1{ 2 "cells": [ 3 { 4 "cell_type": "markdown", 5 "metadata": { 6 "heading_collapsed": true 7 }, 8 "source": [ 9 "# Linux Interactive System Analysis DEMO" 10 ] 11 }, 12 { 13 "cell_type": "markdown", 14 "metadata": { 15 "heading_collapsed": true 16 }, 17 "source": [ 18 "## Get LISA and start the Notebook Server" 19 ] 20 }, 21 { 22 "cell_type": "markdown", 23 "metadata": {}, 24 "source": [ 25 "Official repository on GitHub - ARM Software:<br>\n", 26 "https://github.com/ARM-software/lisa\n", 27 "\n", 28 "___\n", 29 "Installation dependencies are listed in the main page of the repository:<br>\n", 30 "https://github.com/ARM-software/lisa#required-dependencies\n", 31 "\n", 32 "___\n", 33 "Once cloned, source *init_env* to initialized the **LISA Shell**, which provides a convenient set of shell commands for easy access to many LISA related functions.\n", 34 "\n", 35 "```shell\n", 36 "$ source init_env\n", 37 "```\n", 38 "\n", 39 "___\n", 40 "To start the IPython Notebook Server required to use this Notebook, on a LISAShell run:\n", 41 "```shell\n", 42 "[LISAShell lisa] \\> lisa-ipython start\n", 43 "\n", 44 "Starting IPython Notebooks...\n", 45 "Starting IPython Notebook server...\n", 46 " IP Address : http://127.0.0.1:8888/\n", 47 " Folder : /home/derkling/Code/lisa/ipynb\n", 48 " Logfile : /home/derkling/Code/lisa/ipynb/server.log\n", 49 " PYTHONPATH : \n", 50 "\t/home/derkling/Code/lisa/libs/bart\n", 51 "\t/home/derkling/Code/lisa/libs/trappy\n", 52 "\t/home/derkling/Code/lisa/libs/devlib\n", 53 "\t/home/derkling/Code/lisa/libs/wlgen\n", 54 "\t/home/derkling/Code/lisa/libs/utils\n", 55 "\t\n", 56 "\n", 57 "Notebook server task: [1] 24745\n", 58 "\n", 59 "\n", 60 "```\n", 61 "\n", 62 "The main folder served by the server is:<br>\n", 63 "http://127.0.0.1:8888/\n", 64 "\n", 65 "While the tutorial notebooks are accessible starting from this link:<br>\n", 66 "http://127.0.0.1:8888/notebooks/tutorial/00_LisaInANutshell.ipynb\n", 67 "\n", 68 "Note that the `lisa-ipython` command allows to specify also interface and port in case you have several network interfaces on your host:\n", 69 "\n", 70 "```lisa-ipython start [interface [port]]```\n" 71 ] 72 }, 73 { 74 "cell_type": "markdown", 75 "metadata": { 76 "heading_collapsed": true 77 }, 78 "source": [ 79 "## What is an IPython Notebook?" 80 ] 81 }, 82 { 83 "cell_type": "markdown", 84 "metadata": {}, 85 "source": [ 86 "Let's do some example!" 87 ] 88 }, 89 { 90 "cell_type": "markdown", 91 "metadata": { 92 "heading_collapsed": true 93 }, 94 "source": [ 95 "## Logging configuration and support modules import" 96 ] 97 }, 98 { 99 "cell_type": "code", 100 "execution_count": 4, 101 "metadata": { 102 "collapsed": true 103 }, 104 "outputs": [], 105 "source": [ 106 "import logging\n", 107 "from conf import LisaLogging\n", 108 "LisaLogging.setup()" 109 ] 110 }, 111 { 112 "cell_type": "code", 113 "execution_count": 5, 114 "metadata": { 115 "code_folding": [], 116 "collapsed": true 117 }, 118 "outputs": [], 119 "source": [ 120 "# Execute this cell to enable verbose SSH commands\n", 121 "logging.getLogger('ssh').setLevel(logging.DEBUG)" 122 ] 123 }, 124 { 125 "cell_type": "code", 126 "execution_count": 6, 127 "metadata": { 128 "code_folding": [], 129 "collapsed": false 130 }, 131 "outputs": [], 132 "source": [ 133 "# Other python modules required by this notebook\n", 134 "import json\n", 135 "import os" 136 ] 137 }, 138 { 139 "cell_type": "markdown", 140 "metadata": {}, 141 "source": [ 142 "<br><br><br><br>\n", 143 "Advanced usage: get more confident with IPython notebooks and discover some hidden features<br>\n", 144 "[notebooks/tutorial/01_IPythonNotebooksUsage.ipynb](01_IPythonNotebooksUsage.ipynb)\n", 145 "<br><br><br><br>" 146 ] 147 }, 148 { 149 "cell_type": "markdown", 150 "metadata": { 151 "code_folding": [ 152 0 153 ], 154 "heading_collapsed": true 155 }, 156 "source": [ 157 "# Remote target connection and control" 158 ] 159 }, 160 { 161 "cell_type": "code", 162 "execution_count": 4, 163 "metadata": { 164 "code_folding": [], 165 "collapsed": true 166 }, 167 "outputs": [], 168 "source": [ 169 "# Setup a target configuration\n", 170 "conf = {\n", 171 " \n", 172 " # Target is localhost\n", 173 " \"platform\" : 'linux',\n", 174 " # Board descriptions are described through json files in lisa/libs/utils/platforms/\n", 175 " \"board\" : \"juno\", \n", 176 " \n", 177 " # Login credentials\n", 178 " \"host\" : \"192.168.0.1\",\n", 179 " \"username\" : \"root\",\n", 180 " \"password\" : \"\",\n", 181 "\n", 182 " # Binary tools required to run this experiment\n", 183 " # These tools must be present in the tools/ folder for the architecture\n", 184 " \"tools\" : ['rt-app', 'taskset', 'trace-cmd'],\n", 185 " \n", 186 " # Comment the following line to force rt-app calibration on your target\n", 187 " # \"rtapp-calib\" : {\n", 188 " # \"0\": 355, \"1\": 138, \"2\": 138, \"3\": 355, \"4\": 354, \"5\": 354\n", 189 " # },\n", 190 " \n", 191 " # FTrace events end buffer configuration\n", 192 " \"ftrace\" : {\n", 193 " \"events\" : [\n", 194 " \"sched_switch\",\n", 195 " \"sched_wakeup\",\n", 196 " \"sched_wakeup_new\",\n", 197 " \"sched_contrib_scale_f\",\n", 198 " \"sched_load_avg_cpu\",\n", 199 " \"sched_load_avg_task\",\n", 200 " \"sched_tune_config\",\n", 201 " \"sched_tune_tasks_update\",\n", 202 " \"sched_tune_boostgroup_update\",\n", 203 " \"sched_tune_filter\",\n", 204 " \"sched_boost_cpu\",\n", 205 " \"sched_boost_task\",\n", 206 " \"sched_energy_diff\",\n", 207 " \"cpu_frequency\",\n", 208 " \"cpu_capacity\",\n", 209 " ],\n", 210 " \"buffsize\" : 10240\n", 211 " },\n", 212 "\n", 213 " # Where results are collected\n", 214 " \"results_dir\" : \"LisaInANutshell\",\n", 215 "\n", 216 " # Devlib module required (or not required)\n", 217 " 'modules' : [ \"cpufreq\", \"cgroups\", \"cpufreq\" ],\n", 218 " #\"exclude_modules\" : [ \"hwmon\" ],\n", 219 "}" 220 ] 221 }, 222 { 223 "cell_type": "code", 224 "execution_count": 5, 225 "metadata": { 226 "code_folding": [], 227 "collapsed": false, 228 "scrolled": false 229 }, 230 "outputs": [ 231 { 232 "name": "stderr", 233 "output_type": "stream", 234 "text": [ 235 "05:28:29 INFO : Target - Using base path: /home/derkling/Code/lisa\n", 236 "05:28:29 INFO : Target - Loading custom (inline) target configuration\n", 237 "05:28:29 INFO : Target - Devlib modules to load: ['bl', 'cpufreq', 'cgroups', 'hwmon']\n", 238 "05:28:29 INFO : Target - Connecting linux target:\n", 239 "05:28:29 INFO : Target - username : root\n", 240 "05:28:29 INFO : Target - host : 192.168.0.1\n", 241 "05:28:29 INFO : Target - password : \n", 242 "05:28:29 DEBUG : Logging in root@192.168.0.1\n", 243 "05:28:31 DEBUG : id\n", 244 "05:28:31 DEBUG : if [ -e '/root/devlib-target/bin' ]; then echo 1; else echo 0; fi\n", 245 "05:28:31 DEBUG : ls -1 /root/devlib-target/bin\n", 246 "05:28:32 DEBUG : cat /proc/cpuinfo\n", 247 "05:28:32 DEBUG : sudo -- sh -c 'dmidecode -s system-version'\n", 248 "05:28:33 DEBUG : /root/devlib-target/bin/busybox uname -m\n", 249 "05:28:33 DEBUG : if [ -e '/sys/devices/system/cpu/cpufreq' ]; then echo 1; else echo 0; fi\n", 250 "05:28:33 DEBUG : zcat /proc/config.gz\n", 251 "05:28:34 DEBUG : mount\n", 252 "05:28:34 DEBUG : sudo -- sh -c 'mount -t tmpfs cgroup_root /sys/fs/cgroup'\n", 253 "05:28:35 DEBUG : /root/devlib-target/bin/busybox cat /proc/cgroups\n", 254 "05:28:35 DEBUG : /root/devlib-target/bin/busybox grep cpuset /proc/cgroups\n", 255 "05:28:36 DEBUG : mount\n", 256 "05:28:36 DEBUG : sudo -- sh -c 'mkdir -p /sys/fs/cgroup/devlib_cpuset 2>/dev/null'\n", 257 "05:28:36 DEBUG : sudo -- sh -c 'mount -t cgroup -o cpuset devlib_cpuset /sys/fs/cgroup/devlib_cpuset'\n", 258 "05:28:37 DEBUG : sudo -- sh -c '[ -d /sys/fs/cgroup/devlib_cpuset ] || mkdir -p /sys/fs/cgroup/devlib_cpuset'\n", 259 "05:28:37 DEBUG : /root/devlib-target/bin/busybox grep cpu /proc/cgroups\n", 260 "05:28:38 DEBUG : mount\n", 261 "05:28:38 DEBUG : sudo -- sh -c 'mkdir -p /sys/fs/cgroup/devlib_cpu 2>/dev/null'\n", 262 "05:28:39 DEBUG : sudo -- sh -c 'mount -t cgroup -o cpu devlib_cpu /sys/fs/cgroup/devlib_cpu'\n", 263 "05:28:39 DEBUG : sudo -- sh -c '[ -d /sys/fs/cgroup/devlib_cpu ] || mkdir -p /sys/fs/cgroup/devlib_cpu'\n", 264 "05:28:39 DEBUG : /root/devlib-target/bin/busybox grep cpuacct /proc/cgroups\n", 265 "05:28:40 DEBUG : mount\n", 266 "05:28:40 DEBUG : sudo -- sh -c 'mkdir -p /sys/fs/cgroup/devlib_cpuacct 2>/dev/null'\n", 267 "05:28:41 DEBUG : sudo -- sh -c 'mount -t cgroup -o cpuacct devlib_cpuacct /sys/fs/cgroup/devlib_cpuacct'\n", 268 "05:28:41 DEBUG : sudo -- sh -c '[ -d /sys/fs/cgroup/devlib_cpuacct ] || mkdir -p /sys/fs/cgroup/devlib_cpuacct'\n", 269 "05:28:41 DEBUG : /root/devlib-target/bin/busybox grep schedtune /proc/cgroups\n", 270 "05:28:42 DEBUG : mount\n", 271 "05:28:42 DEBUG : sudo -- sh -c 'mkdir -p /sys/fs/cgroup/devlib_schedtune 2>/dev/null'\n", 272 "05:28:43 DEBUG : sudo -- sh -c 'mount -t cgroup -o schedtune devlib_schedtune /sys/fs/cgroup/devlib_schedtune'\n", 273 "05:28:43 DEBUG : sudo -- sh -c '[ -d /sys/fs/cgroup/devlib_schedtune ] || mkdir -p /sys/fs/cgroup/devlib_schedtune'\n", 274 "05:28:44 DEBUG : /root/devlib-target/bin/busybox grep memory /proc/cgroups\n", 275 "05:28:44 DEBUG : mount\n", 276 "05:28:44 DEBUG : sudo -- sh -c 'mkdir -p /sys/fs/cgroup/devlib_memory 2>/dev/null'\n", 277 "05:28:45 DEBUG : sudo -- sh -c 'mount -t cgroup -o memory devlib_memory /sys/fs/cgroup/devlib_memory'\n", 278 "05:28:45 DEBUG : sudo -- sh -c '[ -d /sys/fs/cgroup/devlib_memory ] || mkdir -p /sys/fs/cgroup/devlib_memory'\n", 279 "05:28:46 DEBUG : /root/devlib-target/bin/busybox grep hugetlb /proc/cgroups\n", 280 "05:28:46 DEBUG : mount\n", 281 "05:28:46 DEBUG : sudo -- sh -c 'mkdir -p /sys/fs/cgroup/devlib_hugetlb 2>/dev/null'\n", 282 "05:28:47 DEBUG : sudo -- sh -c 'mount -t cgroup -o hugetlb devlib_hugetlb /sys/fs/cgroup/devlib_hugetlb'\n", 283 "05:28:47 DEBUG : sudo -- sh -c '[ -d /sys/fs/cgroup/devlib_hugetlb ] || mkdir -p /sys/fs/cgroup/devlib_hugetlb'\n", 284 "05:28:48 DEBUG : if [ -e '/sys/class/hwmon' ]; then echo 1; else echo 0; fi\n", 285 "05:28:48 DEBUG : ls -1 /sys/class/hwmon\n", 286 "05:28:49 DEBUG : if [ -e '/sys/class/hwmon/hwmon0/name' ]; then echo 1; else echo 0; fi\n", 287 "05:28:49 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon0/name'\\'''\n", 288 "05:28:50 DEBUG : ls -1 /sys/class/hwmon/hwmon0/\n", 289 "05:28:50 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon0/curr1_label'\\'''\n", 290 "05:28:50 DEBUG : if [ -e '/sys/class/hwmon/hwmon1/name' ]; then echo 1; else echo 0; fi\n", 291 "05:28:51 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon1/name'\\'''\n", 292 "05:28:51 DEBUG : ls -1 /sys/class/hwmon/hwmon1/\n", 293 "05:28:52 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon1/curr1_label'\\'''\n", 294 "05:28:52 DEBUG : if [ -e '/sys/class/hwmon/hwmon10/name' ]; then echo 1; else echo 0; fi\n", 295 "05:28:53 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon10/name'\\'''\n", 296 "05:28:53 DEBUG : ls -1 /sys/class/hwmon/hwmon10/\n", 297 "05:28:53 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon10/power1_label'\\'''\n", 298 "05:28:54 DEBUG : if [ -e '/sys/class/hwmon/hwmon11/name' ]; then echo 1; else echo 0; fi\n", 299 "05:28:54 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon11/name'\\'''\n", 300 "05:28:55 DEBUG : ls -1 /sys/class/hwmon/hwmon11/\n", 301 "05:28:55 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon11/power1_label'\\'''\n", 302 "05:28:55 DEBUG : if [ -e '/sys/class/hwmon/hwmon12/name' ]; then echo 1; else echo 0; fi\n", 303 "05:28:56 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon12/name'\\'''\n", 304 "05:28:56 DEBUG : ls -1 /sys/class/hwmon/hwmon12/\n", 305 "05:28:57 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon12/energy1_label'\\'''\n", 306 "05:28:57 DEBUG : if [ -e '/sys/class/hwmon/hwmon13/name' ]; then echo 1; else echo 0; fi\n", 307 "05:28:57 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon13/name'\\'''\n", 308 "05:28:58 DEBUG : ls -1 /sys/class/hwmon/hwmon13/\n", 309 "05:28:58 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon13/energy1_label'\\'''\n", 310 "05:28:59 DEBUG : if [ -e '/sys/class/hwmon/hwmon14/name' ]; then echo 1; else echo 0; fi\n", 311 "05:28:59 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon14/name'\\'''\n", 312 "05:29:00 DEBUG : ls -1 /sys/class/hwmon/hwmon14/\n", 313 "05:29:00 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon14/energy1_label'\\'''\n", 314 "05:29:00 DEBUG : if [ -e '/sys/class/hwmon/hwmon15/name' ]; then echo 1; else echo 0; fi\n", 315 "05:29:01 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon15/name'\\'''\n", 316 "05:29:01 DEBUG : ls -1 /sys/class/hwmon/hwmon15/\n", 317 "05:29:02 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon15/energy1_label'\\'''\n", 318 "05:29:02 DEBUG : if [ -e '/sys/class/hwmon/hwmon16/name' ]; then echo 1; else echo 0; fi\n", 319 "05:29:03 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/name'\\'''\n", 320 "05:29:03 DEBUG : ls -1 /sys/class/hwmon/hwmon16/\n", 321 "05:29:04 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/curr1_label'\\'''\n", 322 "05:29:04 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/curr2_label'\\'''\n", 323 "05:29:04 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/curr3_label'\\'''\n", 324 "05:29:05 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/curr4_label'\\'''\n", 325 "05:29:05 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/in0_label'\\'''\n", 326 "05:29:06 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/in1_label'\\'''\n", 327 "05:29:06 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/in2_label'\\'''\n", 328 "05:29:07 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/in3_label'\\'''\n", 329 "05:29:08 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/in4_label'\\'''\n", 330 "05:29:08 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/in5_label'\\'''\n", 331 "05:29:08 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/in6_label'\\'''\n", 332 "05:29:09 