• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 // Copyright (C) 2013 Christian Seiler <christian@iwakd.de>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_CXX11_TENSOR_TENSOR_H
12 #define EIGEN_CXX11_TENSOR_TENSOR_H
13 
14 namespace Eigen {
15 
16 /** \class Tensor
17   * \ingroup CXX11_Tensor_Module
18   *
19   * \brief The tensor class.
20   *
21   * The %Tensor class is the work-horse for all \em dense tensors within Eigen.
22   *
23   * The %Tensor class encompasses only dynamic-size objects so far.
24   *
25   * The first two template parameters are required:
26   * \tparam Scalar_ \anchor tensor_tparam_scalar Numeric type, e.g. float, double, int or std::complex<float>.
27   *                 User defined scalar types are supported as well (see \ref user_defined_scalars "here").
28   * \tparam NumIndices_ Number of indices (i.e. rank of the tensor)
29   *
30   * The remaining template parameters are optional -- in most cases you don't have to worry about them.
31   * \tparam Options_ \anchor tensor_tparam_options A combination of either \b #RowMajor or \b #ColMajor, and of either
32   *                 \b #AutoAlign or \b #DontAlign.
33   *                 The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
34   *                 for vectorization. It defaults to aligning tensors. Note that tensors currently do not support any operations that profit from vectorization.
35   *                 Support for such operations (i.e. adding two tensors etc.) is planned.
36   *
37   * You can access elements of tensors using normal subscripting:
38   *
39   * \code
40   * Eigen::Tensor<double, 4> t(10, 10, 10, 10);
41   * t(0, 1, 2, 3) = 42.0;
42   * \endcode
43   *
44   * This class can be extended with the help of the plugin mechanism described on the page
45   * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TENSOR_PLUGIN.
46   *
47   * <i><b>Some notes:</b></i>
48   *
49   * <dl>
50   * <dt><b>Relation to other parts of Eigen:</b></dt>
51   * <dd>The midterm developement goal for this class is to have a similar hierarchy as Eigen uses for matrices, so that
52   * taking blocks or using tensors in expressions is easily possible, including an interface with the vector/matrix code
53   * by providing .asMatrix() and .asVector() (or similar) methods for rank 2 and 1 tensors. However, currently, the %Tensor
54   * class does not provide any of these features and is only available as a stand-alone class that just allows for
55   * coefficient access. Also, when fixed-size tensors are implemented, the number of template arguments is likely to
56   * change dramatically.</dd>
57   * </dl>
58   *
59   * \ref TopicStorageOrders
60   */
61 
62 template<typename Scalar_, int NumIndices_, int Options_, typename IndexType_>
63 class Tensor : public TensorBase<Tensor<Scalar_, NumIndices_, Options_, IndexType_> >
64 {
65   public:
66     typedef Tensor<Scalar_, NumIndices_, Options_, IndexType_> Self;
67     typedef TensorBase<Tensor<Scalar_, NumIndices_, Options_, IndexType_> > Base;
68     typedef typename Eigen::internal::nested<Self>::type Nested;
69     typedef typename internal::traits<Self>::StorageKind StorageKind;
70     typedef typename internal::traits<Self>::Index Index;
71     typedef Scalar_ Scalar;
72     typedef typename NumTraits<Scalar>::Real RealScalar;
73     typedef typename Base::CoeffReturnType CoeffReturnType;
74 
75     enum {
76       IsAligned = bool(EIGEN_MAX_ALIGN_BYTES>0) & !(Options_&DontAlign),
77       Layout = Options_ & RowMajor ? RowMajor : ColMajor,
78       CoordAccess = true,
79       RawAccess = true
80     };
81 
82     static const int Options = Options_;
83     static const int NumIndices = NumIndices_;
84     typedef DSizes<Index, NumIndices_> Dimensions;
85 
86   protected:
87     TensorStorage<Scalar, Dimensions, Options> m_storage;
88 
89 #ifdef EIGEN_HAS_SFINAE
90     template<typename CustomIndices>
91     struct isOfNormalIndex{
92       static const bool is_array = internal::is_base_of<array<Index, NumIndices>, CustomIndices>::value;
93       static const bool is_int = NumTraits<CustomIndices>::IsInteger;
94       static const bool value = is_array | is_int;
95     };
96 #endif
97 
98   public:
99     // Metadata
rank()100     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index                         rank()                   const { return NumIndices; }
dimension(std::size_t n)101     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index                         dimension(std::size_t n) const { return m_storage.dimensions()[n]; }
dimensions()102     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions&             dimensions()             const { return m_storage.dimensions(); }
size()103     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index                         size()                   const { return m_storage.size(); }
data()104     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar                        *data()                        { return m_storage.data(); }
data()105     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar                  *data()                  const { return m_storage.data(); }
106 
107     // This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
108     // work, because that uses base().coeffRef() - and we don't yet
109     // implement a similar class hierarchy
base()110     inline Self& base()             { return *this; }
base()111     inline const Self& base() const { return *this; }
112 
113 #if EIGEN_HAS_VARIADIC_TEMPLATES
114     template<typename... IndexTypes>
