• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /********************************************************************
4  * COPYRIGHT:
5  * Copyright (c) 1997-2016, International Business Machines Corporation and
6  * others. All Rights Reserved.
7  ********************************************************************/
8 
9 #include "unicode/utypes.h"
10 
11 #if !UCONFIG_NO_NORMALIZATION
12 
13 #include "unicode/uchar.h"
14 #include "unicode/errorcode.h"
15 #include "unicode/normlzr.h"
16 #include "unicode/stringoptions.h"
17 #include "unicode/uniset.h"
18 #include "unicode/usetiter.h"
19 #include "unicode/schriter.h"
20 #include "unicode/utf16.h"
21 #include "cmemory.h"
22 #include "cstring.h"
23 #include "normalizer2impl.h"
24 #include "testutil.h"
25 #include "tstnorm.h"
26 
27 #define ARRAY_LENGTH(array) UPRV_LENGTHOF(array)
28 
runIndexedTest(int32_t index,UBool exec,const char * & name,char *)29 void BasicNormalizerTest::runIndexedTest(int32_t index, UBool exec,
30                                          const char* &name, char* /*par*/) {
31     if(exec) {
32         logln("TestSuite BasicNormalizerTest: ");
33     }
34     TESTCASE_AUTO_BEGIN;
35     TESTCASE_AUTO(TestDecomp);
36     TESTCASE_AUTO(TestCompatDecomp);
37     TESTCASE_AUTO(TestCanonCompose);
38     TESTCASE_AUTO(TestCompatCompose);
39     TESTCASE_AUTO(TestPrevious);
40     TESTCASE_AUTO(TestHangulDecomp);
41     TESTCASE_AUTO(TestHangulCompose);
42     TESTCASE_AUTO(TestTibetan);
43     TESTCASE_AUTO(TestCompositionExclusion);
44     TESTCASE_AUTO(TestZeroIndex);
45     TESTCASE_AUTO(TestVerisign);
46     TESTCASE_AUTO(TestPreviousNext);
47     TESTCASE_AUTO(TestNormalizerAPI);
48     TESTCASE_AUTO(TestConcatenate);
49     TESTCASE_AUTO(FindFoldFCDExceptions);
50     TESTCASE_AUTO(TestCompare);
51     TESTCASE_AUTO(TestSkippable);
52 #if !UCONFIG_NO_FILE_IO && !UCONFIG_NO_LEGACY_CONVERSION
53     TESTCASE_AUTO(TestCustomComp);
54     TESTCASE_AUTO(TestCustomFCC);
55 #endif
56     TESTCASE_AUTO(TestFilteredNormalizer2Coverage);
57     TESTCASE_AUTO(TestNormalizeUTF8WithEdits);
58     TESTCASE_AUTO(TestLowMappingToEmpty_D);
59     TESTCASE_AUTO(TestLowMappingToEmpty_FCD);
60     TESTCASE_AUTO(TestNormalizeIllFormedText);
61     TESTCASE_AUTO(TestComposeJamoTBase);
62     TESTCASE_AUTO(TestComposeBoundaryAfter);
63     TESTCASE_AUTO_END;
64 }
65 
66 /**
67  * Convert Java-style strings with \u Unicode escapes into UnicodeString objects
68  */
str(const char * input)69 static UnicodeString str(const char *input)
70 {
71     UnicodeString str(input, ""); // Invariant conversion
72     return str.unescape();
73 }
74 
75 
BasicNormalizerTest()76 BasicNormalizerTest::BasicNormalizerTest()
77 {
78   // canonTest
79   // Input                    Decomposed                    Composed
80 
81     canonTests[0][0] = str("cat");  canonTests[0][1] = str("cat"); canonTests[0][2] =  str("cat");
82 
83     canonTests[1][0] = str("\\u00e0ardvark");    canonTests[1][1] = str("a\\u0300ardvark");  canonTests[1][2] = str("\\u00e0ardvark");
84 
85     canonTests[2][0] = str("\\u1e0a"); canonTests[2][1] = str("D\\u0307"); canonTests[2][2] = str("\\u1e0a");                 // D-dot_above
86 
87     canonTests[3][0] = str("D\\u0307");  canonTests[3][1] = str("D\\u0307"); canonTests[3][2] = str("\\u1e0a");            // D dot_above
88 
89     canonTests[4][0] = str("\\u1e0c\\u0307"); canonTests[4][1] = str("D\\u0323\\u0307");  canonTests[4][2] = str("\\u1e0c\\u0307");         // D-dot_below dot_above
90 
91     canonTests[5][0] = str("\\u1e0a\\u0323"); canonTests[5][1] = str("D\\u0323\\u0307");  canonTests[5][2] = str("\\u1e0c\\u0307");        // D-dot_above dot_below
92 
93     canonTests[6][0] = str("D\\u0307\\u0323"); canonTests[6][1] = str("D\\u0323\\u0307");  canonTests[6][2] = str("\\u1e0c\\u0307");         // D dot_below dot_above
94 
95     canonTests[7][0] = str("\\u1e10\\u0307\\u0323");  canonTests[7][1] = str("D\\u0327\\u0323\\u0307"); canonTests[7][2] = str("\\u1e10\\u0323\\u0307");     // D dot_below cedilla dot_above
96 
97     canonTests[8][0] = str("D\\u0307\\u0328\\u0323"); canonTests[8][1] = str("D\\u0328\\u0323\\u0307"); canonTests[8][2] = str("\\u1e0c\\u0328\\u0307");     // D dot_above ogonek dot_below
98 
99     canonTests[9][0] = str("\\u1E14"); canonTests[9][1] = str("E\\u0304\\u0300"); canonTests[9][2] = str("\\u1E14");         // E-macron-grave
100 
101     canonTests[10][0] = str("\\u0112\\u0300"); canonTests[10][1] = str("E\\u0304\\u0300");  canonTests[10][2] = str("\\u1E14");            // E-macron + grave
102 
103     canonTests[11][0] = str("\\u00c8\\u0304"); canonTests[11][1] = str("E\\u0300\\u0304");  canonTests[11][2] = str("\\u00c8\\u0304");         // E-grave + macron
104 
105     canonTests[12][0] = str("\\u212b"); canonTests[12][1] = str("A\\u030a"); canonTests[12][2] = str("\\u00c5");             // angstrom_sign
106 
107     canonTests[13][0] = str("\\u00c5");      canonTests[13][1] = str("A\\u030a");  canonTests[13][2] = str("\\u00c5");            // A-ring
108 
109     canonTests[14][0] = str("\\u00C4ffin");  canonTests[14][1] = str("A\\u0308ffin");  canonTests[14][2] = str("\\u00C4ffin");
110 
111     canonTests[15][0] = str("\\u00C4\\uFB03n"); canonTests[15][1] = str("A\\u0308\\uFB03n"); canonTests[15][2] = str("\\u00C4\\uFB03n");
112 
113     canonTests[16][0] = str("Henry IV"); canonTests[16][1] = str("Henry IV"); canonTests[16][2] = str("Henry IV");
114 
115     canonTests[17][0] = str("Henry \\u2163");  canonTests[17][1] = str("Henry \\u2163");  canonTests[17][2] = str("Henry \\u2163");
116 
117     canonTests[18][0] = str("\\u30AC");  canonTests[18][1] = str("\\u30AB\\u3099");  canonTests[18][2] = str("\\u30AC");              // ga (Katakana)
118 
119     canonTests[19][0] = str("\\u30AB\\u3099"); canonTests[19][1] = str("\\u30AB\\u3099");  canonTests[19][2] = str("\\u30AC");            // ka + ten
120 
121     canonTests[20][0] = str("\\uFF76\\uFF9E"); canonTests[20][1] = str("\\uFF76\\uFF9E");  canonTests[20][2] = str("\\uFF76\\uFF9E");       // hw_ka + hw_ten
122 
123     canonTests[21][0] = str("\\u30AB\\uFF9E"); canonTests[21][1] = str("\\u30AB\\uFF9E");  canonTests[21][2] = str("\\u30AB\\uFF9E");         // ka + hw_ten
124 
125     canonTests[22][0] = str("\\uFF76\\u3099"); canonTests[22][1] = str("\\uFF76\\u3099");  canonTests[22][2] = str("\\uFF76\\u3099");         // hw_ka + ten
126 
127     canonTests[23][0] = str("A\\u0300\\u0316"); canonTests[23][1] = str("A\\u0316\\u0300");  canonTests[23][2] = str("\\u00C0\\u0316");
128 
129     /* compatTest */
130   // Input                        Decomposed                        Composed
131   compatTests[0][0] = str("cat"); compatTests[0][1] = str("cat"); compatTests[0][2] = str("cat") ;
132 
133   compatTests[1][0] = str("\\uFB4f");  compatTests[1][1] = str("\\u05D0\\u05DC"); compatTests[1][2] = str("\\u05D0\\u05DC");  // Alef-Lamed vs. Alef, Lamed
134 
135   compatTests[2][0] = str("\\u00C4ffin"); compatTests[2][1] = str("A\\u0308ffin"); compatTests[2][2] = str("\\u00C4ffin") ;
136 
137   compatTests[3][0] = str("\\u00C4\\uFB03n"); compatTests[3][1] = str("A\\u0308ffin"); compatTests[3][2] = str("\\u00C4ffin") ; // ffi ligature -> f + f + i
138 
139   compatTests[4][0] = str("Henry IV"); compatTests[4][1] = str("Henry IV"); compatTests[4][2] = str("Henry IV") ;
140 
141   compatTests[5][0] = str("Henry \\u2163"); compatTests[5][1] = str("Henry IV");  compatTests[5][2] = str("Henry IV") ;
142 
143   compatTests[6][0] = str("\\u30AC"); compatTests[6][1] = str("\\u30AB\\u3099"); compatTests[6][2] = str("\\u30AC") ; // ga (Katakana)
144 
145   compatTests[7][0] = str("\\u30AB\\u3099"); compatTests[7][1] = str("\\u30AB\\u3099"); compatTests[7][2] = str("\\u30AC") ; // ka + ten
146 
147   compatTests[8][0] = str("\\uFF76\\u3099"); compatTests[8][1] = str("\\u30AB\\u3099"); compatTests[8][2] = str("\\u30AC") ; // hw_ka + ten
148 
149   /* These two are broken in Unicode 2.1.2 but fixed in 2.1.5 and later */
150   compatTests[9][0] = str("\\uFF76\\uFF9E"); compatTests[9][1] = str("\\u30AB\\u3099"); compatTests[9][2] = str("\\u30AC") ; // hw_ka + hw_ten
151 
152   compatTests[10][0] = str("\\u30AB\\uFF9E"); compatTests[10][1] = str("\\u30AB\\u3099"); compatTests[10][2] = str("\\u30AC") ; // ka + hw_ten
153 
154   /* Hangul Canonical */
155   // Input                        Decomposed                        Composed
156   hangulCanon[0][0] = str("\\ud4db"); hangulCanon[0][1] = str("\\u1111\\u1171\\u11b6"); hangulCanon[0][2] = str("\\ud4db") ;
157 
158   hangulCanon[1][0] = str("\\u1111\\u1171\\u11b6"), hangulCanon[1][1] = str("\\u1111\\u1171\\u11b6"),   hangulCanon[1][2] = str("\\ud4db");
159 }
160 
~BasicNormalizerTest()161 BasicNormalizerTest::~BasicNormalizerTest()
162 {
163 }
164 
TestPrevious()165 void BasicNormalizerTest::TestPrevious()
166 {
167   Normalizer* norm = new Normalizer("", UNORM_NFD);
168 
169   logln("testing decomp...");
170   uint32_t i;
171   for (i = 0; i < ARRAY_LENGTH(canonTests); i++) {
172     backAndForth(norm, canonTests[i][0]);
173   }
174 
175   logln("testing compose...");
176   norm->setMode(UNORM_NFC);
177   for (i = 0; i < ARRAY_LENGTH(canonTests); i++) {
178     backAndForth(norm, canonTests[i][0]);
179   }
180 
181   delete norm;
182 }
183 
TestDecomp()184 void BasicNormalizerTest::TestDecomp()
185 {
186   Normalizer* norm = new Normalizer("", UNORM_NFD);
187   iterateTest(norm, canonTests, ARRAY_LENGTH(canonTests), 1);
188   staticTest(UNORM_NFD, 0, canonTests, ARRAY_LENGTH(canonTests), 1);
189   delete norm;
190 }
191 
TestCompatDecomp()192 void BasicNormalizerTest::TestCompatDecomp()
193 {
194   Normalizer* norm = new Normalizer("", UNORM_NFKD);
195   iterateTest(norm, compatTests, ARRAY_LENGTH(compatTests), 1);
196 
197   staticTest(UNORM_NFKD, 0,
198          compatTests, ARRAY_LENGTH(compatTests), 1);
199   delete norm;
200 }
201 
TestCanonCompose()202 void BasicNormalizerTest::TestCanonCompose()
203 {
204   Normalizer* norm = new Normalizer("", UNORM_NFC);
205   iterateTest(norm, canonTests, ARRAY_LENGTH(canonTests), 2);
206 
207   staticTest(UNORM_NFC, 0, canonTests,
208          ARRAY_LENGTH(canonTests), 2);
209   delete norm;
210 }
211 
TestCompatCompose()212 void BasicNormalizerTest::TestCompatCompose()
213 {
214   Normalizer* norm = new Normalizer("", UNORM_NFKC);
215   iterateTest(norm, compatTests, ARRAY_LENGTH(compatTests), 2);
216 
217   staticTest(UNORM_NFKC, 0,
218          compatTests, ARRAY_LENGTH(compatTests), 2);
219   delete norm;
220 }
221 
222 
223 //-------------------------------------------------------------------------------
224 
TestHangulCompose()225 void BasicNormalizerTest::TestHangulCompose()
226 {
227   // Make sure that the static composition methods work
228   logln("Canonical composition...");
229   staticTest(UNORM_NFC, 0,                    hangulCanon,  ARRAY_LENGTH(hangulCanon),  2);
230   logln("Compatibility composition...");
231 
232   // Now try iterative composition....
