1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "base/strings/string_util.h"
6
7 #include <ctype.h>
8 #include <errno.h>
9 #include <math.h>
10 #include <stdarg.h>
11 #include <stdint.h>
12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <string.h>
15 #include <time.h>
16 #include <wchar.h>
17 #include <wctype.h>
18
19 #include <algorithm>
20 #include <limits>
21 #include <vector>
22
23 #include "base/logging.h"
24 #include "base/macros.h"
25 #include "base/memory/singleton.h"
26 #include "base/strings/utf_string_conversion_utils.h"
27 #include "base/strings/utf_string_conversions.h"
28 #include "base/third_party/icu/icu_utf.h"
29 #include "build/build_config.h"
30
31 namespace base {
32
33 namespace {
34
35 // Force the singleton used by EmptyString[16] to be a unique type. This
36 // prevents other code that might accidentally use Singleton<string> from
37 // getting our internal one.
38 struct EmptyStrings {
EmptyStringsbase::__anonaa7f929d0111::EmptyStrings39 EmptyStrings() {}
40 const std::string s;
41 const string16 s16;
42
GetInstancebase::__anonaa7f929d0111::EmptyStrings43 static EmptyStrings* GetInstance() {
44 return Singleton<EmptyStrings>::get();
45 }
46 };
47
48 // Used by ReplaceStringPlaceholders to track the position in the string of
49 // replaced parameters.
50 struct ReplacementOffset {
ReplacementOffsetbase::__anonaa7f929d0111::ReplacementOffset51 ReplacementOffset(uintptr_t parameter, size_t offset)
52 : parameter(parameter),
53 offset(offset) {}
54
55 // Index of the parameter.
56 uintptr_t parameter;
57
58 // Starting position in the string.
59 size_t offset;
60 };
61
CompareParameter(const ReplacementOffset & elem1,const ReplacementOffset & elem2)62 static bool CompareParameter(const ReplacementOffset& elem1,
63 const ReplacementOffset& elem2) {
64 return elem1.parameter < elem2.parameter;
65 }
66
67 // Overloaded function to append one string onto the end of another. Having a
68 // separate overload for |source| as both string and StringPiece allows for more
69 // efficient usage from functions templated to work with either type (avoiding a
70 // redundant call to the BasicStringPiece constructor in both cases).
71 template <typename string_type>
AppendToString(string_type * target,const string_type & source)72 inline void AppendToString(string_type* target, const string_type& source) {
73 target->append(source);
74 }
75
76 template <typename string_type>
AppendToString(string_type * target,const BasicStringPiece<string_type> & source)77 inline void AppendToString(string_type* target,
78 const BasicStringPiece<string_type>& source) {
79 source.AppendToString(target);
80 }
81
82 // Assuming that a pointer is the size of a "machine word", then
83 // uintptr_t is an integer type that is also a machine word.
84 typedef uintptr_t MachineWord;
85 const uintptr_t kMachineWordAlignmentMask = sizeof(MachineWord) - 1;
86
IsAlignedToMachineWord(const void * pointer)87 inline bool IsAlignedToMachineWord(const void* pointer) {
88 return !(reinterpret_cast<MachineWord>(pointer) & kMachineWordAlignmentMask);
89 }
90
AlignToMachineWord(T * pointer)91 template<typename T> inline T* AlignToMachineWord(T* pointer) {
92 return reinterpret_cast<T*>(reinterpret_cast<MachineWord>(pointer) &
93 ~kMachineWordAlignmentMask);
94 }
95
96 template<size_t size, typename CharacterType> struct NonASCIIMask;
97 template<> struct NonASCIIMask<4, char16> {
valuebase::__anonaa7f929d0111::NonASCIIMask98 static inline uint32_t value() { return 0xFF80FF80U; }
99 };
100 template<> struct NonASCIIMask<4, char> {
valuebase::__anonaa7f929d0111::NonASCIIMask101 static inline uint32_t value() { return 0x80808080U; }
102 };
103 template<> struct NonASCIIMask<8, char16> {
valuebase::__anonaa7f929d0111::NonASCIIMask104 static inline uint64_t value() { return 0xFF80FF80FF80FF80ULL; }
105 };
106 template<> struct NonASCIIMask<8, char> {
valuebase::__anonaa7f929d0111::NonASCIIMask107 static inline uint64_t value() { return 0x8080808080808080ULL; }
108 };
109 #if defined(WCHAR_T_IS_UTF32)
110 template<> struct NonASCIIMask<4, wchar_t> {
valuebase::__anonaa7f929d0111::NonASCIIMask111 static inline uint32_t value() { return 0xFFFFFF80U; }
112 };
113 template<> struct NonASCIIMask<8, wchar_t> {
valuebase::__anonaa7f929d0111::NonASCIIMask114 static inline uint64_t value() { return 0xFFFFFF80FFFFFF80ULL; }
115 };
116 #endif // WCHAR_T_IS_UTF32
117
118 } // namespace
119
IsWprintfFormatPortable(const wchar_t * format)120 bool IsWprintfFormatPortable(const wchar_t* format) {
121 for (const wchar_t* position = format; *position != '\0'; ++position) {
122 if (*position == '%') {
123 bool in_specification = true;
124 bool modifier_l = false;
125 while (in_specification) {
126 // Eat up characters until reaching a known specifier.
127 if (*++position == '\0') {
128 // The format string ended in the middle of a specification. Call
129 // it portable because no unportable specifications were found. The
130 // string is equally broken on all platforms.
131 return true;
132 }
133
134 if (*position == 'l') {
135 // 'l' is the only thing that can save the 's' and 'c' specifiers.
