==
2706 MSInheritanceAttr::Keyword_virtual_inheritance)
2707 NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD);
2708
2709 // The rest of the fields are common with data member pointers.
2710 FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
2711 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
2712 NonVirtualBaseAdjustment, VBTableIndex);
2713 }
2714
2715 /// Member pointers are the same if they're either bitwise identical *or* both
2716 /// null. Null-ness for function members is determined by the first field,
2717 /// while for data member pointers we must compare all fields.
2718 llvm::Value *
EmitMemberPointerComparison(CodeGenFunction & CGF,llvm::Value * L,llvm::Value * R,const MemberPointerType * MPT,bool Inequality)2719 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
2720 llvm::Value *L,
2721 llvm::Value *R,
2722 const MemberPointerType *MPT,
2723 bool Inequality) {
2724 CGBuilderTy &Builder = CGF.Builder;
2725
2726 // Handle != comparisons by switching the sense of all boolean operations.
2727 llvm::ICmpInst::Predicate Eq;
2728 llvm::Instruction::BinaryOps And, Or;
2729 if (Inequality) {
2730 Eq = llvm::ICmpInst::ICMP_NE;
2731 And = llvm::Instruction::Or;
2732 Or = llvm::Instruction::And;
2733 } else {
2734 Eq = llvm::ICmpInst::ICMP_EQ;
2735 And = llvm::Instruction::And;
2736 Or = llvm::Instruction::Or;
2737 }
2738
2739 // If this is a single field member pointer (single inheritance), this is a
2740 // single icmp.
2741 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2742 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2743 if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(),
2744 Inheritance))
2745 return Builder.CreateICmp(Eq, L, R);
2746
2747 // Compare the first field.
2748 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
2749 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
2750 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
2751
2752 // Compare everything other than the first field.
2753 llvm::Value *Res = nullptr;
2754 llvm::StructType *LType = cast<llvm::StructType>(L->getType());
2755 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
2756 llvm::Value *LF = Builder.CreateExtractValue(L, I);
2757 llvm::Value *RF = Builder.CreateExtractValue(R, I);
2758 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
2759 if (Res)
2760 Res = Builder.CreateBinOp(And, Res, Cmp);
2761 else
2762 Res = Cmp;
2763 }
2764
2765 // Check if the first field is 0 if this is a function pointer.
2766 if (MPT->isMemberFunctionPointer()) {
2767 // (l1 == r1 && ...) || l0 == 0
2768 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
2769 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
2770 Res = Builder.CreateBinOp(Or, Res, IsZero);
2771 }
2772
2773 // Combine the comparison of the first field, which must always be true for
2774 // this comparison to succeeed.
2775 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
2776 }
2777
2778 llvm::Value *
EmitMemberPointerIsNotNull(CodeGenFunction & CGF,llvm::Value * MemPtr,const MemberPointerType * MPT)2779 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
2780 llvm::Value *MemPtr,
2781 const MemberPointerType *MPT) {
2782 CGBuilderTy &Builder = CGF.Builder;
2783 llvm::SmallVector<llvm::Constant *, 4> fields;
2784 // We only need one field for member functions.
2785 if (MPT->isMemberFunctionPointer())
2786 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2787 else
2788 GetNullMemberPointerFields(MPT, fields);
2789 assert(!fields.empty());
2790 llvm::Value *FirstField = MemPtr;
2791 if (MemPtr->getType()->isStructTy())
2792 FirstField = Builder.CreateExtractValue(MemPtr, 0);
2793 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
2794
2795 // For function member pointers, we only need to test the function pointer
2796 // field. The other fields if any can be garbage.
2797 if (MPT->isMemberFunctionPointer())
2798 return Res;
2799
2800 // Otherwise, emit a series of compares and combine the results.
2801 for (int I = 1, E = fields.size(); I < E; ++I) {
2802 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
2803 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
2804 Res = Builder.CreateOr(Res, Next, "memptr.tobool");
2805 }
2806 return Res;
2807 }
2808
MemberPointerConstantIsNull(const MemberPointerType * MPT,llvm::Constant * Val)2809 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
2810 llvm::Constant *Val) {
2811 // Function pointers are null if the pointer in the first field is null.
2812 if (MPT->isMemberFunctionPointer()) {
2813 llvm::Constant *FirstField = Val->getType()->isStructTy() ?
2814 Val->getAggregateElement(0U) : Val;
2815 return FirstField->isNullValue();
2816 }
2817
2818 // If it's not a function pointer and it's zero initializable, we can easily
2819 // check zero.
2820 if (isZeroInitializable(MPT) && Val->isNullValue())
2821 return true;
2822
2823 // Otherwise, break down all the fields for comparison. Hopefully these
2824 // little Constants are reused, while a big null struct might not be.
2825 llvm::SmallVector<llvm::Constant *, 4> Fields;
2826 GetNullMemberPointerFields(MPT, Fields);
2827 if (Fields.size() == 1) {
2828 assert(Val->getType()->isIntegerTy());
2829 return Val == Fields[0];
2830 }
2831
2832 unsigned I, E;
2833 for (I = 0, E = Fields.size(); I != E; ++I) {
2834 if (Val->getAggregateElement(I) != Fields[I])
2835 break;
2836 }
2837 return I == E;
2838 }
2839
2840 llvm::Value *
GetVBaseOffsetFromVBPtr(CodeGenFunction & CGF,Address This,llvm::Value * VBPtrOffset,llvm::Value * VBTableOffset,llvm::Value ** VBPtrOut)2841 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
2842 Address This,
2843 llvm::Value *VBPtrOffset,
2844 llvm::Value *VBTableOffset,
2845 llvm::Value **VBPtrOut) {
2846 CGBuilderTy &Builder = CGF.Builder;
2847 // Load the vbtable pointer from the vbptr in the instance.
2848 This = Builder.CreateElementBitCast(This, CGM.Int8Ty);
2849 llvm::Value *VBPtr =
2850 Builder.CreateInBoundsGEP(This.getPointer(), VBPtrOffset, "vbptr");
2851 if (VBPtrOut) *VBPtrOut = VBPtr;
2852 VBPtr = Builder.CreateBitCast(VBPtr,
2853 CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace()));
2854
2855 CharUnits VBPtrAlign;
2856 if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) {
2857 VBPtrAlign = This.getAlignment().alignmentAtOffset(
2858 CharUnits::fromQuantity(CI->getSExtValue()));
2859 } else {
2860 VBPtrAlign = CGF.getPointerAlign();
2861 }
2862
2863 llvm::Value *VBTable = Builder.CreateAlignedLoad(VBPtr, VBPtrAlign, "vbtable");
2864
2865 // Translate from byte offset to table index. It improves analyzability.
2866 llvm::Value *VBTableIndex = Builder.CreateAShr(
2867 VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
2868 "vbtindex", /*isExact=*/true);
2869
2870 // Load an i32 offset from the vb-table.
2871 llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex);
2872 VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
2873 return Builder.CreateAlignedLoad(VBaseOffs, CharUnits::fromQuantity(4),
2874 "vbase_offs");
2875 }
2876
2877 // Returns an adjusted base cast to i8*, since we do more address arithmetic on
2878 // it.