233   logln("Static composition...");
234   Normalizer* norm = new Normalizer("", UNORM_NFC);
235   iterateTest(norm, hangulCanon, ARRAY_LENGTH(hangulCanon), 2);
236   norm->setMode(UNORM_NFKC);
237 
238   // And finally, make sure you can do it in reverse too
239   logln("Reverse iteration...");
240   norm->setMode(UNORM_NFC);
241   for (uint32_t i = 0; i < ARRAY_LENGTH(hangulCanon); i++) {
242     backAndForth(norm, hangulCanon[i][0]);
243   }
244   delete norm;
245 }
246 
TestHangulDecomp()247 void BasicNormalizerTest::TestHangulDecomp()
248 {
249   // Make sure that the static decomposition methods work
250   logln("Canonical decomposition...");
251   staticTest(UNORM_NFD, 0,                     hangulCanon,  ARRAY_LENGTH(hangulCanon),  1);
252   logln("Compatibility decomposition...");
253 
254   // Now the iterative decomposition methods...
255   logln("Iterative decomposition...");
256   Normalizer* norm = new Normalizer("", UNORM_NFD);
257   iterateTest(norm, hangulCanon, ARRAY_LENGTH(hangulCanon), 1);
258   norm->setMode(UNORM_NFKD);
259 
260   // And finally, make sure you can do it in reverse too
261   logln("Reverse iteration...");
262   norm->setMode(UNORM_NFD);
263   for (uint32_t i = 0; i < ARRAY_LENGTH(hangulCanon); i++) {
264     backAndForth(norm, hangulCanon[i][0]);
265   }
266   delete norm;
267 }
268 
269 /**
270  * The Tibetan vowel sign AA, 0f71, was messed up prior to Unicode version 2.1.9.
271  */
TestTibetan(void)272 void BasicNormalizerTest::TestTibetan(void) {
273     UnicodeString decomp[1][3];
274     decomp[0][0] = str("\\u0f77");
275     decomp[0][1] = str("\\u0f77");
276     decomp[0][2] = str("\\u0fb2\\u0f71\\u0f80");
277 
278     UnicodeString compose[1][3];
279     compose[0][0] = str("\\u0fb2\\u0f71\\u0f80");
280     compose[0][1] = str("\\u0fb2\\u0f71\\u0f80");
281     compose[0][2] = str("\\u0fb2\\u0f71\\u0f80");
282 
283     staticTest(UNORM_NFD,         0, decomp, ARRAY_LENGTH(decomp), 1);
284     staticTest(UNORM_NFKD,  0, decomp, ARRAY_LENGTH(decomp), 2);
285     staticTest(UNORM_NFC,        0, compose, ARRAY_LENGTH(compose), 1);
286     staticTest(UNORM_NFKC, 0, compose, ARRAY_LENGTH(compose), 2);
287 }
288 
289 /**
290  * Make sure characters in the CompositionExclusion.txt list do not get
291  * composed to.
292  */
TestCompositionExclusion(void)293 void BasicNormalizerTest::TestCompositionExclusion(void) {
294     // This list is generated from CompositionExclusion.txt.
295     // Update whenever the normalizer tables are updated.  Note
296     // that we test all characters listed, even those that can be
297     // derived from the Unicode DB and are therefore commented
298     // out.
299     // ### TODO read composition exclusion from source/data/unidata file
300     // and test against that
301     UnicodeString EXCLUDED = str(
302         "\\u0340\\u0341\\u0343\\u0344\\u0374\\u037E\\u0387\\u0958"
303         "\\u0959\\u095A\\u095B\\u095C\\u095D\\u095E\\u095F\\u09DC"
304         "\\u09DD\\u09DF\\u0A33\\u0A36\\u0A59\\u0A5A\\u0A5B\\u0A5E"
305         "\\u0B5C\\u0B5D\\u0F43\\u0F4D\\u0F52\\u0F57\\u0F5C\\u0F69"
306         "\\u0F73\\u0F75\\u0F76\\u0F78\\u0F81\\u0F93\\u0F9D\\u0FA2"
307         "\\u0FA7\\u0FAC\\u0FB9\\u1F71\\u1F73\\u1F75\\u1F77\\u1F79"
308         "\\u1F7B\\u1F7D\\u1FBB\\u1FBE\\u1FC9\\u1FCB\\u1FD3\\u1FDB"
309         "\\u1FE3\\u1FEB\\u1FEE\\u1FEF\\u1FF9\\u1FFB\\u1FFD\\u2000"
310         "\\u2001\\u2126\\u212A\\u212B\\u2329\\u232A\\uF900\\uFA10"
311         "\\uFA12\\uFA15\\uFA20\\uFA22\\uFA25\\uFA26\\uFA2A\\uFB1F"
312         "\\uFB2A\\uFB2B\\uFB2C\\uFB2D\\uFB2E\\uFB2F\\uFB30\\uFB31"
313         "\\uFB32\\uFB33\\uFB34\\uFB35\\uFB36\\uFB38\\uFB39\\uFB3A"
314         "\\uFB3B\\uFB3C\\uFB3E\\uFB40\\uFB41\\uFB43\\uFB44\\uFB46"
315         "\\uFB47\\uFB48\\uFB49\\uFB4A\\uFB4B\\uFB4C\\uFB4D\\uFB4E"
316         );
317     UErrorCode status = U_ZERO_ERROR;
318     for (int32_t i=0; i<EXCLUDED.length(); ++i) {
319         UnicodeString a(EXCLUDED.charAt(i));
320         UnicodeString b;
321         UnicodeString c;
322         Normalizer::normalize(a, UNORM_NFKD, 0, b, status);
323         Normalizer::normalize(b, UNORM_NFC, 0, c, status);
324         if (c == a) {
325             errln("FAIL: " + hex(a) + " x DECOMP_COMPAT => " +
326                   hex(b) + " x COMPOSE => " +
327                   hex(c));
328         } else if (verbose) {
329             logln("Ok: " + hex(a) + " x DECOMP_COMPAT => " +
330                   hex(b) + " x COMPOSE => " +
331                   hex(c));
332         }
333     }
334 }
335 
336 /**
337  * Test for a problem that showed up just before ICU 1.6 release
338  * having to do with combining characters with an index of zero.
339  * Such characters do not participate in any canonical
340  * decompositions.  However, having an index of zero means that
341  * they all share one typeMask[] entry, that is, they all have to
342  * map to the same canonical class, which is not the case, in
343  * reality.
344  */
TestZeroIndex(void)345 void BasicNormalizerTest::TestZeroIndex(void) {
346     const char* DATA[] = {
347         // Expect col1 x COMPOSE_COMPAT => col2
348         // Expect col2 x DECOMP => col3
349         "A\\u0316\\u0300", "\\u00C0\\u0316", "A\\u0316\\u0300",
350         "A\\u0300\\u0316", "\\u00C0\\u0316", "A\\u0316\\u0300",
351         "A\\u0327\\u0300", "\\u00C0\\u0327", "A\\u0327\\u0300",
352         "c\\u0321\\u0327", "c\\u0321\\u0327", "c\\u0321\\u0327",
353         "c\\u0327\\u0321", "\\u00E7\\u0321", "c\\u0327\\u0321",
354     };
355     int32_t DATA_length = UPRV_LENGTHOF(DATA);
356 
357     for (int32_t i=0; i<DATA_length; i+=3) {
358         UErrorCode status = U_ZERO_ERROR;
359         UnicodeString a(DATA[i], "");
360         a = a.unescape();
361         UnicodeString b;
362         Normalizer::normalize(a, UNORM_NFKC, 0, b, status);
363         if (U_FAILURE(status)) {
364             dataerrln("Error calling normalize UNORM_NFKC: %s", u_errorName(status));
365         } else {
366             UnicodeString exp(DATA[i+1], "");
367             exp = exp.unescape();
368             if (b == exp) {
369                 logln((UnicodeString)"Ok: " + hex(a) + " x COMPOSE_COMPAT => " + hex(b));
370             } else {
371                 errln((UnicodeString)"FAIL: " + hex(a) + " x COMPOSE_COMPAT => " + hex(b) +
372                       ", expect " + hex(exp));
373             }
374         }
375         Normalizer::normalize(b, UNORM_NFD, 0, a, status);
376         if (U_FAILURE(status)) {
377             dataerrln("Error calling normalize UNORM_NFD: %s", u_errorName(status));
378         } else {
379             UnicodeString exp = UnicodeString(DATA[i+2], "").unescape();
380             if (a == exp) {
381                 logln((UnicodeString)"Ok: " + hex(b) + " x DECOMP => " + hex(a));
382             } else {
383                 errln((UnicodeString)"FAIL: " + hex(b) + " x DECOMP => " + hex(a) +
384                       ", expect " + hex(exp));
385             }
386         }
387     }
388 }
389 
390 /**
391  * Run a few specific cases that are failing for Verisign.
