• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2015 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef BASE_METRICS_PERSISTENT_MEMORY_ALLOCATOR_H_
6 #define BASE_METRICS_PERSISTENT_MEMORY_ALLOCATOR_H_
7 
8 #include <stdint.h>
9 
10 #include <atomic>
11 #include <memory>
12 #include <type_traits>
13 
14 #include "base/atomicops.h"
15 #include "base/base_export.h"
16 #include "base/files/file_path.h"
17 #include "base/gtest_prod_util.h"
18 #include "base/macros.h"
19 #include "base/strings/string_piece.h"
20 
21 namespace base {
22 
23 class HistogramBase;
24 class MemoryMappedFile;
25 class SharedMemory;
26 
27 // Simple allocator for pieces of a memory block that may be persistent
28 // to some storage or shared across multiple processes. This class resides
29 // under base/metrics because it was written for that purpose. It is,
30 // however, fully general-purpose and can be freely moved to base/memory
31 // if other uses are found.
32 //
33 // This class provides for thread-secure (i.e. safe against other threads
34 // or processes that may be compromised and thus have malicious intent)
35 // allocation of memory within a designated block and also a mechanism by
36 // which other threads can learn of these allocations.
37 //
38 // There is (currently) no way to release an allocated block of data because
39 // doing so would risk invalidating pointers held by other processes and
40 // greatly complicate the allocation algorithm.
41 //
42 // Construction of this object can accept new, clean (i.e. zeroed) memory
43 // or previously initialized memory. In the first case, construction must
44 // be allowed to complete before letting other allocators attach to the same
45 // segment. In other words, don't share the segment until at least one
46 // allocator has been attached to it.
47 //
48 // Note that memory not in active use is not accessed so it is possible to
49 // use virtual memory, including memory-mapped files, as backing storage with
50 // the OS "pinning" new (zeroed) physical RAM pages only as they are needed.
51 //
52 // OBJECTS: Although the allocator can be used in a "malloc" sense, fetching
53 // character arrays and manipulating that memory manually, the better way is
54 // generally to use the "object" methods to create and manage allocations. In
55 // this way the sizing, type-checking, and construction are all automatic. For
56 // this to work, however, every type of stored object must define two public
57 // "constexpr" values, kPersistentTypeId and kExpectedInstanceSize, as such:
58 //
59 // struct MyPersistentObjectType {
60 //     // SHA1(MyPersistentObjectType): Increment this if structure changes!
61 //     static constexpr uint32_t kPersistentTypeId = 0x3E15F6DE + 1;
62 //
63 //     // Expected size for 32/64-bit check. Update this if structure changes!
64 //     static constexpr size_t kExpectedInstanceSize = 20;
65 //
66 //     ...
67 // };
68 //
69 // kPersistentTypeId: This value is an arbitrary identifier that allows the
70 //   identification of these objects in the allocator, including the ability
71 //   to find them via iteration. The number is arbitrary but using the first
72 //   four bytes of the SHA1 hash of the type name means that there shouldn't
73 //   be any conflicts with other types that may also be stored in the memory.
74 //   The fully qualified name (e.g. base::debug::MyPersistentObjectType) could
75 //   be used to generate the hash if the type name seems common. Use a command
76 //   like this to get the hash: echo -n "MyPersistentObjectType" | sha1sum
77 //   If the structure layout changes, ALWAYS increment this number so that
78 //   newer versions of the code don't try to interpret persistent data written
79 //   by older versions with a different layout.
80 //
81 // kExpectedInstanceSize: This value is the hard-coded number that matches
82 //   what sizeof(T) would return. By providing it explicitly, the allocator can
83 //   verify that the structure is compatible between both 32-bit and 64-bit
84 //   versions of the code.
85 //
86 // Using New manages the memory and then calls the default constructor for the
87 // object. Given that objects are persistent, no destructor is ever called
88 // automatically though a caller can explicitly call Delete to destruct it and
89 // change the type to something indicating it is no longer in use.
90 //
91 // Though persistent memory segments are transferrable between programs built
92 // for different natural word widths, they CANNOT be exchanged between CPUs
93 // of different endianess. Attempts to do so will simply see the existing data
94 // as corrupt and refuse to access any of it.
95 class BASE_EXPORT PersistentMemoryAllocator {
96  public:
97   typedef uint32_t Reference;
98 
99   // These states are used to indicate the overall condition of the memory
100   // segment irrespective of what is stored within it. Because the data is
101   // often persistent and thus needs to be readable by different versions of
102   // a program, these values are fixed and can never change.