136 modifier_l = true;
137 } else if (((*position == 's' || *position == 'c') && !modifier_l) ||
138 *position == 'S' || *position == 'C' || *position == 'F' ||
139 *position == 'D' || *position == 'O' || *position == 'U') {
140 // Not portable.
141 return false;
142 }
143
144 if (wcschr(L"diouxXeEfgGaAcspn%", *position)) {
145 // Portable, keep scanning the rest of the format string.
146 in_specification = false;
147 }
148 }
149 }
150 }
151
152 return true;
153 }
154
155 namespace {
156
157 template<typename StringType>
ToLowerASCIIImpl(BasicStringPiece<StringType> str)158 StringType ToLowerASCIIImpl(BasicStringPiece<StringType> str) {
159 StringType ret;
160 ret.reserve(str.size());
161 for (size_t i = 0; i < str.size(); i++)
162 ret.push_back(ToLowerASCII(str[i]));
163 return ret;
164 }
165
166 template<typename StringType>
ToUpperASCIIImpl(BasicStringPiece<StringType> str)167 StringType ToUpperASCIIImpl(BasicStringPiece<StringType> str) {
168 StringType ret;
169 ret.reserve(str.size());
170 for (size_t i = 0; i < str.size(); i++)
171 ret.push_back(ToUpperASCII(str[i]));
172 return ret;
173 }
174
175 } // namespace
176
ToLowerASCII(StringPiece str)177 std::string ToLowerASCII(StringPiece str) {
178 return ToLowerASCIIImpl<std::string>(str);
179 }
180
ToLowerASCII(StringPiece16 str)181 string16 ToLowerASCII(StringPiece16 str) {
182 return ToLowerASCIIImpl<string16>(str);
183 }
184
ToUpperASCII(StringPiece str)185 std::string ToUpperASCII(StringPiece str) {
186 return ToUpperASCIIImpl<std::string>(str);
187 }
188
ToUpperASCII(StringPiece16 str)189 string16 ToUpperASCII(StringPiece16 str) {
190 return ToUpperASCIIImpl<string16>(str);
191 }
192
193 template<class StringType>
CompareCaseInsensitiveASCIIT(BasicStringPiece<StringType> a,BasicStringPiece<StringType> b)194 int CompareCaseInsensitiveASCIIT(BasicStringPiece<StringType> a,
195 BasicStringPiece<StringType> b) {
196 // Find the first characters that aren't equal and compare them. If the end
197 // of one of the strings is found before a nonequal character, the lengths
198 // of the strings are compared.
199 size_t i = 0;
200 while (i < a.length() && i < b.length()) {
201 typename StringType::value_type lower_a = ToLowerASCII(a[i]);
202 typename StringType::value_type lower_b = ToLowerASCII(b[i]);
203 if (lower_a < lower_b)
204 return -1;
205 if (lower_a > lower_b)
206 return 1;
207 i++;
208 }
209
210 // End of one string hit before finding a different character. Expect the
211 // common case to be "strings equal" at this point so check that first.
212 if (a.length() == b.length())
213 return 0;
214
215 if (a.length() < b.length())
216 return -1;
217 return 1;
218 }
219
CompareCaseInsensitiveASCII(StringPiece a,StringPiece b)220 int CompareCaseInsensitiveASCII(StringPiece a, StringPiece b) {
221 return CompareCaseInsensitiveASCIIT<std::string>(a, b);
222 }
223
CompareCaseInsensitiveASCII(StringPiece16 a,StringPiece16 b)224 int CompareCaseInsensitiveASCII(StringPiece16 a, StringPiece16 b) {
225 return CompareCaseInsensitiveASCIIT<string16>(a, b);
226 }
227
EqualsCaseInsensitiveASCII(StringPiece a,StringPiece b)228 bool EqualsCaseInsensitiveASCII(StringPiece a, StringPiece b) {
229 if (a.length() != b.length())
230 return false;
231 return CompareCaseInsensitiveASCIIT<std::string>(a, b) == 0;
232 }
233
EqualsCaseInsensitiveASCII(StringPiece16 a,StringPiece16 b)234 bool EqualsCaseInsensitiveASCII(StringPiece16 a, StringPiece16 b) {
235 if (a.length() != b.length())
236 return false;
237 return CompareCaseInsensitiveASCIIT<string16>(a, b) == 0;
238 }
239
EmptyString()240 const std::string& EmptyString() {
241 return EmptyStrings::GetInstance()->s;
242 }
243
EmptyString16()244 const string16& EmptyString16() {
245 return EmptyStrings::GetInstance()->s16;
246 }
247
248 template<typename STR>
ReplaceCharsT(const STR & input,const STR & replace_chars,const STR & replace_with,STR * output)249 bool ReplaceCharsT(const STR& input,
250 const STR& replace_chars,
251 const STR& replace_with,
252 STR* output) {
253 bool removed = false;
254 size_t replace_length = replace_with.length();
255
256 *output = input;
257
258 size_t found = output->find_first_of(replace_chars);
259 while (found != STR::npos) {
260 removed = true;
261 output->replace(found, 1, replace_with);
262 found = output->find_first_of(replace_chars, found + replace_length);
263 }
264
265 return removed;
266 }
267
ReplaceChars(const string16 & input,const StringPiece16 & replace_chars,const string16 & replace_with,string16 * output)268 bool ReplaceChars(const string16& input,
269 const StringPiece16& replace_chars,
270 const string16& replace_with,
271 string16* output) {
272 return ReplaceCharsT(input, replace_chars.as_string(), replace_with, output);
273 }
274
ReplaceChars(const std::string & input,const StringPiece & replace_chars,const std::string & replace_with,std::string * output)275 bool ReplaceChars(const std::string& input,
276 const StringPiece& replace_chars,
277 const std::string& replace_with,
278 std::string* output) {
279 return ReplaceCharsT(input, replace_chars.as_string(), replace_with, output);
280 }
281
RemoveChars(const string16 & input,const StringPiece16 & remove_chars,string16 * output)282 bool RemoveChars(const string16& input,
283 const StringPiece16& remove_chars,
284 string16* output) {
285 return ReplaceChars(input, remove_chars.as_string(), string16(), output);
286 }
287
RemoveChars(const std::string & input,const StringPiece & remove_chars,std::string * output)288 bool RemoveChars(const std::string& input,
289 const StringPiece& remove_chars,
290 std::string* output) {
291 return ReplaceChars(input, remove_chars.as_string(), std::string(), output);
292 }
293
294 template<typename Str>
TrimStringT(const Str & input,BasicStringPiece<Str> trim_chars,TrimPositions positions,Str * output)295 TrimPositions TrimStringT(const Str& input,
296 BasicStringPiece<Str> trim_chars,
297 TrimPositions positions,
298 Str* output) {
299 // Find the edges of leading/trailing whitespace as desired. Need to use
300 // a StringPiece version of input to be able to call find* on it with the
301 // StringPiece version of trim_chars (normally the trim_chars will be a
302 // constant so avoid making a copy).