AdjustVirtualBase(CodeGenFunction & CGF,const Expr * E,const CXXRecordDecl * RD,Address Base,llvm::Value * VBTableOffset,llvm::Value * VBPtrOffset)2879 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
2880 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
2881 Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
2882 CGBuilderTy &Builder = CGF.Builder;
2883 Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty);
2884 llvm::BasicBlock *OriginalBB = nullptr;
2885 llvm::BasicBlock *SkipAdjustBB = nullptr;
2886 llvm::BasicBlock *VBaseAdjustBB = nullptr;
2887
2888 // In the unspecified inheritance model, there might not be a vbtable at all,
2889 // in which case we need to skip the virtual base lookup. If there is a
2890 // vbtable, the first entry is a no-op entry that gives back the original
2891 // base, so look for a virtual base adjustment offset of zero.
2892 if (VBPtrOffset) {
2893 OriginalBB = Builder.GetInsertBlock();
2894 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
2895 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
2896 llvm::Value *IsVirtual =
2897 Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
2898 "memptr.is_vbase");
2899 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
2900 CGF.EmitBlock(VBaseAdjustBB);
2901 }
2902
2903 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
2904 // know the vbptr offset.
2905 if (!VBPtrOffset) {
2906 CharUnits offs = CharUnits::Zero();
2907 if (!RD->hasDefinition()) {
2908 DiagnosticsEngine &Diags = CGF.CGM.getDiags();
2909 unsigned DiagID = Diags.getCustomDiagID(
2910 DiagnosticsEngine::Error,
2911 "member pointer representation requires a "
2912 "complete class type for %0 to perform this expression");
2913 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
2914 } else if (RD->getNumVBases())
2915 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2916 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
2917 }
2918 llvm::Value *VBPtr = nullptr;
2919 llvm::Value *VBaseOffs =
2920 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
2921 llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs);
2922
2923 // Merge control flow with the case where we didn't have to adjust.
2924 if (VBaseAdjustBB) {
2925 Builder.CreateBr(SkipAdjustBB);
2926 CGF.EmitBlock(SkipAdjustBB);
2927 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
2928 Phi->addIncoming(Base.getPointer(), OriginalBB);
2929 Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
2930 return Phi;
2931 }
2932 return AdjustedBase;
2933 }
2934
EmitMemberDataPointerAddress(CodeGenFunction & CGF,const Expr * E,Address Base,llvm::Value * MemPtr,const MemberPointerType * MPT)2935 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
2936 CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr,
2937 const MemberPointerType *MPT) {
2938 assert(MPT->isMemberDataPointer());
2939 unsigned AS = Base.getAddressSpace();
2940 llvm::Type *PType =
2941 CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
2942 CGBuilderTy &Builder = CGF.Builder;
2943 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2944 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
2945
2946 // Extract the fields we need, regardless of model. We'll apply them if we
2947 // have them.
2948 llvm::Value *FieldOffset = MemPtr;
2949 llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
2950 llvm::Value *VBPtrOffset = nullptr;
2951 if (MemPtr->getType()->isStructTy()) {
2952 // We need to extract values.
2953 unsigned I = 0;
2954 FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
2955 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
2956 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
2957 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
2958 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
2959 }
2960
2961 llvm::Value *Addr;
2962 if (VirtualBaseAdjustmentOffset) {
2963 Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
2964 VBPtrOffset);
2965 } else {
2966 Addr = Base.getPointer();
2967 }
2968
2969 // Cast to char*.
2970 Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS));
2971
2972 // Apply the offset, which we assume is non-null.
2973 Addr = Builder.CreateInBoundsGEP(Addr, FieldOffset, "memptr.offset");
2974
2975 // Cast the address to the appropriate pointer type, adopting the address
2976 // space of the base pointer.
2977 return Builder.CreateBitCast(Addr, PType);
2978 }
2979
2980 llvm::Value *
EmitMemberPointerConversion(CodeGenFunction & CGF,const CastExpr * E,llvm::Value * Src)2981 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
2982 const CastExpr *E,
2983 llvm::Value *Src) {
2984 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
2985 E->getCastKind() == CK_BaseToDerivedMemberPointer ||
2986 E->getCastKind() == CK_ReinterpretMemberPointer);
2987
2988 // Use constant emission if we can.
2989 if (isa<llvm::Constant>(Src))
2990 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
2991
2992 // We may be adding or dropping fields from the member pointer, so we need
2993 // both types and the inheritance models of both records.
2994 const MemberPointerType *SrcTy =
2995 E->getSubExpr()->getType()->castAs<MemberPointerType>();
2996 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
2997 bool IsFunc = SrcTy->isMemberFunctionPointer();
2998
2999 // If the classes use the same null representation, reinterpret_cast is a nop.
3000 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
3001 if (IsReinterpret && IsFunc)
3002 return Src;
3003
3004 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3005 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3006 if (IsReinterpret &&
3007 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
3008 return Src;
3009
3010 CGBuilderTy &Builder = CGF.Builder;
3011
3012 // Branch past the conversion if Src is null.
3013 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
3014 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
3015
3016 // C++ 5.2.10p9: The null member pointer value is converted to the null member
3017 // pointer value of the destination type.
3018 if (IsReinterpret) {
3019 // For reinterpret casts, sema ensures that src and dst are both functions
3020 // or data and have the same size, which means the LLVM types should match.
3021 assert(Src->getType() == DstNull->getType());
3022 return Builder.CreateSelect(IsNotNull, Src, DstNull);
3023 }
3024
3025 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
3026 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
3027 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
3028 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
3029 CGF.EmitBlock(ConvertBB);
3030
3031 llvm::Value *Dst = EmitNonNullMemberPointerConversion(
3032 SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src,
3033 Builder);
3034
3035 Builder.CreateBr(ContinueBB);
3036
3037 // In the continuation, choose between DstNull and Dst.
3038 CGF.EmitBlock(ContinueBB);
3039 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
3040 Phi->addIncoming(DstNull, OriginalBB);
3041 Phi->addIncoming(Dst, ConvertBB);
3042 return Phi;
3043 }
3044
EmitNonNullMemberPointerConversion(const MemberPointerType * SrcTy,const MemberPointerType * DstTy,CastKind CK,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,llvm::Value * Src,CGBuilderTy & Builder)3045 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion(
3046 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3047 CastExpr::path_const_iterator PathBegin,
3048 CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
3049 CGBuilderTy &Builder) {
3050 const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3051 const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3052 MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel();
3053 MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel();
3054 bool IsFunc = SrcTy->isMemberFunctionPointer();
3055 bool IsConstant = isa<llvm::Constant>(Src);
3056
3057 // Decompose src.
3058 llvm::Value *FirstField = Src;
3059 llvm::Value *NonVirtualBaseAdjustment = getZeroInt();
3060 llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt();
3061 llvm::Value *VBPtrOffset = getZeroInt();
3062 if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
3063 // We need to extract values.
3064 unsigned I = 0;
3065 FirstField = Builder.CreateExtractValue(Src, I++);
3066 if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
3067 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
3068 if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
3069 VBPtrOffset = Builder.CreateExtractValue(Src, I++);
3070 if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
3071 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
3072 }
3073
3074 bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer);
3075 const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy;
3076 const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl();
3077
3078 // For data pointers, we adjust the field offset directly. For functions, we
3079 // have a separate field.