103   enum MemoryState : uint8_t {
104     // Persistent memory starts all zeros and so shows "uninitialized".
105     MEMORY_UNINITIALIZED = 0,
106 
107     // The header has been written and the memory is ready for use.
108     MEMORY_INITIALIZED = 1,
109 
110     // The data should be considered deleted. This would be set when the
111     // allocator is being cleaned up. If file-backed, the file is likely
112     // to be deleted but since deletion can fail for a variety of reasons,
113     // having this extra status means a future reader can realize what
114     // should have happened.
115     MEMORY_DELETED = 2,
116 
117     // Outside code can create states starting with this number; these too
118     // must also never change between code versions.
119     MEMORY_USER_DEFINED = 100,
120   };
121 
122   // Iterator for going through all iterable memory records in an allocator.
123   // Like the allocator itself, iterators are lock-free and thread-secure.
124   // That means that multiple threads can share an iterator and the same
125   // reference will not be returned twice.
126   //
127   // The order of the items returned by an iterator matches the order in which
128   // MakeIterable() was called on them. Once an allocation is made iterable,
129   // it is always such so the only possible difference between successive
130   // iterations is for more to be added to the end.
131   //
132   // Iteration, in general, is tolerant of corrupted memory. It will return
133   // what it can and stop only when corruption forces it to. Bad corruption
134   // could cause the same object to be returned many times but it will
135   // eventually quit.
136   class BASE_EXPORT Iterator {
137    public:
138     // Constructs an iterator on a given |allocator|, starting at the beginning.
139     // The allocator must live beyond the lifetime of the iterator. This class
140     // has read-only access to the allocator (hence "const") but the returned
141     // references can be used on a read/write version, too.
142     explicit Iterator(const PersistentMemoryAllocator* allocator);
143 
144     // As above but resuming from the |starting_after| reference. The first call
145     // to GetNext() will return the next object found after that reference. The
146     // reference must be to an "iterable" object; references to non-iterable
147     // objects (those that never had MakeIterable() called for them) will cause
148     // a run-time error.
149     Iterator(const PersistentMemoryAllocator* allocator,
150              Reference starting_after);
151 
152     // Resets the iterator back to the beginning.
153     void Reset();
154 
155     // Resets the iterator, resuming from the |starting_after| reference.
156     void Reset(Reference starting_after);
157 
158     // Returns the previously retrieved reference, or kReferenceNull if none.
159     // If constructor or reset with a starting_after location, this will return
160     // that value.
161     Reference GetLast();
162 
163     // Gets the next iterable, storing that type in |type_return|. The actual
164     // return value is a reference to the allocation inside the allocator or
165     // zero if there are no more. GetNext() may still be called again at a
166     // later time to retrieve any new allocations that have been added.
167     Reference GetNext(uint32_t* type_return);
168 
169     // Similar to above but gets the next iterable of a specific |type_match|.
170     // This should not be mixed with calls to GetNext() because any allocations
171     // skipped here due to a type mis-match will never be returned by later
172     // calls to GetNext() meaning it's possible to completely miss entries.
173     Reference GetNextOfType(uint32_t type_match);
174 
175     // As above but works using object type.
176     template <typename T>
GetNextOfType()177     Reference GetNextOfType() {
178       return GetNextOfType(T::kPersistentTypeId);
179     }
180 
181     // As above but works using objects and returns null if not found.
182     template <typename T>
GetNextOfObject()183     const T* GetNextOfObject() {
184       return GetAsObject<T>(GetNextOfType<T>());
185     }
186 
187     // Converts references to objects. This is a convenience method so that
188     // users of the iterator don't need to also have their own pointer to the
189     // allocator over which the iterator runs in order to retrieve objects.
190     // Because the iterator is not read/write, only "const" objects can be
191     // fetched. Non-const objects can be fetched using the reference on a
192     // non-const (external) pointer to the same allocator (or use const_cast
193     // to remove the qualifier).
194     template <typename T>
GetAsObject(Reference ref)195     const T* GetAsObject(Reference ref) const {
196       return allocator_->GetAsObject<T>(ref);
197     }
198 
199     // Similar to GetAsObject() but converts references to arrays of things.