392  */
TestVerisign(void)393 void BasicNormalizerTest::TestVerisign(void) {
394     /*
395       > Their input:
396       > 05B8 05B9 05B1 0591 05C3 05B0 05AC 059F
397       > Their output (supposedly from ICU):
398       > 05B8 05B1 05B9 0591 05C3 05B0 05AC 059F
399       > My output from charlint:
400       > 05B1 05B8 05B9 0591 05C3 05B0 05AC 059F
401 
402       05B8 05B9 05B1 0591 05C3 05B0 05AC 059F => 05B1 05B8 05B9 0591 05C3 05B0
403       05AC 059F
404 
405       U+05B8  18  E HEBREW POINT QAMATS
406       U+05B9  19  F HEBREW POINT HOLAM
407       U+05B1  11 HEBREW POINT HATAF SEGOL
408       U+0591 220 HEBREW ACCENT ETNAHTA
409       U+05C3   0 HEBREW PUNCTUATION SOF PASUQ
410       U+05B0  10 HEBREW POINT SHEVA
411       U+05AC 230 HEBREW ACCENT ILUY
412       U+059F 230 HEBREW ACCENT QARNEY PARA
413 
414       U+05B1  11 HEBREW POINT HATAF SEGOL
415       U+05B8  18 HEBREW POINT QAMATS
416       U+05B9  19 HEBREW POINT HOLAM
417       U+0591 220 HEBREW ACCENT ETNAHTA
418       U+05C3   0 HEBREW PUNCTUATION SOF PASUQ
419       U+05B0  10 HEBREW POINT SHEVA
420       U+05AC 230 HEBREW ACCENT ILUY
421       U+059F 230 HEBREW ACCENT QARNEY PARA
422 
423       Wrong result:
424       U+05B8  18 HEBREW POINT QAMATS
425       U+05B1  11 HEBREW POINT HATAF SEGOL
426       U+05B9  19 HEBREW POINT HOLAM
427       U+0591 220 HEBREW ACCENT ETNAHTA
428       U+05C3   0 HEBREW PUNCTUATION SOF PASUQ
429       U+05B0  10 HEBREW POINT SHEVA
430       U+05AC 230 HEBREW ACCENT ILUY
431       U+059F 230 HEBREW ACCENT QARNEY PARA
432 
433 
434       > Their input:
435       >0592 05B7 05BC 05A5 05B0 05C0 05C4 05AD
436       >Their output (supposedly from ICU):
437       >0592 05B0 05B7 05BC 05A5 05C0 05AD 05C4
438       >My output from charlint:
439       >05B0 05B7 05BC 05A5 0592 05C0 05AD 05C4
440 
441       0592 05B7 05BC 05A5 05B0 05C0 05C4 05AD => 05B0 05B7 05BC 05A5 0592 05C0
442       05AD 05C4
443 
444       U+0592 230 HEBREW ACCENT SEGOL
445       U+05B7  17 HEBREW POINT PATAH
446       U+05BC  21 HEBREW POINT DAGESH OR MAPIQ
447       U+05A5 220 HEBREW ACCENT MERKHA
448       U+05B0  10 HEBREW POINT SHEVA
449       U+05C0   0 HEBREW PUNCTUATION PASEQ
450       U+05C4 230 HEBREW MARK UPPER DOT
451       U+05AD 222 HEBREW ACCENT DEHI
452 
453       U+05B0  10 HEBREW POINT SHEVA
454       U+05B7  17 HEBREW POINT PATAH
455       U+05BC  21 HEBREW POINT DAGESH OR MAPIQ
456       U+05A5 220 HEBREW ACCENT MERKHA
457       U+0592 230 HEBREW ACCENT SEGOL
458       U+05C0   0 HEBREW PUNCTUATION PASEQ
459       U+05AD 222 HEBREW ACCENT DEHI
460       U+05C4 230 HEBREW MARK UPPER DOT
461 
462       Wrong result:
463       U+0592 230 HEBREW ACCENT SEGOL
464       U+05B0  10 HEBREW POINT SHEVA
465       U+05B7  17 HEBREW POINT PATAH
466       U+05BC  21 HEBREW POINT DAGESH OR MAPIQ
467       U+05A5 220 HEBREW ACCENT MERKHA
468       U+05C0   0 HEBREW PUNCTUATION PASEQ
469       U+05AD 222 HEBREW ACCENT DEHI
470       U+05C4 230 HEBREW MARK UPPER DOT
471     */
472     UnicodeString data[2][3];
473     data[0][0] = str("\\u05B8\\u05B9\\u05B1\\u0591\\u05C3\\u05B0\\u05AC\\u059F");
474     data[0][1] = str("\\u05B1\\u05B8\\u05B9\\u0591\\u05C3\\u05B0\\u05AC\\u059F");
475     data[0][2] = str("");
476     data[1][0] = str("\\u0592\\u05B7\\u05BC\\u05A5\\u05B0\\u05C0\\u05C4\\u05AD");
477     data[1][1] = str("\\u05B0\\u05B7\\u05BC\\u05A5\\u0592\\u05C0\\u05AD\\u05C4");
478     data[1][2] = str("");
479 
480     staticTest(UNORM_NFD, 0, data, ARRAY_LENGTH(data), 1);
481     staticTest(UNORM_NFC, 0, data, ARRAY_LENGTH(data), 1);
482 }
483 
484 //------------------------------------------------------------------------
485 // Internal utilities
486 //
487 
hex(UChar ch)488 UnicodeString BasicNormalizerTest::hex(UChar ch) {
489     UnicodeString result;
490     return appendHex(ch, 4, result);
491 }
492 
hex(const UnicodeString & s)493 UnicodeString BasicNormalizerTest::hex(const UnicodeString& s) {
494     UnicodeString result;
495     for (int i = 0; i < s.length(); ++i) {
496         if (i != 0) result += (UChar)0x2c/*,*/;
497         appendHex(s[i], 4, result);
498     }
499     return result;
500 }
501 
502 
insert(UnicodeString & dest,int pos,UChar32 ch)503 inline static void insert(UnicodeString& dest, int pos, UChar32 ch)
504 {
505     dest.replace(pos, 0, ch);
506 }
507 
backAndForth(Normalizer * iter,const UnicodeString & input)508 void BasicNormalizerTest::backAndForth(Normalizer* iter, const UnicodeString& input)
509 {
510     UChar32 ch;
511     UErrorCode status = U_ZERO_ERROR;
512     iter->setText(input, status);
513 
514     // Run through the iterator forwards and stick it into a StringBuffer
515     UnicodeString forward;
516     for (ch = iter->first(); ch != iter->DONE; ch = iter->next()) {
517         forward += ch;
518     }
519 
520     // Now do it backwards
521     UnicodeString reverse;
522     for (ch = iter->last(); ch != iter->DONE; ch = iter->previous()) {
523         insert(reverse, 0, ch);
524     }
525 
526     if (forward != reverse) {
527         errln("Forward/reverse mismatch for input " + hex(input)
528               + ", forward: " + hex(forward) + ", backward: " + hex(reverse));
529     }
530 }
531 
staticTest(UNormalizationMode mode,int options,UnicodeString tests[][3],int length,int outCol)532 void BasicNormalizerTest::staticTest(UNormalizationMode mode, int options,
533                      UnicodeString tests[][3], int length,
534                      int outCol)
535 {
536     UErrorCode status = U_ZERO_ERROR;
537     for (int i = 0; i < length; i++)
538     {
539         UnicodeString& input = tests[i][0];
540         UnicodeString& expect = tests[i][outCol];
541 
542         logln("Normalizing '" + input + "' (" + hex(input) + ")" );
543 
544         UnicodeString output;
545         Normalizer::normalize(input, mode, options, output, status);
546 
547         if (output != expect) {
548             dataerrln(UnicodeString("ERROR: case ") + i + " normalized " + hex(input) + "\n"
549                 + "                expected " + hex(expect) + "\n"
550                 + "              static got " + hex(output) );
551         }
552     }
553 }
554 
iterateTest(Normalizer * iter,UnicodeString tests[][3],int length,int outCol)555 void BasicNormalizerTest::iterateTest(Normalizer* iter,
556                                       UnicodeString tests[][3], int length,
557                                       int outCol)
558 {
559     UErrorCode status = U_ZERO_ERROR;
560     for (int i = 0; i < length; i++)
561     {
562         UnicodeString& input = tests[i][0];
563         UnicodeString& expect = tests[i][outCol];
564 
565         logln("Normalizing '" + input + "' (" + hex(input) + ")" );
566 
567         iter->setText(input, status);
568         assertEqual(input, expect, iter, UnicodeString("ERROR: case ") + i + " ");
569     }
570 }
571 
assertEqual(const UnicodeString & input,const UnicodeString & expected,Normalizer * iter,const UnicodeString & errPrefix)572 void BasicNormalizerTest::assertEqual(const UnicodeString&    input,
573                       const UnicodeString&    expected,
574                       Normalizer*        iter,
575                       const UnicodeString&    errPrefix)
576 {
577     UnicodeString result;
578 
579     for (UChar32 ch = iter->first(); ch != iter->DONE; ch = iter->next()) {
580         result += ch;
581     }
582     if (result != expected) {
583         dataerrln(errPrefix + "normalized " + hex(input) + "\n"
584             + "                expected " + hex(expected) + "\n"
585             + "             iterate got " + hex(result) );
586     }
587 }
588 
589 // helper class for TestPreviousNext()
590 // simple UTF-32 character iterator
591 class UChar32Iterator {
592 public:
UChar32Iterator(const UChar32 * text,int32_t len,int32_t index)593     UChar32Iterator(const UChar32 *text, int32_t len, int32_t index) :
594         s(text), length(len), i(index) {}
595 
current()596     UChar32 current() {
597         if(i<length) {
598             return s[i];
599         } else {
600             return 0xffff;
601         }
602     }
603 
next()604     UChar32 next() {
605         if(i<length) {
606             return s[i++];
607         } else {
608             return 0xffff;
609         }
610     }
611 
previous()612     UChar32 previous() {
613         if(i>0) {
614             return s[--i];
615         } else {
616             return 0xffff;
617         }
618     }
619 
getIndex()620     int32_t getIndex() {
621         return i;
622     }
623 private:
624     const UChar32 *s;
625     int32_t length, i;
626 };
627 
628 void
TestPreviousNext(const UChar * src,int32_t srcLength,const UChar32 * expect,int32_t expectLength,const int32_t * expectIndex,int32_t srcMiddle,int32_t expectMiddle,const char * moves,UNormalizationMode mode,const char * name)629 BasicNormalizerTest::TestPreviousNext(const UChar *src, int32_t srcLength,
630                                       const UChar32 *expect, int32_t expectLength,
631                                       const int32_t *expectIndex, // its length=expectLength+1
632                                       int32_t srcMiddle, int32_t expectMiddle,
633                                       const char *moves,
634                                       UNormalizationMode mode,
635                                       const char *name) {
636     // iterators
637     Normalizer iter(src, srcLength, mode);
638 
639     // test getStaticClassID and getDynamicClassID
640     if(iter.getDynamicClassID() != Normalizer::getStaticClassID()) {
641         errln("getStaticClassID != getDynamicClassID for Normalizer.");
642     }
643 
644     UChar32Iterator iter32(expect, expectLength, expectMiddle);
645 
646     UChar32 c1, c2;
647     char m;
648 
649     // initially set the indexes into the middle of the strings
650     iter.setIndexOnly(srcMiddle);
651 
652     // move around and compare the iteration code points with
653     // the expected ones
654     const char *move=moves;
655     while((m=*move++)!=0) {
656         if(m=='-') {
657             c1=iter.previous();
658             c2=iter32.previous();
659         } else if(m=='0') {
660             c1=iter.current();
661             c2=iter32.current();
662         } else /* m=='+' */ {
663             c1=iter.next();
664             c2=iter32.next();
665         }
666 
667         // compare results
668         if(c1!=c2) {
669             // copy the moves until the current (m) move, and terminate