coeff(Index firstIndex,Index secondIndex,IndexTypes...otherIndices)115     EIGEN_DEVICE_FUNC inline const Scalar& coeff(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
116     {
117       // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
118       EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
119       return coeff(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
120     }
121 #endif
122 
123     // normal indices
coeff(const array<Index,NumIndices> & indices)124     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(const array<Index, NumIndices>& indices) const
125     {
126       eigen_internal_assert(checkIndexRange(indices));
127       return m_storage.data()[linearizedIndex(indices)];
128     }
129 
130     // custom indices
131 #ifdef EIGEN_HAS_SFINAE
132     template<typename CustomIndices,
133              EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) )
134     >
coeff(CustomIndices & indices)135     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(CustomIndices& indices) const
136     {
137         return coeff(internal::customIndices2Array<Index,NumIndices>(indices));
138     }
139 #endif
140 
coeff()141     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff() const
142     {
143       EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
144       return m_storage.data()[0];
145     }
146 
coeff(Index index)147     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const
148     {
149       eigen_internal_assert(index >= 0 && index < size());
150       return m_storage.data()[index];
151     }
152 
153 #if EIGEN_HAS_VARIADIC_TEMPLATES
154     template<typename... IndexTypes>
coeffRef(Index firstIndex,Index secondIndex,IndexTypes...otherIndices)155     inline Scalar& coeffRef(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
156     {
157       // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
158       EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
159       return coeffRef(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
160     }
161 #endif
162 
163     // normal indices
coeffRef(const array<Index,NumIndices> & indices)164     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(const array<Index, NumIndices>& indices)
165     {
166       eigen_internal_assert(checkIndexRange(indices));
167       return m_storage.data()[linearizedIndex(indices)];
168     }
169 
170     // custom indices
171 #ifdef EIGEN_HAS_SFINAE
172     template<typename CustomIndices,
173              EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) )
174              >
coeffRef(CustomIndices & indices)175     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(CustomIndices& indices)
176     {
177         return coeffRef(internal::customIndices2Array<Index,NumIndices>(indices));
178     }
179 #endif
180 
coeffRef()181     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef()
182     {
183       EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
184       return m_storage.data()[0];
185     }
186 
coeffRef(Index index)187     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
188     {
189       eigen_internal_assert(index >= 0 && index < size());
190       return m_storage.data()[index];
191     }
192 
193 #if EIGEN_HAS_VARIADIC_TEMPLATES
194     template<typename... IndexTypes>
operator()195     inline const Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
196     {
197       // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
198       EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
199       return this->operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
200     }
201 #else
202     EIGEN_DEVICE_FUNC
operator()203     EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1) const
204     {
205       return coeff(array<Index, 2>(i0, i1));
206     }
207     EIGEN_DEVICE_FUNC
operator()208     EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2) const
209     {
210       return coeff(array<Index, 3>(i0, i1, i2));
211     }
212     EIGEN_DEVICE_FUNC
operator()213     EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3) const
214     {
215       return coeff(array<Index, 4>(i0, i1, i2, i3));
216     }
217     EIGEN_DEVICE_FUNC
operator()218     EIGEN_STRONG_INLINE const Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4) const
219     {
220       return coeff(array<Index, 5>(i0, i1, i2, i3, i4));
221     }
222 #endif
223 
224     // custom indices
225 #ifdef EIGEN_HAS_SFINAE
226     template<typename CustomIndices,
227              EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) )
228     >
operator()229     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(CustomIndices& indices) const
230     {
231         return coeff(internal::customIndices2Array<Index,NumIndices>(indices));
232     }
233 #endif
234 
235     // normal indices
operator()236     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(const array<Index, NumIndices>& indices) const
237     {
238       return coeff(indices);
239     }
240 
operator()241     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()(Index index) const
242     {
243       eigen_internal_assert(index >= 0 && index < size());
244       return coeff(index);
245     }
246 
operator()247     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator()() const
248     {
249       EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
250       return coeff();
251     }
252 
253     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar& operator[](Index index) const
254     {
255       // The bracket operator is only for vectors, use the parenthesis operator instead.