303 BasicStringPiece<Str> input_piece(input);
304 const size_t last_char = input.length() - 1;
305 const size_t first_good_char = (positions & TRIM_LEADING) ?
306 input_piece.find_first_not_of(trim_chars) : 0;
307 const size_t last_good_char = (positions & TRIM_TRAILING) ?
308 input_piece.find_last_not_of(trim_chars) : last_char;
309
310 // When the string was all trimmed, report that we stripped off characters
311 // from whichever position the caller was interested in. For empty input, we
312 // stripped no characters, but we still need to clear |output|.
313 if (input.empty() ||
314 (first_good_char == Str::npos) || (last_good_char == Str::npos)) {
315 bool input_was_empty = input.empty(); // in case output == &input
316 output->clear();
317 return input_was_empty ? TRIM_NONE : positions;
318 }
319
320 // Trim.
321 *output =
322 input.substr(first_good_char, last_good_char - first_good_char + 1);
323
324 // Return where we trimmed from.
325 return static_cast<TrimPositions>(
326 ((first_good_char == 0) ? TRIM_NONE : TRIM_LEADING) |
327 ((last_good_char == last_char) ? TRIM_NONE : TRIM_TRAILING));
328 }
329
TrimString(const string16 & input,StringPiece16 trim_chars,string16 * output)330 bool TrimString(const string16& input,
331 StringPiece16 trim_chars,
332 string16* output) {
333 return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE;
334 }
335
TrimString(const std::string & input,StringPiece trim_chars,std::string * output)336 bool TrimString(const std::string& input,
337 StringPiece trim_chars,
338 std::string* output) {
339 return TrimStringT(input, trim_chars, TRIM_ALL, output) != TRIM_NONE;
340 }
341
342 template<typename Str>
TrimStringPieceT(BasicStringPiece<Str> input,BasicStringPiece<Str> trim_chars,TrimPositions positions)343 BasicStringPiece<Str> TrimStringPieceT(BasicStringPiece<Str> input,
344 BasicStringPiece<Str> trim_chars,
345 TrimPositions positions) {
346 size_t begin = (positions & TRIM_LEADING) ?
347 input.find_first_not_of(trim_chars) : 0;
348 size_t end = (positions & TRIM_TRAILING) ?
349 input.find_last_not_of(trim_chars) + 1 : input.size();
350 return input.substr(begin, end - begin);
351 }
352
TrimString(StringPiece16 input,const StringPiece16 & trim_chars,TrimPositions positions)353 StringPiece16 TrimString(StringPiece16 input,
354 const StringPiece16& trim_chars,
355 TrimPositions positions) {
356 return TrimStringPieceT(input, trim_chars, positions);
357 }
358
TrimString(StringPiece input,const StringPiece & trim_chars,TrimPositions positions)359 StringPiece TrimString(StringPiece input,
360 const StringPiece& trim_chars,
361 TrimPositions positions) {
362 return TrimStringPieceT(input, trim_chars, positions);
363 }
364
TruncateUTF8ToByteSize(const std::string & input,const size_t byte_size,std::string * output)365 void TruncateUTF8ToByteSize(const std::string& input,
366 const size_t byte_size,
367 std::string* output) {
368 DCHECK(output);
369 if (byte_size > input.length()) {
370 *output = input;
371 return;
372 }
373 DCHECK_LE(byte_size,
374 static_cast<uint32_t>(std::numeric_limits<int32_t>::max()));
375 // Note: This cast is necessary because CBU8_NEXT uses int32_ts.
376 int32_t truncation_length = static_cast<int32_t>(byte_size);
377 int32_t char_index = truncation_length - 1;
378 const char* data = input.data();
379
380 // Using CBU8, we will move backwards from the truncation point
381 // to the beginning of the string looking for a valid UTF8
382 // character. Once a full UTF8 character is found, we will
383 // truncate the string to the end of that character.
