1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "model-executor.h"
18
19 #include "quantization.h"
20 #include "util/base/logging.h"
21
22 namespace libtextclassifier2 {
23 namespace internal {
FromModelSpec(const tflite::Model * model_spec,std::unique_ptr<const tflite::FlatBufferModel> * model)24 bool FromModelSpec(const tflite::Model* model_spec,
25 std::unique_ptr<const tflite::FlatBufferModel>* model) {
26 *model = tflite::FlatBufferModel::BuildFromModel(model_spec);
27 if (!(*model) || !(*model)->initialized()) {
28 TC_LOG(ERROR) << "Could not build TFLite model from a model spec. ";
29 return false;
30 }
31 return true;
32 }
33 } // namespace internal
34
CreateInterpreter() const35 std::unique_ptr<tflite::Interpreter> ModelExecutor::CreateInterpreter() const {
36 std::unique_ptr<tflite::Interpreter> interpreter;
37 tflite::InterpreterBuilder(*model_, builtins_)(&interpreter);
38 return interpreter;
39 }
40
Instance(const flatbuffers::Vector<uint8_t> * model_spec_buffer,int embedding_size,int quantization_bits)41 std::unique_ptr<TFLiteEmbeddingExecutor> TFLiteEmbeddingExecutor::Instance(
42 const flatbuffers::Vector<uint8_t>* model_spec_buffer, int embedding_size,
43 int quantization_bits) {
44 const tflite::Model* model_spec =
45 flatbuffers::GetRoot<tflite::Model>(model_spec_buffer->data());
46 flatbuffers::Verifier verifier(model_spec_buffer->data(),
47 model_spec_buffer->Length());
48 std::unique_ptr<const tflite::FlatBufferModel> model;
49 if (!model_spec->Verify(verifier) ||
50 !internal::FromModelSpec(model_spec, &model)) {
51 TC_LOG(ERROR) << "Could not load TFLite model.";
52 return nullptr;
53 }
54
55 std::unique_ptr<tflite::Interpreter> interpreter;
56 tflite::ops::builtin::BuiltinOpResolver builtins;
57 tflite::InterpreterBuilder(*model, builtins)(&interpreter);
58 if (!interpreter) {
59 TC_LOG(ERROR) << "Could not build TFLite interpreter for embeddings.";
60 return nullptr;
61 }
62
63 if (interpreter->tensors_size() != 2) {
64 return nullptr;
65 }
66 const TfLiteTensor* embeddings = interpreter->tensor(0);
67 if (embeddings->dims->size != 2) {
68 return nullptr;
69 }
70 int num_buckets = embeddings->dims->data[0];
71 const TfLiteTensor* scales = interpreter->tensor(1);
72 if (scales->dims->size != 2 || scales->dims->data[0] != num_buckets ||
73 scales->dims->data[1] != 1) {
74 return nullptr;
75 }
76 int bytes_per_embedding = embeddings->dims->data[1];
77 if (!CheckQuantizationParams(bytes_per_embedding, quantization_bits,
78 embedding_size)) {
79 TC_LOG(ERROR) << "Mismatch in quantization parameters.";
80 return nullptr;
81 }
82
83 return std::unique_ptr<TFLiteEmbeddingExecutor>(new TFLiteEmbeddingExecutor(
84 std::move(model), quantization_bits, num_buckets, bytes_per_embedding,
85 embedding_size, scales, embeddings, std::move(interpreter)));
86 }
87
TFLiteEmbeddingExecutor(std::unique_ptr<const tflite::FlatBufferModel> model,int quantization_bits,int num_buckets,int bytes_per_embedding,int output_embedding_size,const TfLiteTensor * scales,const TfLiteTensor * embeddings,std::unique_ptr<tflite::Interpreter> interpreter)88 TFLiteEmbeddingExecutor::TFLiteEmbeddingExecutor(
89 std::unique_ptr<const tflite::FlatBufferModel> model, int quantization_bits,
90 int num_buckets, int bytes_per_embedding, int output_embedding_size,
91 const TfLiteTensor* scales, const TfLiteTensor* embeddings,
92 std::unique_ptr<tflite::Interpreter> interpreter)
93 : model_(std::move(model)),
94 quantization_bits_(quantization_bits),
95 num_buckets_(num_buckets),
96 bytes_per_embedding_(bytes_per_embedding),
97 output_embedding_size_(output_embedding_size),
98 scales_(scales),
99 embeddings_(embeddings),
100 interpreter_(std::move(interpreter)) {}
101
AddEmbedding(const TensorView<int> & sparse_features,float * dest,int dest_size) const102 bool TFLiteEmbeddingExecutor::AddEmbedding(
103 const TensorView<int>& sparse_features, float* dest, int dest_size) const {
104 if (dest_size != output_embedding_size_) {
105 TC_LOG(ERROR) << "Mismatching dest_size and output_embedding_size: "
106 << dest_size << " " << output_embedding_size_;
107 return false;
108 }
109 const int num_sparse_features = sparse_features.size();
110 for (int i = 0; i < num_sparse_features; ++i) {
111 const int bucket_id = sparse_features.data()[i];
112 if (bucket_id >= num_buckets_) {
113 return false;
114 }
115
116 if (!DequantizeAdd(scales_->data.f, embeddings_->data.uint8,
117 bytes_per_embedding_, num_sparse_features,
118 quantization_bits_, bucket_id, dest, dest_size)) {
119 return false;
120 }
121 }
122 return true;
123 }
124
ComputeLogitsHelper(const int input_index_features,const int output_index_logits,const TensorView<float> & features,tflite::Interpreter * interpreter)125 TensorView<float> ComputeLogitsHelper(const int input_index_features,
126 const int output_index_logits,
127 const TensorView<float>& features,
128 tflite::Interpreter* interpreter) {
129 if (!interpreter) {
130 return TensorView<float>::Invalid();
131 }
132 interpreter->ResizeInputTensor(input_index_features, features.shape());
133 if (interpreter->AllocateTensors() != kTfLiteOk) {
134 TC_VLOG(1) << "Allocation failed.";
135 return TensorView<float>::Invalid();
136 }
137
138 TfLiteTensor* features_tensor =
139 interpreter->tensor(interpreter->inputs()[input_index_features]);
140 int size = 1;
141 for (int i = 0; i < features_tensor->dims->size; ++i) {
142 size *= features_tensor->dims->data[i];
143 }
144 features.copy_to(features_tensor->data.f, size);
145
146 if (interpreter->Invoke() != kTfLiteOk) {
147 TC_VLOG(1) << "Interpreter failed.";
148 return TensorView<float>::Invalid();
149 }
150
151 TfLiteTensor* logits_tensor =
152 interpreter->tensor(interpreter->outputs()[output_index_logits]);
153
154 std::vector<int> output_shape(logits_tensor->dims->size);
155 for (int i = 0; i < logits_tensor->dims->size; ++i) {
156 output_shape[i] = logits_tensor->dims->data[i];
157 }
158
159 return TensorView<float>(logits_tensor->data.f, output_shape);
160 }
161
162 } // namespace libtextclassifier2
163