256       EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE);
257       return coeff(index);
258     }
259 
260 #if EIGEN_HAS_VARIADIC_TEMPLATES
261     template<typename... IndexTypes>
operator()262     inline Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
263     {
264       // The number of indices used to access a tensor coefficient must be equal to the rank of the tensor.
265       EIGEN_STATIC_ASSERT(sizeof...(otherIndices) + 2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
266       return operator()(array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
267     }
268 #else
269     EIGEN_DEVICE_FUNC
operator()270     EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1)
271     {
272       return coeffRef(array<Index, 2>(i0, i1));
273     }
274     EIGEN_DEVICE_FUNC
operator()275     EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2)
276     {
277       return coeffRef(array<Index, 3>(i0, i1, i2));
278     }
279     EIGEN_DEVICE_FUNC
operator()280     EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3)
281     {
282       return coeffRef(array<Index, 4>(i0, i1, i2, i3));
283     }
284     EIGEN_DEVICE_FUNC
operator()285     EIGEN_STRONG_INLINE Scalar& operator()(Index i0, Index i1, Index i2, Index i3, Index i4)
286     {
287       return coeffRef(array<Index, 5>(i0, i1, i2, i3, i4));
288     }
289 #endif
290 
291     // normal indices
operator()292     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(const array<Index, NumIndices>& indices)
293     {
294       return coeffRef(indices);
295     }
296 
297     // custom indices
298 #ifdef EIGEN_HAS_SFINAE
299     template<typename CustomIndices,
300              EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomIndices>::value) )
301     >
operator()302     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(CustomIndices& indices)
303     {
304       return coeffRef(internal::customIndices2Array<Index,NumIndices>(indices));
305     }
306 #endif
307 
operator()308     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index index)
309     {
310       eigen_assert(index >= 0 && index < size());
311       return coeffRef(index);
312     }
313 
operator()314     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()()
315     {
316       EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
317       return coeffRef();
318     }
319 
320     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator[](Index index)
321     {
322       // The bracket operator is only for vectors, use the parenthesis operator instead
323       EIGEN_STATIC_ASSERT(NumIndices == 1, YOU_MADE_A_PROGRAMMING_MISTAKE)
324       return coeffRef(index);
325     }
326 
327     EIGEN_DEVICE_FUNC
Tensor()328     EIGEN_STRONG_INLINE Tensor()
329       : m_storage()
330     {
331     }
332 
333     EIGEN_DEVICE_FUNC
Tensor(const Self & other)334     EIGEN_STRONG_INLINE Tensor(const Self& other)
335       : m_storage(other.m_storage)
336     {
337     }
338 
339 #if EIGEN_HAS_VARIADIC_TEMPLATES
340     template<typename... IndexTypes>
Tensor(Index firstDimension,IndexTypes...otherDimensions)341     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index firstDimension, IndexTypes... otherDimensions)
342         : m_storage(firstDimension, otherDimensions...)
343     {
344       // The number of dimensions used to construct a tensor must be equal to the rank of the tensor.
