• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----------------------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // REQUIRES: long_tests
11 
12 // <random>
13 
14 // template<class RealType = double>
15 // class gamma_distribution
16 
17 // template<class _URNG> result_type operator()(_URNG& g);
18 
19 #include <random>
20 #include <cassert>
21 #include <vector>
22 #include <numeric>
23 
24 template <class T>
25 inline
26 T
sqr(T x)27 sqr(T x)
28 {
29     return x * x;
30 }
31 
main()32 int main()
33 {
34     {
35         typedef std::gamma_distribution<> D;
36         typedef std::mt19937 G;
37         G g;
38         D d(0.5, 2);
39         const int N = 1000000;
40         std::vector<D::result_type> u;
41         for (int i = 0; i < N; ++i)
42         {
43             D::result_type v = d(g);
44             assert(d.min() < v);
45             u.push_back(v);
46         }
47         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
48         double var = 0;
49         double skew = 0;
50         double kurtosis = 0;
51         for (unsigned i = 0; i < u.size(); ++i)
52         {
53             double dbl = (u[i] - mean);
54             double d2 = sqr(dbl);
55             var += d2;
56             skew += dbl * d2;
57             kurtosis += d2 * d2;
58         }
59         var /= u.size();
60         double dev = std::sqrt(var);
61         skew /= u.size() * dev * var;
62         kurtosis /= u.size() * var * var;
63         kurtosis -= 3;
64         double x_mean = d.alpha() * d.beta();
65         double x_var = d.alpha() * sqr(d.beta());
66         double x_skew = 2 / std::sqrt(d.alpha());
67         double x_kurtosis = 6 / d.alpha();
68         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
69         assert(std::abs((var - x_var) / x_var) < 0.01);
70         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
71         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
72     }
73     {
74         typedef std::gamma_distribution<> D;
75         typedef std::mt19937 G;
76         G g;
77         D d(1, .5);
78         const int N = 1000000;
79         std::vector<D::result_type> u;
80         for (int i = 0; i < N; ++i)
81         {
82             D::result_type v = d(g);
83             assert(d.min() < v);
84             u.push_back(v);
85         }
86         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
87         double var = 0;
88         double skew = 0;
89         double kurtosis = 0;
90         for (unsigned i = 0; i < u.size(); ++i)
91         {
92             double dbl = (u[i] - mean);
93             double d2 = sqr(dbl);
94             var += d2;
95             skew += dbl * d2;
96             kurtosis += d2 * d2;
97         }
98         var /= u.size();
99         double dev = std::sqrt(var);
100         skew /= u.size() * dev * var;
101         kurtosis /= u.size() * var * var;
102         kurtosis -= 3;
103         double x_mean = d.alpha() * d.beta();
104         double x_var = d.alpha() * sqr(d.beta());
105         double x_skew = 2 / std::sqrt(d.alpha());
106         double x_kurtosis = 6 / d.alpha();
107         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
108         assert(std::abs((var - x_var) / x_var) < 0.01);
109         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
110         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
111     }
112     {
113         typedef std::gamma_distribution<> D;
114         typedef std::mt19937 G;
115         G g;
116         D d(2, 3);
117         const int N = 1000000;
118         std::vector<D::result_type> u;
119         for (int i = 0; i < N; ++i)
120         {
121             D::result_type v = d(g);
122             assert(d.min() < v);
123             u.push_back(v);
124         }
125         double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
126         double var = 0;
127         double skew = 0;
128         double kurtosis = 0;
129         for (unsigned i = 0; i < u.size(); ++i)
130         {
131             double dbl = (u[i] - mean);
132             double d2 = sqr(dbl);
133             var += d2;
134             skew += dbl * d2;
135             kurtosis += d2 * d2;
136         }
137         var /= u.size();
138         double dev = std::sqrt(var);
139         skew /= u.size() * dev * var;
140         kurtosis /= u.size() * var * var;
141         kurtosis -= 3;
142         double x_mean = d.alpha() * d.beta();
143         double x_var = d.alpha() * sqr(d.beta());
144         double x_skew = 2 / std::sqrt(d.alpha());
145         double x_kurtosis = 6 / d.alpha();
146         assert(std::abs((mean - x_mean) / x_mean) < 0.01);
147         assert(std::abs((var - x_var) / x_var) < 0.01);
148         assert(std::abs((skew - x_skew) / x_skew) < 0.01);
149         assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
150     }
151 }
152