200     template <typename T>
GetAsArray(Reference ref,uint32_t type_id,size_t count)201     const T* GetAsArray(Reference ref, uint32_t type_id, size_t count) const {
202       return allocator_->GetAsArray<T>(ref, type_id, count);
203     }
204 
205     // Convert a generic pointer back into a reference. A null reference will
206     // be returned if |memory| is not inside the persistent segment or does not
207     // point to an object of the specified |type_id|.
GetAsReference(const void * memory,uint32_t type_id)208     Reference GetAsReference(const void* memory, uint32_t type_id) const {
209       return allocator_->GetAsReference(memory, type_id);
210     }
211 
212     // As above but convert an object back into a reference.
213     template <typename T>
GetAsReference(const T * obj)214     Reference GetAsReference(const T* obj) const {
215       return allocator_->GetAsReference(obj);
216     }
217 
218    private:
219     // Weak-pointer to memory allocator being iterated over.
220     const PersistentMemoryAllocator* allocator_;
221 
222     // The last record that was returned.
223     std::atomic<Reference> last_record_;
224 
225     // The number of records found; used for detecting loops.
226     std::atomic<uint32_t> record_count_;
227 
228     DISALLOW_COPY_AND_ASSIGN(Iterator);
229   };
230 
231   // Returned information about the internal state of the heap.
232   struct MemoryInfo {
233     size_t total;
234     size_t free;
235   };
236 
237   enum : Reference {
238     // A common "null" reference value.
239     kReferenceNull = 0,
240   };
241 
242   enum : uint32_t {
243     // A value that will match any type when doing lookups.
244     kTypeIdAny = 0x00000000,
245 
246     // A value indicating that the type is in transition. Work is being done
247     // on the contents to prepare it for a new type to come.
248     kTypeIdTransitioning = 0xFFFFFFFF,
249   };
250 
251   enum : size_t {
252     kSizeAny = 1  // Constant indicating that any array size is acceptable.
253   };
254 
255   // This is the standard file extension (suitable for being passed to the
256   // AddExtension() method of base::FilePath) for dumps of persistent memory.
257   static const base::FilePath::CharType kFileExtension[];
258 
259   // The allocator operates on any arbitrary block of memory. Creation and
260   // persisting or sharing of that block with another process is the
261   // responsibility of the caller. The allocator needs to know only the
262   // block's |base| address, the total |size| of the block, and any internal
263   // |page| size (zero if not paged) across which allocations should not span.
264   // The |id| is an arbitrary value the caller can use to identify a
265   // particular memory segment. It will only be loaded during the initial
266   // creation of the segment and can be checked by the caller for consistency.
267   // The |name|, if provided, is used to distinguish histograms for this
268   // allocator. Only the primary owner of the segment should define this value;
269   // other processes can learn it from the shared state. If the underlying
270   // memory is |readonly| then no changes will be made to it. The resulting
271   // object should be stored as a "const" pointer.
272   //
273   // PersistentMemoryAllocator does NOT take ownership of the memory block.
274   // The caller must manage it and ensure it stays available throughout the
275   // lifetime of this object.
276   //
277   // Memory segments for sharing must have had an allocator attached to them
278   // before actually being shared. If the memory segment was just created, it
279   // should be zeroed before being passed here. If it was an existing segment,
280   // the values here will be compared to copies stored in the shared segment
281   // as a guard against corruption.
282   //
283   // Make sure that the memory segment is acceptable (see IsMemoryAcceptable()
284   // method below) before construction if the definition of the segment can
285   // vary in any way at run-time. Invalid memory segments will cause a crash.
286   PersistentMemoryAllocator(void* base, size_t size, size_t page_size,
287                             uint64_t id, base::StringPiece name,
288                             bool readonly);
289   virtual ~PersistentMemoryAllocator();
290 
291   // Check if memory segment is acceptable for creation of an Allocator. This
292   // doesn't do any analysis of the data and so doesn't guarantee that the
293   // contents are valid, just that the paramaters won't cause the program to
294   // abort. The IsCorrupt() method will report detection of data problems
295   // found during construction and general operation.
296   static bool IsMemoryAcceptable(const void* data, size_t size,
297                                  size_t page_size, bool readonly);
298 
299   // Get the internal identifier for this persistent memory segment.
300   uint64_t Id() const;
301 
302   // Get the internal name of this allocator (possibly an empty string).
303   const char* Name() const;
304 
305   // Is this segment open only for read?
IsReadonly()306   bool IsReadonly() const { return readonly_; }
307 
308   // Manage the saved state of the memory.