670             char history[64];
671             uprv_strcpy(history, moves);
672             history[move-moves]=0;
673             dataerrln("error: mismatch in Normalizer iteration (%s) at %s: "
674                   "got c1=U+%04lx != expected c2=U+%04lx",
675                   name, history, c1, c2);
676             break;
677         }
678 
679         // compare indexes
680         if(iter.getIndex()!=expectIndex[iter32.getIndex()]) {
681             // copy the moves until the current (m) move, and terminate
682             char history[64];
683             uprv_strcpy(history, moves);
684             history[move-moves]=0;
685             errln("error: index mismatch in Normalizer iteration (%s) at %s: "
686                   "Normalizer index %ld expected %ld\n",
687                   name, history, iter.getIndex(), expectIndex[iter32.getIndex()]);
688             break;
689         }
690     }
691 }
692 
693 void
TestPreviousNext()694 BasicNormalizerTest::TestPreviousNext() {
695     // src and expect strings
696     static const UChar src[]={
697         U16_LEAD(0x2f999), U16_TRAIL(0x2f999),
698         U16_LEAD(0x1d15f), U16_TRAIL(0x1d15f),
699         0xc4,
700         0x1ed0
701     };
702     static const UChar32 expect[]={
703         0x831d,
704         0x1d158, 0x1d165,
705         0x41, 0x308,
706         0x4f, 0x302, 0x301
707     };
708 
709     // expected src indexes corresponding to expect indexes
710     static const int32_t expectIndex[]={
711         0,
712         2, 2,
713         4, 4,
714         5, 5, 5,
715         6 // behind last character
716     };
717 
718     // src and expect strings for regression test for j2911
719     static const UChar src_j2911[]={
720         U16_LEAD(0x2f999), U16_TRAIL(0x2f999),
721         0xdd00, 0xd900, // unpaired surrogates - regression test for j2911
722         0xc4,
723         0x4f, 0x302, 0x301
724     };
725     static const UChar32 expect_j2911[]={
726         0x831d,
727         0xdd00, 0xd900, // unpaired surrogates - regression test for j2911
728         0xc4,
729         0x1ed0
730     };
731 
732     // expected src indexes corresponding to expect indexes
733     static const int32_t expectIndex_j2911[]={
734         0,
735         2, 3,
736         4,
737         5,
738         8 // behind last character
739     };
740 
741     // initial indexes into the src and expect strings
742     // for both sets of test data
743     enum {
744         SRC_MIDDLE=4,
745         EXPECT_MIDDLE=3,
746         SRC_MIDDLE_2=2,
747         EXPECT_MIDDLE_2=1
748     };
749 
750     // movement vector
751     // - for previous(), 0 for current(), + for next()
752     // for both sets of test data
753     static const char *const moves="0+0+0--0-0-+++0--+++++++0--------";
754 
755     TestPreviousNext(src, UPRV_LENGTHOF(src),
756                      expect, UPRV_LENGTHOF(expect),
757                      expectIndex,
758                      SRC_MIDDLE, EXPECT_MIDDLE,
759                      moves, UNORM_NFD, "basic");
760 
761     TestPreviousNext(src_j2911, UPRV_LENGTHOF(src_j2911),
762                      expect_j2911, UPRV_LENGTHOF(expect_j2911),
763                      expectIndex_j2911,
764                      SRC_MIDDLE, EXPECT_MIDDLE,
765                      moves, UNORM_NFKC, "j2911");
766 
767     // try again from different "middle" indexes
768     TestPreviousNext(src, UPRV_LENGTHOF(src),
769                      expect, UPRV_LENGTHOF(expect),
770                      expectIndex,
771                      SRC_MIDDLE_2, EXPECT_MIDDLE_2,
772                      moves, UNORM_NFD, "basic_2");
773 
774     TestPreviousNext(src_j2911, UPRV_LENGTHOF(src_j2911),
775                      expect_j2911, UPRV_LENGTHOF(expect_j2911),
776                      expectIndex_j2911,
777                      SRC_MIDDLE_2, EXPECT_MIDDLE_2,
778                      moves, UNORM_NFKC, "j2911_2");
779 }
780 
TestConcatenate()781 void BasicNormalizerTest::TestConcatenate() {
782     static const char *const
783     cases[][4]={
784         /* mode, left, right, result */
785         {
786             "C",
787             "re",
788             "\\u0301sum\\u00e9",
789             "r\\u00e9sum\\u00e9"
790         },
791         {
792             "C",
793             "a\\u1100",
794             "\\u1161bcdefghijk",
795             "a\\uac00bcdefghijk"
796         },
797         /* ### TODO: add more interesting cases */
798         {
799             "D",
800             "\\u03B1\\u0345",
801             "\\u0C4D\\U000110BA\\U0001D169",
802             "\\u03B1\\U0001D169\\U000110BA\\u0C4D\\u0345"
803         }
804     };
805 
806     UnicodeString left, right, expect, result, r;
807     UErrorCode errorCode;
808     UNormalizationMode mode;
809     int32_t i;
810 
811     /* test concatenation */
812     for(i=0; i<UPRV_LENGTHOF(cases); ++i) {
813         switch(*cases[i][0]) {
814         case 'C': mode=UNORM_NFC; break;
815         case 'D': mode=UNORM_NFD; break;
816         case 'c': mode=UNORM_NFKC; break;
817         case 'd': mode=UNORM_NFKD; break;
818         default: mode=UNORM_NONE; break;
819         }
820 
821         left=UnicodeString(cases[i][1], "").unescape();
822         right=UnicodeString(cases[i][2], "").unescape();
823         expect=UnicodeString(cases[i][3], "").unescape();
824 
825         //result=r=UnicodeString();
826         errorCode=U_ZERO_ERROR;
827 
828         r=Normalizer::concatenate(left, right, result, mode, 0, errorCode);
829         if(U_FAILURE(errorCode) || /*result!=r ||*/ result!=expect) {
830             dataerrln("error in Normalizer::concatenate(), cases[] fails with "+
831                 UnicodeString(u_errorName(errorCode))+", result==expect: expected: "+
832                 hex(expect)+" =========> got: " + hex(result));
833         }
834     }
835 
836     /* test error cases */
837 
838     /* left.getBuffer()==result.getBuffer() */
839     result=r=expect=UnicodeString("zz", "");
840     errorCode=U_UNEXPECTED_TOKEN;
841     r=Normalizer::concatenate(left, right, result, mode, 0, errorCode);
842     if(errorCode!=U_UNEXPECTED_TOKEN || result!=r || !result.isBogus()) {
843         errln("error in Normalizer::concatenate(), violates UErrorCode protocol");
844     }
845 
846     left.setToBogus();
847     errorCode=U_ZERO_ERROR;
848     r=Normalizer::concatenate(left, right, result, mode, 0, errorCode);
849     if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR || result!=r || !result.isBogus()) {
850         errln("error in Normalizer::concatenate(), does not detect left.isBogus()");
851     }
852 }
853 
854 // reference implementation of Normalizer::compare
855 static int32_t
ref_norm_compare(const UnicodeString & s1,const UnicodeString & s2,uint32_t options,UErrorCode & errorCode)856 ref_norm_compare(const UnicodeString &s1, const UnicodeString &s2, uint32_t options, UErrorCode &errorCode) {
857     UnicodeString r1, r2, t1, t2;
858     int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT);
859 
860     if(options&U_COMPARE_IGNORE_CASE) {
861         Normalizer::decompose(s1, FALSE, normOptions, r1, errorCode);
862         Normalizer::decompose(s2, FALSE, normOptions, r2, errorCode);
863 
864         r1.foldCase(options);
865         r2.foldCase(options);
866     } else {
867         r1=s1;
868         r2=s2;
869     }
870 
871     Normalizer::decompose(r1, FALSE, normOptions, t1, errorCode);
872     Normalizer::decompose(r2, FALSE, normOptions, t2, errorCode);
873 
874     if(options&U_COMPARE_CODE_POINT_ORDER) {
875         return t1.compareCodePointOrder(t2);
876     } else {
877         return t1.compare(t2);
878     }
879 }
880 
881 // test wrapper for Normalizer::compare, sets UNORM_INPUT_IS_FCD appropriately
882 static int32_t
_norm_compare(const UnicodeString & s1,const UnicodeString & s2,uint32_t options,UErrorCode & errorCode)883 _norm_compare(const UnicodeString &s1, const UnicodeString &s2, uint32_t options, UErrorCode &errorCode) {
884     int32_t normOptions=(int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT);
885 
886     if( UNORM_YES==Normalizer::quickCheck(s1, UNORM_FCD, normOptions, errorCode) &&
887         UNORM_YES==Normalizer::quickCheck(s2, UNORM_FCD, normOptions, errorCode)) {
888         options|=UNORM_INPUT_IS_FCD;
889     }
890 
891     return Normalizer::compare(s1, s2, options, errorCode);
892 }
893 
894 // reference implementation of UnicodeString::caseCompare
895 static int32_t
ref_case_compare(const UnicodeString & s1,const UnicodeString & s2,uint32_t options)896 ref_case_compare(const UnicodeString &s1, const UnicodeString &s2, uint32_t options) {
897     UnicodeString t1, t2;
898 
899     t1=s1;
900     t2=s2;
901 
902     t1.foldCase(options);
903     t2.foldCase(options);
904 
905     if(options&U_COMPARE_CODE_POINT_ORDER) {
906         return t1.compareCodePointOrder(t2);
907     } else {
908         return t1.compare(t2);
909     }
910 }
911 
912 // reduce an integer to -1/0/1
913 static inline int32_t
_sign(int32_t value)914 _sign(int32_t value) {
915     if(value==0) {
916         return 0;
917     } else {
918         return (value>>31)|1;
919     }
920 }
921 
922 static const char *
_signString(int32_t value)923 _signString(int32_t value) {
924     if(value<0) {
925         return "<0";
926     } else if(value==0) {
927         return "=0";
928     } else /* value>0 */ {
929         return ">0";
930     }
931 }
932 
933 void
TestCompare()934 BasicNormalizerTest::TestCompare() {
935     // test Normalizer::compare and unorm_compare (thinly wrapped by the former)
936     // by comparing it with its semantic equivalent
937     // since we trust the pieces, this is sufficient
938 
939     // test each string with itself and each other
940     // each time with all options
941     static const char *const
942     strings[]={
943         // some cases from NormalizationTest.txt
944         // 0..3
945         "D\\u031B\\u0307\\u0323",
946         "\\u1E0C\\u031B\\u0307",
947         "D\\u031B\\u0323\\u0307",
948         "d\\u031B\\u0323\\u0307",
949 
950         // 4..6
951         "\\u00E4",
952         "a\\u0308",
953         "A\\u0308",
954 
955         // Angstrom sign = A ring
956         // 7..10
957         "\\u212B",
958         "\\u00C5",
959         "A\\u030A",
960         "a\\u030A",
961 
962         // 11.14
963         "a\\u059A\\u0316\\u302A\\u032Fb",
964         "a\\u302A\\u0316\\u032F\\u059Ab",