3080 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
3081
3082 // The virtual inheritance model has a quirk: the virtual base table is always
3083 // referenced when dereferencing a member pointer even if the member pointer
3084 // is non-virtual. This is accounted for by adjusting the non-virtual offset
3085 // to point backwards to the top of the MDC from the first VBase. Undo this
3086 // adjustment to normalize the member pointer.
3087 llvm::Value *SrcVBIndexEqZero =
3088 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3089 if (SrcInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) {
3090 if (int64_t SrcOffsetToFirstVBase =
3091 getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) {
3092 llvm::Value *UndoSrcAdjustment = Builder.CreateSelect(
3093 SrcVBIndexEqZero,
3094 llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase),
3095 getZeroInt());
3096 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment);
3097 }
3098 }
3099
3100 // A non-zero vbindex implies that we are dealing with a source member in a
3101 // floating virtual base in addition to some non-virtual offset. If the
3102 // vbindex is zero, we are dealing with a source that exists in a non-virtual,
3103 // fixed, base. The difference between these two cases is that the vbindex +
3104 // nvoffset *always* point to the member regardless of what context they are
3105 // evaluated in so long as the vbindex is adjusted. A member inside a fixed
3106 // base requires explicit nv adjustment.
3107 llvm::Constant *BaseClassOffset = llvm::ConstantInt::get(
3108 CGM.IntTy,
3109 CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd)
3110 .getQuantity());
3111
3112 llvm::Value *NVDisp;
3113 if (IsDerivedToBase)
3114 NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj");
3115 else
3116 NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj");
3117
3118 NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt());
3119
3120 // Update the vbindex to an appropriate value in the destination because
3121 // SrcRD's vbtable might not be a strict prefix of the one in DstRD.
3122 llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero;
3123 if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance) &&
3124 MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance)) {
3125 if (llvm::GlobalVariable *VDispMap =
3126 getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) {
3127 llvm::Value *VBIndex = Builder.CreateExactUDiv(
3128 VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4));
3129 if (IsConstant) {
3130 llvm::Constant *Mapping = VDispMap->getInitializer();
3131 VirtualBaseAdjustmentOffset =
3132 Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex));
3133 } else {
3134 llvm::Value *Idxs[] = {getZeroInt(), VBIndex};
3135 VirtualBaseAdjustmentOffset =
3136 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(VDispMap, Idxs),
3137 CharUnits::fromQuantity(4));
3138 }
3139
3140 DstVBIndexEqZero =
3141 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3142 }
3143 }
3144
3145 // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize
3146 // it to the offset of the vbptr.
3147 if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance)) {
3148 llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get(
3149 CGM.IntTy,
3150 getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity());
3151 VBPtrOffset =
3152 Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset);
3153 }
3154
3155 // Likewise, apply a similar adjustment so that dereferencing the member
3156 // pointer correctly accounts for the distance between the start of the first
3157 // virtual base and the top of the MDC.
3158 if (DstInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) {
3159 if (int64_t DstOffsetToFirstVBase =
3160 getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) {
3161 llvm::Value *DoDstAdjustment = Builder.CreateSelect(
3162 DstVBIndexEqZero,
3163 llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase),
3164 getZeroInt());
3165 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment);
3166 }
3167 }
3168
3169 // Recompose dst from the null struct and the adjusted fields from src.
3170 llvm::Value *Dst;
3171 if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) {
3172 Dst = FirstField;
3173 } else {
3174 Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy));
3175 unsigned Idx = 0;
3176 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
3177 if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
3178 Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++);
3179 if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
3180 Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++);
3181 if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
3182 Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++);
3183 }
3184 return Dst;
3185 }
3186
3187 llvm::Constant *
EmitMemberPointerConversion(const CastExpr * E,llvm::Constant * Src)3188 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
3189 llvm::Constant *Src) {
3190 const MemberPointerType *SrcTy =
3191 E->getSubExpr()->getType()->castAs<MemberPointerType>();
3192 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3193
3194 CastKind CK = E->getCastKind();
3195
3196 return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(),
3197 E->path_end(), Src);
3198 }
3199
EmitMemberPointerConversion(const MemberPointerType * SrcTy,const MemberPointerType * DstTy,CastKind CK,CastExpr::path_const_iterator PathBegin,CastExpr::path_const_iterator PathEnd,llvm::Constant * Src)3200 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion(
3201 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3202 CastExpr::path_const_iterator PathBegin,
3203 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) {
3204 assert(CK == CK_DerivedToBaseMemberPointer ||
3205 CK == CK_BaseToDerivedMemberPointer ||
3206 CK == CK_ReinterpretMemberPointer);
3207 // If src is null, emit a new null for dst. We can't return src because dst
3208 // might have a new representation.
3209 if (MemberPointerConstantIsNull(SrcTy, Src))
3210 return EmitNullMemberPointer(DstTy);
3211
3212 // We don't need to do anything for reinterpret_casts of non-null member
3213 // pointers. We should only get here when the two type representations have
3214 // the same size.
3215 if (CK == CK_ReinterpretMemberPointer)
3216 return Src;
3217
3218 CGBuilderTy Builder(CGM, CGM.getLLVMContext());
3219 auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion(
3220 SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder));
3221
3222 return Dst;
3223 }
3224
EmitLoadOfMemberFunctionPointer(CodeGenFunction & CGF,const Expr * E,Address This,llvm::Value * & ThisPtrForCall,llvm::Value * MemPtr,const MemberPointerType * MPT)3225 llvm::Value *MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
3226 CodeGenFunction &CGF, const Expr *E, Address This,
3227 llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr,
3228 const MemberPointerType *MPT) {
3229 assert(MPT->isMemberFunctionPointer());
3230 const FunctionProtoType *FPT =
3231 MPT->getPointeeType()->castAs<FunctionProtoType>();
3232 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3233 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(
3234 CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr));
3235 CGBuilderTy &Builder = CGF.Builder;
3236
3237 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
3238
3239 // Extract the fields we need, regardless of model. We'll apply them if we
3240 // have them.
3241 llvm::Value *FunctionPointer = MemPtr;
3242 llvm::Value *NonVirtualBaseAdjustment = nullptr;
3243 llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3244 llvm::Value *VBPtrOffset = nullptr;
3245 if (MemPtr->getType()->isStructTy()) {
3246 // We need to extract values.
3247 unsigned I = 0;
3248 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
3249 if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance))
3250 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
3251 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
3252 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3253 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
3254 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3255 }
3256
3257 if (VirtualBaseAdjustmentOffset) {
3258 ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This,
3259 VirtualBaseAdjustmentOffset, VBPtrOffset);
3260 } else {
3261 ThisPtrForCall = This.getPointer();
3262 }
3263
3264 if (NonVirtualBaseAdjustment) {
3265 // Apply the adjustment and cast back to the original struct type.
3266 llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy);
3267 Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment);
3268 ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(),
3269 "this.adjusted");
3270 }
3271
3272 return Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
3273 }
3274
CreateMicrosoftCXXABI(CodeGenModule & CGM)3275 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
3276 return new MicrosoftCXXABI(CGM);
3277 }
3278
3279 // MS RTTI Overview:
3280 // The run time type information emitted by cl.exe contains 5 distinct types of
3281 // structures. Many of them reference each other.
3282 //
3283 // TypeInfo: Static classes that are returned by typeid.