309   void SetMemoryState(uint8_t memory_state);
310   uint8_t GetMemoryState() const;
311 
312   // Create internal histograms for tracking memory use and allocation sizes
313   // for allocator of |name| (which can simply be the result of Name()). This
314   // is done seperately from construction for situations such as when the
315   // histograms will be backed by memory provided by this very allocator.
316   //
317   // IMPORTANT: Callers must update tools/metrics/histograms/histograms.xml
318   // with the following histograms:
319   //    UMA.PersistentAllocator.name.Errors
320   //    UMA.PersistentAllocator.name.UsedPct
321   void CreateTrackingHistograms(base::StringPiece name);
322 
323   // Flushes the persistent memory to any backing store. This typically does
324   // nothing but is used by the FilePersistentMemoryAllocator to inform the
325   // OS that all the data should be sent to the disk immediately. This is
326   // useful in the rare case where something has just been stored that needs
327   // to survive a hard shutdown of the machine like from a power failure.
328   // The |sync| parameter indicates if this call should block until the flush
329   // is complete but is only advisory and may or may not have an effect
330   // depending on the capabilities of the OS. Synchronous flushes are allowed
331   // only from theads that are allowed to do I/O.
332   void Flush(bool sync);
333 
334   // Direct access to underlying memory segment. If the segment is shared
335   // across threads or processes, reading data through these values does
336   // not guarantee consistency. Use with care. Do not write.
data()337   const void* data() const { return const_cast<const char*>(mem_base_); }
length()338   size_t length() const { return mem_size_; }
size()339   size_t size() const { return mem_size_; }
340   size_t used() const;
341 
342   // Get an object referenced by a |ref|. For safety reasons, the |type_id|
343   // code and size-of(|T|) are compared to ensure the reference is valid
344   // and cannot return an object outside of the memory segment. A |type_id| of
345   // kTypeIdAny (zero) will match any though the size is still checked. NULL is
346   // returned if any problem is detected, such as corrupted storage or incorrect
347   // parameters. Callers MUST check that the returned value is not-null EVERY
348   // TIME before accessing it or risk crashing! Once dereferenced, the pointer
349   // is safe to reuse forever.
350   //
351   // It is essential that the object be of a fixed size. All fields must be of
352   // a defined type that does not change based on the compiler or the CPU
353   // natural word size. Acceptable are char, float, double, and (u)intXX_t.
354   // Unacceptable are int, bool, and wchar_t which are implementation defined
355   // with regards to their size.
356   //
357   // Alignment must also be consistent. A uint64_t after a uint32_t will pad
358   // differently between 32 and 64 bit architectures. Either put the bigger
359   // elements first, group smaller elements into blocks the size of larger
360   // elements, or manually insert padding fields as appropriate for the
361   // largest architecture, including at the end.
362   //
363   // To protected against mistakes, all objects must have the attribute
364   // |kExpectedInstanceSize| (static constexpr size_t)  that is a hard-coded
365   // numerical value -- NNN, not sizeof(T) -- that can be tested. If the
366   // instance size is not fixed, at least one build will fail.
367   //
368   // If the size of a structure changes, the type-ID used to recognize it
369   // should also change so later versions of the code don't try to read
370   // incompatible structures from earlier versions.
371   //
372   // NOTE: Though this method will guarantee that an object of the specified
373   // type can be accessed without going outside the bounds of the memory
374   // segment, it makes no guarantees of the validity of the data within the
375   // object itself. If it is expected that the contents of the segment could
376   // be compromised with malicious intent, the object must be hardened as well.
377   //
378   // Though the persistent data may be "volatile" if it is shared with
379   // other processes, such is not necessarily the case. The internal
380   // "volatile" designation is discarded so as to not propagate the viral
381   // nature of that keyword to the caller. It can add it back, if necessary,
382   // based on knowledge of how the allocator is being used.
383   template <typename T>
GetAsObject(Reference ref)384   T* GetAsObject(Reference ref) {
385     static_assert(std::is_standard_layout<T>::value, "only standard objects");
386     static_assert(!std::is_array<T>::value, "use GetAsArray<>()");
387     static_assert(T::kExpectedInstanceSize == sizeof(T), "inconsistent size");
388     return const_cast<T*>(reinterpret_cast<volatile T*>(
389         GetBlockData(ref, T::kPersistentTypeId, sizeof(T))));
390   }
391   template <typename T>
GetAsObject(Reference ref)392   const T* GetAsObject(Reference ref) const {
393     static_assert(std::is_standard_layout<T>::value, "only standard objects");
394     static_assert(!std::is_array<T>::value, "use GetAsArray<>()");
395     static_assert(T::kExpectedInstanceSize == sizeof(T), "inconsistent size");
396     return const_cast<const T*>(reinterpret_cast<const volatile T*>(
397         GetBlockData(ref, T::kPersistentTypeId, sizeof(T))));
398   }
399 
400   // Like GetAsObject but get an array of simple, fixed-size types.