384 while (char_index >= 0) {
385 int32_t prev = char_index;
386 base_icu::UChar32 code_point = 0;
387 CBU8_NEXT(data, char_index, truncation_length, code_point);
388 if (!IsValidCharacter(code_point) ||
389 !IsValidCodepoint(code_point)) {
390 char_index = prev - 1;
391 } else {
392 break;
393 }
394 }
395
396 if (char_index >= 0 )
397 *output = input.substr(0, char_index);
398 else
399 output->clear();
400 }
401
TrimWhitespace(const string16 & input,TrimPositions positions,string16 * output)402 TrimPositions TrimWhitespace(const string16& input,
403 TrimPositions positions,
404 string16* output) {
405 return TrimStringT(input, StringPiece16(kWhitespaceUTF16), positions, output);
406 }
407
TrimWhitespace(StringPiece16 input,TrimPositions positions)408 StringPiece16 TrimWhitespace(StringPiece16 input,
409 TrimPositions positions) {
410 return TrimStringPieceT(input, StringPiece16(kWhitespaceUTF16), positions);
411 }
412
TrimWhitespaceASCII(const std::string & input,TrimPositions positions,std::string * output)413 TrimPositions TrimWhitespaceASCII(const std::string& input,
414 TrimPositions positions,
415 std::string* output) {
416 return TrimStringT(input, StringPiece(kWhitespaceASCII), positions, output);
417 }
418
TrimWhitespaceASCII(StringPiece input,TrimPositions positions)419 StringPiece TrimWhitespaceASCII(StringPiece input, TrimPositions positions) {
420 return TrimStringPieceT(input, StringPiece(kWhitespaceASCII), positions);
421 }
422
423 template<typename STR>
CollapseWhitespaceT(const STR & text,bool trim_sequences_with_line_breaks)424 STR CollapseWhitespaceT(const STR& text,
425 bool trim_sequences_with_line_breaks) {
426 STR result;
427 result.resize(text.size());
428
429 // Set flags to pretend we're already in a trimmed whitespace sequence, so we
430 // will trim any leading whitespace.
431 bool in_whitespace = true;
432 bool already_trimmed = true;
433
434 int chars_written = 0;
435 for (typename STR::const_iterator i(text.begin()); i != text.end(); ++i) {
436 if (IsUnicodeWhitespace(*i)) {
437 if (!in_whitespace) {
438 // Reduce all whitespace sequences to a single space.
439 in_whitespace = true;
440 result[chars_written++] = L' ';
441 }
442 if (trim_sequences_with_line_breaks && !already_trimmed &&
443 ((*i == '\n') || (*i == '\r'))) {
444 // Whitespace sequences containing CR or LF are eliminated entirely.
445 already_trimmed = true;
446 --chars_written;
447 }
448 } else {
449 // Non-whitespace chracters are copied straight across.
450 in_whitespace = false;
451 already_trimmed = false;
452 result[chars_written++] = *i;
453 }
454 }
455
456 if (in_whitespace && !already_trimmed) {
457 // Any trailing whitespace is eliminated.
458 --chars_written;
459 }
460
461 result.resize(chars_written);
462 return result;
463 }
464
CollapseWhitespace(const string16 & text,bool trim_sequences_with_line_breaks)465 string16 CollapseWhitespace(const string16& text,
466 bool trim_sequences_with_line_breaks) {
467 return CollapseWhitespaceT(text, trim_sequences_with_line_breaks);
468 }
469
CollapseWhitespaceASCII(const std::string & text,bool trim_sequences_with_line_breaks)470 std::string CollapseWhitespaceASCII(const std::string& text,
471 bool trim_sequences_with_line_breaks) {
472 return CollapseWhitespaceT(text, trim_sequences_with_line_breaks);
473 }
474
ContainsOnlyChars(const StringPiece & input,const StringPiece & characters)475 bool ContainsOnlyChars(const StringPiece& input,
476 const StringPiece& characters) {
477 return input.find_first_not_of(characters) == StringPiece::npos;
478 }
479
ContainsOnlyChars(const StringPiece16 & input,const StringPiece16 & characters)480 bool ContainsOnlyChars(const StringPiece16& input,
481 const StringPiece16& characters) {
482 return input.find_first_not_of(characters) == StringPiece16::npos;
483 }
484
485 template <class Char>
DoIsStringASCII(const Char * characters,size_t length)486 inline bool DoIsStringASCII(const Char* characters, size_t length) {
487 MachineWord all_char_bits = 0;
488 const Char* end = characters + length;
489
490 // Prologue: align the input.
491 while (!IsAlignedToMachineWord(characters) && characters != end) {
492 all_char_bits |= *characters;
493 ++characters;
494 }
495
496 // Compare the values of CPU word size.
497 const Char* word_end = AlignToMachineWord(end);
498 const size_t loop_increment = sizeof(MachineWord) / sizeof(Char);
499 while (characters < word_end) {
500 all_char_bits |= *(reinterpret_cast<const MachineWord*>(characters));
501 characters += loop_increment;
502 }
503
504 // Process the remaining bytes.