345       EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
346     }
347 #else
Tensor(Index dim1)348     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit Tensor(Index dim1)
349       : m_storage(dim1, array<Index, 1>(dim1))
350     {
351       EIGEN_STATIC_ASSERT(1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
352     }
Tensor(Index dim1,Index dim2)353     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2)
354       : m_storage(dim1*dim2, array<Index, 2>(dim1, dim2))
355     {
356       EIGEN_STATIC_ASSERT(2 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
357     }
Tensor(Index dim1,Index dim2,Index dim3)358     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3)
359       : m_storage(dim1*dim2*dim3, array<Index, 3>(dim1, dim2, dim3))
360     {
361       EIGEN_STATIC_ASSERT(3 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
362     }
Tensor(Index dim1,Index dim2,Index dim3,Index dim4)363     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3, Index dim4)
364       : m_storage(dim1*dim2*dim3*dim4, array<Index, 4>(dim1, dim2, dim3, dim4))
365     {
366       EIGEN_STATIC_ASSERT(4 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
367     }
Tensor(Index dim1,Index dim2,Index dim3,Index dim4,Index dim5)368     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor(Index dim1, Index dim2, Index dim3, Index dim4, Index dim5)
369       : m_storage(dim1*dim2*dim3*dim4*dim5, array<Index, 5>(dim1, dim2, dim3, dim4, dim5))
370     {
371       EIGEN_STATIC_ASSERT(5 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
372     }
373 #endif
374 
375     /** Normal Dimension */
Tensor(const array<Index,NumIndices> & dimensions)376     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit Tensor(const array<Index, NumIndices>& dimensions)
377         : m_storage(internal::array_prod(dimensions), dimensions)
378     {
379       EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
380     }
381 
382     template<typename OtherDerived>
383     EIGEN_DEVICE_FUNC
Tensor(const TensorBase<OtherDerived,ReadOnlyAccessors> & other)384     EIGEN_STRONG_INLINE Tensor(const TensorBase<OtherDerived, ReadOnlyAccessors>& other)
385     {
386       typedef TensorAssignOp<Tensor, const OtherDerived> Assign;
387       Assign assign(*this, other.derived());
388       resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
389       internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
390     }
391     template<typename OtherDerived>
392     EIGEN_DEVICE_FUNC
Tensor(const TensorBase<OtherDerived,WriteAccessors> & other)393     EIGEN_STRONG_INLINE Tensor(const TensorBase<OtherDerived, WriteAccessors>& other)
394     {
395       typedef TensorAssignOp<Tensor, const OtherDerived> Assign;
396       Assign assign(*this, other.derived());
397       resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
398       internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
399     }
400 
401     EIGEN_DEVICE_FUNC
402     EIGEN_STRONG_INLINE Tensor& operator=(const Tensor& other)
403     {
404       typedef TensorAssignOp<Tensor, const Tensor> Assign;
405       Assign assign(*this, other);
406       resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
407       internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
408       return *this;
409     }
410     template<typename OtherDerived>
411     EIGEN_DEVICE_FUNC
412     EIGEN_STRONG_INLINE Tensor& operator=(const OtherDerived& other)
413     {
414       typedef TensorAssignOp<Tensor, const OtherDerived> Assign;
415       Assign assign(*this, other);
416       resize(TensorEvaluator<const Assign, DefaultDevice>(assign, DefaultDevice()).dimensions());
417       internal::TensorExecutor<const Assign, DefaultDevice>::run(assign, DefaultDevice());
418       return *this;
419     }
420 
421 #if EIGEN_HAS_VARIADIC_TEMPLATES
422     template<typename... IndexTypes> EIGEN_DEVICE_FUNC
resize(Index firstDimension,IndexTypes...otherDimensions)423     void resize(Index firstDimension, IndexTypes... otherDimensions)
424     {
425       // The number of dimensions used to resize a tensor must be equal to the rank of the tensor.