965         "a\\u302A\\u0316\\u032F\\u059Ab",
966         "A\\u059A\\u0316\\u302A\\u032Fb",
967 
968         // from ICU case folding tests
969         // 15..20
970         "A\\u00df\\u00b5\\ufb03\\U0001040c\\u0131",
971         "ass\\u03bcffi\\U00010434i",
972         "\\u0061\\u0042\\u0131\\u03a3\\u00df\\ufb03\\ud93f\\udfff",
973         "\\u0041\\u0062\\u0069\\u03c3\\u0073\\u0053\\u0046\\u0066\\u0049\\ud93f\\udfff",
974         "\\u0041\\u0062\\u0131\\u03c3\\u0053\\u0073\\u0066\\u0046\\u0069\\ud93f\\udfff",
975         "\\u0041\\u0062\\u0069\\u03c3\\u0073\\u0053\\u0046\\u0066\\u0049\\ud93f\\udffd",
976 
977         //     U+d800 U+10001   see implementation comment in unorm_cmpEquivFold
978         // vs. U+10000          at bottom - code point order
979         // 21..22
980         "\\ud800\\ud800\\udc01",
981         "\\ud800\\udc00",
982 
983         // other code point order tests from ustrtest.cpp
984         // 23..31
985         "\\u20ac\\ud801",
986         "\\u20ac\\ud800\\udc00",
987         "\\ud800",
988         "\\ud800\\uff61",
989         "\\udfff",
990         "\\uff61\\udfff",
991         "\\uff61\\ud800\\udc02",
992         "\\ud800\\udc02",
993         "\\ud84d\\udc56",
994 
995         // long strings, see cnormtst.c/TestNormCoverage()
996         // equivalent if case-insensitive
997         // 32..33
998         "\\uAD8B\\uAD8B\\uAD8B\\uAD8B"
999         "\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1000         "\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1001         "\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1002         "\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1003         "\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1004         "aaaaaaaaaaaaaaaaaazzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
1005         "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
1006         "ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc"
1007         "ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd"
1008         "\\uAD8B\\uAD8B\\uAD8B\\uAD8B"
1009         "d\\u031B\\u0307\\u0323",
1010 
1011         "\\u1100\\u116f\\u11aa\\uAD8B\\uAD8B\\u1100\\u116f\\u11aa"
1012         "\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1013         "\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1014         "\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1015         "\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1016         "\\U0001d15e\\U0001d157\\U0001d165\\U0001d15e\\U0001d15e\\U0001d15e\\U0001d15e"
1017         "aaaaaaaaaaAAAAAAAAZZZZZZZZZZZZZZZZzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
1018         "bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb"
1019         "ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc"
1020         "ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd"
1021         "\\u1100\\u116f\\u11aa\\uAD8B\\uAD8B\\u1100\\u116f\\u11aa"
1022         "\\u1E0C\\u031B\\u0307",
1023 
1024         // some strings that may make a difference whether the compare function
1025         // case-folds or decomposes first
1026         // 34..41
1027         "\\u0360\\u0345\\u0334",
1028         "\\u0360\\u03b9\\u0334",
1029 
1030         "\\u0360\\u1f80\\u0334",
1031         "\\u0360\\u03b1\\u0313\\u03b9\\u0334",
1032 
1033         "\\u0360\\u1ffc\\u0334",
1034         "\\u0360\\u03c9\\u03b9\\u0334",
1035 
1036         "a\\u0360\\u0345\\u0360\\u0345b",
1037         "a\\u0345\\u0360\\u0345\\u0360b",
1038 
1039         // interesting cases for canonical caseless match with turkic i handling
1040         // 42..43
1041         "\\u00cc",
1042         "\\u0069\\u0300",
1043 
1044         // strings with post-Unicode 3.2 normalization or normalization corrections
1045         // 44..45
1046         "\\u00e4\\u193b\\U0002f868",
1047         "\\u0061\\u193b\\u0308\\u36fc",
1048 
1049         // empty string
1050         // 46
1051         ""
1052     };
1053 
1054     UnicodeString s[100]; // at least as many items as in strings[] !
1055 
1056     // all combinations of options
1057     // UNORM_INPUT_IS_FCD is set automatically if both input strings fulfill FCD conditions
1058     // set UNORM_UNICODE_3_2 in one additional combination
1059     static const struct {
1060         uint32_t options;
1061         const char *name;
1062     } opt[]={
1063         { 0, "default" },
1064         { U_COMPARE_CODE_POINT_ORDER, "c.p. order" },
1065         { U_COMPARE_IGNORE_CASE, "ignore case" },
1066         { U_COMPARE_CODE_POINT_ORDER|U_COMPARE_IGNORE_CASE, "c.p. order & ignore case" },
1067         { U_COMPARE_IGNORE_CASE|U_FOLD_CASE_EXCLUDE_SPECIAL_I, "ignore case & special i" },
1068         { U_COMPARE_CODE_POINT_ORDER|U_COMPARE_IGNORE_CASE|U_FOLD_CASE_EXCLUDE_SPECIAL_I, "c.p. order & ignore case & special i" },
1069         { UNORM_UNICODE_3_2<<UNORM_COMPARE_NORM_OPTIONS_SHIFT, "Unicode 3.2" }
1070     };
1071 
1072     int32_t i, j, k, count=UPRV_LENGTHOF(strings);
1073     int32_t result, refResult;
1074 
1075     UErrorCode errorCode;
1076 
1077     // create the UnicodeStrings
1078     for(i=0; i<count; ++i) {
1079         s[i]=UnicodeString(strings[i], "").unescape();
1080     }
1081 
1082     // test them each with each other
1083     for(i=0; i<count; ++i) {
1084         for(j=i; j<count; ++j) {
1085             for(k=0; k<UPRV_LENGTHOF(opt); ++k) {
1086                 // test Normalizer::compare
1087                 errorCode=U_ZERO_ERROR;
1088                 result=_norm_compare(s[i], s[j], opt[k].options, errorCode);
1089                 refResult=ref_norm_compare(s[i], s[j], opt[k].options, errorCode);
1090                 if(_sign(result)!=_sign(refResult)) {
1091                     errln("Normalizer::compare(%d, %d, %s)%s should be %s %s",
1092                         i, j, opt[k].name, _signString(result), _signString(refResult),
1093                         U_SUCCESS(errorCode) ? "" : u_errorName(errorCode));
1094                 }
1095 
1096                 // test UnicodeString::caseCompare - same internal implementation function
1097                 if(opt[k].options&U_COMPARE_IGNORE_CASE) {
1098                     errorCode=U_ZERO_ERROR;
1099                     result=s[i].caseCompare(s[j], opt[k].options);
1100                     refResult=ref_case_compare(s[i], s[j], opt[k].options);
1101                     if(_sign(result)!=_sign(refResult)) {
1102                         errln("UniStr::caseCompare(%d, %d, %s)%s should be %s %s",
1103                             i, j, opt[k].name, _signString(result), _signString(refResult),
1104                             U_SUCCESS(errorCode) ? "" : u_errorName(errorCode));
1105                     }
1106                 }
1107             }
1108         }
1109     }
1110 
1111     // test cases with i and I to make sure Turkic works
1112     static const UChar iI[]={ 0x49, 0x69, 0x130, 0x131 };
1113     UnicodeSet iSet, set;
1114 
1115     UnicodeString s1, s2;
1116 
1117     const Normalizer2Impl *nfcImpl=Normalizer2Factory::getNFCImpl(errorCode);
1118     if(U_FAILURE(errorCode) || !nfcImpl->ensureCanonIterData(errorCode)) {
1119         dataerrln("Normalizer2Factory::getNFCImpl().ensureCanonIterData() failed: %s",
1120               u_errorName(errorCode));
1121         return;
1122     }
1123 
1124     // collect all sets into one for contiguous output
1125     for(i=0; i<UPRV_LENGTHOF(iI); ++i) {
1126         if(nfcImpl->getCanonStartSet(iI[i], iSet)) {
1127             set.addAll(iSet);
1128         }
1129     }
1130 
1131     // test all of these precomposed characters
1132     const Normalizer2 *nfcNorm2=Normalizer2::getNFCInstance(errorCode);
1133     UnicodeSetIterator it(set);
1134     while(it.next() && !it.isString()) {
1135         UChar32 c=it.getCodepoint();
1136         if(!nfcNorm2->getDecomposition(c, s2)) {
1137             dataerrln("NFC.getDecomposition(i-composite U+%04lx) failed", (long)c);
1138             return;
1139         }
1140 
1141         s1.setTo(c);
1142         for(k=0; k<UPRV_LENGTHOF(opt); ++k) {
1143             // test Normalizer::compare
1144             errorCode=U_ZERO_ERROR;
1145             result=_norm_compare(s1, s2, opt[k].options, errorCode);
1146             refResult=ref_norm_compare(s1, s2, opt[k].options, errorCode);
1147             if(_sign(result)!=_sign(refResult)) {
1148                 errln("Normalizer::compare(U+%04x with its NFD, %s)%s should be %s %s",
1149                     c, opt[k].name, _signString(result), _signString(refResult),
1150                     U_SUCCESS(errorCode) ? "" : u_errorName(errorCode));
1151             }
1152 
1153             // test UnicodeString::caseCompare - same internal implementation function
1154             if(opt[k].options&U_COMPARE_IGNORE_CASE) {
1155                 errorCode=U_ZERO_ERROR;
1156                 result=s1.caseCompare(s2, opt[k].options);
1157                 refResult=ref_case_compare(s1, s2, opt[k].options);
1158                 if(_sign(result)!=_sign(refResult)) {
1159                     errln("UniStr::caseCompare(U+%04x with its NFD, %s)%s should be %s %s",
1160                         c, opt[k].name, _signString(result), _signString(refResult),
1161                         U_SUCCESS(errorCode) ? "" : u_errorName(errorCode));
1162                 }
1163             }
1164         }
1165     }
1166 
1167     // test getDecomposition() for some characters that do not decompose
1168     if( nfcNorm2->getDecomposition(0x20, s2) ||
1169         nfcNorm2->getDecomposition(0x4e00, s2) ||
1170         nfcNorm2->getDecomposition(0x20002, s2)
1171     ) {
1172         errln("NFC.getDecomposition() returns TRUE for characters which do not have decompositions");
1173     }
1174 
1175     // test getRawDecomposition() for some characters that do not decompose
1176     if( nfcNorm2->getRawDecomposition(0x20, s2) ||
1177         nfcNorm2->getRawDecomposition(0x4e00, s2) ||
1178         nfcNorm2->getRawDecomposition(0x20002, s2)
1179     ) {
1180         errln("NFC.getRawDecomposition() returns TRUE for characters which do not have decompositions");
1181     }
1182 
1183     // test composePair() for some pairs of characters that do not compose
1184     if( nfcNorm2->composePair(0x20, 0x301)>=0 ||
1185         nfcNorm2->composePair(0x61, 0x305)>=0 ||
1186         nfcNorm2->composePair(0x1100, 0x1160)>=0 ||
1187         nfcNorm2->composePair(0xac00, 0x11a7)>=0
1188     ) {
1189         errln("NFC.composePair() incorrectly composes some pairs of characters");
