• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/threading/thread_local_storage.h"
6 
7 #include "base/atomicops.h"
8 #include "base/logging.h"
9 #include "base/synchronization/lock.h"
10 #include "build/build_config.h"
11 
12 using base::internal::PlatformThreadLocalStorage;
13 
14 // Chrome Thread Local Storage (TLS)
15 //
16 // This TLS system allows Chrome to use a single OS level TLS slot process-wide,
17 // and allows us to control the slot limits instead of being at the mercy of the
18 // platform. To do this, Chrome TLS replicates an array commonly found in the OS
19 // thread metadata.
20 //
21 // Overview:
22 //
23 // OS TLS Slots       Per-Thread                 Per-Process Global
24 //     ...
25 //     []             Chrome TLS Array           Chrome TLS Metadata
26 //     [] ----------> [][][][][ ][][][][]        [][][][][ ][][][][]
27 //     []                      |                          |
28 //     ...                     V                          V
29 //                      Metadata Version           Slot Information
30 //                         Your Data!
31 //
32 // Using a single OS TLS slot, Chrome TLS allocates an array on demand for the
33 // lifetime of each thread that requests Chrome TLS data. Each per-thread TLS
34 // array matches the length of the per-process global metadata array.
35 //
36 // A per-process global TLS metadata array tracks information about each item in
37 // the per-thread array:
38 //   * Status: Tracks if the slot is allocated or free to assign.
39 //   * Destructor: An optional destructor to call on thread destruction for that
40 //                 specific slot.
41 //   * Version: Tracks the current version of the TLS slot. Each TLS slot
42 //              allocation is associated with a unique version number.
43 //
44 //              Most OS TLS APIs guarantee that a newly allocated TLS slot is
45 //              initialized to 0 for all threads. The Chrome TLS system provides
46 //              this guarantee by tracking the version for each TLS slot here
47 //              on each per-thread Chrome TLS array entry. Threads that access
48 //              a slot with a mismatched version will receive 0 as their value.
49 //              The metadata version is incremented when the client frees a
50 //              slot. The per-thread metadata version is updated when a client
51 //              writes to the slot. This scheme allows for constant time
52 //              invalidation and avoids the need to iterate through each Chrome
53 //              TLS array to mark the slot as zero.
54 //
55 // Just like an OS TLS API, clients of the Chrome TLS are responsible for
56 // managing any necessary lifetime of the data in their slots. The only
57 // convenience provided is automatic destruction when a thread ends. If a client
58 // frees a slot, that client is responsible for destroying the data in the slot.
59 
60 namespace {
61 // In order to make TLS destructors work, we need to keep around a function
62 // pointer to the destructor for each slot. We keep this array of pointers in a
63 // global (static) array.
64 // We use the single OS-level TLS slot (giving us one pointer per thread) to
65 // hold a pointer to a per-thread array (table) of slots that we allocate to
66 // Chromium consumers.
67 
68 // g_native_tls_key is the one native TLS that we use. It stores our table.
69 base::subtle::Atomic32 g_native_tls_key =
70     PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES;
71 
72 // The maximum number of slots in our thread local storage stack.
73 constexpr int kThreadLocalStorageSize = 256;
74 constexpr int kInvalidSlotValue = -1;
75 
76 enum TlsStatus {
77   FREE,
78   IN_USE,
79 };
80 
81 struct TlsMetadata {
82   TlsStatus status;
83   base::ThreadLocalStorage::TLSDestructorFunc destructor;
84   uint32_t version;
85 };
86 
87 struct TlsVectorEntry {
88   void* data;
89   uint32_t version;
90 };
91 
92 // This lock isn't needed until after we've constructed the per-thread TLS
93 // vector, so it's safe to use.
GetTLSMetadataLock()94 base::Lock* GetTLSMetadataLock() {
95   static auto* lock = new base::Lock();
96   return lock;
97 }
98 TlsMetadata g_tls_metadata[kThreadLocalStorageSize];
99 size_t g_last_assigned_slot = 0;
100 
101 // The maximum number of times to try to clear slots by calling destructors.