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/power1_label'\\'''\n", 333 "05:29:09 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/power2_label'\\'''\n", 334 "05:29:10 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/power3_label'\\'''\n", 335 "05:29:10 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/power4_label'\\'''\n", 336 "05:29:11 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/temp1_label'\\'''\n", 337 "05:29:11 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/temp2_label'\\'''\n", 338 "05:29:11 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/temp3_label'\\'''\n", 339 "05:29:12 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/temp4_label'\\'''\n", 340 "05:29:12 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/temp5_label'\\'''\n", 341 "05:29:13 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon16/temp6_label'\\'''\n", 342 "05:29:13 DEBUG : if [ -e '/sys/class/hwmon/hwmon2/name' ]; then echo 1; else echo 0; fi\n", 343 "05:29:13 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon2/name'\\'''\n", 344 "05:29:14 DEBUG : ls -1 /sys/class/hwmon/hwmon2/\n", 345 "05:29:14 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon2/curr1_label'\\'''\n", 346 "05:29:15 DEBUG : if [ -e '/sys/class/hwmon/hwmon3/name' ]; then echo 1; else echo 0; fi\n", 347 "05:29:15 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon3/name'\\'''\n", 348 "05:29:16 DEBUG : ls -1 /sys/class/hwmon/hwmon3/\n", 349 "05:29:16 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon3/curr1_label'\\'''\n", 350 "05:29:16 DEBUG : if [ -e '/sys/class/hwmon/hwmon4/name' ]; then echo 1; else echo 0; fi\n", 351 "05:29:17 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon4/name'\\'''\n", 352 "05:29:17 DEBUG : ls -1 /sys/class/hwmon/hwmon4/\n", 353 "05:29:18 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon4/in1_label'\\'''\n", 354 "05:29:18 DEBUG : if [ -e '/sys/class/hwmon/hwmon5/name' ]; then echo 1; else echo 0; fi\n", 355 "05:29:18 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon5/name'\\'''\n", 356 "05:29:19 DEBUG : ls -1 /sys/class/hwmon/hwmon5/\n", 357 "05:29:19 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon5/in1_label'\\'''\n", 358 "05:29:20 DEBUG : if [ -e '/sys/class/hwmon/hwmon6/name' ]; then echo 1; else echo 0; fi\n", 359 "05:29:20 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon6/name'\\'''\n", 360 "05:29:21 DEBUG : ls -1 /sys/class/hwmon/hwmon6/\n", 361 "05:29:21 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon6/in1_label'\\'''\n", 362 "05:29:21 DEBUG : if [ -e '/sys/class/hwmon/hwmon7/name' ]; then echo 1; else echo 0; fi\n", 363 "05:29:22 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon7/name'\\'''\n", 364 "05:29:22 DEBUG : ls -1 /sys/class/hwmon/hwmon7/\n", 365 "05:29:23 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon7/in1_label'\\'''\n", 366 "05:29:23 DEBUG : if [ -e '/sys/class/hwmon/hwmon8/name' ]; then echo 1; else echo 0; fi\n", 367 "05:29:23 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon8/name'\\'''\n", 368 "05:29:24 DEBUG : ls -1 /sys/class/hwmon/hwmon8/\n", 369 "05:29:24 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon8/power1_label'\\'''\n", 370 "05:29:25 DEBUG : if [ -e '/sys/class/hwmon/hwmon9/name' ]; then echo 1; else echo 0; fi\n", 371 "05:29:25 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon9/name'\\'''\n", 372 "05:29:26 DEBUG : ls -1 /sys/class/hwmon/hwmon9/\n", 373 "05:29:26 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon9/power1_label'\\'''\n", 374 "05:29:27 DEBUG : sudo -- sh -c 'mount -o remount,rw /'\n", 375 "05:29:27 INFO : Target - Initializing target workdir:\n", 376 "05:29:27 INFO : Target - /root/devlib-target\n", 377 "05:29:27 DEBUG : mkdir -p /root/devlib-target\n", 378 "05:29:27 DEBUG : mkdir -p /root/devlib-target/bin\n", 379 "05:29:28 DEBUG : /usr/bin/scp -r /home/derkling/Code/lisa/libs/devlib/devlib/bin/arm64/busybox root@192.168.0.1:/root/devlib-target/bin/busybox\n", 380 "05:29:28 DEBUG : chmod a+x /root/devlib-target/bin/busybox\n", 381 "05:29:29 DEBUG : /usr/bin/scp -r /home/derkling/Code/lisa/libs/devlib/devlib/bin/scripts/shutils root@192.168.0.1:/root/devlib-target/bin/shutils\n", 382 "05:29:29 DEBUG : chmod a+x /root/devlib-target/bin/shutils\n", 383 "05:29:29 DEBUG : /usr/bin/scp -r /home/derkling/Code/lisa/tools/scripts/cgroup_run_into.sh root@192.168.0.1:/root/devlib-target/bin/cgroup_run_into.sh\n", 384 "05:29:30 DEBUG : chmod a+x /root/devlib-target/bin/cgroup_run_into.sh\n", 385 "05:29:30 DEBUG : /usr/bin/scp -r /home/derkling/Code/lisa/tools/arm64/perf root@192.168.0.1:/root/devlib-target/bin/perf\n", 386 "05:29:34 DEBUG : chmod a+x /root/devlib-target/bin/perf\n", 387 "05:29:35 DEBUG : /usr/bin/scp -r /home/derkling/Code/lisa/tools/arm64/taskset root@192.168.0.1:/root/devlib-target/bin/taskset\n", 388 "05:29:35 DEBUG : chmod a+x /root/devlib-target/bin/taskset\n", 389 "05:29:36 DEBUG : /usr/bin/scp -r /home/derkling/Code/lisa/tools/arm64/rt-app root@192.168.0.1:/root/devlib-target/bin/rt-app\n", 390 "05:29:36 DEBUG : chmod a+x /root/devlib-target/bin/rt-app\n", 391 "05:29:36 DEBUG : /usr/bin/scp -r /home/derkling/Code/lisa/tools/arm64/trace-cmd root@192.168.0.1:/root/devlib-target/bin/trace-cmd\n", 392 "05:29:37 DEBUG : chmod a+x /root/devlib-target/bin/trace-cmd\n", 393 "05:29:37 INFO : Target - Topology:\n", 394 "05:29:37 INFO : Target - [[0, 3, 4, 5], [1, 2]]\n", 395 "05:29:37 DEBUG : sudo -- sh -c 'cat '\\''/sys/devices/system/cpu/online'\\'''\n", 396 "05:29:38 DEBUG : cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies\n", 397 "05:29:38 DEBUG : sudo -- sh -c 'cat '\\''/sys/devices/system/cpu/online'\\'''\n", 398 "05:29:38 DEBUG : cat /sys/devices/system/cpu/cpu1/cpufreq/scaling_available_frequencies\n", 399 "05:29:39 INFO : Platform - Loading default EM:\n", 400 "05:29:39 INFO : Platform - /home/derkling/Code/lisa/libs/utils/platforms/juno.json\n", 401 "05:29:39 DEBUG : /usr/bin/scp -r /home/derkling/Code/lisa/libs/devlib/devlib/bin/arm64/trace-cmd root@192.168.0.1:/root/devlib-target/bin/trace-cmd\n", 402 "05:29:39 DEBUG : chmod a+x /root/devlib-target/bin/trace-cmd\n", 403 "05:29:40 DEBUG : cat /sys/kernel/debug/tracing/available_events\n", 404 "05:29:40 INFO : FTrace - Enabled tracepoints:\n", 405 "05:29:40 INFO : FTrace - sched_switch\n", 406 "05:29:40 INFO : FTrace - sched_wakeup\n", 407 "05:29:40 INFO : FTrace - sched_wakeup_new\n", 408 "05:29:40 INFO : FTrace - sched_contrib_scale_f\n", 409 "05:29:40 INFO : FTrace - sched_load_avg_cpu\n", 410 "05:29:40 INFO : FTrace - sched_load_avg_task\n", 411 "05:29:40 INFO : FTrace - sched_tune_config\n", 412 "05:29:40 INFO : FTrace - sched_tune_tasks_update\n", 413 "05:29:40 INFO : FTrace - sched_tune_boostgroup_update\n", 414 "05:29:40 INFO : FTrace - sched_tune_filter\n", 415 "05:29:40 INFO : FTrace - sched_boost_cpu\n", 416 "05:29:40 INFO : FTrace - sched_boost_task\n", 417 "05:29:40 INFO : FTrace - sched_energy_diff\n", 418 "05:29:40 INFO : FTrace - cpu_frequency\n", 419 "05:29:40 INFO : FTrace - cpu_capacity\n", 420 "05:29:40 INFO : EnergyMeter - Scanning for HWMON channels, may take some time...