401   //
402   // Use a |count| of the required number of array elements, or kSizeAny.
403   // GetAllocSize() can be used to calculate the upper bound but isn't reliable
404   // because padding can make space for extra elements that were not written.
405   //
406   // Remember that an array of char is a string but may not be NUL terminated.
407   //
408   // There are no compile-time or run-time checks to ensure 32/64-bit size
409   // compatibilty when using these accessors. Only use fixed-size types such
410   // as char, float, double, or (u)intXX_t.
411   template <typename T>
GetAsArray(Reference ref,uint32_t type_id,size_t count)412   T* GetAsArray(Reference ref, uint32_t type_id, size_t count) {
413     static_assert(std::is_fundamental<T>::value, "use GetAsObject<>()");
414     return const_cast<T*>(reinterpret_cast<volatile T*>(
415         GetBlockData(ref, type_id, count * sizeof(T))));
416   }
417   template <typename T>
GetAsArray(Reference ref,uint32_t type_id,size_t count)418   const T* GetAsArray(Reference ref, uint32_t type_id, size_t count) const {
419     static_assert(std::is_fundamental<T>::value, "use GetAsObject<>()");
420     return const_cast<const char*>(reinterpret_cast<const volatile T*>(
421         GetBlockData(ref, type_id, count * sizeof(T))));
422   }
423 
424   // Get the corresponding reference for an object held in persistent memory.
425   // If the |memory| is not valid or the type does not match, a kReferenceNull
426   // result will be returned.
427   Reference GetAsReference(const void* memory, uint32_t type_id) const;
428 
429   // Get the number of bytes allocated to a block. This is useful when storing
430   // arrays in order to validate the ending boundary. The returned value will
431   // include any padding added to achieve the required alignment and so could
432   // be larger than given in the original Allocate() request.
433   size_t GetAllocSize(Reference ref) const;
434 
435   // Access the internal "type" of an object. This generally isn't necessary
436   // but can be used to "clear" the type and so effectively mark it as deleted
437   // even though the memory stays valid and allocated. Changing the type is
438   // an atomic compare/exchange and so requires knowing the existing value.
439   // It will return false if the existing type is not what is expected.
440   //
441   // Changing the type doesn't mean the data is compatible with the new type.
442   // Passing true for |clear| will zero the memory after the type has been
443   // changed away from |from_type_id| but before it becomes |to_type_id| meaning
444   // that it is done in a manner that is thread-safe. Memory is guaranteed to
445   // be zeroed atomically by machine-word in a monotonically increasing order.
446   //
447   // It will likely be necessary to reconstruct the type before it can be used.
448   // Changing the type WILL NOT invalidate existing pointers to the data, either
449   // in this process or others, so changing the data structure could have
450   // unpredicatable results. USE WITH CARE!
451   uint32_t GetType(Reference ref) const;
452   bool ChangeType(Reference ref,
453                   uint32_t to_type_id,
454                   uint32_t from_type_id,
455                   bool clear);
456 
457   // Allocated objects can be added to an internal list that can then be
458   // iterated over by other processes. If an allocated object can be found
459   // another way, such as by having its reference within a different object
460   // that will be made iterable, then this call is not necessary. This always
461   // succeeds unless corruption is detected; check IsCorrupted() to find out.
462   // Once an object is made iterable, its position in iteration can never
463   // change; new iterable objects will always be added after it in the series.
464   // Changing the type does not alter its "iterable" status.
465   void MakeIterable(Reference ref);
466 
467   // Get the information about the amount of free space in the allocator. The
468   // amount of free space should be treated as approximate due to extras from
469   // alignment and metadata. Concurrent allocations from other threads will
470   // also make the true amount less than what is reported.
471   void GetMemoryInfo(MemoryInfo* meminfo) const;
472 
473   // If there is some indication that the memory has become corrupted,
474   // calling this will attempt to prevent further damage by indicating to
475   // all processes that something is not as expected.