102 // Use pthread naming convention for clarity.
103 constexpr int kMaxDestructorIterations = kThreadLocalStorageSize;
104 
105 // This function is called to initialize our entire Chromium TLS system.
106 // It may be called very early, and we need to complete most all of the setup
107 // (initialization) before calling *any* memory allocator functions, which may
108 // recursively depend on this initialization.
109 // As a result, we use Atomics, and avoid anything (like a singleton) that might
110 // require memory allocations.
ConstructTlsVector()111 TlsVectorEntry* ConstructTlsVector() {
112   PlatformThreadLocalStorage::TLSKey key =
113       base::subtle::NoBarrier_Load(&g_native_tls_key);
114   if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES) {
115     CHECK(PlatformThreadLocalStorage::AllocTLS(&key));
116 
117     // The TLS_KEY_OUT_OF_INDEXES is used to find out whether the key is set or
118     // not in NoBarrier_CompareAndSwap, but Posix doesn't have invalid key, we
119     // define an almost impossible value be it.
120     // If we really get TLS_KEY_OUT_OF_INDEXES as value of key, just alloc
121     // another TLS slot.
122     if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES) {
123       PlatformThreadLocalStorage::TLSKey tmp = key;
124       CHECK(PlatformThreadLocalStorage::AllocTLS(&key) &&
125             key != PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES);
126       PlatformThreadLocalStorage::FreeTLS(tmp);
127     }
128     // Atomically test-and-set the tls_key. If the key is
129     // TLS_KEY_OUT_OF_INDEXES, go ahead and set it. Otherwise, do nothing, as
130     // another thread already did our dirty work.
131     if (PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES !=
132         static_cast<PlatformThreadLocalStorage::TLSKey>(
133             base::subtle::NoBarrier_CompareAndSwap(
134                 &g_native_tls_key,
135                 PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES, key))) {
136       // We've been shortcut. Another thread replaced g_native_tls_key first so
137       // we need to destroy our index and use the one the other thread got
138       // first.
139       PlatformThreadLocalStorage::FreeTLS(key);
140       key = base::subtle::NoBarrier_Load(&g_native_tls_key);
141     }
142   }
143   CHECK(!PlatformThreadLocalStorage::GetTLSValue(key));
144 
145   // Some allocators, such as TCMalloc, make use of thread local storage. As a
146   // result, any attempt to call new (or malloc) will lazily cause such a system
147   // to initialize, which will include registering for a TLS key. If we are not
148   // careful here, then that request to create a key will call new back, and
149   // we'll have an infinite loop. We avoid that as follows: Use a stack
150   // allocated vector, so that we don't have dependence on our allocator until
151   // our service is in place. (i.e., don't even call new until after we're
152   // setup)
153   TlsVectorEntry stack_allocated_tls_data[kThreadLocalStorageSize];
154   memset(stack_allocated_tls_data, 0, sizeof(stack_allocated_tls_data));
155   // Ensure that any rentrant calls change the temp version.
156   PlatformThreadLocalStorage::SetTLSValue(key, stack_allocated_tls_data);
157 
158   // Allocate an array to store our data.
159   TlsVectorEntry* tls_data = new TlsVectorEntry[kThreadLocalStorageSize];
160   memcpy(tls_data, stack_allocated_tls_data, sizeof(stack_allocated_tls_data));
161   PlatformThreadLocalStorage::SetTLSValue(key, tls_data);
162   return tls_data;
163 }
164 
OnThreadExitInternal(TlsVectorEntry * tls_data)165 void OnThreadExitInternal(TlsVectorEntry* tls_data) {
166   DCHECK(tls_data);
167   // Some allocators, such as TCMalloc, use TLS. As a result, when a thread
168   // terminates, one of the destructor calls we make may be to shut down an
169   // allocator. We have to be careful that after we've shutdown all of the known
170   // destructors (perchance including an allocator), that we don't call the
171   // allocator and cause it to resurrect itself (with no possibly destructor
172   // call to follow). We handle this problem as follows: Switch to using a stack
173   // allocated vector, so that we don't have dependence on our allocator after
174   // we have called all g_tls_metadata destructors. (i.e., don't even call
175   // delete[] after we're done with destructors.)