505 while (characters != end) {
506 all_char_bits |= *characters;
507 ++characters;
508 }
509
510 MachineWord non_ascii_bit_mask =
511 NonASCIIMask<sizeof(MachineWord), Char>::value();
512 return !(all_char_bits & non_ascii_bit_mask);
513 }
514
IsStringASCII(const StringPiece & str)515 bool IsStringASCII(const StringPiece& str) {
516 return DoIsStringASCII(str.data(), str.length());
517 }
518
IsStringASCII(const StringPiece16 & str)519 bool IsStringASCII(const StringPiece16& str) {
520 return DoIsStringASCII(str.data(), str.length());
521 }
522
IsStringASCII(const string16 & str)523 bool IsStringASCII(const string16& str) {
524 return DoIsStringASCII(str.data(), str.length());
525 }
526
527 #if defined(WCHAR_T_IS_UTF32)
IsStringASCII(const std::wstring & str)528 bool IsStringASCII(const std::wstring& str) {
529 return DoIsStringASCII(str.data(), str.length());
530 }
531 #endif
532
IsStringUTF8(const StringPiece & str)533 bool IsStringUTF8(const StringPiece& str) {
534 const char *src = str.data();
535 int32_t src_len = static_cast<int32_t>(str.length());
536 int32_t char_index = 0;
537
538 while (char_index < src_len) {
539 int32_t code_point;
540 CBU8_NEXT(src, char_index, src_len, code_point);
541 if (!IsValidCharacter(code_point))
542 return false;
543 }
544 return true;
545 }
546
547 // Implementation note: Normally this function will be called with a hardcoded
548 // constant for the lowercase_ascii parameter. Constructing a StringPiece from
549 // a C constant requires running strlen, so the result will be two passes
550 // through the buffers, one to file the length of lowercase_ascii, and one to
551 // compare each letter.
552 //
553 // This function could have taken a const char* to avoid this and only do one
554 // pass through the string. But the strlen is faster than the case-insensitive
555 // compares and lets us early-exit in the case that the strings are different
556 // lengths (will often be the case for non-matches). So whether one approach or
557 // the other will be faster depends on the case.
558 //
559 // The hardcoded strings are typically very short so it doesn't matter, and the
560 // string piece gives additional flexibility for the caller (doesn't have to be
561 // null terminated) so we choose the StringPiece route.
562 template<typename Str>
DoLowerCaseEqualsASCII(BasicStringPiece<Str> str,StringPiece lowercase_ascii)563 static inline bool DoLowerCaseEqualsASCII(BasicStringPiece<Str> str,
564 StringPiece lowercase_ascii) {
565 if (str.size() != lowercase_ascii.size())
566 return false;
567 for (size_t i = 0; i < str.size(); i++) {
568 if (ToLowerASCII(str[i]) != lowercase_ascii[i])
569 return false;
570 }
571 return true;
572 }
573
LowerCaseEqualsASCII(StringPiece str,StringPiece lowercase_ascii)574 bool LowerCaseEqualsASCII(StringPiece str, StringPiece lowercase_ascii) {
575 return DoLowerCaseEqualsASCII<std::string>(str, lowercase_ascii);
576 }
577
LowerCaseEqualsASCII(StringPiece16 str,StringPiece lowercase_ascii)578 bool LowerCaseEqualsASCII(StringPiece16 str, StringPiece lowercase_ascii) {
579 return DoLowerCaseEqualsASCII<string16>(str, lowercase_ascii);
580 }
581
EqualsASCII(StringPiece16 str,StringPiece ascii)582 bool EqualsASCII(StringPiece16 str, StringPiece ascii) {
583 if (str.length() != ascii.length())
584 return false;
585 return std::equal(ascii.begin(), ascii.end(), str.begin());
586 }
587
588 template<typename Str>
StartsWithT(BasicStringPiece<Str> str,BasicStringPiece<Str> search_for,CompareCase case_sensitivity)589 bool StartsWithT(BasicStringPiece<Str> str,
590 BasicStringPiece<Str> search_for,
591 CompareCase case_sensitivity) {
592 if (search_for.size() > str.size())
593 return false;
594
595 BasicStringPiece<Str> source = str.substr(0, search_for.size());
596
597 switch (case_sensitivity) {
598 case CompareCase::SENSITIVE:
599 return source == search_for;
600
601 case CompareCase::INSENSITIVE_ASCII:
602 return std::equal(
603 search_for.begin(), search_for.end(),
604 source.begin(),
605 CaseInsensitiveCompareASCII<typename Str::value_type>());
606
607 default:
608 NOTREACHED();
609 return false;
610 }
611 }
612
StartsWith(StringPiece str,StringPiece search_for,CompareCase case_sensitivity)613 bool StartsWith(StringPiece str,
614 StringPiece search_for,
615 CompareCase case_sensitivity) {
616 return StartsWithT<std::string>(str, search_for, case_sensitivity);
617 }
618
StartsWith(StringPiece16 str,StringPiece16 search_for,CompareCase case_sensitivity)619 bool StartsWith(StringPiece16 str,
620 StringPiece16 search_for,
621 CompareCase case_sensitivity) {
622 return StartsWithT<string16>(str, search_for, case_sensitivity);
623 }
624
625 template <typename Str>
EndsWithT(BasicStringPiece<Str> str,BasicStringPiece<Str> search_for,CompareCase case_sensitivity)626 bool EndsWithT(BasicStringPiece<Str> str,
627 BasicStringPiece<Str> search_for,
628 CompareCase case_sensitivity) {
629 if (search_for.size() > str.size())
630 return false;
631
632 BasicStringPiece<Str> source = str.substr(str.size() - search_for.size(),
633 search_for.size());
634
635 switch (case_sensitivity) {
636 case CompareCase::SENSITIVE:
637 return source == search_for;
638
639 case CompareCase::INSENSITIVE_ASCII:
640 return std::equal(
641 source.begin(), source.end(),
642 search_for.begin(),
643 CaseInsensitiveCompareASCII<typename Str::value_type>());
644
