1 /*
2 * Copyright (c) 2014 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <assert.h>
12 #include <immintrin.h>
13
14 #include "./vp9_rtcd.h"
15 #include "vpx/vpx_integer.h"
16 #include "vpx_dsp/vpx_dsp_common.h"
17 #include "vpx_dsp/x86/bitdepth_conversion_avx2.h"
18
vp9_block_error_avx2(const tran_low_t * coeff,const tran_low_t * dqcoeff,intptr_t block_size,int64_t * ssz)19 int64_t vp9_block_error_avx2(const tran_low_t *coeff, const tran_low_t *dqcoeff,
20 intptr_t block_size, int64_t *ssz) {
21 __m256i sse_256, ssz_256;
22 __m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi;
23 __m256i sse_hi, ssz_hi;
24 __m128i sse_128, ssz_128;
25 int64_t sse;
26 const __m256i zero = _mm256_setzero_si256();
27
28 // If the block size is 16 then the results will fit in 32 bits.
29 if (block_size == 16) {
30 __m256i coeff_256, dqcoeff_256, coeff_hi, dqcoeff_hi;
31 // Load 16 elements for coeff and dqcoeff.
32 coeff_256 = load_tran_low(coeff);
33 dqcoeff_256 = load_tran_low(dqcoeff);
34 // dqcoeff - coeff
35 dqcoeff_256 = _mm256_sub_epi16(dqcoeff_256, coeff_256);
36 // madd (dqcoeff - coeff)
37 dqcoeff_256 = _mm256_madd_epi16(dqcoeff_256, dqcoeff_256);
38 // madd coeff
39 coeff_256 = _mm256_madd_epi16(coeff_256, coeff_256);
40 // Save the higher 64 bit of each 128 bit lane.
41 dqcoeff_hi = _mm256_srli_si256(dqcoeff_256, 8);
42 coeff_hi = _mm256_srli_si256(coeff_256, 8);
43 // Add the higher 64 bit to the low 64 bit.
44 dqcoeff_256 = _mm256_add_epi32(dqcoeff_256, dqcoeff_hi);
45 coeff_256 = _mm256_add_epi32(coeff_256, coeff_hi);
46 // Expand each double word in the lower 64 bits to quad word.
47 sse_256 = _mm256_unpacklo_epi32(dqcoeff_256, zero);
48 ssz_256 = _mm256_unpacklo_epi32(coeff_256, zero);
49 } else {
50 int i;
51 assert(block_size % 32 == 0);
52 sse_256 = zero;
53 ssz_256 = zero;
54
55 for (i = 0; i < block_size; i += 32) {
56 __m256i coeff_0, coeff_1, dqcoeff_0, dqcoeff_1;
57 // Load 32 elements for coeff and dqcoeff.
58 coeff_0 = load_tran_low(coeff + i);
59 dqcoeff_0 = load_tran_low(dqcoeff + i);
60 coeff_1 = load_tran_low(coeff + i + 16);
61 dqcoeff_1 = load_tran_low(dqcoeff + i + 16);
62 // dqcoeff - coeff
63 dqcoeff_0 = _mm256_sub_epi16(dqcoeff_0, coeff_0);
64 dqcoeff_1 = _mm256_sub_epi16(dqcoeff_1, coeff_1);
65 // madd (dqcoeff - coeff)
66 dqcoeff_0 = _mm256_madd_epi16(dqcoeff_0, dqcoeff_0);
67 dqcoeff_1 = _mm256_madd_epi16(dqcoeff_1, dqcoeff_1);
68 // madd coeff
69 coeff_0 = _mm256_madd_epi16(coeff_0, coeff_0);
70 coeff_1 = _mm256_madd_epi16(coeff_1, coeff_1);
71 // Add the first madd (dqcoeff - coeff) with the second.
72 dqcoeff_0 = _mm256_add_epi32(dqcoeff_0, dqcoeff_1);
73 // Add the first madd (coeff) with the second.
74 coeff_0 = _mm256_add_epi32(coeff_0, coeff_1);
75 // Expand each double word of madd (dqcoeff - coeff) to quad word.
76 exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_0, zero);
77 exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_0, zero);
78 // expand each double word of madd (coeff) to quad word
79 exp_coeff_lo = _mm256_unpacklo_epi32(coeff_0, zero);
80 exp_coeff_hi = _mm256_unpackhi_epi32(coeff_0, zero);
81 // Add each quad word of madd (dqcoeff - coeff) and madd (coeff).