476   void SetCorrupt() const;
477 
478   // This can be called to determine if corruption has been detected in the
479   // segment, possibly my a malicious actor. Once detected, future allocations
480   // will fail and iteration may not locate all objects.
481   bool IsCorrupt() const;
482 
483   // Flag set if an allocation has failed because the memory segment was full.
484   bool IsFull() const;
485 
486   // Update those "tracking" histograms which do not get updates during regular
487   // operation, such as how much memory is currently used. This should be
488   // called before such information is to be displayed or uploaded.
489   void UpdateTrackingHistograms();
490 
491   // While the above works much like malloc & free, these next methods provide
492   // an "object" interface similar to new and delete.
493 
494   // Reserve space in the memory segment of the desired |size| and |type_id|.
495   // A return value of zero indicates the allocation failed, otherwise the
496   // returned reference can be used by any process to get a real pointer via
497   // the GetAsObject() or GetAsArray calls.
498   Reference Allocate(size_t size, uint32_t type_id);
499 
500   // Allocate and construct an object in persistent memory. The type must have
501   // both (size_t) kExpectedInstanceSize and (uint32_t) kPersistentTypeId
502   // static constexpr fields that are used to ensure compatibility between
503   // software versions. An optional size parameter can be specified to force
504   // the allocation to be bigger than the size of the object; this is useful
505   // when the last field is actually variable length.
506   template <typename T>
New(size_t size)507   T* New(size_t size) {
508     if (size < sizeof(T))
509       size = sizeof(T);
510     Reference ref = Allocate(size, T::kPersistentTypeId);
511     void* mem =
512         const_cast<void*>(GetBlockData(ref, T::kPersistentTypeId, size));
513     if (!mem)
514       return nullptr;
515     DCHECK_EQ(0U, reinterpret_cast<uintptr_t>(mem) & (ALIGNOF(T) - 1));
516     return new (mem) T();
517   }
518   template <typename T>
New()519   T* New() {
520     return New<T>(sizeof(T));
521   }
522 
523   // Similar to New, above, but construct the object out of an existing memory
524   // block and of an expected type. If |clear| is true, memory will be zeroed
525   // before construction. Though this is not standard object behavior, it
526   // is present to match with new allocations that always come from zeroed
527   // memory. Anything previously present simply ceases to exist; no destructor
528   // is called for it so explicitly Delete() the old object first if need be.
529   // Calling this will not invalidate existing pointers to the object, either
530   // in this process or others, so changing the object could have unpredictable
531   // results. USE WITH CARE!
532   template <typename T>
New(Reference ref,uint32_t from_type_id,bool clear)533   T* New(Reference ref, uint32_t from_type_id, bool clear) {
534     DCHECK_LE(sizeof(T), GetAllocSize(ref)) << "alloc not big enough for obj";
535     // Make sure the memory is appropriate. This won't be used until after
536     // the type is changed but checking first avoids the possibility of having
537     // to change the type back.
538     void* mem = const_cast<void*>(GetBlockData(ref, 0, sizeof(T)));
539     if (!mem)
540       return nullptr;
541     // Ensure the allocator's internal alignment is sufficient for this object.
542     // This protects against coding errors in the allocator.
543     DCHECK_EQ(0U, reinterpret_cast<uintptr_t>(mem) & (ALIGNOF(T) - 1));
544     // Change the type, clearing the memory if so desired. The new type is
545     // "transitioning" so that there is no race condition with the construction
546     // of the object should another thread be simultaneously iterating over
547     // data. This will "acquire" the memory so no changes get reordered before
548     // it.
549     if (!ChangeType(ref, kTypeIdTransitioning, from_type_id, clear))
550       return nullptr;
551     // Construct an object of the desired type on this memory, just as if
552     // New() had been called to create it.
553     T* obj = new (mem) T();
554     // Finally change the type to the desired one. This will "release" all of
555     // the changes above and so provide a consistent view to other threads.
556     bool success =
557         ChangeType(ref, T::kPersistentTypeId, kTypeIdTransitioning, false);
558     DCHECK(success);
559     return obj;
560   }
561 
562   // Deletes an object by destructing it and then changing the type to a
563   // different value (default 0).
564   template <typename T>
Delete(T * obj,uint32_t new_type)565   void Delete(T* obj, uint32_t new_type) {
566     // Get the reference for the object.
567     Reference ref = GetAsReference<T>(obj);
568     // First change the type to "transitioning" so there is no race condition
569     // where another thread could find the object through iteration while it
570     // is been destructed. This will "acquire" the memory so no changes get
571     // reordered before it. It will fail if |ref| is invalid.
