• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // This code implements SPAKE2, a variant of EKE:
6 //  http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04
7 
8 #include "crypto/p224_spake.h"
9 
10 #include <algorithm>
11 
12 #include "base/logging.h"
13 #include "crypto/p224.h"
14 #include "crypto/random.h"
15 #include "crypto/secure_util.h"
16 
17 namespace {
18 
19 // The following two points (M and N in the protocol) are verifiable random
20 // points on the curve and can be generated with the following code:
21 
22 // #include <stdint.h>
23 // #include <stdio.h>
24 // #include <string.h>
25 //
26 // #include <openssl/ec.h>
27 // #include <openssl/obj_mac.h>
28 // #include <openssl/sha.h>
29 //
30 // // Silence a presubmit.
31 // #define PRINTF printf
32 //
33 // static const char kSeed1[] = "P224 point generation seed (M)";
34 // static const char kSeed2[] = "P224 point generation seed (N)";
35 //
36 // void find_seed(const char* seed) {
37 //   SHA256_CTX sha256;
38 //   uint8_t digest[SHA256_DIGEST_LENGTH];
39 //
40 //   SHA256_Init(&sha256);
41 //   SHA256_Update(&sha256, seed, strlen(seed));
42 //   SHA256_Final(digest, &sha256);
43 //
44 //   BIGNUM x, y;
45 //   EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1);
46 //   EC_POINT* p = EC_POINT_new(p224);
47 //
48 //   for (unsigned i = 0;; i++) {
49 //     BN_init(&x);
50 //     BN_bin2bn(digest, 28, &x);
51 //
52 //     if (EC_POINT_set_compressed_coordinates_GFp(
53 //             p224, p, &x, digest[28] & 1, NULL)) {
54 //       BN_init(&y);
55 //       EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL);
56 //       char* x_str = BN_bn2hex(&x);
57 //       char* y_str = BN_bn2hex(&y);
58 //       PRINTF("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str);
59 //       OPENSSL_free(x_str);
60 //       OPENSSL_free(y_str);
61 //       BN_free(&x);
62 //       BN_free(&y);
63 //       break;
64 //     }
65 //
66 //     SHA256_Init(&sha256);
67 //     SHA256_Update(&sha256, digest, sizeof(digest));
68 //     SHA256_Final(digest, &sha256);
69 //
70 //     BN_free(&x);
71 //   }
72 //
73 //   EC_POINT_free(p);
74 //   EC_GROUP_free(p224);
75 // }
76 //
77 // int main() {
78 //   find_seed(kSeed1);
79 //   find_seed(kSeed2);
80 //   return 0;
81 // }
82 
83 const crypto::p224::Point kM = {
84   {174237515, 77186811, 235213682, 33849492,
85    33188520, 48266885, 177021753, 81038478},
86   {104523827, 245682244, 266509668, 236196369,
87    28372046, 145351378, 198520366, 113345994},
88   {1, 0, 0, 0, 0, 0, 0, 0},
89 };
90 
91 const crypto::p224::Point kN = {
92   {136176322, 263523628, 251628795, 229292285,
93    5034302, 185981975, 171998428, 11653062},
94   {197567436, 51226044, 60372156, 175772188,
95    42075930, 8083165, 160827401, 65097570},
96   {1, 0, 0, 0, 0, 0, 0, 0},
97 };
98 
99 }  // anonymous namespace
100 
101 namespace crypto {
102 
P224EncryptedKeyExchange(PeerType peer_type,const base::StringPiece & password)103 P224EncryptedKeyExchange::P224EncryptedKeyExchange(
104     PeerType peer_type, const base::StringPiece& password)
105     : state_(kStateInitial),
106       is_server_(peer_type == kPeerTypeServer) {
107   memset(&x_, 0, sizeof(x_));
108   memset(&expected_authenticator_, 0, sizeof(expected_authenticator_));
109 
110   // x_ is a random scalar.
111   RandBytes(x_, sizeof(x_));
112 
113   // Calculate |password| hash to get SPAKE password value.
114   SHA256HashString(std::string(password.data(), password.length()),
115                    pw_, sizeof(pw_));
116 
117   Init();
118 }
119 
Init()120 void P224EncryptedKeyExchange::Init() {
121   // X = g**x_
122   p224::Point X;
123   p224::ScalarBaseMult(x_, &X);
124 
125   // The client masks the Diffie-Hellman value, X, by adding M**pw and the
126   // server uses N**pw.