645 default:
646 NOTREACHED();
647 return false;
648 }
649 }
650
EndsWith(StringPiece str,StringPiece search_for,CompareCase case_sensitivity)651 bool EndsWith(StringPiece str,
652 StringPiece search_for,
653 CompareCase case_sensitivity) {
654 return EndsWithT<std::string>(str, search_for, case_sensitivity);
655 }
656
EndsWith(StringPiece16 str,StringPiece16 search_for,CompareCase case_sensitivity)657 bool EndsWith(StringPiece16 str,
658 StringPiece16 search_for,
659 CompareCase case_sensitivity) {
660 return EndsWithT<string16>(str, search_for, case_sensitivity);
661 }
662
HexDigitToInt(wchar_t c)663 char HexDigitToInt(wchar_t c) {
664 DCHECK(IsHexDigit(c));
665 if (c >= '0' && c <= '9')
666 return static_cast<char>(c - '0');
667 if (c >= 'A' && c <= 'F')
668 return static_cast<char>(c - 'A' + 10);
669 if (c >= 'a' && c <= 'f')
670 return static_cast<char>(c - 'a' + 10);
671 return 0;
672 }
673
IsUnicodeWhitespace(wchar_t c)674 bool IsUnicodeWhitespace(wchar_t c) {
675 // kWhitespaceWide is a NULL-terminated string
676 for (const wchar_t* cur = kWhitespaceWide; *cur; ++cur) {
677 if (*cur == c)
678 return true;
679 }
680 return false;
681 }
682
683 static const char* const kByteStringsUnlocalized[] = {
684 " B",
685 " kB",
686 " MB",
687 " GB",
688 " TB",
689 " PB"
690 };
691
FormatBytesUnlocalized(int64_t bytes)692 string16 FormatBytesUnlocalized(int64_t bytes) {
693 double unit_amount = static_cast<double>(bytes);
694 size_t dimension = 0;
695 const int kKilo = 1024;
696 while (unit_amount >= kKilo &&
697 dimension < arraysize(kByteStringsUnlocalized) - 1) {
698 unit_amount /= kKilo;
699 dimension++;
700 }
701
702 char buf[64];
703 if (bytes != 0 && dimension > 0 && unit_amount < 100) {
704 base::snprintf(buf, arraysize(buf), "%.1lf%s", unit_amount,
705 kByteStringsUnlocalized[dimension]);
706 } else {
707 base::snprintf(buf, arraysize(buf), "%.0lf%s", unit_amount,
708 kByteStringsUnlocalized[dimension]);
709 }
710
711 return ASCIIToUTF16(buf);
712 }
713
714 // Runs in O(n) time in the length of |str|.
715 template<class StringType>
DoReplaceSubstringsAfterOffset(StringType * str,size_t offset,BasicStringPiece<StringType> find_this,BasicStringPiece<StringType> replace_with,bool replace_all)716 void DoReplaceSubstringsAfterOffset(StringType* str,
717 size_t offset,
718 BasicStringPiece<StringType> find_this,
719 BasicStringPiece<StringType> replace_with,
720 bool replace_all) {
721 DCHECK(!find_this.empty());
722
723 // If the find string doesn't appear, there's nothing to do.
724 offset = str->find(find_this.data(), offset, find_this.size());
725 if (offset == StringType::npos)
726 return;
727
728 // If we're only replacing one instance, there's no need to do anything
729 // complicated.
730 size_t find_length = find_this.length();
731 if (!replace_all) {
732 str->replace(offset, find_length, replace_with.data(), replace_with.size());
733 return;
734 }
735
736 // If the find and replace strings are the same length, we can simply use
737 // replace() on each instance, and finish the entire operation in O(n) time.
738 size_t replace_length = replace_with.length();
739 if (find_length == replace_length) {
740 do {
741 str->replace(offset, find_length,
742 replace_with.data(), replace_with.size());
743 offset = str->find(find_this.data(), offset + replace_length,
744 find_this.size());
745 } while (offset != StringType::npos);
746 return;
747 }
748
749 // Since the find and replace strings aren't the same length, a loop like the
750 // one above would be O(n^2) in the worst case, as replace() will shift the
751 // entire remaining string each time. We need to be more clever to keep
752 // things O(n).
753 //
754 // If we're shortening the string, we can alternate replacements with shifting
755 // forward the intervening characters using memmove().
756 size_t str_length = str->length();
757 if (find_length > replace_length) {
758 size_t write_offset = offset;
759 do {
760 if (replace_length) {
761 str->replace(write_offset, replace_length,
762 replace_with.data(), replace_with.size());
763 write_offset += replace_length;
764 }
765 size_t read_offset = offset + find_length;
766 offset = std::min(
767 str->find(find_this.data(), read_offset, find_this.size()),
768 str_length);
769 size_t length = offset - read_offset;
770 if (length) {
771 memmove(&(*str)[write_offset], &(*str)[read_offset],
772 length * sizeof(typename StringType::value_type));
773 write_offset += length;
774 }
775 } while (offset < str_length);
776 str->resize(write_offset);
777 return;
778 }
779
780 // We're lengthening the string. We can use alternating replacements and
781 // memmove() calls like above, but we need to precalculate the final string
782 // length and then expand from back-to-front to avoid overwriting the string
783 // as we're reading it, needing to shift, or having to copy to a second string
784 // temporarily.
785 size_t first_match = offset;
786
787 // First, calculate the final length and resize the string.
788 size_t final_length = str_length;
789 size_t expansion = replace_length - find_length;
790 size_t current_match;
791 do {
792 final_length += expansion;
793 // Minor optimization: save this offset into |current_match|, so that on
794 // exit from the loop, |current_match| will point at the last instance of
795 // the find string, and we won't need to find() it again immediately.