1190     }
1191 
1192     // test FilteredNormalizer2::getDecomposition()
1193     UnicodeSet filter(UNICODE_STRING_SIMPLE("[^\\u00a0-\\u00ff]"), errorCode);
1194     FilteredNormalizer2 fn2(*nfcNorm2, filter);
1195     if( fn2.getDecomposition(0xe4, s1) || !fn2.getDecomposition(0x100, s2) ||
1196         s2.length()!=2 || s2[0]!=0x41 || s2[1]!=0x304
1197     ) {
1198         errln("FilteredNormalizer2(NFC, ^A0-FF).getDecomposition() failed");
1199     }
1200 
1201     // test FilteredNormalizer2::getRawDecomposition()
1202     if( fn2.getRawDecomposition(0xe4, s1) || !fn2.getRawDecomposition(0x100, s2) ||
1203         s2.length()!=2 || s2[0]!=0x41 || s2[1]!=0x304
1204     ) {
1205         errln("FilteredNormalizer2(NFC, ^A0-FF).getRawDecomposition() failed");
1206     }
1207 
1208     // test FilteredNormalizer2::composePair()
1209     if( 0x100!=fn2.composePair(0x41, 0x304) ||
1210         fn2.composePair(0xc7, 0x301)>=0 // unfiltered result: U+1E08
1211     ) {
1212         errln("FilteredNormalizer2(NFC, ^A0-FF).composePair() failed");
1213     }
1214 }
1215 
1216 // verify that case-folding does not un-FCD strings
1217 int32_t
countFoldFCDExceptions(uint32_t foldingOptions)1218 BasicNormalizerTest::countFoldFCDExceptions(uint32_t foldingOptions) {
1219     UnicodeString s, fold, d;
1220     UChar32 c;
1221     int32_t count;
1222     uint8_t cc, trailCC, foldCC, foldTrailCC;
1223     UNormalizationCheckResult qcResult;
1224     int8_t category;
1225     UBool isNFD;
1226     UErrorCode errorCode;
1227 
1228     logln("Test if case folding may un-FCD a string (folding options %04lx)", foldingOptions);
1229 
1230     count=0;
1231     for(c=0; c<=0x10ffff; ++c) {
1232         errorCode = U_ZERO_ERROR;
1233         category=u_charType(c);
1234         if(category==U_UNASSIGNED) {
1235             continue; // skip unassigned code points
1236         }
1237         if(c==0xac00) {
1238             c=0xd7a3; // skip Hangul - no case folding there
1239             continue;
1240         }
1241         // skip Han blocks - no case folding there either
1242         if(c==0x3400) {
1243             c=0x4db5;
1244             continue;
1245         }
1246         if(c==0x4e00) {
1247             c=0x9fa5;
1248             continue;
1249         }
1250         if(c==0x20000) {
1251             c=0x2a6d6;
1252             continue;
1253         }
1254 
1255         s.setTo(c);
1256 
1257         // get leading and trailing cc for c
1258         Normalizer::decompose(s, FALSE, 0, d, errorCode);
1259         isNFD= s==d;
1260         cc=u_getCombiningClass(d.char32At(0));
1261         trailCC=u_getCombiningClass(d.char32At(d.length()-1));
1262 
1263         // get leading and trailing cc for the case-folding of c
1264         s.foldCase(foldingOptions);
1265         Normalizer::decompose(s, FALSE, 0, d, errorCode);
1266         foldCC=u_getCombiningClass(d.char32At(0));
1267         foldTrailCC=u_getCombiningClass(d.char32At(d.length()-1));
1268 
1269         qcResult=Normalizer::quickCheck(s, UNORM_FCD, errorCode);
1270 
1271         if (U_FAILURE(errorCode)) {
1272             ++count;
1273             dataerrln("U+%04lx: Failed with error %s", u_errorName(errorCode));
1274         }
1275 
1276         // bad:
1277         // - character maps to empty string: adjacent characters may then need reordering
1278         // - folding has different leading/trailing cc's, and they don't become just 0
1279         // - folding itself is not FCD
1280         if( qcResult!=UNORM_YES ||
1281             s.isEmpty() ||
1282             (cc!=foldCC && foldCC!=0) || (trailCC!=foldTrailCC && foldTrailCC!=0)
1283         ) {
1284             ++count;
1285             dataerrln("U+%04lx: case-folding may un-FCD a string (folding options %04lx)", c, foldingOptions);
1286             dataerrln("  cc %02x trailCC %02x    foldCC(U+%04lx) %02x foldTrailCC(U+%04lx) %02x   quickCheck(folded)=%d", cc, trailCC, d.char32At(0), foldCC, d.char32At(d.length()-1), foldTrailCC, qcResult);
1287             continue;
1288         }
1289 
1290         // also bad:
1291         // if a code point is in NFD but its case folding is not, then
1292         // unorm_compare will also fail
1293         if(isNFD && UNORM_YES!=Normalizer::quickCheck(s, UNORM_NFD, errorCode)) {
1294             ++count;
1295             errln("U+%04lx: case-folding un-NFDs this character (folding options %04lx)", c, foldingOptions);
1296         }
1297     }
1298 
1299     logln("There are %ld code points for which case-folding may un-FCD a string (folding options %04lx)", count, foldingOptions);
1300     return count;
1301 }
1302 
1303 void
FindFoldFCDExceptions()1304 BasicNormalizerTest::FindFoldFCDExceptions() {
1305     int32_t count;
1306 
1307     count=countFoldFCDExceptions(0);
1308     count+=countFoldFCDExceptions(U_FOLD_CASE_EXCLUDE_SPECIAL_I);
1309     if(count>0) {
1310         /*
1311          * If case-folding un-FCDs any strings, then unorm_compare() must be
1312          * re-implemented.
1313          * It currently assumes that one can check for FCD then case-fold
1314          * and then still have FCD strings for raw decomposition without reordering.
1315          */
1316         dataerrln("error: There are %ld code points for which case-folding may un-FCD a string for all folding options.\n"
1317               "See comment in BasicNormalizerTest::FindFoldFCDExceptions()!", count);
1318     }
1319 }
1320 
1321 static void
initExpectedSkippables(UnicodeSet skipSets[UNORM_MODE_COUNT],UErrorCode & errorCode)1322 initExpectedSkippables(UnicodeSet skipSets[UNORM_MODE_COUNT], UErrorCode &errorCode) {
1323     skipSets[UNORM_NFD].applyPattern(
1324         UNICODE_STRING_SIMPLE("[[:NFD_QC=Yes:]&[:ccc=0:]]"), errorCode);
1325     skipSets[UNORM_NFC].applyPattern(
1326         UNICODE_STRING_SIMPLE("[[:NFC_QC=Yes:]&[:ccc=0:]-[:HST=LV:]]"), errorCode);
1327     skipSets[UNORM_NFKD].applyPattern(
1328         UNICODE_STRING_SIMPLE("[[:NFKD_QC=Yes:]&[:ccc=0:]]"), errorCode);
1329     skipSets[UNORM_NFKC].applyPattern(
1330         UNICODE_STRING_SIMPLE("[[:NFKC_QC=Yes:]&[:ccc=0:]-[:HST=LV:]]"), errorCode);
1331 
1332     // Remove from the NFC and NFKC sets all those characters that change
1333     // when a back-combining character is added.
1334     // First, get all of the back-combining characters and their combining classes.
1335     UnicodeSet combineBack("[:NFC_QC=Maybe:]", errorCode);
1336     int32_t numCombineBack=combineBack.size();
1337     int32_t *combineBackCharsAndCc=new int32_t[numCombineBack*2];
1338     UnicodeSetIterator iter(combineBack);
1339     for(int32_t i=0; i<numCombineBack; ++i) {
1340         iter.next();
1341         UChar32 c=iter.getCodepoint();
1342         combineBackCharsAndCc[2*i]=c;
1343         combineBackCharsAndCc[2*i+1]=u_getCombiningClass(c);
1344     }
1345 
1346     // We need not look at control codes, Han characters nor Hangul LVT syllables because they
1347     // do not combine forward. LV syllables are already removed.
1348     UnicodeSet notInteresting("[[:C:][:Unified_Ideograph:][:HST=LVT:]]", errorCode);
1349     LocalPointer<UnicodeSet> unsure(&((UnicodeSet *)(skipSets[UNORM_NFC].clone()))->removeAll(notInteresting));
1350     // System.out.format("unsure.size()=%d\n", unsure.size());
1351 
1352     // For each character about which we are unsure, see if it changes when we add
1353     // one of the back-combining characters.
1354     const Normalizer2 *norm2=Normalizer2::getNFCInstance(errorCode);
1355     UnicodeString s;
1356     iter.reset(*unsure);
1357     while(iter.next()) {
1358         UChar32 c=iter.getCodepoint();
1359         s.setTo(c);
1360         int32_t cLength=s.length();
1361         int32_t tccc=u_getIntPropertyValue(c, UCHAR_TRAIL_CANONICAL_COMBINING_CLASS);
1362         for(int32_t i=0; i<numCombineBack; ++i) {
1363             // If c's decomposition ends with a character with non-zero combining class, then
1364             // c can only change if it combines with a character with a non-zero combining class.
1365             int32_t cc2=combineBackCharsAndCc[2*i+1];
1366             if(tccc==0 || cc2!=0) {
1367                 UChar32 c2=combineBackCharsAndCc[2*i];
1368                 s.append(c2);
1369                 if(!norm2->isNormalized(s, errorCode)) {
1370                     // System.out.format("remove U+%04x (tccc=%d) + U+%04x (cc=%d)\n", c, tccc, c2, cc2);
1371                     skipSets[UNORM_NFC].remove(c);
1372                     skipSets[UNORM_NFKC].remove(c);
1373                     break;
1374                 }
1375                 s.truncate(cLength);
1376             }
1377         }
1378     }
1379     delete [] combineBackCharsAndCc;
1380 }
1381 
1382 static const char *const kModeStrings[UNORM_MODE_COUNT] = {
1383     "?", "none", "D", "KD", "C", "KC", "FCD"
1384 };
1385 
1386 void
TestSkippable()1387 BasicNormalizerTest::TestSkippable() {
1388     UnicodeSet diff, skipSets[UNORM_MODE_COUNT], expectSets[UNORM_MODE_COUNT];
1389     UnicodeString s, pattern;
1390 
1391     /* build NF*Skippable sets from runtime data */
1392     IcuTestErrorCode errorCode(*this, "TestSkippable");
1393     skipSets[UNORM_NFD].applyPattern(UNICODE_STRING_SIMPLE("[:NFD_Inert:]"), errorCode);
1394     skipSets[UNORM_NFKD].applyPattern(UNICODE_STRING_SIMPLE("[:NFKD_Inert:]"), errorCode);
1395     skipSets[UNORM_NFC].applyPattern(UNICODE_STRING_SIMPLE("[:NFC_Inert:]"), errorCode);
1396     skipSets[UNORM_NFKC].applyPattern(UNICODE_STRING_SIMPLE("[:NFKC_Inert:]"), errorCode);
1397     if(errorCode.logDataIfFailureAndReset("UnicodeSet(NF..._Inert) failed")) {
1398         return;
1399     }
1400 
1401     /* get expected sets from hardcoded patterns */
1402     initExpectedSkippables(expectSets, errorCode);
1403     errorCode.assertSuccess();
1404 
1405     for(int32_t i=UNORM_NONE; i<UNORM_MODE_COUNT; ++i) {
1406         if(skipSets[i]!=expectSets[i]) {
1407             const char *ms=kModeStrings[i];
1408             errln("error: TestSkippable skipSets[%s]!=expectedSets[%s]\n", ms, ms);
1409             // Note: This used to depend on hardcoded UnicodeSet patterns generated by
1410             // Mark's unicodetools.com.ibm.text.UCD.NFSkippable, by
1411             // running com.ibm.text.UCD.Main with the option NFSkippable.
1412             // Since ICU 4.6/Unicode 6, we are generating the
1413             // expectSets ourselves in initSkippables().
