1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // This code implements SPAKE2, a variant of EKE:
6 // http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04
7
8 #include "crypto/p224_spake.h"
9
10 #include <algorithm>
11
12 #include "base/logging.h"
13 #include "crypto/p224.h"
14 #include "crypto/random.h"
15 #include "crypto/secure_util.h"
16
17 namespace {
18
19 // The following two points (M and N in the protocol) are verifiable random
20 // points on the curve and can be generated with the following code:
21
22 // #include <stdint.h>
23 // #include <stdio.h>
24 // #include <string.h>
25 //
26 // #include <openssl/ec.h>
27 // #include <openssl/obj_mac.h>
28 // #include <openssl/sha.h>
29 //
30 // // Silence a presubmit.
31 // #define PRINTF printf
32 //
33 // static const char kSeed1[] = "P224 point generation seed (M)";
34 // static const char kSeed2[] = "P224 point generation seed (N)";
35 //
36 // void find_seed(const char* seed) {
37 // SHA256_CTX sha256;
38 // uint8_t digest[SHA256_DIGEST_LENGTH];
39 //
40 // SHA256_Init(&sha256);
41 // SHA256_Update(&sha256, seed, strlen(seed));
42 // SHA256_Final(digest, &sha256);
43 //
44 // BIGNUM x, y;
45 // EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1);
46 // EC_POINT* p = EC_POINT_new(p224);
47 //
48 // for (unsigned i = 0;; i++) {
49 // BN_init(&x);
50 // BN_bin2bn(digest, 28, &x);
51 //
52 // if (EC_POINT_set_compressed_coordinates_GFp(
53 // p224, p, &x, digest[28] & 1, NULL)) {
54 // BN_init(&y);
55 // EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL);
56 // char* x_str = BN_bn2hex(&x);
57 // char* y_str = BN_bn2hex(&y);
58 // PRINTF("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str);
59 // OPENSSL_free(x_str);
60 // OPENSSL_free(y_str);
61 // BN_free(&x);
62 // BN_free(&y);
63 // break;
64 // }
65 //
66 // SHA256_Init(&sha256);
67 // SHA256_Update(&sha256, digest, sizeof(digest));
68 // SHA256_Final(digest, &sha256);
69 //
70 // BN_free(&x);
71 // }
72 //
73 // EC_POINT_free(p);
74 // EC_GROUP_free(p224);
75 // }
76 //
77 // int main() {
78 // find_seed(kSeed1);
79 // find_seed(kSeed2);
80 // return 0;
81 // }
82
83 const crypto::p224::Point kM = {
84 {174237515, 77186811, 235213682, 33849492,
85 33188520, 48266885, 177021753, 81038478},
86 {104523827, 245682244, 266509668, 236196369,
87 28372046, 145351378, 198520366, 113345994},
88 {1, 0, 0, 0, 0, 0, 0, 0},
89 };
90
91 const crypto::p224::Point kN = {
92 {136176322, 263523628, 251628795, 229292285,
93 5034302, 185981975, 171998428, 11653062},
94 {197567436, 51226044, 60372156, 175772188,
95 42075930, 8083165, 160827401, 65097570},
96 {1, 0, 0, 0, 0, 0, 0, 0},
97 };
98
99 } // anonymous namespace
100
101 namespace crypto {
102
P224EncryptedKeyExchange(PeerType peer_type,const base::StringPiece & password)103 P224EncryptedKeyExchange::P224EncryptedKeyExchange(
104 PeerType peer_type, const base::StringPiece& password)
105 : state_(kStateInitial),
106 is_server_(peer_type == kPeerTypeServer) {
107 memset(&x_, 0, sizeof(x_));
108 memset(&expected_authenticator_, 0, sizeof(expected_authenticator_));
109
110 // x_ is a random scalar.
111 RandBytes(x_, sizeof(x_));
112
113 // Calculate |password| hash to get SPAKE password value.
114 SHA256HashString(std::string(password.data(), password.length()),
115 pw_, sizeof(pw_));
116
117 Init();
118 }
119
Init()120 void P224EncryptedKeyExchange::Init() {
121 // X = g**x_
122 p224::Point X;
123 p224::ScalarBaseMult(x_, &X);
124
125 // The client masks the Diffie-Hellman value, X, by adding M**pw and the
126 // server uses N**pw.