572     if (!ChangeType(ref, kTypeIdTransitioning, T::kPersistentTypeId, false))
573       return;
574     // Destruct the object.
575     obj->~T();
576     // Finally change the type to the desired value. This will "release" all
577     // the changes above.
578     bool success = ChangeType(ref, new_type, kTypeIdTransitioning, false);
579     DCHECK(success);
580   }
581   template <typename T>
Delete(T * obj)582   void Delete(T* obj) {
583     Delete<T>(obj, 0);
584   }
585 
586   // As above but works with objects allocated from persistent memory.
587   template <typename T>
GetAsReference(const T * obj)588   Reference GetAsReference(const T* obj) const {
589     return GetAsReference(obj, T::kPersistentTypeId);
590   }
591 
592   // As above but works with an object allocated from persistent memory.
593   template <typename T>
MakeIterable(const T * obj)594   void MakeIterable(const T* obj) {
595     MakeIterable(GetAsReference<T>(obj));
596   }
597 
598  protected:
599   enum MemoryType {
600     MEM_EXTERNAL,
601     MEM_MALLOC,
602     MEM_VIRTUAL,
603     MEM_SHARED,
604     MEM_FILE,
605   };
606 
607   struct Memory {
MemoryMemory608     Memory(void* b, MemoryType t) : base(b), type(t) {}
609 
610     void* base;
611     MemoryType type;
612   };
613 
614   // Constructs the allocator. Everything is the same as the public allocator
615   // except |memory| which is a structure with additional information besides
616   // the base address.
617   PersistentMemoryAllocator(Memory memory, size_t size, size_t page_size,
618                             uint64_t id, base::StringPiece name,
619                             bool readonly);
620 
621   // Implementation of Flush that accepts how much to flush.
622   virtual void FlushPartial(size_t length, bool sync);
623 
624   volatile char* const mem_base_;  // Memory base. (char so sizeof guaranteed 1)
625   const MemoryType mem_type_;      // Type of memory allocation.
626   const uint32_t mem_size_;        // Size of entire memory segment.
627   const uint32_t mem_page_;        // Page size allocations shouldn't cross.
628 
629  private:
630   struct SharedMetadata;
631   struct BlockHeader;
632   static const uint32_t kAllocAlignment;
633   static const Reference kReferenceQueue;
634 
635   // The shared metadata is always located at the top of the memory segment.
636   // These convenience functions eliminate constant casting of the base
637   // pointer within the code.
shared_meta()638   const SharedMetadata* shared_meta() const {
639     return reinterpret_cast<const SharedMetadata*>(
640         const_cast<const char*>(mem_base_));
641   }
shared_meta()642   SharedMetadata* shared_meta() {
643     return reinterpret_cast<SharedMetadata*>(const_cast<char*>(mem_base_));
644   }
645 
646   // Actual method for doing the allocation.
647   Reference AllocateImpl(size_t size, uint32_t type_id);
648 
649   // Get the block header associated with a specific reference.
650   const volatile BlockHeader* GetBlock(Reference ref, uint32_t type_id,
651                                        uint32_t size, bool queue_ok,
652                                        bool free_ok) const;
GetBlock(Reference ref,uint32_t type_id,uint32_t size,bool queue_ok,bool free_ok)653   volatile BlockHeader* GetBlock(Reference ref, uint32_t type_id, uint32_t size,
654                                  bool queue_ok, bool free_ok) {
655       return const_cast<volatile BlockHeader*>(
656           const_cast<const PersistentMemoryAllocator*>(this)->GetBlock(
657               ref, type_id, size, queue_ok, free_ok));
658   }
659 
660   // Get the actual data within a block associated with a specific reference.
661   const volatile void* GetBlockData(Reference ref, uint32_t type_id,
662                                     uint32_t size) const;
GetBlockData(Reference ref,uint32_t type_id,uint32_t size)663   volatile void* GetBlockData(Reference ref, uint32_t type_id,
664                               uint32_t size) {
665       return const_cast<volatile void*>(
666           const_cast<const PersistentMemoryAllocator*>(this)->GetBlockData(
667               ref, type_id, size));
668   }
669 
670   // Record an error in the internal histogram.
671   void RecordError(int error) const;
672 
673   const bool readonly_;                // Indicates access to read-only memory.