1414 
1415             s=UNICODE_STRING_SIMPLE("skip-expect=");
1416             (diff=skipSets[i]).removeAll(expectSets[i]).toPattern(pattern, TRUE);
1417             s.append(pattern);
1418 
1419             pattern.remove();
1420             s.append(UNICODE_STRING_SIMPLE("\n\nexpect-skip="));
1421             (diff=expectSets[i]).removeAll(skipSets[i]).toPattern(pattern, TRUE);
1422             s.append(pattern);
1423             s.append(UNICODE_STRING_SIMPLE("\n\n"));
1424 
1425             errln(s);
1426         }
1427     }
1428 }
1429 
1430 struct StringPair { const char *input, *expected; };
1431 
1432 void
TestCustomComp()1433 BasicNormalizerTest::TestCustomComp() {
1434     static const StringPair pairs[]={
1435         { "\\uD801\\uE000\\uDFFE", "" },
1436         { "\\uD800\\uD801\\uE000\\uDFFE\\uDFFF", "\\uD7FF\\uFFFF" },
1437         { "\\uD800\\uD801\\uDFFE\\uDFFF", "\\uD7FF\\U000107FE\\uFFFF" },
1438         { "\\uE001\\U000110B9\\u0345\\u0308\\u0327", "\\uE002\\U000110B9\\u0327\\u0345" },
1439         { "\\uE010\\U000F0011\\uE012", "\\uE011\\uE012" },
1440         { "\\uE010\\U000F0011\\U000F0011\\uE012", "\\uE011\\U000F0010" },
1441         { "\\uE111\\u1161\\uE112\\u1162", "\\uAE4C\\u1102\\u0062\\u1162" },
1442         { "\\uFFF3\\uFFF7\\U00010036\\U00010077", "\\U00010037\\U00010037\\uFFF6\\U00010037" }
1443     };
1444     IcuTestErrorCode errorCode(*this, "BasicNormalizerTest/TestCustomComp");
1445     const Normalizer2 *customNorm2=
1446         Normalizer2::getInstance(loadTestData(errorCode), "testnorm",
1447                                  UNORM2_COMPOSE, errorCode);
1448     if(errorCode.logDataIfFailureAndReset("unable to load testdata/testnorm.nrm")) {
1449         return;
1450     }
1451     for(int32_t i=0; i<UPRV_LENGTHOF(pairs); ++i) {
1452         const StringPair &pair=pairs[i];
1453         UnicodeString input=UnicodeString(pair.input, -1, US_INV).unescape();
1454         UnicodeString expected=UnicodeString(pair.expected, -1, US_INV).unescape();
1455         UnicodeString result=customNorm2->normalize(input, errorCode);
1456         if(result!=expected) {
1457             errln("custom compose Normalizer2 did not normalize input %d as expected", i);
1458         }
1459     }
1460 }
1461 
1462 void
TestCustomFCC()1463 BasicNormalizerTest::TestCustomFCC() {
1464     static const StringPair pairs[]={
1465         { "\\uD801\\uE000\\uDFFE", "" },
1466         { "\\uD800\\uD801\\uE000\\uDFFE\\uDFFF", "\\uD7FF\\uFFFF" },
1467         { "\\uD800\\uD801\\uDFFE\\uDFFF", "\\uD7FF\\U000107FE\\uFFFF" },
1468         // The following expected result is different from CustomComp
1469         // because of only-contiguous composition.
1470         { "\\uE001\\U000110B9\\u0345\\u0308\\u0327", "\\uE001\\U000110B9\\u0327\\u0308\\u0345" },
1471         { "\\uE010\\U000F0011\\uE012", "\\uE011\\uE012" },
1472         { "\\uE010\\U000F0011\\U000F0011\\uE012", "\\uE011\\U000F0010" },
1473         { "\\uE111\\u1161\\uE112\\u1162", "\\uAE4C\\u1102\\u0062\\u1162" },
1474         { "\\uFFF3\\uFFF7\\U00010036\\U00010077", "\\U00010037\\U00010037\\uFFF6\\U00010037" }
1475     };
1476     IcuTestErrorCode errorCode(*this, "BasicNormalizerTest/TestCustomFCC");
1477     const Normalizer2 *customNorm2=
1478         Normalizer2::getInstance(loadTestData(errorCode), "testnorm",
1479                                  UNORM2_COMPOSE_CONTIGUOUS, errorCode);
1480     if(errorCode.logDataIfFailureAndReset("unable to load testdata/testnorm.nrm")) {
1481         return;
1482     }
1483     for(int32_t i=0; i<UPRV_LENGTHOF(pairs); ++i) {
1484         const StringPair &pair=pairs[i];
1485         UnicodeString input=UnicodeString(pair.input, -1, US_INV).unescape();
1486         UnicodeString expected=UnicodeString(pair.expected, -1, US_INV).unescape();
1487         UnicodeString result=customNorm2->normalize(input, errorCode);
1488         if(result!=expected) {
1489             errln("custom FCC Normalizer2 did not normalize input %d as expected", i);
1490         }
1491     }
1492 }
1493 
1494 /* Improve code coverage of Normalizer2 */
1495 void
TestFilteredNormalizer2Coverage()1496 BasicNormalizerTest::TestFilteredNormalizer2Coverage() {
1497     UErrorCode errorCode = U_ZERO_ERROR;
1498     const Normalizer2 *nfcNorm2=Normalizer2::getNFCInstance(errorCode);
1499     if (U_FAILURE(errorCode)) {
1500         dataerrln("Normalizer2::getNFCInstance() call failed - %s", u_errorName(errorCode));
1501         return;
1502     }
1503     UnicodeSet filter(UNICODE_STRING_SIMPLE("[^\\u00a0-\\u00ff\\u0310-\\u031f]"), errorCode);
1504     FilteredNormalizer2 fn2(*nfcNorm2, filter);
1505 
1506     UChar32 char32 = 0x0054;
1507 
1508     if (fn2.isInert(char32)) {
1509         errln("FilteredNormalizer2.isInert() failed.");
1510     }
1511 
1512     if (fn2.hasBoundaryAfter(char32)) {
1513         errln("FilteredNormalizer2.hasBoundaryAfter() failed.");
1514     }
1515 
1516     UChar32 c;
1517     for(c=0; c<=0x3ff; ++c) {
1518         uint8_t expectedCC= filter.contains(c) ? nfcNorm2->getCombiningClass(c) : 0;
1519         uint8_t cc=fn2.getCombiningClass(c);
1520         if(cc!=expectedCC) {
1521             errln(
1522                 UnicodeString("FilteredNormalizer2(NFC, ^A0-FF,310-31F).getCombiningClass(U+")+
1523                 hex(c)+
1524                 ")==filtered NFC.getCC()");
1525         }
1526     }
1527 
1528     UnicodeString newString1 = UNICODE_STRING_SIMPLE("[^\\u0100-\\u01ff]");
1529     UnicodeString newString2 = UNICODE_STRING_SIMPLE("[^\\u0200-\\u02ff]");
1530     fn2.append(newString1, newString2, errorCode);
1531     if (U_FAILURE(errorCode)) {
1532         errln("FilteredNormalizer2.append() failed.");
1533     }
1534 }
1535 
1536 void
TestNormalizeUTF8WithEdits()1537 BasicNormalizerTest::TestNormalizeUTF8WithEdits() {
1538     IcuTestErrorCode errorCode(*this, "TestNormalizeUTF8WithEdits");
1539     const Normalizer2 *nfkc_cf=Normalizer2::getNFKCCasefoldInstance(errorCode);
1540     if(errorCode.logDataIfFailureAndReset("Normalizer2::getNFKCCasefoldInstance() call failed")) {
1541         return;
1542     }
1543     static const char *const src =
1544         u8"  AÄA\u0308A\u0308\u00ad\u0323Ä\u0323,\u00ad\u1100\u1161가\u11A8가\u3133  ";
1545     std::string expected = u8"  aääạ\u0308ạ\u0308,가각갃  ";
1546     std::string result;
1547     StringByteSink<std::string> sink(&result, expected.length());
1548     Edits edits;
1549     nfkc_cf->normalizeUTF8(0, src, sink, &edits, errorCode);
1550     assertSuccess("normalizeUTF8 with Edits", errorCode.get());
1551     assertEquals("normalizeUTF8 with Edits", expected.c_str(), result.c_str());
1552     static const EditChange expectedChanges[] = {
1553         { FALSE, 2, 2 },  // 2 spaces
1554         { TRUE, 1, 1 },  // A→a
1555         { TRUE, 2, 2 },  // Ä→ä
1556         { TRUE, 3, 2 },  // A\u0308→ä
1557         { TRUE, 7, 5 },  // A\u0308\u00ad\u0323→ạ\u0308 removes the soft hyphen
1558         { TRUE, 4, 5 },  // Ä\u0323→ ạ\u0308
1559         { FALSE, 1, 1 },  // comma
1560         { TRUE, 2, 0 },  // U+00AD soft hyphen maps to empty
1561         { TRUE, 6, 3 },  // \u1100\u1161→ 가
1562         { TRUE, 6, 3 },  // 가\u11A8→ 각
1563         { TRUE, 6, 3 },  // 가\u3133→ 갃
1564         { FALSE, 2, 2 }  // 2 spaces
1565     };
1566     assertTrue("normalizeUTF8 with Edits hasChanges", edits.hasChanges());
1567     assertEquals("normalizeUTF8 with Edits numberOfChanges", 9, edits.numberOfChanges());
1568     TestUtility::checkEditsIter(*this, u"normalizeUTF8 with Edits",
1569             edits.getFineIterator(), edits.getFineIterator(),
1570             expectedChanges, UPRV_LENGTHOF(expectedChanges),
1571             TRUE, errorCode);
1572 
1573     assertFalse("isNormalizedUTF8(source)", nfkc_cf->isNormalizedUTF8(src, errorCode));
1574     assertTrue("isNormalizedUTF8(normalized)", nfkc_cf->isNormalizedUTF8(result, errorCode));
1575 
1576     // Omit unchanged text.
1577     expected = u8"aääạ\u0308ạ\u0308가각갃";
1578     result.clear();
1579     edits.reset();
1580     nfkc_cf->normalizeUTF8(U_OMIT_UNCHANGED_TEXT, src, sink, &edits, errorCode);
1581     assertSuccess("normalizeUTF8 omit unchanged", errorCode.get());
1582     assertEquals("normalizeUTF8 omit unchanged", expected.c_str(), result.c_str());
1583     assertTrue("normalizeUTF8 omit unchanged hasChanges", edits.hasChanges());
1584     assertEquals("normalizeUTF8 omit unchanged numberOfChanges", 9, edits.numberOfChanges());
1585     TestUtility::checkEditsIter(*this, u"normalizeUTF8 omit unchanged",
1586             edits.getFineIterator(), edits.getFineIterator(),
1587             expectedChanges, UPRV_LENGTHOF(expectedChanges),
1588             TRUE, errorCode);
1589 
1590     // With filter: The normalization code does not see the "A" substrings.