176   TlsVectorEntry stack_allocated_tls_data[kThreadLocalStorageSize];
177   memcpy(stack_allocated_tls_data, tls_data, sizeof(stack_allocated_tls_data));
178   // Ensure that any re-entrant calls change the temp version.
179   PlatformThreadLocalStorage::TLSKey key =
180       base::subtle::NoBarrier_Load(&g_native_tls_key);
181   PlatformThreadLocalStorage::SetTLSValue(key, stack_allocated_tls_data);
182   delete[] tls_data;  // Our last dependence on an allocator.
183 
184   // Snapshot the TLS Metadata so we don't have to lock on every access.
185   TlsMetadata tls_metadata[kThreadLocalStorageSize];
186   {
187     base::AutoLock auto_lock(*GetTLSMetadataLock());
188     memcpy(tls_metadata, g_tls_metadata, sizeof(g_tls_metadata));
189   }
190 
191   int remaining_attempts = kMaxDestructorIterations;
192   bool need_to_scan_destructors = true;
193   while (need_to_scan_destructors) {
194     need_to_scan_destructors = false;
195     // Try to destroy the first-created-slot (which is slot 1) in our last
196     // destructor call. That user was able to function, and define a slot with
197     // no other services running, so perhaps it is a basic service (like an
198     // allocator) and should also be destroyed last. If we get the order wrong,
199     // then we'll iterate several more times, so it is really not that critical
200     // (but it might help).
201     for (int slot = 0; slot < kThreadLocalStorageSize ; ++slot) {
202       void* tls_value = stack_allocated_tls_data[slot].data;
203       if (!tls_value || tls_metadata[slot].status == TlsStatus::FREE ||
204           stack_allocated_tls_data[slot].version != tls_metadata[slot].version)
205         continue;
206 
207       base::ThreadLocalStorage::TLSDestructorFunc destructor =
208           tls_metadata[slot].destructor;
209       if (!destructor)
210         continue;
211       stack_allocated_tls_data[slot].data = nullptr;  // pre-clear the slot.
212       destructor(tls_value);
213       // Any destructor might have called a different service, which then set a
214       // different slot to a non-null value. Hence we need to check the whole
215       // vector again. This is a pthread standard.
216       need_to_scan_destructors = true;
217     }
218     if (--remaining_attempts <= 0) {
219       NOTREACHED();  // Destructors might not have been called.
220       break;
221     }
222   }
223 
224   // Remove our stack allocated vector.
225   PlatformThreadLocalStorage::SetTLSValue(key, nullptr);
226 }
227 
228 }  // namespace
229 
230 namespace base {
231 
232 namespace internal {
233 
234 #if defined(OS_WIN)
OnThreadExit()235 void PlatformThreadLocalStorage::OnThreadExit() {
236   PlatformThreadLocalStorage::TLSKey key =
237       base::subtle::NoBarrier_Load(&g_native_tls_key);
238   if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES)
239     return;
240   void *tls_data = GetTLSValue(key);
241   // Maybe we have never initialized TLS for this thread.
242   if (!tls_data)
243     return;
244   OnThreadExitInternal(static_cast<TlsVectorEntry*>(tls_data));
245 }
246 #elif defined(OS_POSIX)
247 void PlatformThreadLocalStorage::OnThreadExit(void* value) {
248   OnThreadExitInternal(static_cast<TlsVectorEntry*>(value));
249 }
250 #endif  // defined(OS_WIN)
251 
252 }  // namespace internal
253 
Initialize(TLSDestructorFunc destructor)254 void ThreadLocalStorage::StaticSlot::Initialize(TLSDestructorFunc destructor) {
255   PlatformThreadLocalStorage::TLSKey key =
256       base::subtle::NoBarrier_Load(&g_native_tls_key);
257   if (key == PlatformThreadLocalStorage::TLS_KEY_OUT_OF_INDEXES ||
258       !PlatformThreadLocalStorage::GetTLSValue(key)) {
259     ConstructTlsVector();
260   }
261 
262   // Grab a new slot.