127 p224::Point MNpw;
128 p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw);
129
130 // X* = X + (N|M)**pw
131 p224::Point Xstar;
132 p224::Add(X, MNpw, &Xstar);
133
134 next_message_ = Xstar.ToString();
135 }
136
GetNextMessage()137 const std::string& P224EncryptedKeyExchange::GetNextMessage() {
138 if (state_ == kStateInitial) {
139 state_ = kStateRecvDH;
140 return next_message_;
141 } else if (state_ == kStateSendHash) {
142 state_ = kStateRecvHash;
143 return next_message_;
144 }
145
146 LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in"
147 " bad state " << state_;
148 next_message_ = "";
149 return next_message_;
150 }
151
ProcessMessage(const base::StringPiece & message)152 P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage(
153 const base::StringPiece& message) {
154 if (state_ == kStateRecvHash) {
155 // This is the final state of the protocol: we are reading the peer's
156 // authentication hash and checking that it matches the one that we expect.
157 if (message.size() != sizeof(expected_authenticator_)) {
158 error_ = "peer's hash had an incorrect size";
159 return kResultFailed;
160 }
161 if (!SecureMemEqual(message.data(), expected_authenticator_,
162 message.size())) {
163 error_ = "peer's hash had incorrect value";
164 return kResultFailed;
165 }
166 state_ = kStateDone;
167 return kResultSuccess;
168 }
169
170 if (state_ != kStateRecvDH) {
171 LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in"
172 " bad state " << state_;
173 error_ = "internal error";
174 return kResultFailed;
175 }
176
177 // Y* is the other party's masked, Diffie-Hellman value.
178 p224::Point Ystar;
179 if (!Ystar.SetFromString(message)) {
180 error_ = "failed to parse peer's masked Diffie-Hellman value";
181 return kResultFailed;
182 }
183
184 // We calculate the mask value: (N|M)**pw
185 p224::Point MNpw, minus_MNpw, Y, k;
186 p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw);
187 p224::Negate(MNpw, &minus_MNpw);
188
189 // Y = Y* - (N|M)**pw
190 p224::Add(Ystar, minus_MNpw, &Y);
191
192 // K = Y**x_
193 p224::ScalarMult(Y, x_, &k);
194
195 // If everything worked out, then K is the same for both parties.
196 key_ = k.ToString();
197
198 std::string client_masked_dh, server_masked_dh;
199 if (is_server_) {
200 client_masked_dh = message.as_string();
201 server_masked_dh = next_message_;
202 } else {
203 client_masked_dh = next_message_;
204 server_masked_dh = message.as_string();
205 }
206
207 // Now we calculate the hashes that each side will use to prove to the other
208 // that they derived the correct value for K.
209 uint8_t client_hash[kSHA256Length], server_hash[kSHA256Length];
210 CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_,
211 client_hash);
212 CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_,
213 server_hash);
214
215 const uint8_t* my_hash = is_server_ ? server_hash : client_hash;
216 const uint8_t* their_hash = is_server_ ? client_hash : server_hash;
217
218 next_message_ =
219 std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length);
220 memcpy(expected_authenticator_, their_hash, kSHA256Length);
221 state_ = kStateSendHash;
222 return kResultPending;
223 }
224
CalculateHash(PeerType peer_type,const std::string & client_masked_dh,const std::string & server_masked_dh,const std::string & k,uint8_t * out_digest)225 void P224EncryptedKeyExchange::CalculateHash(
226 PeerType peer_type,
227 const std::string& client_masked_dh,
228 const std::string& server_masked_dh,
229 const std::string& k,
230 uint8_t* out_digest) {
231 std::string hash_contents;
232
233 if (peer_type == kPeerTypeServer) {
234 hash_contents = "server";
235 } else {
236 hash_contents = "client";
237 }
238
239 hash_contents += client_masked_dh;
240 hash_contents += server_masked_dh;
241 hash_contents +=
242 std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_));
243 hash_contents += k;
244
245 SHA256HashString(hash_contents, out_digest, kSHA256Length);
246 }
247
error() const248 const std::string& P224EncryptedKeyExchange::error() const {
249 return error_;
250 }
251
GetKey() const252 const std::string& P224EncryptedKeyExchange::GetKey() const {
253 DCHECK_EQ(state_, kStateDone);
254 return GetUnverifiedKey();
255 }
256
GetUnverifiedKey() const257 const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const {
258 // Key is already final when state is kStateSendHash. Subsequent states are
259 // used only for verification of the key. Some users may combine verification
260 // with sending verifiable data instead of |expected_authenticator_|.
261 DCHECK_GE(state_, kStateSendHash);
262 return key_;
263 }
264
SetXForTesting(const std::string & x)265 void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) {
266 memset(&x_, 0, sizeof(x_));
267 memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_)));
268 Init();
269 }
270
271 } // namespace crypto
272