3284 //
3285 // CompleteObjectLocator: Referenced by vftables. They contain information
3286 // required for dynamic casting, including OffsetFromTop. They also contain
3287 // a reference to the TypeInfo for the type and a reference to the
3288 // CompleteHierarchyDescriptor for the type.
3289 //
3290 // ClassHieararchyDescriptor: Contains information about a class hierarchy.
3291 // Used during dynamic_cast to walk a class hierarchy. References a base
3292 // class array and the size of said array.
3293 //
3294 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is
3295 // somewhat of a misnomer because the most derived class is also in the list
3296 // as well as multiple copies of virtual bases (if they occur multiple times
3297 // in the hiearchy.) The BaseClassArray contains one BaseClassDescriptor for
3298 // every path in the hierarchy, in pre-order depth first order. Note, we do
3299 // not declare a specific llvm type for BaseClassArray, it's merely an array
3300 // of BaseClassDescriptor pointers.
3301 //
3302 // BaseClassDescriptor: Contains information about a class in a class hierarchy.
3303 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that
3304 // BaseClassArray is. It contains information about a class within a
3305 // hierarchy such as: is this base is ambiguous and what is its offset in the
3306 // vbtable. The names of the BaseClassDescriptors have all of their fields
3307 // mangled into them so they can be aggressively deduplicated by the linker.
3308
getTypeInfoVTable(CodeGenModule & CGM)3309 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
3310 StringRef MangledName("\01??_7type_info@@6B@");
3311 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
3312 return VTable;
3313 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
3314 /*Constant=*/true,
3315 llvm::GlobalVariable::ExternalLinkage,
3316 /*Initializer=*/nullptr, MangledName);
3317 }
3318
3319 namespace {
3320
3321 /// \brief A Helper struct that stores information about a class in a class
3322 /// hierarchy. The information stored in these structs struct is used during
3323 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
3324 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with
3325 // implicit depth first pre-order tree connectivity. getFirstChild and
3326 // getNextSibling allow us to walk the tree efficiently.
3327 struct MSRTTIClass {
3328 enum {
3329 IsPrivateOnPath = 1 | 8,
3330 IsAmbiguous = 2,
3331 IsPrivate = 4,
3332 IsVirtual = 16,
3333 HasHierarchyDescriptor = 64
3334 };
MSRTTIClass__anon6e1e7a720711::MSRTTIClass3335 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
3336 uint32_t initialize(const MSRTTIClass *Parent,
3337 const CXXBaseSpecifier *Specifier);
3338
getFirstChild__anon6e1e7a720711::MSRTTIClass3339 MSRTTIClass *getFirstChild() { return this + 1; }
getNextChild__anon6e1e7a720711::MSRTTIClass3340 static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
3341 return Child + 1 + Child->NumBases;
3342 }
3343
3344 const CXXRecordDecl *RD, *VirtualRoot;
3345 uint32_t Flags, NumBases, OffsetInVBase;
3346 };
3347
3348 /// \brief Recursively initialize the base class array.
initialize(const MSRTTIClass * Parent,const CXXBaseSpecifier * Specifier)3349 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
3350 const CXXBaseSpecifier *Specifier) {
3351 Flags = HasHierarchyDescriptor;
3352 if (!Parent) {
3353 VirtualRoot = nullptr;
3354 OffsetInVBase = 0;
3355 } else {
3356 if (Specifier->getAccessSpecifier() != AS_public)
3357 Flags |= IsPrivate | IsPrivateOnPath;
3358 if (Specifier->isVirtual()) {
3359 Flags |= IsVirtual;
3360 VirtualRoot = RD;
3361 OffsetInVBase = 0;
3362 } else {
3363 if (Parent->Flags & IsPrivateOnPath)
3364 Flags |= IsPrivateOnPath;
3365 VirtualRoot = Parent->VirtualRoot;
3366 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
3367 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
3368 }
3369 }
3370 NumBases = 0;
3371 MSRTTIClass *Child = getFirstChild();
3372 for (const CXXBaseSpecifier &Base : RD->bases()) {
3373 NumBases += Child->initialize(this, &Base) + 1;
3374 Child = getNextChild(Child);
3375 }
3376 return NumBases;
3377 }
3378
getLinkageForRTTI(QualType Ty)3379 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
3380 switch (Ty->getLinkage()) {
3381 case NoLinkage:
3382 case InternalLinkage:
3383 case UniqueExternalLinkage:
3384 return llvm::GlobalValue::InternalLinkage;
3385
3386 case VisibleNoLinkage:
3387 case ExternalLinkage:
3388 return llvm::GlobalValue::LinkOnceODRLinkage;
3389 }
3390 llvm_unreachable("Invalid linkage!");
3391 }
3392
3393 /// \brief An ephemeral helper class for building MS RTTI types. It caches some
3394 /// calls to the module and information about the most derived class in a
3395 /// hierarchy.
3396 struct MSRTTIBuilder {
3397 enum {
3398 HasBranchingHierarchy = 1,
3399 HasVirtualBranchingHierarchy = 2,
3400 HasAmbiguousBases = 4
3401 };
3402
MSRTTIBuilder__anon6e1e7a720711::MSRTTIBuilder3403 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
3404 : CGM(ABI.CGM), Context(CGM.getContext()),
3405 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
3406 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
3407 ABI(ABI) {}
3408
3409 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
3410 llvm::GlobalVariable *
3411 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
3412 llvm::GlobalVariable *getClassHierarchyDescriptor();
3413 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo *Info);
3414
3415 CodeGenModule &CGM;
3416 ASTContext &Context;
3417 llvm::LLVMContext &VMContext;
3418 llvm::Module &Module;
3419 const CXXRecordDecl *RD;
3420 llvm::GlobalVariable::LinkageTypes Linkage;
3421 MicrosoftCXXABI &ABI;
3422 };
3423
3424 } // namespace
3425
3426 /// \brief Recursively serializes a class hierarchy in pre-order depth first
3427 /// order.
serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> & Classes,const CXXRecordDecl * RD)3428 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
3429 const CXXRecordDecl *RD) {
3430 Classes.push_back(MSRTTIClass(RD));
3431 for (const CXXBaseSpecifier &Base : RD->bases())
3432 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
3433 }
3434
3435 /// \brief Find ambiguity among base classes.
3436 static void
detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> & Classes)3437 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
3438 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
3439 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
3440 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
3441 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
3442 if ((Class->Flags & MSRTTIClass::IsVirtual) &&
3443 !VirtualBases.insert(Class->RD).second) {
3444 Class = MSRTTIClass::getNextChild(Class);
3445 continue;
3446 }
3447 if (!UniqueBases.insert(Class->RD).second)
3448 AmbiguousBases.insert(Class->RD);
3449 Class++;
3450 }
3451 if (AmbiguousBases.empty())
3452 return;
3453 for (MSRTTIClass &Class : Classes)
3454 if (AmbiguousBases.count(Class.RD))
3455 Class.Flags |= MSRTTIClass::IsAmbiguous;
3456 }
3457
getClassHierarchyDescriptor()3458 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
3459 SmallString<256> MangledName;
3460 {
3461 llvm::raw_svector_ostream Out(MangledName);
3462 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
3463 }
3464
3465 // Check to see if we've already declared this ClassHierarchyDescriptor.