127   p224::Point MNpw;
128   p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw);
129 
130   // X* = X + (N|M)**pw
131   p224::Point Xstar;
132   p224::Add(X, MNpw, &Xstar);
133 
134   next_message_ = Xstar.ToString();
135 }
136 
GetNextMessage()137 const std::string& P224EncryptedKeyExchange::GetNextMessage() {
138   if (state_ == kStateInitial) {
139     state_ = kStateRecvDH;
140     return next_message_;
141   } else if (state_ == kStateSendHash) {
142     state_ = kStateRecvHash;
143     return next_message_;
144   }
145 
146   LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in"
147                 " bad state " << state_;
148   next_message_ = "";
149   return next_message_;
150 }
151 
ProcessMessage(const base::StringPiece & message)152 P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage(
153     const base::StringPiece& message) {
154   if (state_ == kStateRecvHash) {
155     // This is the final state of the protocol: we are reading the peer's
156     // authentication hash and checking that it matches the one that we expect.
157     if (message.size() != sizeof(expected_authenticator_)) {
158       error_ = "peer's hash had an incorrect size";
159       return kResultFailed;
160     }
161     if (!SecureMemEqual(message.data(), expected_authenticator_,
162                         message.size())) {
163       error_ = "peer's hash had incorrect value";
164       return kResultFailed;
165     }
166     state_ = kStateDone;
167     return kResultSuccess;
168   }
169 
170   if (state_ != kStateRecvDH) {
171     LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in"
172                   " bad state " << state_;
173     error_ = "internal error";
174     return kResultFailed;
175   }
176 
177   // Y* is the other party's masked, Diffie-Hellman value.
178   p224::Point Ystar;
179   if (!Ystar.SetFromString(message)) {
180     error_ = "failed to parse peer's masked Diffie-Hellman value";
181     return kResultFailed;
182   }
183 
184   // We calculate the mask value: (N|M)**pw
185   p224::Point MNpw, minus_MNpw, Y, k;
186   p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw);
187   p224::Negate(MNpw, &minus_MNpw);
188 
189   // Y = Y* - (N|M)**pw
190   p224::Add(Ystar, minus_MNpw, &Y);
191 
192   // K = Y**x_
193   p224::ScalarMult(Y, x_, &k);
194 
195   // If everything worked out, then K is the same for both parties.
196   key_ = k.ToString();
197 
198   std::string client_masked_dh, server_masked_dh;
199   if (is_server_) {
200     client_masked_dh = message.as_string();
201     server_masked_dh = next_message_;
202   } else {
203     client_masked_dh = next_message_;
204     server_masked_dh = message.as_string();
205   }
206 
207   // Now we calculate the hashes that each side will use to prove to the other
208   // that they derived the correct value for K.
209   uint8_t client_hash[kSHA256Length], server_hash[kSHA256Length];
210   CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_,
211                 client_hash);
212   CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_,
213                 server_hash);
214 
215   const uint8_t* my_hash = is_server_ ? server_hash : client_hash;
216   const uint8_t* their_hash = is_server_ ? client_hash : server_hash;
217 
218   next_message_ =
219       std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length);
220   memcpy(expected_authenticator_, their_hash, kSHA256Length);
221   state_ = kStateSendHash;
222   return kResultPending;
223 }
224 
CalculateHash(PeerType peer_type,const std::string & client_masked_dh,const std::string & server_masked_dh,const std::string & k,uint8_t * out_digest)225 void P224EncryptedKeyExchange::CalculateHash(
226     PeerType peer_type,
227     const std::string& client_masked_dh,
228     const std::string& server_masked_dh,
229     const std::string& k,
230     uint8_t* out_digest) {
231   std::string hash_contents;
232 
233   if (peer_type == kPeerTypeServer) {
234     hash_contents = "server";
235   } else {
236     hash_contents = "client";
237   }
238 
239   hash_contents += client_masked_dh;
240   hash_contents += server_masked_dh;
241   hash_contents +=
242       std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_));
243   hash_contents += k;
244 
245   SHA256HashString(hash_contents, out_digest, kSHA256Length);
246 }
247 
error() const248 const std::string& P224EncryptedKeyExchange::error() const {
249   return error_;
250 }
251 
GetKey() const252 const std::string& P224EncryptedKeyExchange::GetKey() const {
253   DCHECK_EQ(state_, kStateDone);
254   return GetUnverifiedKey();
255 }
256 
GetUnverifiedKey() const257 const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const {
258   // Key is already final when state is kStateSendHash. Subsequent states are
259   // used only for verification of the key. Some users may combine verification
260   // with sending verifiable data instead of |expected_authenticator_|.
261   DCHECK_GE(state_, kStateSendHash);
262   return key_;
263 }
264 
SetXForTesting(const std::string & x)265 void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) {
266   memset(&x_, 0, sizeof(x_));
267   memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_)));
268   Init();
269 }
270 
271 }  // namespace crypto
272