263   slot_ = kInvalidSlotValue;
264   version_ = 0;
265   {
266     base::AutoLock auto_lock(*GetTLSMetadataLock());
267     for (int i = 0; i < kThreadLocalStorageSize; ++i) {
268       // Tracking the last assigned slot is an attempt to find the next
269       // available slot within one iteration. Under normal usage, slots remain
270       // in use for the lifetime of the process (otherwise before we reclaimed
271       // slots, we would have run out of slots). This makes it highly likely the
272       // next slot is going to be a free slot.
273       size_t slot_candidate =
274           (g_last_assigned_slot + 1 + i) % kThreadLocalStorageSize;
275       if (g_tls_metadata[slot_candidate].status == TlsStatus::FREE) {
276         g_tls_metadata[slot_candidate].status = TlsStatus::IN_USE;
277         g_tls_metadata[slot_candidate].destructor = destructor;
278         g_last_assigned_slot = slot_candidate;
279         slot_ = slot_candidate;
280         version_ = g_tls_metadata[slot_candidate].version;
281         break;
282       }
283     }
284   }
285   CHECK_NE(slot_, kInvalidSlotValue);
286   CHECK_LT(slot_, kThreadLocalStorageSize);
287 
288   // Setup our destructor.
289   base::subtle::Release_Store(&initialized_, 1);
290 }
291 
Free()292 void ThreadLocalStorage::StaticSlot::Free() {
293   DCHECK_NE(slot_, kInvalidSlotValue);
294   DCHECK_LT(slot_, kThreadLocalStorageSize);
295   {
296     base::AutoLock auto_lock(*GetTLSMetadataLock());
297     g_tls_metadata[slot_].status = TlsStatus::FREE;
298     g_tls_metadata[slot_].destructor = nullptr;
299     ++(g_tls_metadata[slot_].version);
300   }
301   slot_ = kInvalidSlotValue;
302   base::subtle::Release_Store(&initialized_, 0);
303 }
304 
Get() const305 void* ThreadLocalStorage::StaticSlot::Get() const {
306   TlsVectorEntry* tls_data = static_cast<TlsVectorEntry*>(
307       PlatformThreadLocalStorage::GetTLSValue(
308           base::subtle::NoBarrier_Load(&g_native_tls_key)));
309   if (!tls_data)
310     tls_data = ConstructTlsVector();
311   DCHECK_NE(slot_, kInvalidSlotValue);
312   DCHECK_LT(slot_, kThreadLocalStorageSize);
313   // Version mismatches means this slot was previously freed.
314   if (tls_data[slot_].version != version_)
315     return nullptr;
316   return tls_data[slot_].data;
317 }
318 
Set(void * value)319 void ThreadLocalStorage::StaticSlot::Set(void* value) {
320   TlsVectorEntry* tls_data = static_cast<TlsVectorEntry*>(
321       PlatformThreadLocalStorage::GetTLSValue(
322           base::subtle::NoBarrier_Load(&g_native_tls_key)));
323   if (!tls_data)
324     tls_data = ConstructTlsVector();
325   DCHECK_NE(slot_, kInvalidSlotValue);
326   DCHECK_LT(slot_, kThreadLocalStorageSize);
327   tls_data[slot_].data = value;
328   tls_data[slot_].version = version_;
329 }
330 
Slot(TLSDestructorFunc destructor)331 ThreadLocalStorage::Slot::Slot(TLSDestructorFunc destructor) {
332   tls_slot_.Initialize(destructor);
333 }
334 
~Slot()335 ThreadLocalStorage::Slot::~Slot() {
336   tls_slot_.Free();
337 }
338 
Get() const339 void* ThreadLocalStorage::Slot::Get() const {
340   return tls_slot_.Get();
341 }
342 
Set(void * value)343 void ThreadLocalStorage::Slot::Set(void* value) {
344   tls_slot_.Set(value);
345 }
346 
347 }  // namespace base
348