674   mutable std::atomic<bool> corrupt_;  // Local version of "corrupted" flag.
675 
676   HistogramBase* allocs_histogram_;  // Histogram recording allocs.
677   HistogramBase* used_histogram_;    // Histogram recording used space.
678   HistogramBase* errors_histogram_;  // Histogram recording errors.
679 
680   friend class PersistentMemoryAllocatorTest;
681   FRIEND_TEST_ALL_PREFIXES(PersistentMemoryAllocatorTest, AllocateAndIterate);
682   DISALLOW_COPY_AND_ASSIGN(PersistentMemoryAllocator);
683 };
684 
685 
686 // This allocator uses a local memory block it allocates from the general
687 // heap. It is generally used when some kind of "death rattle" handler will
688 // save the contents to persistent storage during process shutdown. It is
689 // also useful for testing.
690 class BASE_EXPORT LocalPersistentMemoryAllocator
691     : public PersistentMemoryAllocator {
692  public:
693   LocalPersistentMemoryAllocator(size_t size, uint64_t id,
694                                  base::StringPiece name);
695   ~LocalPersistentMemoryAllocator() override;
696 
697  private:
698   // Allocates a block of local memory of the specified |size|, ensuring that
699   // the memory will not be physically allocated until accessed and will read
700   // as zero when that happens.
701   static Memory AllocateLocalMemory(size_t size);
702 
703   // Deallocates a block of local |memory| of the specified |size|.
704   static void DeallocateLocalMemory(void* memory, size_t size, MemoryType type);
705 
706   DISALLOW_COPY_AND_ASSIGN(LocalPersistentMemoryAllocator);
707 };
708 
709 
710 // This allocator takes a shared-memory object and performs allocation from
711 // it. The memory must be previously mapped via Map() or MapAt(). The allocator
712 // takes ownership of the memory object.
713 class BASE_EXPORT SharedPersistentMemoryAllocator
714     : public PersistentMemoryAllocator {
715  public:
716   SharedPersistentMemoryAllocator(std::unique_ptr<SharedMemory> memory,
717                                   uint64_t id,
718                                   base::StringPiece name,
719                                   bool read_only);
720   ~SharedPersistentMemoryAllocator() override;
721 
shared_memory()722   SharedMemory* shared_memory() { return shared_memory_.get(); }
723 
724   // Ensure that the memory isn't so invalid that it would crash when passing it
725   // to the allocator. This doesn't guarantee the data is valid, just that it
726   // won't cause the program to abort. The existing IsCorrupt() call will handle
727   // the rest.
728   static bool IsSharedMemoryAcceptable(const SharedMemory& memory);
729 
730  private:
731   std::unique_ptr<SharedMemory> shared_memory_;
732 
733   DISALLOW_COPY_AND_ASSIGN(SharedPersistentMemoryAllocator);
734 };
735 
736 
737 #if !defined(OS_NACL)  // NACL doesn't support any kind of file access in build.
738 // This allocator takes a memory-mapped file object and performs allocation
739 // from it. The allocator takes ownership of the file object.
740 class BASE_EXPORT FilePersistentMemoryAllocator
741     : public PersistentMemoryAllocator {
742  public:
743   // A |max_size| of zero will use the length of the file as the maximum
744   // size. The |file| object must have been already created with sufficient
745   // permissions (read, read/write, or read/write/extend).
746   FilePersistentMemoryAllocator(std::unique_ptr<MemoryMappedFile> file,
747                                 size_t max_size,
748                                 uint64_t id,
749                                 base::StringPiece name,
750                                 bool read_only);
751   ~FilePersistentMemoryAllocator() override;
752 
753   // Ensure that the file isn't so invalid that it would crash when passing it
754   // to the allocator. This doesn't guarantee the file is valid, just that it
755   // won't cause the program to abort. The existing IsCorrupt() call will handle
756   // the rest.
757   static bool IsFileAcceptable(const MemoryMappedFile& file, bool read_only);
758 
759  protected:
760   // PersistentMemoryAllocator:
761   void FlushPartial(size_t length, bool sync) override;
762 
763  private:
764   std::unique_ptr<MemoryMappedFile> mapped_file_;
765 
766   DISALLOW_COPY_AND_ASSIGN(FilePersistentMemoryAllocator);
767 };
768 #endif  // !defined(OS_NACL)
769 
770 }  // namespace base
771 
772 #endif  // BASE_METRICS_PERSISTENT_MEMORY_ALLOCATOR_H_
773