796 current_match = offset;
797 offset = str->find(find_this.data(), offset + find_length,
798 find_this.size());
799 } while (offset != StringType::npos);
800 str->resize(final_length);
801
802 // Now do the replacement loop, working backwards through the string.
803 for (size_t prev_match = str_length, write_offset = final_length; ;
804 current_match = str->rfind(find_this.data(), current_match - 1,
805 find_this.size())) {
806 size_t read_offset = current_match + find_length;
807 size_t length = prev_match - read_offset;
808 if (length) {
809 write_offset -= length;
810 memmove(&(*str)[write_offset], &(*str)[read_offset],
811 length * sizeof(typename StringType::value_type));
812 }
813 write_offset -= replace_length;
814 str->replace(write_offset, replace_length,
815 replace_with.data(), replace_with.size());
816 if (current_match == first_match)
817 return;
818 prev_match = current_match;
819 }
820 }
821
ReplaceFirstSubstringAfterOffset(string16 * str,size_t start_offset,StringPiece16 find_this,StringPiece16 replace_with)822 void ReplaceFirstSubstringAfterOffset(string16* str,
823 size_t start_offset,
824 StringPiece16 find_this,
825 StringPiece16 replace_with) {
826 DoReplaceSubstringsAfterOffset<string16>(
827 str, start_offset, find_this, replace_with, false); // Replace first.
828 }
829
ReplaceFirstSubstringAfterOffset(std::string * str,size_t start_offset,StringPiece find_this,StringPiece replace_with)830 void ReplaceFirstSubstringAfterOffset(std::string* str,
831 size_t start_offset,
832 StringPiece find_this,
833 StringPiece replace_with) {
834 DoReplaceSubstringsAfterOffset<std::string>(
835 str, start_offset, find_this, replace_with, false); // Replace first.
836 }
837
ReplaceSubstringsAfterOffset(string16 * str,size_t start_offset,StringPiece16 find_this,StringPiece16 replace_with)838 void ReplaceSubstringsAfterOffset(string16* str,
839 size_t start_offset,
840 StringPiece16 find_this,
841 StringPiece16 replace_with) {
842 DoReplaceSubstringsAfterOffset<string16>(
843 str, start_offset, find_this, replace_with, true); // Replace all.
844 }
845
ReplaceSubstringsAfterOffset(std::string * str,size_t start_offset,StringPiece find_this,StringPiece replace_with)846 void ReplaceSubstringsAfterOffset(std::string* str,
847 size_t start_offset,
848 StringPiece find_this,
849 StringPiece replace_with) {
850 DoReplaceSubstringsAfterOffset<std::string>(
851 str, start_offset, find_this, replace_with, true); // Replace all.
852 }
853
854 template <class string_type>
WriteIntoT(string_type * str,size_t length_with_null)855 inline typename string_type::value_type* WriteIntoT(string_type* str,
856 size_t length_with_null) {
857 DCHECK_GT(length_with_null, 1u);
858 str->reserve(length_with_null);
859 str->resize(length_with_null - 1);
860 return &((*str)[0]);
861 }
862
WriteInto(std::string * str,size_t length_with_null)863 char* WriteInto(std::string* str, size_t length_with_null) {
864 return WriteIntoT(str, length_with_null);
865 }
866
WriteInto(string16 * str,size_t length_with_null)867 char16* WriteInto(string16* str, size_t length_with_null) {
868 return WriteIntoT(str, length_with_null);
869 }
870
871 // Generic version for all JoinString overloads. |list_type| must be a sequence
872 // (std::vector or std::initializer_list) of strings/StringPieces (std::string,
873 // string16, StringPiece or StringPiece16). |string_type| is either std::string
874 // or string16.
875 template <typename list_type, typename string_type>
JoinStringT(const list_type & parts,BasicStringPiece<string_type> sep)876 static string_type JoinStringT(const list_type& parts,
877 BasicStringPiece<string_type> sep) {
878 if (parts.size() == 0)
879 return string_type();
880
881 // Pre-allocate the eventual size of the string. Start with the size of all of
882 // the separators (note that this *assumes* parts.size() > 0).
883 size_t total_size = (parts.size() - 1) * sep.size();
884 for (const auto& part : parts)
885 total_size += part.size();
886 string_type result;
887 result.reserve(total_size);
888
889 auto iter = parts.begin();
890 DCHECK(iter != parts.end());
891 AppendToString(&result, *iter);
892 ++iter;
893
894 for (; iter != parts.end(); ++iter) {
895 sep.AppendToString(&result);
896 // Using the overloaded AppendToString allows this template function to work
897 // on both strings and StringPieces without creating an intermediate
898 // StringPiece object.
899 AppendToString(&result, *iter);
900 }
901
902 // Sanity-check that we pre-allocated correctly.