1591     UnicodeSet filter(u"[^A]", errorCode);
1592     FilteredNormalizer2 fn2(*nfkc_cf, filter);
1593     expected = u8"  AäA\u0308A\u0323\u0308ạ\u0308,가각갃  ";
1594     result.clear();
1595     edits.reset();
1596     fn2.normalizeUTF8(0, src, sink, &edits, errorCode);
1597     assertSuccess("filtered normalizeUTF8", errorCode.get());
1598     assertEquals("filtered normalizeUTF8", expected.c_str(), result.c_str());
1599     static const EditChange filteredChanges[] = {
1600         { FALSE, 3, 3 },  // 2 spaces + A
1601         { TRUE, 2, 2 },  // Ä→ä
1602         { FALSE, 4, 4 },  // A\u0308A
1603         { TRUE, 6, 4 },  // \u0308\u00ad\u0323→\u0323\u0308 removes the soft hyphen
1604         { TRUE, 4, 5 },  // Ä\u0323→ ạ\u0308
1605         { FALSE, 1, 1 },  // comma
1606         { TRUE, 2, 0 },  // U+00AD soft hyphen maps to empty
1607         { TRUE, 6, 3 },  // \u1100\u1161→ 가
1608         { TRUE, 6, 3 },  // 가\u11A8→ 각
1609         { TRUE, 6, 3 },  // 가\u3133→ 갃
1610         { FALSE, 2, 2 }  // 2 spaces
1611     };
1612     assertTrue("filtered normalizeUTF8 hasChanges", edits.hasChanges());
1613     assertEquals("filtered normalizeUTF8 numberOfChanges", 7, edits.numberOfChanges());
1614     TestUtility::checkEditsIter(*this, u"filtered normalizeUTF8",
1615             edits.getFineIterator(), edits.getFineIterator(),
1616             filteredChanges, UPRV_LENGTHOF(filteredChanges),
1617             TRUE, errorCode);
1618 
1619     assertFalse("filtered isNormalizedUTF8(source)", fn2.isNormalizedUTF8(src, errorCode));
1620     assertTrue("filtered isNormalizedUTF8(normalized)", fn2.isNormalizedUTF8(result, errorCode));
1621 
1622     // Omit unchanged text.
1623     // Note that the result is not normalized because the inner normalizer
1624     // does not see text across filter spans.
1625     expected = u8"ä\u0323\u0308ạ\u0308가각갃";
1626     result.clear();
1627     edits.reset();
1628     fn2.normalizeUTF8(U_OMIT_UNCHANGED_TEXT, src, sink, &edits, errorCode);
1629     assertSuccess("filtered normalizeUTF8 omit unchanged", errorCode.get());
1630     assertEquals("filtered normalizeUTF8 omit unchanged", expected.c_str(), result.c_str());
1631     assertTrue("filtered normalizeUTF8 omit unchanged hasChanges", edits.hasChanges());
1632     assertEquals("filtered normalizeUTF8 omit unchanged numberOfChanges", 7, edits.numberOfChanges());
1633     TestUtility::checkEditsIter(*this, u"filtered normalizeUTF8 omit unchanged",
1634             edits.getFineIterator(), edits.getFineIterator(),
1635             filteredChanges, UPRV_LENGTHOF(filteredChanges),
1636             TRUE, errorCode);
1637 }
1638 
1639 void
TestLowMappingToEmpty_D()1640 BasicNormalizerTest::TestLowMappingToEmpty_D() {
1641     IcuTestErrorCode errorCode(*this, "TestLowMappingToEmpty_D");
1642     const Normalizer2 *n2 = Normalizer2::getInstance(
1643         nullptr, "nfkc_cf", UNORM2_DECOMPOSE, errorCode);
1644     if (errorCode.logDataIfFailureAndReset("Normalizer2::getInstance() call failed")) {
1645         return;
1646     }
1647     checkLowMappingToEmpty(*n2);
1648 
1649     UnicodeString sh(u'\u00AD');
1650     assertFalse("soft hyphen is not normalized", n2->isNormalized(sh, errorCode));
1651     UnicodeString result = n2->normalize(sh, errorCode);
1652     assertTrue("soft hyphen normalizes to empty", result.isEmpty());
1653     assertEquals("soft hyphen QC=No", UNORM_NO, n2->quickCheck(sh, errorCode));
1654     assertEquals("soft hyphen spanQuickCheckYes", 0, n2->spanQuickCheckYes(sh, errorCode));
1655 
1656     UnicodeString s(u"\u00ADÄ\u00AD\u0323");
1657     result = n2->normalize(s, errorCode);
1658     assertEquals("normalize string with soft hyphens", u"a\u0323\u0308", result);
1659 }
1660 
1661 void
TestLowMappingToEmpty_FCD()1662 BasicNormalizerTest::TestLowMappingToEmpty_FCD() {
1663     IcuTestErrorCode errorCode(*this, "TestLowMappingToEmpty_FCD");
1664     const Normalizer2 *n2 = Normalizer2::getInstance(
1665         nullptr, "nfkc_cf", UNORM2_FCD, errorCode);
1666     if (errorCode.logDataIfFailureAndReset("Normalizer2::getInstance() call failed")) {
1667         return;
1668     }
1669     checkLowMappingToEmpty(*n2);
1670 
1671     UnicodeString sh(u'\u00AD');
1672     assertTrue("soft hyphen is FCD", n2->isNormalized(sh, errorCode));
1673 
1674     UnicodeString s(u"\u00ADÄ\u00AD\u0323");
1675     UnicodeString result = n2->normalize(s, errorCode);
1676     assertEquals("normalize string with soft hyphens", u"\u00ADa\u0323\u0308", result);
1677 }
1678 
1679 void
checkLowMappingToEmpty(const Normalizer2 & n2)1680 BasicNormalizerTest::checkLowMappingToEmpty(const Normalizer2 &n2) {
1681     UnicodeString mapping;
1682     assertTrue("getDecomposition(soft hyphen)", n2.getDecomposition(0xad, mapping));
1683     assertTrue("soft hyphen maps to empty", mapping.isEmpty());
1684     assertFalse("soft hyphen has no boundary before", n2.hasBoundaryBefore(0xad));
1685     assertFalse("soft hyphen has no boundary after", n2.hasBoundaryAfter(0xad));
1686     assertFalse("soft hyphen is not inert", n2.isInert(0xad));
1687 }
1688 
1689 void
TestNormalizeIllFormedText()1690 BasicNormalizerTest::TestNormalizeIllFormedText() {
1691     IcuTestErrorCode errorCode(*this, "TestNormalizeIllFormedText");
1692     const Normalizer2 *nfkc_cf = Normalizer2::getNFKCCasefoldInstance(errorCode);
1693     if(errorCode.logDataIfFailureAndReset("Normalizer2::getNFKCCasefoldInstance() call failed")) {
1694         return;
1695     }
1696     // Normalization behavior for ill-formed text is not defined.
1697     // ICU currently treats ill-formed sequences as normalization-inert
1698     // and copies them unchanged.
1699     UnicodeString src(u"  A");
1700     src.append((char16_t)0xD800).append(u"ÄA\u0308").append((char16_t)0xD900).
1701         append(u"A\u0308\u00ad\u0323").append((char16_t)0xDBFF).
1702         append(u"Ä\u0323,\u00ad").append((char16_t)0xDC00).
1703         append(u"\u1100\u1161가\u11A8가\u3133  ").append((char16_t)0xDFFF);
1704     UnicodeString expected(u"  a");
1705     expected.append((char16_t)0xD800).append(u"ää").append((char16_t)0xD900).
1706         append(u"ạ\u0308").append((char16_t)0xDBFF).
1707         append(u"ạ\u0308,").append((char16_t)0xDC00).
1708         append(u"가각갃  ").append((char16_t)0xDFFF);
1709     UnicodeString result = nfkc_cf->normalize(src, errorCode);
1710     assertSuccess("normalize", errorCode.get());
1711     assertEquals("normalize", expected, result);
1712 
1713     std::string src8(u8"  A");
1714     src8.append("\x80").append(u8"ÄA\u0308").append("\xC0\x80").
1715         append(u8"A\u0308\u00ad\u0323").append("\xED\xA0\x80").
1716         append(u8"Ä\u0323,\u00ad").append("\xF4\x90\x80\x80").
1717         append(u8"\u1100\u1161가\u11A8가\u3133  ").append("\xF0");
1718     std::string expected8(u8"  a");
1719     expected8.append("\x80").append(u8"ää").append("\xC0\x80").
1720         append(u8"ạ\u0308").append("\xED\xA0\x80").
1721         append(u8"ạ\u0308,").append("\xF4\x90\x80\x80").
1722         append(u8"가각갃  ").append("\xF0");
1723     std::string result8;
1724     StringByteSink<std::string> sink(&result8);
1725     nfkc_cf->normalizeUTF8(0, src8, sink, nullptr, errorCode);
1726     assertSuccess("normalizeUTF8", errorCode.get());
1727     assertEquals("normalizeUTF8", expected8.c_str(), result8.c_str());
1728 }
1729 
1730 void
TestComposeJamoTBase()1731 BasicNormalizerTest::TestComposeJamoTBase() {
1732     // Algorithmic composition of Hangul syllables must not combine with JAMO_T_BASE = U+11A7
1733     // which is not a conjoining Jamo Trailing consonant.
1734     IcuTestErrorCode errorCode(*this, "TestComposeJamoTBase");
1735     const Normalizer2 *nfkc = Normalizer2::getNFKCInstance(errorCode);
1736     if(errorCode.logDataIfFailureAndReset("Normalizer2::getNFKCInstance() call failed")) {
1737         return;
1738     }
1739     UnicodeString s(u"\u1100\u1161\u11A7\u1100\u314F\u11A7가\u11A7");
1740     UnicodeString expected(u"가\u11A7가\u11A7가\u11A7");
1741     UnicodeString result = nfkc->normalize(s, errorCode);
1742     assertSuccess("normalize(LV+11A7)", errorCode.get());
1743     assertEquals("normalize(LV+11A7)", expected, result);
1744     assertFalse("isNormalized(LV+11A7)", nfkc->isNormalized(s, errorCode));
1745     assertTrue("isNormalized(normalized)", nfkc->isNormalized(result, errorCode));
1746 
1747     std::string s8(u8"\u1100\u1161\u11A7\u1100\u314F\u11A7가\u11A7");
1748     std::string expected8(u8"가\u11A7가\u11A7가\u11A7");
1749     std::string result8;
1750     StringByteSink<std::string> sink(&result8, expected8.length());
1751     nfkc->normalizeUTF8(0, s8, sink, nullptr, errorCode);
1752     assertSuccess("normalizeUTF8(LV+11A7)", errorCode.get());
1753     assertEquals("normalizeUTF8(LV+11A7)", expected8.c_str(), result8.c_str());
1754     assertFalse("isNormalizedUTF8(LV+11A7)", nfkc->isNormalizedUTF8(s8, errorCode));
1755     assertTrue("isNormalizedUTF8(normalized)", nfkc->isNormalizedUTF8(result8, errorCode));
1756 }
1757 
1758 void
TestComposeBoundaryAfter()1759 BasicNormalizerTest::TestComposeBoundaryAfter() {
1760     IcuTestErrorCode errorCode(*this, "TestComposeBoundaryAfter");
1761     const Normalizer2 *nfkc = Normalizer2::getNFKCInstance(errorCode);
1762     if(errorCode.logDataIfFailureAndReset("Normalizer2::getNFKCInstance() call failed")) {
1763         return;
1764     }
1765     // U+02DA and U+FB2C do not have compose-boundaries-after.
1766     UnicodeString s(u"\u02DA\u0339 \uFB2C\u05B6");
1767     UnicodeString expected(u" \u0339\u030A \u05E9\u05B6\u05BC\u05C1");
1768     UnicodeString result = nfkc->normalize(s, errorCode);
1769     assertSuccess("nfkc", errorCode.get());
1770     assertEquals("nfkc", expected, result);
1771     assertFalse("U+02DA boundary-after", nfkc->hasBoundaryAfter(0x2DA));
1772     assertFalse("U+FB2C boundary-after", nfkc->hasBoundaryAfter(0xFB2C));
1773 }
1774 
1775 #endif /* #if !UCONFIG_NO_NORMALIZATION */
1776