3466 if (auto CHD = Module.getNamedGlobal(MangledName))
3467 return CHD;
3468
3469 // Serialize the class hierarchy and initialize the CHD Fields.
3470 SmallVector<MSRTTIClass, 8> Classes;
3471 serializeClassHierarchy(Classes, RD);
3472 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
3473 detectAmbiguousBases(Classes);
3474 int Flags = 0;
3475 for (auto Class : Classes) {
3476 if (Class.RD->getNumBases() > 1)
3477 Flags |= HasBranchingHierarchy;
3478 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We
3479 // believe the field isn't actually used.
3480 if (Class.Flags & MSRTTIClass::IsAmbiguous)
3481 Flags |= HasAmbiguousBases;
3482 }
3483 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
3484 Flags |= HasVirtualBranchingHierarchy;
3485 // These gep indices are used to get the address of the first element of the
3486 // base class array.
3487 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
3488 llvm::ConstantInt::get(CGM.IntTy, 0)};
3489
3490 // Forward-declare the class hierarchy descriptor
3491 auto Type = ABI.getClassHierarchyDescriptorType();
3492 auto CHD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
3493 /*Initializer=*/nullptr,
3494 MangledName);
3495 if (CHD->isWeakForLinker())
3496 CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName()));
3497
3498 auto *Bases = getBaseClassArray(Classes);
3499
3500 // Initialize the base class ClassHierarchyDescriptor.
3501 llvm::Constant *Fields[] = {
3502 llvm::ConstantInt::get(CGM.IntTy, 0), // Unknown
3503 llvm::ConstantInt::get(CGM.IntTy, Flags),
3504 llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
3505 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
3506 Bases->getValueType(), Bases,
3507 llvm::ArrayRef<llvm::Value *>(GEPIndices))),
3508 };
3509 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3510 return CHD;
3511 }
3512
3513 llvm::GlobalVariable *
getBaseClassArray(SmallVectorImpl<MSRTTIClass> & Classes)3514 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
3515 SmallString<256> MangledName;
3516 {
3517 llvm::raw_svector_ostream Out(MangledName);
3518 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
3519 }
3520
3521 // Forward-declare the base class array.
3522 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
3523 // mode) bytes of padding. We provide a pointer sized amount of padding by
3524 // adding +1 to Classes.size(). The sections have pointer alignment and are
3525 // marked pick-any so it shouldn't matter.
3526 llvm::Type *PtrType = ABI.getImageRelativeType(
3527 ABI.getBaseClassDescriptorType()->getPointerTo());
3528 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
3529 auto *BCA =
3530 new llvm::GlobalVariable(Module, ArrType,
3531 /*Constant=*/true, Linkage,
3532 /*Initializer=*/nullptr, MangledName);
3533 if (BCA->isWeakForLinker())
3534 BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName()));
3535
3536 // Initialize the BaseClassArray.
3537 SmallVector<llvm::Constant *, 8> BaseClassArrayData;
3538 for (MSRTTIClass &Class : Classes)
3539 BaseClassArrayData.push_back(
3540 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
3541 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
3542 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
3543 return BCA;
3544 }
3545
3546 llvm::GlobalVariable *
getBaseClassDescriptor(const MSRTTIClass & Class)3547 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
3548 // Compute the fields for the BaseClassDescriptor. They are computed up front
3549 // because they are mangled into the name of the object.
3550 uint32_t OffsetInVBTable = 0;
3551 int32_t VBPtrOffset = -1;
3552 if (Class.VirtualRoot) {
3553 auto &VTableContext = CGM.getMicrosoftVTableContext();
3554 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
3555 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
3556 }
3557
3558 SmallString<256> MangledName;
3559 {
3560 llvm::raw_svector_ostream Out(MangledName);
3561 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
3562 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
3563 Class.Flags, Out);
3564 }
3565
3566 // Check to see if we've already declared this object.
3567 if (auto BCD = Module.getNamedGlobal(MangledName))
3568 return BCD;
3569
3570 // Forward-declare the base class descriptor.
3571 auto Type = ABI.getBaseClassDescriptorType();
3572 auto BCD =
3573 new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
3574 /*Initializer=*/nullptr, MangledName);
3575 if (BCD->isWeakForLinker())
3576 BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName()));
3577
3578 // Initialize the BaseClassDescriptor.
3579 llvm::Constant *Fields[] = {
3580 ABI.getImageRelativeConstant(
3581 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
3582 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
3583 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
3584 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
3585 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
3586 llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
3587 ABI.getImageRelativeConstant(
3588 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
3589 };
3590 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3591 return BCD;
3592 }
3593
3594 llvm::GlobalVariable *
getCompleteObjectLocator(const VPtrInfo * Info)3595 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo *Info) {
3596 SmallString<256> MangledName;
3597 {
3598 llvm::raw_svector_ostream Out(MangledName);
3599 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info->MangledPath, Out);
3600 }
3601
3602 // Check to see if we've already computed this complete object locator.
3603 if (auto COL = Module.getNamedGlobal(MangledName))
3604 return COL;
3605
3606 // Compute the fields of the complete object locator.
3607 int OffsetToTop = Info->FullOffsetInMDC.getQuantity();
3608 int VFPtrOffset = 0;
3609 // The offset includes the vtordisp if one exists.
3610 if (const CXXRecordDecl *VBase = Info->getVBaseWithVPtr())
3611 if (Context.getASTRecordLayout(RD)
3612 .getVBaseOffsetsMap()
3613 .find(VBase)
3614 ->second.hasVtorDisp())
3615 VFPtrOffset = Info->NonVirtualOffset.getQuantity() + 4;
3616
3617 // Forward-declare the complete object locator.
3618 llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
3619 auto COL = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
3620 /*Initializer=*/nullptr, MangledName);
3621
3622 // Initialize the CompleteObjectLocator.
3623 llvm::Constant *Fields[] = {
3624 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
3625 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
3626 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
3627 ABI.getImageRelativeConstant(
3628 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
3629 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
3630 ABI.getImageRelativeConstant(COL),
3631 };
3632 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
3633 if (!ABI.isImageRelative())
3634 FieldsRef = FieldsRef.drop_back();
3635 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
3636 if (COL->isWeakForLinker())
3637 COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName()));
3638 return COL;
3639 }
3640
decomposeTypeForEH(ASTContext & Context,QualType T,bool & IsConst,bool & IsVolatile,bool & IsUnaligned)3641 static QualType decomposeTypeForEH(ASTContext &Context, QualType T,
3642 bool &IsConst, bool &IsVolatile,
3643 bool &IsUnaligned) {
3644 T = Context.getExceptionObjectType(T);
3645
3646 // C++14 [except.handle]p3:
3647 // A handler is a match for an exception object of type E if [...]
3648 // - the handler is of type cv T or const T& where T is a pointer type and
3649 // E is a pointer type that can be converted to T by [...]
3650 // - a qualification conversion
3651 IsConst = false;
3652 IsVolatile = false;
3653 IsUnaligned = false;
3654 QualType PointeeType = T->getPointeeType();
3655 if (!PointeeType.isNull()) {
3656 IsConst = PointeeType.isConstQualified();
3657 IsVolatile = PointeeType.isVolatileQualified();
3658 IsUnaligned = PointeeType.getQualifiers().hasUnaligned();
3659 }
3660
3661 // Member pointer types like "const int A::*" are represented by having RTTI
3662 // for "int A::*" and separately storing the const qualifier.