903 DCHECK_EQ(total_size, result.size());
904
905 return result;
906 }
907
JoinString(const std::vector<std::string> & parts,StringPiece separator)908 std::string JoinString(const std::vector<std::string>& parts,
909 StringPiece separator) {
910 return JoinStringT(parts, separator);
911 }
912
JoinString(const std::vector<string16> & parts,StringPiece16 separator)913 string16 JoinString(const std::vector<string16>& parts,
914 StringPiece16 separator) {
915 return JoinStringT(parts, separator);
916 }
917
JoinString(const std::vector<StringPiece> & parts,StringPiece separator)918 std::string JoinString(const std::vector<StringPiece>& parts,
919 StringPiece separator) {
920 return JoinStringT(parts, separator);
921 }
922
JoinString(const std::vector<StringPiece16> & parts,StringPiece16 separator)923 string16 JoinString(const std::vector<StringPiece16>& parts,
924 StringPiece16 separator) {
925 return JoinStringT(parts, separator);
926 }
927
JoinString(std::initializer_list<StringPiece> parts,StringPiece separator)928 std::string JoinString(std::initializer_list<StringPiece> parts,
929 StringPiece separator) {
930 return JoinStringT(parts, separator);
931 }
932
JoinString(std::initializer_list<StringPiece16> parts,StringPiece16 separator)933 string16 JoinString(std::initializer_list<StringPiece16> parts,
934 StringPiece16 separator) {
935 return JoinStringT(parts, separator);
936 }
937
938 template<class FormatStringType, class OutStringType>
DoReplaceStringPlaceholders(const FormatStringType & format_string,const std::vector<OutStringType> & subst,std::vector<size_t> * offsets)939 OutStringType DoReplaceStringPlaceholders(
940 const FormatStringType& format_string,
941 const std::vector<OutStringType>& subst,
942 std::vector<size_t>* offsets) {
943 size_t substitutions = subst.size();
944 DCHECK_LT(substitutions, 10U);
945
946 size_t sub_length = 0;
947 for (const auto& cur : subst)
948 sub_length += cur.length();
949
950 OutStringType formatted;
951 formatted.reserve(format_string.length() + sub_length);
952
953 std::vector<ReplacementOffset> r_offsets;
954 for (auto i = format_string.begin(); i != format_string.end(); ++i) {
955 if ('$' == *i) {
956 if (i + 1 != format_string.end()) {
957 ++i;
958 if ('$' == *i) {
959 while (i != format_string.end() && '$' == *i) {
960 formatted.push_back('$');
961 ++i;
962 }
963 --i;
964 } else {
965 if (*i < '1' || *i > '9') {
966 DLOG(ERROR) << "Invalid placeholder: $" << *i;
967 continue;
968 }
969 uintptr_t index = *i - '1';
970 if (offsets) {
971 ReplacementOffset r_offset(index,
972 static_cast<int>(formatted.size()));
973 r_offsets.insert(std::lower_bound(r_offsets.begin(),
974 r_offsets.end(),
975 r_offset,
976 &CompareParameter),
977 r_offset);
978 }
979 if (index < substitutions)
980 formatted.append(subst.at(index));
981 }
982 }
983 } else {
984 formatted.push_back(*i);
985 }
986 }
987 if (offsets) {
988 for (const auto& cur : r_offsets)
989 offsets->push_back(cur.offset);
990 }
991 return formatted;
992 }
993
ReplaceStringPlaceholders(const string16 & format_string,const std::vector<string16> & subst,std::vector<size_t> * offsets)994 string16 ReplaceStringPlaceholders(const string16& format_string,
995 const std::vector<string16>& subst,
996 std::vector<size_t>* offsets) {
997 return DoReplaceStringPlaceholders(format_string, subst, offsets);
998 }
999
ReplaceStringPlaceholders(const StringPiece & format_string,const std::vector<std::string> & subst,std::vector<size_t> * offsets)1000 std::string ReplaceStringPlaceholders(const StringPiece& format_string,
1001 const std::vector<std::string>& subst,
1002 std::vector<size_t>* offsets) {
1003 return DoReplaceStringPlaceholders(format_string, subst, offsets);
1004 }
1005
ReplaceStringPlaceholders(const string16 & format_string,const string16 & a,size_t * offset)1006 string16 ReplaceStringPlaceholders(const string16& format_string,
1007 const string16& a,
1008 size_t* offset) {
1009 std::vector<size_t> offsets;
1010 std::vector<string16> subst;
1011 subst.push_back(a);
1012 string16 result = ReplaceStringPlaceholders(format_string, subst, &offsets);
1013
1014 DCHECK_EQ(1U, offsets.size());
1015 if (offset)
1016 *offset = offsets[0];
1017 return result;
1018 }
1019
1020 // The following code is compatible with the OpenBSD lcpy interface. See:
1021 // http://www.gratisoft.us/todd/papers/strlcpy.html
1022 // ftp://ftp.openbsd.org/pub/OpenBSD/src/lib/libc/string/{wcs,str}lcpy.c
1023
1024 namespace {
1025
1026 template <typename CHAR>
lcpyT(CHAR * dst,const CHAR * src,size_t dst_size)1027 size_t lcpyT(CHAR* dst, const CHAR* src, size_t dst_size) {
1028 for (size_t i = 0; i < dst_size; ++i) {
1029 if ((dst[i] = src[i]) == 0) // We hit and copied the terminating NULL.
1030 return i;
1031 }
1032
1033 // We were left off at dst_size. We over copied 1 byte. Null terminate.
1034 if (dst_size != 0)
1035 dst[dst_size - 1] = 0;
1036
1037 // Count the rest of the |src|, and return it's length in characters.
1038 while (src[dst_size]) ++dst_size;
1039 return dst_size;
1040 }
1041
1042 } // namespace
1043
strlcpy(char * dst,const char * src,size_t dst_size)1044 size_t strlcpy(char* dst, const char* src, size_t dst_size) {
1045 return lcpyT<char>(dst, src, dst_size);
1046 }
wcslcpy(wchar_t * dst,const wchar_t * src,size_t dst_size)1047 size_t wcslcpy(wchar_t* dst, const wchar_t* src, size_t dst_size) {
1048 return lcpyT<wchar_t>(dst, src, dst_size);
1049 }
1050
1051 } // namespace base
1052