426       EIGEN_STATIC_ASSERT(sizeof...(otherDimensions) + 1 == NumIndices, YOU_MADE_A_PROGRAMMING_MISTAKE)
427       resize(array<Index, NumIndices>{{firstDimension, otherDimensions...}});
428     }
429 #endif
430 
431     /** Normal Dimension */
resize(const array<Index,NumIndices> & dimensions)432     EIGEN_DEVICE_FUNC void resize(const array<Index, NumIndices>& dimensions)
433     {
434       int i;
435       Index size = Index(1);
436       for (i = 0; i < NumIndices; i++) {
437         internal::check_rows_cols_for_overflow<Dynamic>::run(size, dimensions[i]);
438         size *= dimensions[i];
439       }
440       #ifdef EIGEN_INITIALIZE_COEFFS
441         bool size_changed = size != this->size();
442         m_storage.resize(size, dimensions);
443         if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
444       #else
445         m_storage.resize(size, dimensions);
446       #endif
447     }
448 
449     // Why this overload, DSizes is derived from array ??? //
resize(const DSizes<Index,NumIndices> & dimensions)450     EIGEN_DEVICE_FUNC void resize(const DSizes<Index, NumIndices>& dimensions) {
451       array<Index, NumIndices> dims;
452       for (int i = 0; i < NumIndices; ++i) {
453         dims[i] = dimensions[i];
454       }
455       resize(dims);
456     }
457 
458     EIGEN_DEVICE_FUNC
resize()459     void resize()
460     {
461       EIGEN_STATIC_ASSERT(NumIndices == 0, YOU_MADE_A_PROGRAMMING_MISTAKE);
462       // Nothing to do: rank 0 tensors have fixed size
463     }
464 
465     /** Custom Dimension */
466 #ifdef EIGEN_HAS_SFINAE
467     template<typename CustomDimension,
468              EIGEN_SFINAE_ENABLE_IF( !(isOfNormalIndex<CustomDimension>::value) )
469     >
resize(CustomDimension & dimensions)470     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void resize(CustomDimension& dimensions)
471     {
472       resize(internal::customIndices2Array<Index,NumIndices>(dimensions));
473     }
474 #endif
475 
476 #ifndef EIGEN_EMULATE_CXX11_META_H
477     template <typename std::ptrdiff_t... Indices>
478     EIGEN_DEVICE_FUNC
resize(const Sizes<Indices...> & dimensions)479     void resize(const Sizes<Indices...>& dimensions) {
480       array<Index, NumIndices> dims;
481       for (int i = 0; i < NumIndices; ++i) {
482         dims[i] = static_cast<Index>(dimensions[i]);
483       }
484       resize(dims);
485     }
486 #else
487     template <std::size_t V1, std::size_t V2, std::size_t V3, std::size_t V4, std::size_t V5>
488     EIGEN_DEVICE_FUNC
resize(const Sizes<V1,V2,V3,V4,V5> & dimensions)489     void resize(const Sizes<V1, V2, V3, V4, V5>& dimensions) {
490       array<Index, NumIndices> dims;
491       for (int i = 0; i < NumIndices; ++i) {
492         dims[i] = static_cast<Index>(dimensions[i]);
493       }
494       resize(dims);
495     }
496 #endif
497 
498   protected:
499 
checkIndexRange(const array<Index,NumIndices> & indices)500     bool checkIndexRange(const array<Index, NumIndices>& indices) const
501     {
502       using internal::array_apply_and_reduce;
503       using internal::array_zip_and_reduce;
504       using internal::greater_equal_zero_op;
505       using internal::logical_and_op;
506       using internal::lesser_op;
507 
508       return
509         // check whether the indices are all >= 0
510         array_apply_and_reduce<logical_and_op, greater_equal_zero_op>(indices) &&
511         // check whether the indices fit in the dimensions
512         array_zip_and_reduce<logical_and_op, lesser_op>(indices, m_storage.dimensions());
513     }
514 
linearizedIndex(const array<Index,NumIndices> & indices)515     EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index linearizedIndex(const array<Index, NumIndices>& indices) const
516     {
517       if (Options&RowMajor) {
518         return m_storage.dimensions().IndexOfRowMajor(indices);
519       } else {
520         return m_storage.dimensions().IndexOfColMajor(indices);
521       }
522     }
523 };
524 
525 } // end namespace Eigen
526 
527 #endif // EIGEN_CXX11_TENSOR_TENSOR_H
528