3663 if (const auto *MPTy = T->getAs<MemberPointerType>())
3664 T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(),
3665 MPTy->getClass());
3666
3667 // Pointer types like "const int * const *" are represented by having RTTI
3668 // for "const int **" and separately storing the const qualifier.
3669 if (T->isPointerType())
3670 T = Context.getPointerType(PointeeType.getUnqualifiedType());
3671
3672 return T;
3673 }
3674
3675 CatchTypeInfo
getAddrOfCXXCatchHandlerType(QualType Type,QualType CatchHandlerType)3676 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type,
3677 QualType CatchHandlerType) {
3678 // TypeDescriptors for exceptions never have qualified pointer types,
3679 // qualifiers are stored seperately in order to support qualification
3680 // conversions.
3681 bool IsConst, IsVolatile, IsUnaligned;
3682 Type =
3683 decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned);
3684
3685 bool IsReference = CatchHandlerType->isReferenceType();
3686
3687 uint32_t Flags = 0;
3688 if (IsConst)
3689 Flags |= 1;
3690 if (IsVolatile)
3691 Flags |= 2;
3692 if (IsUnaligned)
3693 Flags |= 4;
3694 if (IsReference)
3695 Flags |= 8;
3696
3697 return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(),
3698 Flags};
3699 }
3700
3701 /// \brief Gets a TypeDescriptor. Returns a llvm::Constant * rather than a
3702 /// llvm::GlobalVariable * because different type descriptors have different
3703 /// types, and need to be abstracted. They are abstracting by casting the
3704 /// address to an Int8PtrTy.
getAddrOfRTTIDescriptor(QualType Type)3705 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
3706 SmallString<256> MangledName;
3707 {
3708 llvm::raw_svector_ostream Out(MangledName);
3709 getMangleContext().mangleCXXRTTI(Type, Out);
3710 }
3711
3712 // Check to see if we've already declared this TypeDescriptor.
3713 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3714 return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
3715
3716 // Compute the fields for the TypeDescriptor.
3717 SmallString<256> TypeInfoString;
3718 {
3719 llvm::raw_svector_ostream Out(TypeInfoString);
3720 getMangleContext().mangleCXXRTTIName(Type, Out);
3721 }
3722
3723 // Declare and initialize the TypeDescriptor.
3724 llvm::Constant *Fields[] = {
3725 getTypeInfoVTable(CGM), // VFPtr
3726 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
3727 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
3728 llvm::StructType *TypeDescriptorType =
3729 getTypeDescriptorType(TypeInfoString);
3730 auto *Var = new llvm::GlobalVariable(
3731 CGM.getModule(), TypeDescriptorType, /*Constant=*/false,
3732 getLinkageForRTTI(Type),
3733 llvm::ConstantStruct::get(TypeDescriptorType, Fields),
3734 MangledName);
3735 if (Var->isWeakForLinker())
3736 Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName()));
3737 return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy);
3738 }
3739
3740 /// \brief Gets or a creates a Microsoft CompleteObjectLocator.
3741 llvm::GlobalVariable *
getMSCompleteObjectLocator(const CXXRecordDecl * RD,const VPtrInfo * Info)3742 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
3743 const VPtrInfo *Info) {
3744 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
3745 }
3746
emitCXXConstructor(CodeGenModule & CGM,const CXXConstructorDecl * ctor,StructorType ctorType)3747 static void emitCXXConstructor(CodeGenModule &CGM,
3748 const CXXConstructorDecl *ctor,
3749 StructorType ctorType) {
3750 // There are no constructor variants, always emit the complete destructor.
3751 llvm::Function *Fn = CGM.codegenCXXStructor(ctor, StructorType::Complete);
3752 CGM.maybeSetTrivialComdat(*ctor, *Fn);
3753 }
3754
emitCXXDestructor(CodeGenModule & CGM,const CXXDestructorDecl * dtor,StructorType dtorType)3755 static void emitCXXDestructor(CodeGenModule &CGM, const CXXDestructorDecl *dtor,
3756 StructorType dtorType) {
3757 // The complete destructor is equivalent to the base destructor for
3758 // classes with no virtual bases, so try to emit it as an alias.
3759 if (!dtor->getParent()->getNumVBases() &&
3760 (dtorType == StructorType::Complete || dtorType == StructorType::Base)) {
3761 bool ProducedAlias = !CGM.TryEmitDefinitionAsAlias(
3762 GlobalDecl(dtor, Dtor_Complete), GlobalDecl(dtor, Dtor_Base), true);
3763 if (ProducedAlias) {
3764 if (dtorType == StructorType::Complete)
3765 return;
3766 if (dtor->isVirtual())
3767 CGM.getVTables().EmitThunks(GlobalDecl(dtor, Dtor_Complete));
3768 }
3769 }
3770
3771 // The base destructor is equivalent to the base destructor of its
3772 // base class if there is exactly one non-virtual base class with a
3773 // non-trivial destructor, there are no fields with a non-trivial
3774 // destructor, and the body of the destructor is trivial.
3775 if (dtorType == StructorType::Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
3776 return;
3777
3778 llvm::Function *Fn = CGM.codegenCXXStructor(dtor, dtorType);
3779 if (Fn->isWeakForLinker())
3780 Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
3781 }
3782
emitCXXStructor(const CXXMethodDecl * MD,StructorType Type)3783 void MicrosoftCXXABI::emitCXXStructor(const CXXMethodDecl *MD,
3784 StructorType Type) {
3785 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
3786 emitCXXConstructor(CGM, CD, Type);
3787 return;
3788 }
3789 emitCXXDestructor(CGM, cast<CXXDestructorDecl>(MD), Type);
3790 }
3791
3792 llvm::Function *
getAddrOfCXXCtorClosure(const CXXConstructorDecl * CD,CXXCtorType CT)3793 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
3794 CXXCtorType CT) {
3795 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
3796
3797 // Calculate the mangled name.
3798 SmallString<256> ThunkName;
3799 llvm::raw_svector_ostream Out(ThunkName);
3800 getMangleContext().mangleCXXCtor(CD, CT, Out);
3801
3802 // If the thunk has been generated previously, just return it.
3803 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
3804 return cast<llvm::Function>(GV);
3805
3806 // Create the llvm::Function.
3807 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT);
3808 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
3809 const CXXRecordDecl *RD = CD->getParent();
3810 QualType RecordTy = getContext().getRecordType(RD);
3811 llvm::Function *ThunkFn = llvm::Function::Create(
3812 ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule());
3813 ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>(
3814 FnInfo.getEffectiveCallingConvention()));
3815 if (ThunkFn->isWeakForLinker())
3816 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
3817 bool IsCopy = CT == Ctor_CopyingClosure;
3818
3819 // Start codegen.
3820 CodeGenFunction CGF(CGM);
3821 CGF.CurGD = GlobalDecl(CD, Ctor_Complete);
3822
3823 // Build FunctionArgs.
3824 FunctionArgList FunctionArgs;
3825
3826 // A constructor always starts with a 'this' pointer as its first argument.
3827 buildThisParam(CGF, FunctionArgs);
3828
3829 // Following the 'this' pointer is a reference to the source object that we
3830 // are copying from.