82 sse_256 = _mm256_add_epi64(sse_256, exp_dqcoeff_lo);
83 ssz_256 = _mm256_add_epi64(ssz_256, exp_coeff_lo);
84 sse_256 = _mm256_add_epi64(sse_256, exp_dqcoeff_hi);
85 ssz_256 = _mm256_add_epi64(ssz_256, exp_coeff_hi);
86 }
87 }
88 // Save the higher 64 bit of each 128 bit lane.
89 sse_hi = _mm256_srli_si256(sse_256, 8);
90 ssz_hi = _mm256_srli_si256(ssz_256, 8);
91 // Add the higher 64 bit to the low 64 bit.
92 sse_256 = _mm256_add_epi64(sse_256, sse_hi);
93 ssz_256 = _mm256_add_epi64(ssz_256, ssz_hi);
94
95 // Add each 64 bit from each of the 128 bit lane of the 256 bit.
96 sse_128 = _mm_add_epi64(_mm256_castsi256_si128(sse_256),
97 _mm256_extractf128_si256(sse_256, 1));
98
99 ssz_128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_256),
100 _mm256_extractf128_si256(ssz_256, 1));
101
102 // Store the results.
103 _mm_storel_epi64((__m128i *)(&sse), sse_128);
104
105 _mm_storel_epi64((__m128i *)(ssz), ssz_128);
106 return sse;
107 }
108
vp9_block_error_fp_avx2(const tran_low_t * coeff,const tran_low_t * dqcoeff,int block_size)109 int64_t vp9_block_error_fp_avx2(const tran_low_t *coeff,
110 const tran_low_t *dqcoeff, int block_size) {
111 int i;
112 const __m256i zero = _mm256_setzero_si256();
113 __m256i sse_256 = zero;
114 __m256i sse_hi;
115 __m128i sse_128;
116 int64_t sse;
117
118 if (block_size == 16) {
119 // Load 16 elements for coeff and dqcoeff.
120 const __m256i _coeff = load_tran_low(coeff);
121 const __m256i _dqcoeff = load_tran_low(dqcoeff);
122 // dqcoeff - coeff
123 const __m256i diff = _mm256_sub_epi16(_dqcoeff, _coeff);
124 // madd (dqcoeff - coeff)
125 const __m256i error_lo = _mm256_madd_epi16(diff, diff);
126 // Save the higher 64 bit of each 128 bit lane.
127 const __m256i error_hi = _mm256_srli_si256(error_lo, 8);
128 // Add the higher 64 bit to the low 64 bit.
129 const __m256i error = _mm256_add_epi32(error_lo, error_hi);
130 // Expand each double word in the lower 64 bits to quad word.
131 sse_256 = _mm256_unpacklo_epi32(error, zero);
132 } else {
133 for (i = 0; i < block_size; i += 16) {
134 // Load 16 elements for coeff and dqcoeff.
135 const __m256i _coeff = load_tran_low(coeff);
136 const __m256i _dqcoeff = load_tran_low(dqcoeff);
137 const __m256i diff = _mm256_sub_epi16(_dqcoeff, _coeff);
138 const __m256i error = _mm256_madd_epi16(diff, diff);
139 // Expand each double word of madd (dqcoeff - coeff) to quad word.
140 const __m256i exp_error_lo = _mm256_unpacklo_epi32(error, zero);
141 const __m256i exp_error_hi = _mm256_unpackhi_epi32(error, zero);
142 // Add each quad word of madd (dqcoeff - coeff).
143 sse_256 = _mm256_add_epi64(sse_256, exp_error_lo);
144 sse_256 = _mm256_add_epi64(sse_256, exp_error_hi);
145 coeff += 16;
146 dqcoeff += 16;
147 }
148 }
149 // Save the higher 64 bit of each 128 bit lane.
150 sse_hi = _mm256_srli_si256(sse_256, 8);
151 // Add the higher 64 bit to the low 64 bit.
152 sse_256 = _mm256_add_epi64(sse_256, sse_hi);
153
154 // Add each 64 bit from each of the 128 bit lane of the 256 bit.
155 sse_128 = _mm_add_epi64(_mm256_castsi256_si128(sse_256),
156 _mm256_extractf128_si256(sse_256, 1));
157
158 // Store the results.
159 _mm_storel_epi64((__m128i *)&sse, sse_128);
160 return sse;
161 }
162