3831 ImplicitParamDecl SrcParam(
3832 getContext(), nullptr, SourceLocation(), &getContext().Idents.get("src"),
3833 getContext().getLValueReferenceType(RecordTy,
3834 /*SpelledAsLValue=*/true));
3835 if (IsCopy)
3836 FunctionArgs.push_back(&SrcParam);
3837
3838 // Constructors for classes which utilize virtual bases have an additional
3839 // parameter which indicates whether or not it is being delegated to by a more
3840 // derived constructor.
3841 ImplicitParamDecl IsMostDerived(getContext(), nullptr, SourceLocation(),
3842 &getContext().Idents.get("is_most_derived"),
3843 getContext().IntTy);
3844 // Only add the parameter to the list if thie class has virtual bases.
3845 if (RD->getNumVBases() > 0)
3846 FunctionArgs.push_back(&IsMostDerived);
3847
3848 // Start defining the function.
3849 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
3850 FunctionArgs, CD->getLocation(), SourceLocation());
3851 EmitThisParam(CGF);
3852 llvm::Value *This = getThisValue(CGF);
3853
3854 llvm::Value *SrcVal =
3855 IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src")
3856 : nullptr;
3857
3858 CallArgList Args;
3859
3860 // Push the this ptr.
3861 Args.add(RValue::get(This), CD->getThisType(getContext()));
3862
3863 // Push the src ptr.
3864 if (SrcVal)
3865 Args.add(RValue::get(SrcVal), SrcParam.getType());
3866
3867 // Add the rest of the default arguments.
3868 std::vector<Stmt *> ArgVec;
3869 for (unsigned I = IsCopy ? 1 : 0, E = CD->getNumParams(); I != E; ++I) {
3870 Stmt *DefaultArg = getContext().getDefaultArgExprForConstructor(CD, I);
3871 assert(DefaultArg && "sema forgot to instantiate default args");
3872 ArgVec.push_back(DefaultArg);
3873 }
3874
3875 CodeGenFunction::RunCleanupsScope Cleanups(CGF);
3876
3877 const auto *FPT = CD->getType()->castAs<FunctionProtoType>();
3878 CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0);
3879
3880 // Insert any ABI-specific implicit constructor arguments.
3881 unsigned ExtraArgs = addImplicitConstructorArgs(CGF, CD, Ctor_Complete,
3882 /*ForVirtualBase=*/false,
3883 /*Delegating=*/false, Args);
3884
3885 // Call the destructor with our arguments.
3886 llvm::Value *CalleeFn = CGM.getAddrOfCXXStructor(CD, StructorType::Complete);
3887 const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall(
3888 Args, CD, Ctor_Complete, ExtraArgs);
3889 CGF.EmitCall(CalleeInfo, CalleeFn, ReturnValueSlot(), Args, CD);
3890
3891 Cleanups.ForceCleanup();
3892
3893 // Emit the ret instruction, remove any temporary instructions created for the
3894 // aid of CodeGen.
3895 CGF.FinishFunction(SourceLocation());
3896
3897 return ThunkFn;
3898 }
3899
getCatchableType(QualType T,uint32_t NVOffset,int32_t VBPtrOffset,uint32_t VBIndex)3900 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T,
3901 uint32_t NVOffset,
3902 int32_t VBPtrOffset,
3903 uint32_t VBIndex) {
3904 assert(!T->isReferenceType());
3905
3906 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
3907 const CXXConstructorDecl *CD =
3908 RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr;
3909 CXXCtorType CT = Ctor_Complete;
3910 if (CD)
3911 if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1)
3912 CT = Ctor_CopyingClosure;
3913
3914 uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity();
3915 SmallString<256> MangledName;
3916 {
3917 llvm::raw_svector_ostream Out(MangledName);
3918 getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset,
3919 VBPtrOffset, VBIndex, Out);
3920 }
3921 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3922 return getImageRelativeConstant(GV);
3923
3924 // The TypeDescriptor is used by the runtime to determine if a catch handler
3925 // is appropriate for the exception object.
3926 llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T));
3927
3928 // The runtime is responsible for calling the copy constructor if the
3929 // exception is caught by value.
3930 llvm::Constant *CopyCtor;
3931 if (CD) {
3932 if (CT == Ctor_CopyingClosure)
3933 CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure);
3934 else
3935 CopyCtor = CGM.getAddrOfCXXStructor(CD, StructorType::Complete);
3936
3937 CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy);
3938 } else {
3939 CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
3940 }
3941 CopyCtor = getImageRelativeConstant(CopyCtor);
3942
3943 bool IsScalar = !RD;
3944 bool HasVirtualBases = false;
3945 bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason.
3946 QualType PointeeType = T;
3947 if (T->isPointerType())
3948 PointeeType = T->getPointeeType();
3949 if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) {
3950 HasVirtualBases = RD->getNumVBases() > 0;
3951 if (IdentifierInfo *II = RD->getIdentifier())
3952 IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace();
3953 }
3954
3955 // Encode the relevant CatchableType properties into the Flags bitfield.
3956 // FIXME: Figure out how bits 2 or 8 can get set.
3957 uint32_t Flags = 0;
3958 if (IsScalar)
3959 Flags |= 1;
3960 if (HasVirtualBases)
3961 Flags |= 4;
3962 if (IsStdBadAlloc)
3963 Flags |= 16;
3964
3965 llvm::Constant *Fields[] = {
3966 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
3967 TD, // TypeDescriptor
3968 llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment
3969 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr
3970 llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex
3971 llvm::ConstantInt::get(CGM.IntTy, Size), // Size
3972 CopyCtor // CopyCtor
3973 };
3974 llvm::StructType *CTType = getCatchableTypeType();
3975 auto *GV = new llvm::GlobalVariable(
3976 CGM.getModule(), CTType, /*Constant=*/true, getLinkageForRTTI(T),
3977 llvm::ConstantStruct::get(CTType, Fields), MangledName);
3978 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3979 GV->setSection(".xdata");
3980 if (GV->isWeakForLinker())
3981 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
3982 return getImageRelativeConstant(GV);
3983 }
3984
getCatchableTypeArray(QualType T)3985 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) {
3986 assert(!T->isReferenceType());
3987
3988 // See if we've already generated a CatchableTypeArray for this type before.
3989 llvm::GlobalVariable *&CTA = CatchableTypeArrays[T];
3990 if (CTA)
3991 return CTA;
3992
3993 // Ensure that we don't have duplicate entries in our CatchableTypeArray by
3994 // using a SmallSetVector. Duplicates may arise due to virtual bases
3995 // occurring more than once in the hierarchy.
3996 llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes;
3997
3998 // C++14 [except.handle]p3:
3999 // A handler is a match for an exception object of type E if [...]
4000 // - the handler is of type cv T or cv T& and T is an unambiguous public
4001 // base class of E, or
4002 // - the handler is of type cv T or const T& where T is a pointer type and
4003 // E is a pointer type that can be converted to T by [...]
4004 // - a standard pointer conversion (4.10) not involving conversions to
4005 // pointers to private or protected or ambiguous classes
4006 const CXXRecordDecl *MostDerivedClass = nullptr;
4007 bool IsPointer = T->isPointerType();
4008 if (IsPointer)
4009 MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl();
4010 else
4011 MostDerivedClass = T->getAsCXXRecordDecl();
4012
4013 // Collect all the unambiguous public bases of the MostDerivedClass.
4014 if (MostDerivedClass) {
4015 const ASTContext &Context = getContext();
4016 const ASTRecordLayout &MostDerivedLayout =
4017 Context.getASTRecordLayout(MostDerivedClass);
4018 MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext();
4019 SmallVector<MSRTTIClass, 8> Classes;
4020 serializeClassHierarchy(Classes, MostDerivedClass);
4021 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
4022 detectAmbiguousBases(Classes);
4023 for (const MSRTTIClass &Class : Classes) {
4024 // Skip any ambiguous or private bases.
4025 if (Class.Flags &
4026 (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous))
4027 continue;
4028 // Write down how to convert from a derived pointer to a base pointer.
4029 uint32_t OffsetInVBTable = 0;
4030 int32_t VBPtrOffset = -1;
4031 if (Class.VirtualRoot) {
4032 OffsetInVBTable =
4033 VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4;
4034 VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity();
4035 }
4036
4037 // Turn our record back into a pointer if the exception object is a
4038 // pointer.
4039 QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0);
4040 if (IsPointer)
4041 RTTITy = Context.getPointerType(RTTITy);
4042 CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase,
4043 VBPtrOffset, OffsetInVBTable));
4044 }
4045 }
4046
4047 // C++14 [except.handle]p3:
4048 // A handler is a match for an exception object of type E if
4049 // - The handler is of type cv T or cv T& and E and T are the same type
4050 // (ignoring the top-level cv-qualifiers)
4051 CatchableTypes.insert(getCatchableType(T));
4052
4053 // C++14 [except.handle]p3:
4054 // A handler is a match for an exception object of type E if
4055 // - the handler is of type cv T or const T& where T is a pointer type and
4056 // E is a pointer type that can be converted to T by [...]
4057 // - a standard pointer conversion (4.10) not involving conversions to
4058 // pointers to private or protected or ambiguous classes
4059 //
4060 // C++14 [conv.ptr]p2:
4061 // A prvalue of type "pointer to cv T," where T is an object type, can be
4062 // converted to a prvalue of type "pointer to cv void".
4063 if (IsPointer && T->getPointeeType()->isObjectType())
4064 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4065
4066 // C++14 [except.handle]p3:
4067 // A handler is a match for an exception object of type E if [...]
4068 // - the handler is of type cv T or const T& where T is a pointer or
4069 // pointer to member type and E is std::nullptr_t.
4070 //
4071 // We cannot possibly list all possible pointer types here, making this
4072 // implementation incompatible with the standard. However, MSVC includes an
4073 // entry for pointer-to-void in this case. Let's do the same.
4074 if (T->isNullPtrType())
4075 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4076
4077 uint32_t NumEntries = CatchableTypes.size();
4078 llvm::Type *CTType =
4079 getImageRelativeType(getCatchableTypeType()->getPointerTo());
4080 llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries);
4081 llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries);
4082 llvm::Constant *Fields[] = {
4083 llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries
4084 llvm::ConstantArray::get(
4085 AT, llvm::makeArrayRef(CatchableTypes.begin(),
4086 CatchableTypes.end())) // CatchableTypes
4087 };
4088 SmallString<256> MangledName;
4089 {
4090 llvm::raw_svector_ostream Out(MangledName);
4091 getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out);
4092 }
4093 CTA = new llvm::GlobalVariable(
4094 CGM.getModule(), CTAType, /*Constant=*/true, getLinkageForRTTI(T),
4095 llvm::ConstantStruct::get(CTAType, Fields), MangledName);
4096 CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4097 CTA->setSection(".xdata");
4098 if (CTA->isWeakForLinker())
4099 CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName()));
4100 return CTA;
4101 }
4102
getThrowInfo(QualType T)4103 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) {
4104 bool IsConst, IsVolatile, IsUnaligned;
4105 T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned);
4106
4107 // The CatchableTypeArray enumerates the various (CV-unqualified) types that
4108 // the exception object may be caught as.
4109 llvm::GlobalVariable *CTA = getCatchableTypeArray(T);
4110 // The first field in a CatchableTypeArray is the number of CatchableTypes.
4111 // This is used as a component of the mangled name which means that we need to
4112 // know what it is in order to see if we have previously generated the
4113 // ThrowInfo.
4114 uint32_t NumEntries =
4115 cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U))
4116 ->getLimitedValue();
4117
4118 SmallString<256> MangledName;
4119 {
4120 llvm::raw_svector_ostream Out(MangledName);
4121 getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned,
4122 NumEntries, Out);
4123 }
4124
4125 // Reuse a previously generated ThrowInfo if we have generated an appropriate
4126 // one before.
4127 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4128 return GV;
4129
4130 // The RTTI TypeDescriptor uses an unqualified type but catch clauses must
4131 // be at least as CV qualified. Encode this requirement into the Flags
4132 // bitfield.
4133 uint32_t Flags = 0;
4134 if (IsConst)
4135 Flags |= 1;
4136 if (IsVolatile)
4137 Flags |= 2;
4138 if (IsUnaligned)
4139 Flags |= 4;
4140
4141 // The cleanup-function (a destructor) must be called when the exception
4142 // object's lifetime ends.
4143 llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4144 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4145 if (CXXDestructorDecl *DtorD = RD->getDestructor())
4146 if (!DtorD->isTrivial())
4147 CleanupFn = llvm::ConstantExpr::getBitCast(
4148 CGM.getAddrOfCXXStructor(DtorD, StructorType::Complete),
4149 CGM.Int8PtrTy);
4150 // This is unused as far as we can tell, initialize it to null.
4151 llvm::Constant *ForwardCompat =
4152 getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy));
4153 llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(
4154 llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy));
4155 llvm::StructType *TIType = getThrowInfoType();
4156 llvm::Constant *Fields[] = {
4157 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
4158 getImageRelativeConstant(CleanupFn), // CleanupFn
4159 ForwardCompat, // ForwardCompat
4160 PointerToCatchableTypes // CatchableTypeArray
4161 };
4162 auto *GV = new llvm::GlobalVariable(
4163 CGM.getModule(), TIType, /*Constant=*/true, getLinkageForRTTI(T),
4164 llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName));
4165 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4166 GV->setSection(".xdata");
4167 if (GV->isWeakForLinker())
4168 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4169 return GV;
4170 }
4171
emitThrow(CodeGenFunction & CGF,const CXXThrowExpr * E)4172 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
4173 const Expr *SubExpr = E->getSubExpr();
4174 QualType ThrowType = SubExpr->getType();
4175 // The exception object lives on the stack and it's address is passed to the
4176 // runtime function.
4177 Address AI = CGF.CreateMemTemp(ThrowType);
4178 CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(),
4179 /*IsInit=*/true);
4180
4181 // The so-called ThrowInfo is used to describe how the exception object may be
4182 // caught.
4183 llvm::GlobalVariable *TI = getThrowInfo(ThrowType);
4184
4185 // Call into the runtime to throw the exception.
4186 llvm::Value *Args[] = {
4187 CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy),
4188 TI
4189 };
4190 CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args);
4191 }
4192