\n", 421 "05:29:40 INFO : EnergyMeter - Channels selected for energy sampling:\n", 422 "05:29:40 INFO : EnergyMeter - a57_energy\n", 423 "05:29:40 INFO : EnergyMeter - a53_energy\n", 424 "05:29:40 WARNING : Target - Using configuration provided RTApp calibration\n", 425 "05:29:40 INFO : Target - Using RT-App calibration values:\n", 426 "05:29:40 INFO : Target - {\"0\": 355, \"1\": 138, \"2\": 138, \"3\": 355, \"4\": 354, \"5\": 354}\n", 427 "05:29:40 WARNING : TestEnv - Wipe previous contents of the results folder:\n", 428 "05:29:40 WARNING : TestEnv - /home/derkling/Code/lisa/results/LisaInANutshell\n", 429 "05:29:40 INFO : TestEnv - Set results folder to:\n", 430 "05:29:40 INFO : TestEnv - /home/derkling/Code/lisa/results/LisaInANutshell\n", 431 "05:29:40 INFO : TestEnv - Experiment results available also in:\n", 432 "05:29:40 INFO : TestEnv - /home/derkling/Code/lisa/results_latest\n" 433 ] 434 }, 435 { 436 "name": "stdout", 437 "output_type": "stream", 438 "text": [ 439 "DONE\n" 440 ] 441 } 442 ], 443 "source": [ 444 "# Support to access the remote target\n", 445 "from env import TestEnv\n", 446 "\n", 447 "# Initialize a test environment using:\n", 448 "# the provided target configuration (my_target_conf)\n", 449 "# the provided test configuration (my_test_conf)\n", 450 "te = TestEnv(conf)\n", 451 "target = te.target\n", 452 "\n", 453 "print \"DONE\"" 454 ] 455 }, 456 { 457 "cell_type": "markdown", 458 "metadata": {}, 459 "source": [ 460 "## Commands execution on remote target" 461 ] 462 }, 463 { 464 "cell_type": "code", 465 "execution_count": 8, 466 "metadata": { 467 "code_folding": [], 468 "collapsed": false 469 }, 470 "outputs": [ 471 { 472 "name": "stderr", 473 "output_type": "stream", 474 "text": [ 475 "05:29:59 DEBUG : echo ENERGY_AWARE > /sys/kernel/debug/sched_features\n", 476 "05:29:59 DEBUG : sudo -- sh -c 'cat '\\''/sys/kernel/debug/sched_features'\\'''\n" 477 ] 478 }, 479 { 480 "name": "stdout", 481 "output_type": "stream", 482 "text": [ 483 "sched_features:\n", 484 "GENTLE_FAIR_SLEEPERS START_DEBIT NO_NEXT_BUDDY LAST_BUDDY CACHE_HOT_BUDDY WAKEUP_PREEMPTION NO_HRTICK NO_DOUBLE_TICK LB_BIAS NONTASK_CAPACITY TTWU_QUEUE RT_PUSH_IPI NO_FORCE_SD_OVERLAP RT_RUNTIME_SHARE NO_LB_MIN ATTACH_AGE_LOAD ENERGY_AWARE NO_UTIL_EST CAP_UTIL_EST\n" 485 ] 486 } 487 ], 488 "source": [ 489 "# Enable Energy-Aware scheduler\n", 490 "target.execute(\"echo ENERGY_AWARE > /sys/kernel/debug/sched_features\");\n", 491 "\n", 492 "# Check which sched_feature are enabled\n", 493 "sched_features = target.read_value(\"/sys/kernel/debug/sched_features\");\n", 494 "print \"sched_features:\"\n", 495 "print sched_features" 496 ] 497 }, 498 { 499 "cell_type": "code", 500 "execution_count": 9, 501 "metadata": { 502 "code_folding": [ 503 0 504 ], 505 "collapsed": false 506 }, 507 "outputs": [], 508 "source": [ 509 "# It's possible also to run custom script\n", 510 "# my_script = target.get_installed()\n", 511 "# target.execute(my_script)" 512 ] 513 }, 514 { 515 "cell_type": "markdown", 516 "metadata": {}, 517 "source": [ 518 "## Example of frameworks configuration on remote target" 519 ] 520 }, 521 { 522 "cell_type": "markdown", 523 "metadata": {}, 524 "source": [ 525 "### Configure CPUFreq governor to be \"sched-freq\"" 526 ] 527 }, 528 { 529 "cell_type": "code", 530 "execution_count": 10, 531 "metadata": { 532 "code_folding": [], 533 "collapsed": false 534 }, 535 "outputs": [ 536 { 537 "name": "stderr", 538 "output_type": "stream", 539 "text": [ 540 "05:30:05 DEBUG : sudo -- sh -c '/root/devlib-target/bin/shutils cpufreq_set_all_governors sched'\n", 541 "05:30:06 DEBUG : sudo -- sh -c '/root/devlib-target/bin/shutils cpufreq_get_all_governors'\n" 542 ] 543 }, 544 { 545 "name": "stdout", 546 "output_type": "stream", 547 "text": [ 548 "{'1': 'sched', '0': 'sched', '3': 'sched', '2': 'sched', '5': 'sched', '4': 'sched'}\n" 549 ] 550 } 551 ], 552 "source": [ 553 "target.cpufreq.set_all_governors('sched');\n", 554 "\n", 555 "# Check which governor is enabled on each CPU\n", 556 "enabled_governors = target.cpufreq.get_all_governors()\n", 557 "print enabled_governors" 558 ] 559 }, 560 { 561 "cell_type": "markdown", 562 "metadata": {}, 563 "source": [ 564 "### Create a big/LITTLE partition using CGroups::CPUSet" 565 ] 566 }, 567 { 568 "cell_type": "code", 569 "execution_count": 11, 570 "metadata": { 571 "code_folding": [], 572 "collapsed": false 573 }, 574 "outputs": [ 575 { 576 "name": "stderr", 577 "output_type": "stream", 578 "text": [ 579 "05:30:09 DEBUG : sudo -- sh -c '[ -d /sys/fs/cgroup/devlib_cpuset/big ] || mkdir -p /sys/fs/cgroup/devlib_cpuset/big'\n", 580 "05:30:09 DEBUG : sudo -- sh -c 'echo 1-2 > '\\''/sys/fs/cgroup/devlib_cpuset/big/cpuset.cpus'\\'''\n", 581 "05:30:10 DEBUG : sudo -- sh -c 'cat '\\''/sys/fs/cgroup/devlib_cpuset/big/cpuset.cpus'\\'''\n", 582 "05:30:10 DEBUG : sudo -- sh -c 'echo 0 > '\\''/sys/fs/cgroup/devlib_cpuset/big/cpuset.mems'\\'''\n", 583 "05:30:10 DEBUG : sudo -- sh -c 'cat '\\''/sys/fs/cgroup/devlib_cpuset/big/cpuset.mems'\\'''\n", 584 "05:30:11 DEBUG : sudo -- sh -c '[ -d /sys/fs/cgroup/devlib_cpuset/LITTLE ] || mkdir -p /sys/fs/cgroup/devlib_cpuset/LITTLE'\n", 585 "05:30:11 DEBUG : sudo -- sh -c 'echo 0,3-5 > '\\''/sys/fs/cgroup/devlib_cpuset/LITTLE/cpuset.cpus'\\'''\n", 586 "05:30:11 DEBUG : sudo -- sh -c 'cat '\\''/sys/fs/cgroup/devlib_cpuset/LITTLE/cpuset.cpus'\\'''\n", 587 "05:30:12 DEBUG : sudo -- sh -c 'echo 0 > '\\''/sys/fs/cgroup/devlib_cpuset/LITTLE/cpuset.mems'\\'''\n", 588 "05:30:12 DEBUG : sudo -- sh -c 'cat '\\''/sys/fs/cgroup/devlib_cpuset/LITTLE/cpuset.mems'\\'''\n", 589 "05:30:12 DEBUG : /root/devlib-target/bin/busybox find /sys/fs/cgroup/devlib_cpuset -type d\n", 590 "05:30:13 DEBUG : /root/devlib-target/bin/shutils cgroups_get_attributes /sys/fs/cgroup/devlib_cpuset cpuset\n", 591 "05:30:13 DEBUG : /root/devlib-target/bin/shutils cgroups_get_attributes /sys/fs/cgroup/devlib_cpuset/big cpuset\n" 592 ] 593 }, 594 { 595 "name": "stdout", 596 "output_type": "stream", 597 "text": [ 598 "cpuset:/ cpus: 0-5\n", 599 "cpuset:/big cpus: 1-2" 600 ] 601 }, 602 { 603 "name": "stderr", 604 "output_type": "stream", 605 "text": [ 606 "05:30:14 DEBUG : /root/devlib-target/bin/shutils cgroups_get_attributes /sys/fs/cgroup/devlib_cpuset/LITTLE cpuset\n" 607 ] 608 }, 609 { 610 "name": "stdout", 611 "output_type": "stream", 612 "text": [ 613 "\n", 614 "cpuset:/LITTLE cpus: 0,3-5\n" 615 ] 616 } 617 ], 618 "source": [ 619 "cpuset = target.cgroups.controller('cpuset')\n", 620 "\n", 621 "# Configure a big partition\n", 622 "cpuset_bigs = cpuset.cgroup('/big')\n", 623 "cpuset_bigs.set(cpus=te.target.bl.bigs, mems=0)\n", 624 "\n", 625 "# Configure a LITTLE partition\n", 626 "cpuset_littles = cpuset.cgroup('/LITTLE')\n", 627 "cpuset_littles.set(cpus=te.target.bl.littles, mems=0)\n", 628 "\n", 629 "# Dump the configuraiton of each controller\n", 630 "cgroups = cpuset.list_all()\n", 631 "for cgname in cgroups:\n", 632 " cgroup = cpuset.cgroup(cgname)\n", 633 " attrs = cgroup.get()\n", 634 " cpus = attrs['cpus']\n", 635 " print '{}:{:<15} cpus: {}'.format(cpuset.kind, cgroup.name, cpus)" 636 ] 637 }, 638 { 639 "cell_type": "markdown", 640 "metadata": {}, 641 "source": [ 642 "<br><br><br><br>\n", 643 "Advanced usage: exploring more APIs exposed by TestEnv and Devlib<br>\n", 644 "[notebooks/tutorial/02_TestEnvUsage.ipynb](02_TestEnvUsage.ipynb)\n", 645 "<br><br><br><br>" 646 ] 647 }, 648 { 649 "cell_type": "markdown", 650 "metadata": { 651 "heading_collapsed": true 652 }, 653 "source": [ 654 "# Using syntethic workloads" 655 ] 656 }, 657 { 658 "cell_type": "markdown", 659 "metadata": {}, 660 "source": [ 661 "## Generate an RTApp configuration" 662 ] 663 }, 664 { 665 "cell_type": "code", 666 "execution_count": 12, 667 "metadata": { 668 "collapsed": false, 669 "scrolled": false 670 }, 671 "outputs": [ 672 { 673 "name": "stderr", 674 "output_type": "stream", 675 "text": [ 676 "05:30:22 INFO : WlGen - Setup new workload test\n", 677 "05:30:22 INFO : RTApp - Workload duration defined by longest task\n", 678 "05:30:22 INFO : RTApp - Default policy: SCHED_OTHER\n", 679 "05:30:22 INFO : RTApp - ------------------------\n", 680 "05:30:22 INFO : RTApp - task [task_lrh], sched: using default policy\n", 681 "05:30:22 INFO : RTApp - | calibration CPU: 0\n", 682 "05:30:22 INFO : RTApp - | loops count: 1\n", 683 "05:30:22 INFO : RTApp - + phase_000001: duration 3.000000 [s] (93 loops)\n", 684 "05:30:22 INFO : RTApp - | period 32000 [us], duty_cycle 10 %\n", 685 "05:30:22 INFO : RTApp - | run_time 3200 [us], sleep_time 28800 [us]\n", 686 "05:30:22 INFO : RTApp - + phase_000002: duration 0.500000 [s] (31 loops)\n", 687 "05:30:22 INFO : RTApp - | period 16000 [us], duty_cycle 10 %\n", 688 "05:30:22 INFO : RTApp - | run_time 1600 [us], sleep_time 14400 [us]\n", 689 "05:30:22 INFO : RTApp - + phase_000003: duration 0.500000 [s] (31 loops)\n", 690 "05:30:22 INFO : RTApp - | period 16000 [us], duty_cycle 30 %\n", 691 "05:30:22 INFO : RTApp - | run_time 4800 [us], sleep_time 11200 [us]\n", 692 "05:30:22 INFO : RTApp - + phase_000004: duration 0.500000 [s] (31 loops)\n", 693 "05:30:22 INFO : RTApp - | period 16000 [us], duty_cycle 50 %\n", 694 "05:30:22 INFO : RTApp - | run_time 8000 [us], sleep_time 8000 [us]\n", 695 "05:30:22 INFO : RTApp - + phase_000005: duration 3.000000 [s] (187 loops)\n", 696 "05:30:22 INFO : RTApp - | period 16000 [us], duty_cycle 60 %\n", 697 "05:30:22 INFO : RTApp - | run_time 9600 [us], sleep_time 6400 [us]\n", 698 "05:30:22 DEBUG : /usr/bin/scp -r test_00.json root@192.168.0.1:/root/devlib-target\n" 699 ] 700 } 701 ], 702 "source": [ 703 "# RTApp configurator for generation of PERIODIC tasks\n", 704 "from wlgen import RTA, Periodic, Ramp\n", 705 "\n", 706 "# Light workload\n", 707 "light = Periodic(\n", 708 " duty_cycle_pct = 10,\n", 709 " duration_s = 3,\n", 710 " period_ms = 32,\n", 711 ")\n", 712 "\n", 713 "# Ramp workload\n", 714 "ramp = Ramp(\n", 715 " start_pct=10,\n", 716 " end_pct=60,\n", 717 " delta_pct=20,\n", 718 " time_s=0.5,\n", 719 " period_ms=16\n", 720 ")\n", 721 "\n", 722 "# Heavy workload\n", 723 "heavy = Periodic(\n", 724 " duty_cycle_pct=60,\n", 725 " duration_s=3,\n", 726 " period_ms=16\n", 727 ")\n", 728 "\n", 729 "# Composed workload\n", 730 "lrh_task = light + ramp + heavy\n", 731 "\n", 732 "\n", 733 "# Create a new RTApp workload generator using the calibration values\n", 734 "# reported by the TestEnv module\n", 735 "rtapp = RTA(target, 'test', calibration=te.calibration())\n", 736 "\n", 737 "\n", 738 "# Configure this RTApp instance to:\n", 739 "rtapp.conf(\n", 740 "\n", 741 " # 1. generate a \"profile based\" set of tasks\n", 742 " kind = 'profile',\n", 743 " \n", 744 " # 2. define the \"profile\" of each task\n", 745 " params = {\n", 746 " \n", 747 " # 3. Composed task\n", 748 " 'task_lrh': lrh_task.get(),\n", 749 " },\n", 750 " \n", 751 " #loadref='big',\n", 752 " loadref='LITTLE',\n", 753 " run_dir=target.working_directory\n", 754 " \n", 755 " # Alternatively, it is possible to specify a json file for rt-app through:\n", 756 " # kind = 'custom',\n", 757 " # params = '/path/file.json',\n", 758 ");" 759 ] 760 }, 761 { 762 "cell_type": "code", 763 "execution_count": 13, 764 "metadata": { 765 "code_folding": [ 766 0 767 ], 768 "collapsed": false, 769 "scrolled": true 770 }, 771 "outputs": [ 772 { 773 "name": "stderr", 774 "output_type": "stream", 775 "text": [ 776 "05:30:24 INFO : Generated RTApp JSON file:\n" 777 ] 778 }, 779 { 780 "name": "stdout", 781 "output_type": "stream", 782 "text": [ 783 "{\n", 784 " \"global\": {\n", 785 " \"calibration\": 355, \n", 786 " \"default_policy\": \"SCHED_OTHER\", \n", 787 " \"duration\": -1, \n", 788 " \"logdir\": \"/root/devlib-target\"\n", 789 " }, \n", 790 " \"tasks\": {\n", 791 " \"task_lrh\": {\n", 792 " \"loop\": 1, \n", 793 " \"phases\": {\n", 794 " \"p000001\": {\n", 795 " \"loop\": 93, \n", 796 " \"run\": 3200, \n", 797 " \"timer\": {\n", 798 " \"period\": 32000, \n", 799 " \"ref\": \"task_lrh\"\n", 800 " }\n", 801 " }, \n", 802 " \"p000002\": {\n", 803 " \"loop\": 31, \n", 804 " \"run\": 1600, \n", 805 " \"timer\": {\n", 806 " \"period\": 16000, \n", 807 " \"ref\": \"task_lrh\"\n", 808 " }\n", 809 " }, \n", 810 " \"p000003\": {\n", 811 " \"loop\": 31, \n", 812 " \"run\": 4800, \n", 813 " \"timer\": {\n", 814 " \"period\": 16000, \n", 815 " \"ref\": \"task_lrh\"\n", 816 " }\n", 817 " }, \n", 818 " \"p000004\": {\n", 819 " \"loop\": 31, \n", 820 " \"run\": 8000, \n", 821 " \"timer\": {\n", 822 " \"period\": 16000, \n", 823 " \"ref\": \"task_lrh\"\n", 824 " }\n", 825 " }, \n", 826 " \"p000005\": {\n", 827 " \"loop\": 187, \n", 828 " \"run\": 9600, \n", 829 " \"timer\": {\n", 830 " \"period\": 16000, \n", 831 " \"ref\": \"task_lrh\"\n", 832 " }\n", 833 " }\n", 834 " }, \n", 835 " \"policy\": \"SCHED_OTHER\"\n", 836 " }\n", 837 " }\n", 838 "}\n" 839 ] 840 } 841 ], 842 "source": [ 843 "# Inspect the JSON file used to run the application\n", 844 "with open('./test_00.json', 'r') as fh:\n", 845 " rtapp_json = json.load(fh)\n", 846 "logging.info('Generated RTApp JSON file:')\n", 847 "print json.dumps(rtapp_json, indent=4, sort_keys=True)" 848 ] 849 }, 850 { 851 "cell_type": "markdown", 852 "metadata": {}, 853 "source": [ 854 "<br><br><br><br>\n", 855 "Advanced usage: using WlGen to create more complex RTApp configurations or run other banchmarks (e.g. hackbench)<br>\n", 856 "[notebooks/tutorial/03_WlGenUsage.ipynb](03_WlGenUsage.ipynb)\n", 857 "<br><br><br><br>" 858 ] 859 }, 860 { 861 "cell_type": "markdown", 862 "metadata": {}, 863 "source": [ 864 "## Execution and Energy Sampling" 865 ] 866 }, 867 { 868 "cell_type": "code", 869 "execution_count": 14, 870 "metadata": { 871 "collapsed": true 872 }, 873 "outputs": [], 874 "source": [ 875 "def execute(te, wload, res_dir):\n", 876 " \n", 877 " logging.info('# Setup FTrace')\n", 878 " te.ftrace.start()\n", 879 "\n", 880 " logging.info('## Start energy sampling')\n", 881 " te.emeter.reset()\n", 882 "\n", 883 " logging.info('### Start RTApp execution')\n", 884 " wload.run(out_dir=res_dir)\n", 885 "\n", 886 " logging.info('## Read energy consumption: %s/energy.json', res_dir)\n", 887 " nrg_report = te.emeter.report(out_dir=res_dir)\n", 888 "\n", 889 " logging.info('# Stop FTrace')\n", 890 " te.ftrace.stop()\n", 891 "\n", 892 " trace_file = os.path.join(res_dir, 'trace.dat')\n", 893 " logging.info('# Save FTrace: %s', trace_file)\n", 894 " te.ftrace.get_trace(trace_file)\n", 895 "\n", 896 " logging.info('# Save platform description: %s/platform.json', res_dir)\n", 897 " plt, plt_file = te.platform_dump(res_dir)\n", 898 " \n", 899 " logging.info('# Report collected data:')\n", 900 " logging.info(' %s', res_dir)\n", 901 " !tree {res_dir}\n", 902 " \n", 903 " return nrg_report, plt, plt_file, trace_file" 904 ] 905 }, 906 { 907 "cell_type": "code", 908 "execution_count": 15, 909 "metadata": { 910 "collapsed": false 911 }, 912 "outputs": [ 913 { 914 "name": "stderr", 915 "output_type": "stream", 916 "text": [ 917 "05:30:27 INFO : # Setup FTrace\n", 918 "05:30:27 DEBUG : sudo -- sh -c 'echo 10240 > '\\''/sys/kernel/debug/tracing/buffer_size_kb'\\'''\n", 919 "05:30:27 DEBUG : sudo -- sh -c 'cat '\\''/sys/kernel/debug/tracing/buffer_size_kb'\\'''\n", 920 "05:30:27 DEBUG : sudo -- sh -c '/root/devlib-target/bin/trace-cmd reset'\n", 921 "05:30:29 DEBUG : sudo -- sh -c '/root/devlib-target/bin/trace-cmd start -e sched_switch -e sched_wakeup -e sched_wakeup_new -e sched_contrib_scale_f -e sched_load_avg_cpu -e sched_load_avg_task -e sched_tune_config -e sched_tune_tasks_update -e sched_tune_boostgroup_update -e sched_tune_filter -e sched_boost_cpu -e sched_boost_task -e sched_energy_diff -e cpu_frequency -e cpu_capacity'\n", 922 "05:30:31 DEBUG : sudo -- sh -c 'echo TRACE_MARKER_START > '\\''/sys/kernel/debug/tracing/trace_marker'\\'''\n", 923 "05:30:31 DEBUG : sudo -- sh -c '/root/devlib-target/bin/shutils cpufreq_trace_all_frequencies'\n", 924 "05:30:32 INFO : ## Start energy sampling\n", 925 "05:30:32 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon13/energy1_input'\\'''\n", 926 "05:30:32 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon14/energy1_input'\\'''\n", 927 "05:30:33 INFO : ### Start RTApp execution\n", 928 "05:30:33 INFO : WlGen - Workload execution START:\n", 929 "05:30:33 INFO : WlGen - /root/devlib-target/bin/rt-app /root/devlib-target/test_00.json\n", 930 "05:30:33 DEBUG : /root/devlib-target/bin/rt-app /root/devlib-target/test_00.json\n", 931 "05:30:40 DEBUG : /usr/bin/scp -r root@192.168.0.1:'/root/devlib-target/*task_lrh*.log' /home/derkling/Code/lisa/results/LisaInANutshell\n", 932 "05:30:41 DEBUG : /usr/bin/scp -r root@192.168.0.1:/root/devlib-target/test_00.json /home/derkling/Code/lisa/results/LisaInANutshell\n", 933 "05:30:41 INFO : ## Read energy consumption: /home/derkling/Code/lisa/results/LisaInANutshell/energy.json\n", 934 "05:30:41 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon13/energy1_input'\\'''\n", 935 "05:30:41 DEBUG : sudo -- sh -c 'cat '\\''/sys/class/hwmon/hwmon14/energy1_input'\\'''\n", 936 "05:30:42 INFO : EnergyReport - Energy [ a53]: 5.530500\n", 937 "05:30:42 INFO : EnergyReport - Energy [ a57]: 2.019339\n", 938 "05:30:42 WARNING : EnergyReport - Unable to bind hwmon channel [a57] to a big.LITTLE cluster\n", 939 "05:30:42 WARNING : EnergyMeter - No energy data for big cluster\n", 940 "05:30:42 INFO : # Stop FTrace\n", 941 "05:30:42 DEBUG : sudo -- sh -c '/root/devlib-target/bin/shutils cpufreq_trace_all_frequencies'\n", 942 "05:30:42 DEBUG : sudo -- sh -c 'echo TRACE_MARKER_STOP > '\\''/sys/kernel/debug/tracing/trace_marker'\\'''\n", 943 "05:30:42 DEBUG : sudo -- sh -c '/root/devlib-target/bin/trace-cmd stop'\n", 944 "05:30:43 INFO : # Save FTrace: /home/derkling/Code/lisa/results/LisaInANutshell/trace.dat\n", 945 "05:30:43 DEBUG : sudo -- sh -c '/root/devlib-target/bin/trace-cmd extract -o /root/devlib-target/trace.dat'\n", 946 "05:30:45 DEBUG : /usr/bin/scp -r root@192.168.0.1:/root/devlib-target/trace.dat /home/derkling/Code/lisa/results/LisaInANutshell/trace.dat\n", 947 "05:30:46 INFO : # Save platform description: /home/derkling/Code/lisa/results/LisaInANutshell/platform.json\n", 948 "05:30:46 INFO : # Report collected data:\n", 949 "05:30:46 INFO : /home/derkling/Code/lisa/results/LisaInANutshell\n" 950 ] 951 }, 952 { 953 "name": "stdout", 954 "output_type": "stream", 955 "text": [ 956 "\u001b[01;34m/home/derkling/Code/lisa/results/LisaInANutshell\u001b[00m\r\n", 957 "├── energy.json\r\n", 958 "├── output.log\r\n", 959 "├── platform.json\r\n", 960 "├── rt-app-task_lrh-0.log\r\n", 961 "├── test_00.json\r\n", 962 "└── trace.dat\r\n", 963 "\r\n", 964 "0 directories, 6 files\r\n" 965 ] 966 } 967 ], 968 "source": [ 969 "nrg_report, plt, plt_file, trace_file = execute(te, rtapp, te.res_dir)" 970 ] 971 }, 972 { 973 "cell_type": "markdown", 974 "metadata": {}, 975 "source": [ 976 "## Example of energy collected data" 977 ] 978 }, 979 { 980 "cell_type": "code", 981 "execution_count": 16, 982 "metadata": { 983 "collapsed": false 984 }, 985 "outputs": [ 986 { 987 "data": { 988 "text/html": [ 989 "<div>\n", 990 "<table border=\"1\" class=\"dataframe\">\n", 991 " <thead>\n", 992 " <tr style=\"text-align: right;\">\n", 993 " <th></th>\n", 994 " <th>Energy</th>\n", 995 " </tr>\n", 996 " <tr>\n", 997 " <th>Cluster</th>\n", 998 " <th></th>\n", 999 " </tr>\n", 1000 " </thead>\n", 1001 " <tbody>\n", 1002 " <tr>\n", 1003 " <th>LITTLE</th>\n", 1004 " <td>5.530500</td>\n", 1005 " </tr>\n", 1006 " <tr>\n", 1007 " <th>a57</th>\n", 1008 " <td>2.019339</td>\n", 1009 " </tr>\n", 1010 " </tbody>\n", 1011 "</table>\n", 1012 "</div>" 1013 ], 1014 "text/plain": [ 1015 " Energy\n", 1016 "Cluster \n", 1017 "LITTLE 5.530500\n", 1018 "a57 2.019339" 1019 ] 1020 }, 1021 "execution_count": 16, 1022 "metadata": {}, 1023 "output_type": "execute_result" 1024 } 1025 ], 1026 "source": [ 1027 "import pandas as pd\n", 1028 "\n", 1029 "df = pd.DataFrame(list(nrg_report.channels.iteritems()),\n", 1030 " columns=['Cluster', 'Energy'])\n", 1031 "df = df.set_index('Cluster')\n", 1032 "df" 1033 ] 1034 }, 1035 { 1036 "cell_type": "markdown", 1037 "metadata": {}, 1038 "source": [ 1039 "## Example of platform description" 1040 ] 1041 }, 1042 { 1043 "cell_type": "code", 1044 "execution_count": 17, 1045 "metadata": { 1046 "collapsed": false, 1047 "scrolled": true 1048 }, 1049 "outputs": [ 1050 { 1051 "name": "stderr", 1052 "output_type": "stream", 1053 "text": [ 1054 "05:30:46 INFO : LITTLE cluster max capacity: 447\n" 1055 ] 1056 }, 1057 { 1058 "name": "stdout", 1059 "output_type": "stream", 1060 "text": [ 1061 "{\n", 1062 " \"nrg_model\": {\n", 1063 " \"big\": {\n", 1064 " \"cluster\": {\n", 1065 " \"nrg_max\": 64\n", 1066 " }, \n", 1067 " \"cpu\": {\n", 1068 " \"cap_max\": 1024, \n", 1069 " \"nrg_max\": 616\n", 1070 " }\n", 1071 " }, \n", 1072 " \"little\": {\n", 1073 " \"cluster\": {\n", 1074 " \"nrg_max\": 57\n", 1075 " }, \n", 1076 " \"cpu\": {\n", 1077 " \"cap_max\": 447, \n", 1078 " \"nrg_max\": 93\n", 1079 " }\n", 1080 " }\n", 1081 " }, \n", 1082 " \"clusters\": {\n", 1083 " \"big\": [\n", 1084 " 1, \n", 1085 " 2\n", 1086 " ], \n", 1087 " \"little\": [\n", 1088 " 0, \n", 1089 " 3, \n", 1090 " 4, \n", 1091 " 5\n", 1092 " ]\n", 1093 " }, \n", 1094 " \"cpus_count\": 6, \n", 1095 " \"freqs\": {\n", 1096 " \"big\": [\n", 1097 " 600000, \n", 1098 " 1000000, \n", 1099 " 1200000\n", 1100 " ], \n", 1101 " \"little\": [\n", 1102 " 450000, \n", 1103 " 800000, \n", 1104 " 950000\n", 1105 " ]\n", 1106 " }, \n", 1107 " \"topology\": [\n", 1108 " [\n", 1109 " 0, \n", 1110 " 3, \n", 1111 " 4, \n", 1112 " 5\n", 1113 " ], \n", 1114 " [\n", 1115 " 1, \n", 1116 " 2\n", 1117 " ]\n", 1118 " ]\n", 1119 "}\n" 1120 ] 1121 } 1122 ], 1123 "source": [ 1124 "# Show the collected platform description\n", 1125 "with open(os.path.join(te.res_dir, 'platform.json'), 'r') as fh:\n", 1126 " platform = json.load(fh)\n", 1127 "print json.dumps(platform, indent=4)\n", 1128 "logging.info('LITTLE cluster max capacity: %d',\n", 1129 " platform['nrg_model']['little']['cpu']['cap_max'])" 1130 ] 1131 }, 1132 { 1133 "cell_type": "markdown", 1134 "metadata": {}, 1135 "source": [ 1136 "<br><br><br><br>\n", 1137 "Advanced Workload Execution: using the Executor module to automate data collection for multiple tests<br>\n", 1138 "[notebooks/tutorial/04_ExecutorUsage.ipynb](04_ExecutorUsage.ipynb)\n", 1139 "<br><br><br><br>" 1140 ] 1141 }, 1142 { 1143 "cell_type": "markdown", 1144 "metadata": { 1145 "heading_collapsed": true 1146 }, 1147 "source": [ 1148 "# Trace Visualization (the kernelshark way)" 1149 ] 1150 }, 1151 { 1152 "cell_type": "markdown", 1153 "metadata": {}, 1154 "source": [ 1155 "## Using kernelshark" 1156 ] 1157 }, 1158 { 1159 "cell_type": "code", 1160 "execution_count": 18, 1161 "metadata": { 1162 "collapsed": false 1163 }, 1164 "outputs": [ 1165 { 1166 "name": "stdout", 1167 "output_type": "stream", 1168 "text": [ 1169 "version = 6\r\n" 1170 ] 1171 } 1172 ], 1173 "source": [ 1174 "# Let's look at the trace using kernelshark...\n", 1175 "trace_file = te.res_dir + '/trace.dat'\n", 1176 "!kernelshark {trace_file} 2>/dev/null" 1177 ] 1178 }, 1179 { 1180 "cell_type": "markdown", 1181 "metadata": {}, 1182 "source": [ 1183 "## Using the TRAPpy Trace Plotter" 1184 ] 1185 }, 1186 { 1187 "cell_type": "code", 1188 "execution_count": 19, 1189 "metadata": { 1190 "code_folding": [], 1191 "collapsed": false 1192 }, 1193 "outputs": [ 1194 { 1195 "data": { 1196 "text/html": [ 1197 "<style>\n", 1198 "/*\n", 1199 "\n", 1200 " * Copyright 2015-2016 ARM Limited\n", 1201 "\n", 1202 " *\n", 1203 "\n", 1204 " * Licensed under the Apache License, Version 2.0 (the \"License\");\n", 1205 "\n", 1206 " * you may not use this file except in compliance with the License.\n", 1207 "\n", 1208 " * You may obtain a copy of the License at\n", 1209 "\n", 1210 " *\n", 1211 "\n", 1212 " * http://www.apache.org/licenses/LICENSE-2.0\n", 1213 "\n", 1214 " *\n", 1215 "\n", 1216 " * Unless required by applicable law or agreed to in writing, software\n", 1217 "\n", 1218 " * distributed under the License is distributed on an \"AS IS\" BASIS,\n", 1219 "\n", 1220 " * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", 1221 "\n", 1222 " * See the License for the specific language governing permissions and\n", 1223 "\n", 1224 " * limitations under the License.\n", 1225 "\n", 1226 " */\n", 1227 "\n", 1228 "\n", 1229 "\n", 1230 ".d3-tip {\n", 1231 "\n", 1232 " line-height: 1;\n", 1233 "\n", 1234 " padding: 12px;\n", 1235 "\n", 1236 " background: rgba(0, 0, 0, 0.6);\n", 1237 "\n", 1238 " color: #fff;\n", 1239 "\n", 1240 " border-radius: 2px;\n", 1241 "\n", 1242 " position: absolute !important;\n", 1243 "\n", 1244 " z-index: 99999;\n", 1245 "\n", 1246 "}\n", 1247 "\n", 1248 "\n", 1249 "\n", 1250 ".d3-tip:after {\n", 1251 "\n", 1252 " box-sizing: border-box;\n", 1253 "\n", 1254 " pointer-events: none;\n", 1255 "\n", 1256 " display: inline;\n", 1257 "\n", 1258 " font-size: 10px;\n", 1259 "\n", 1260 " width: 100%;\n", 1261 "\n", 1262 " line-height: 1;\n", 1263 "\n", 1264 " color: rgba(0, 0, 0, 0.6);\n", 1265 "\n", 1266 " content: \"\\25BC\";\n", 1267 "\n", 1268 " position: absolute !important;\n", 1269 "\n", 1270 " z-index: 99999;\n", 1271 "\n", 1272 " text-align: center;\n", 1273 "\n", 1274 "}\n", 1275 "\n", 1276 "\n", 1277 "\n", 1278 ".d3-tip.n:after {\n", 1279 "\n", 1280 " margin: -1px 0 0 0;\n", 1281 "\n", 1282 " top: 100%;\n", 1283 "\n", 1284 " left: 0;\n", 1285 "\n", 1286 "}\n", 1287 "\n", 1288 "\n", 1289 "\n", 1290 ".contextRect {\n", 1291 "\n", 1292 " fill: lightgray;\n", 1293 "\n", 1294 " fill-opacity: 0.5;\n", 1295 "\n", 1296 " stroke: black;\n", 1297 "\n", 1298 " stroke-width: 1;\n", 1299 "\n", 1300 " stroke-opacity: 1;\n", 1301 "\n", 1302 " pointer-events: none;\n", 1303 "\n", 1304 " shape-rendering: crispEdges;\n", 1305 "\n", 1306 "}\n", 1307 "\n", 1308 "\n", 1309 "\n", 1310 ".chart {\n", 1311 "\n", 1312 " shape-rendering: crispEdges;\n", 1313 "\n", 1314 "}\n", 1315 "\n", 1316 "\n", 1317 "\n", 1318 ".mini text {\n", 1319 "\n", 1320 " font: 9px sans-serif;\n", 1321 "\n", 1322 "}\n", 1323 "\n", 1324 "\n", 1325 "\n", 1326 ".main text {\n", 1327 "\n", 1328 " font: 12px sans-serif;\n", 1329 "\n", 1330 "}\n", 1331 "\n", 1332 "\n", 1333 "\n", 1334 ".axis line, .axis path {\n", 1335 "\n", 1336 " stroke: black;\n", 1337 "\n", 1338 "}\n", 1339 "\n", 1340 "\n", 1341 "\n", 1342 ".miniItem {\n", 1343 "\n", 1344 " stroke-width: 8;\n", 1345 "\n", 1346 "}\n", 1347 "\n", 1348 "\n", 1349 "\n", 1350 ".brush .extent {\n", 1351 "\n", 1352 "\n", 1353 "\n", 1354 " stroke: #000;\n", 1355 "\n", 1356 " fill-opacity: .125;\n", 1357 "\n", 1358 " shape-rendering: crispEdges;\n", 1359 "\n", 1360 "}\n", 1361 "\n", 1362 "</style>\n", 1363 "<div id=\"fig_519ab73f1a9c4d0997f53219bbe58335\" class=\"eventplot\">\n", 1364 " <script>\n", 1365 " var req = require.config( {\n", 1366 "\n", 1367 " paths: {\n", 1368 "\n", 1369 " \"EventPlot\": '/nbextensions/plotter_scripts/EventPlot/EventPlot',\n", 1370 " \"d3-tip\": '/nbextensions/plotter_scripts/EventPlot/d3.tip.v0.6.3',\n", 1371 " \"d3-plotter\": '/nbextensions/plotter_scripts/EventPlot/d3.min'\n", 1372 " },\n", 1373 " shim: {\n", 1374 " \"d3-plotter\" : {\n", 1375 " \"exports\" : \"d3\"\n", 1376 " },\n", 1377 " \"d3-tip\": [\"d3-plotter\"],\n", 1378 " \"EventPlot\": {\n", 1379 "\n", 1380 " \"deps\": [\"d3-tip\", \"d3-plotter\" ],\n", 1381 " \"exports\": \"EventPlot\"\n", 1382 " }\n", 1383 " }\n", 1384 " });\n", 1385 " req([\"require\", \"EventPlot\"], function() {\n", 1386 " EventPlot.generate('fig_519ab73f1a9c4d0997f53219bbe58335', '/nbextensions/');\n", 1387 " });\n", 1388 " </script>\n", 1389 " </div>" 1390 ], 1391 "text/plain": [ 1392 "<IPython.core.display.HTML object>" 1393 ] 1394 }, 1395 "metadata": {}, 1396 "output_type": "display_data" 1397 } 1398 ], 1399 "source": [ 1400 "# Suport for FTrace events parsing and visualization\n", 1401 "import trappy\n", 1402 "\n", 1403 "# NOTE: The interactive trace visualization is available only if you run\n", 1404 "# the workload to generate a new trace-file\n", 1405 "trappy.plotter.plot_trace(trace_file)" 1406 ] 1407 }, 1408 { 1409 "cell_type": "markdown", 1410 "metadata": { 1411 "heading_collapsed": true 1412 }, 1413 "source": [ 1414 "# Example of Trace Analysis" 1415 ] 1416 }, 1417 { 1418 "cell_type": "markdown", 1419 "metadata": {}, 1420 "source": [ 1421 "## Generate DataFrames from Trace Events" 1422 ] 1423 }, 1424 { 1425 "cell_type": "code", 1426 "execution_count": 20, 1427 "metadata": { 1428 "collapsed": false 1429 }, 1430 "outputs": [ 1431 { 1432 "name": "stderr", 1433 "output_type": "stream", 1434 "text": [ 1435 "05:30:58 INFO : Collected events spans a 11.783 [s] time interval\n" 1436 ] 1437 } 1438 ], 1439 "source": [ 1440 "# Load the LISA::Trace parsing module\n", 1441 "from trace import Trace\n", 1442 "\n", 1443 "# Define which event we are interested into\n", 1444 "trace = Trace(te.platform, te.res_dir, [\n", 1445 " \"sched_switch\",\n", 1446 " \"sched_load_avg_cpu\",\n", 1447 " \"sched_load_avg_task\",\n", 1448 " \"sched_boost_cpu\",\n", 1449 " \"sched_boost_task\",\n", 1450 " \"cpu_frequency\",\n", 1451 " \"cpu_capacity\",\n", 1452 " ])" 1453 ] 1454 }, 1455 { 1456 "cell_type": "code", 1457 "execution_count": 21, 1458 "metadata": { 1459 "collapsed": false 1460 }, 1461 "outputs": [ 1462 { 1463 "name": "stderr", 1464 "output_type": "stream", 1465 "text": [ 1466 "05:30:58 INFO : List of events identified in the trace:\n", 1467 "05:30:58 INFO : sched_load_avg_task\n", 1468 "05:30:58 INFO : cpu_frequency\n", 1469 "05:30:58 INFO : cpu_capacity\n", 1470 "05:30:58 INFO : sched_load_avg_cpu\n", 1471 "05:30:58 INFO : sched_boost_cpu\n", 1472 "05:30:58 INFO : sched_boost_task\n", 1473 "05:30:58 INFO : sched_switch\n" 1474 ] 1475 } 1476 ], 1477 "source": [ 1478 "# Let's have a look at the set of events collected from the trace\n", 1479 "ftrace = trace.ftrace\n", 1480 "logging.info(\"List of events identified in the trace:\")\n", 1481 "for event in ftrace.class_definitions.keys():\n", 1482 " logging.info(\" %s\", event)" 1483 ] 1484 }, 1485 { 1486 "cell_type": "code", 1487 "execution_count": 22, 1488 "metadata": { 1489 "collapsed": false 1490 }, 1491 "outputs": [ 1492 { 1493 "data": { 1494 "text/html": [ 1495 "<div>\n", 1496 "<table border=\"1\" class=\"dataframe\">\n", 1497 " <thead>\n", 1498 " <tr style=\"text-align: right;\">\n", 1499 " <th></th>\n", 1500 " <th>__comm</th>\n", 1501 " <th>__cpu</th>\n", 1502 " <th>__pid</th>\n", 1503 " <th>comm</th>\n", 1504 " <th>cpu</th>\n", 1505 " <th>load_avg</th>\n", 1506 " <th>load_sum</th>\n", 1507 " <th>period_contrib</th>\n", 1508 " <th>pid</th>\n", 1509 " <th>util_avg</th>\n", 1510 " <th>util_est</th>\n", 1511 " <th>util_sum</th>\n", 1512 " <th>cluster</th>\n", 1513 " </tr>\n", 1514 " <tr>\n", 1515 " <th>Time</th>\n", 1516 " <th></th>\n", 1517 " <th></th>\n", 1518 " <th></th>\n", 1519 " <th></th>\n", 1520 " <th></th>\n", 1521 " <th></th>\n", 1522 " <th></th>\n", 1523 " <th></th>\n", 1524 " <th></th>\n", 1525 " <th></th>\n", 1526 " <th></th>\n", 1527 " <th></th>\n", 1528 " <th></th>\n", 1529 " </tr>\n", 1530 " </thead>\n", 1531 " <tbody>\n", 1532 " <tr>\n", 1533 " <th>0.000135</th>\n", 1534 " <td>trace-cmd</td>\n", 1535 " <td>0</td>\n", 1536 " <td>1377</td>\n", 1537 " <td>trace-cmd</td>\n", 1538 " <td>0</td>\n", 1539 " <td>222</td>\n", 1540 " <td>10616291</td>\n", 1541 " <td>272</td>\n", 1542 " <td>1377</td>\n", 1543 " <td>87</td>\n", 1544 " <td>87</td>\n", 1545 " <td>4176248</td>\n", 1546 " <td>LITTLE</td>\n", 1547 " </tr>\n", 1548 " <tr>\n", 1549 " <th>0.000151</th>\n", 1550 " <td><idle></td>\n", 1551 " <td>1</td>\n", 1552 " <td>0</td>\n", 1553 " <td>sudo</td>\n", 1554 " <td>1</td>\n", 1555 " <td>0</td>\n", 1556 " <td>655</td>\n", 1557 " <td>66</td>\n", 1558 " <td>1376</td>\n", 1559 " <td>0</td>\n", 1560 " <td>900</td>\n", 1561 " <td>655</td>\n", 1562 " <td>big</td>\n", 1563 " </tr>\n", 1564 " <tr>\n", 1565 " <th>0.000170</th>\n", 1566 " <td>trace-cmd</td>\n", 1567 " <td>0</td>\n", 1568 " <td>1377</td>\n", 1569 " <td>trace-cmd</td>\n", 1570 " <td>0</td>\n", 1571 " <td>222</td>\n", 1572 " <td>10616291</td>\n", 1573 " <td>272</td>\n", 1574 " <td>1377</td>\n", 1575 " <td>87</td>\n", 1576 " <td>87</td>\n", 1577 " <td>4176248</td>\n", 1578 " <td>LITTLE</td>\n", 1579 " </tr>\n", 1580 " <tr>\n", 1581 " <th>0.001500</th>\n", 1582 " <td>sudo</td>\n", 1583 " <td>1</td>\n", 1584 " <td>1376</td>\n", 1585 " <td>sudo</td>\n", 1586 " <td>1</td>\n", 1587 " <td>14</td>\n", 1588 " <td>687474</td>\n", 1589 " <td>404</td>\n", 1590 " <td>1376</td>\n", 1591 " <td>14</td>\n", 1592 " <td>900</td>\n", 1593 " <td>687474</td>\n", 1594 " <td>big</td>\n", 1595 " </tr>\n", 1596 " <tr>\n", 1597 " <th>0.001504</th>\n", 1598 " <td><idle></td>\n", 1599 " <td>2</td>\n", 1600 " <td>0</td>\n", 1601 " <td>sh</td>\n", 1602 " <td>2</td>\n", 1603 " <td>0</td>\n", 1604 " <td>91</td>\n", 1605 " <td>561</td>\n", 1606 " <td>1074</td>\n", 1607 " <td>0</td>\n", 1608 " <td>153</td>\n", 1609 " <td>87</td>\n", 1610 " <td>big</td>\n", 1611 " </tr>\n", 1612 " </tbody>\n", 1613 "</table>\n", 1614 "</div>" 1615 ], 1616 "text/plain": [ 1617 " __comm __cpu __pid comm cpu load_avg load_sum \\\n", 1618 "Time \n", 1619 "0.000135 trace-cmd 0 1377 trace-cmd 0 222 10616291 \n", 1620 "0.000151 <idle> 1 0 sudo 1 0 655 \n", 1621 "0.000170 trace-cmd 0 1377 trace-cmd 0 222 10616291 \n", 1622 "0.001500 sudo 1 1376 sudo 1 14 687474 \n", 1623 "0.001504 <idle> 2 0 sh 2 0 91 \n", 1624 "\n", 1625 " period_contrib pid util_avg util_est util_sum cluster \n", 1626 "Time \n", 1627 "0.000135 272 1377 87 87 4176248 LITTLE \n", 1628 "0.000151 66 1376 0 900 655 big \n", 1629 "0.000170 272 1377 87 87 4176248 LITTLE \n", 1630 "0.001500 404 1376 14 900 687474 big \n", 1631 "0.001504 561 1074 0 153 87 big " 1632 ] 1633 }, 1634 "execution_count": 22, 1635 "metadata": {}, 1636 "output_type": "execute_result" 1637 } 1638 ], 1639 "source": [ 1640 "# Trace events are converted into tables, let's have a look at one\n", 1641 "# of such tables\n", 1642 "df = trace.data_frame.trace_event('sched_load_avg_task')\n", 1643 "df.head()" 1644 ] 1645 }, 1646 { 1647 "cell_type": "code", 1648 "execution_count": 23, 1649 "metadata": { 1650 "code_folding": [ 1651 0 1652 ], 1653 "collapsed": false 1654 }, 1655 "outputs": [], 1656 "source": [ 1657 "# Simple selection of events based on conditional values\n", 1658 "#df[df.comm == 'task_lrh'].head()\n", 1659 "\n", 1660 "# Simple selection of specific signals\n", 1661 "#df[df.comm == 'task_lrh'][['util_avg']].head()\n", 1662 "\n", 1663 "# Simple statistics reporting\n", 1664 "#df[df.comm == 'task_lrh'][['util_avg']].describe()" 1665 ] 1666 }, 1667 { 1668 "cell_type": "markdown", 1669 "metadata": {}, 1670 "source": [ 1671 "<br><br><br><br>\n", 1672 "Advanced DataFrame usage: filtering by columns/rows, merging tables, plotting data<br>\n", 1673 "[notebooks/tutorial/05_TrappyUsage.ipynb](05_TrappyUsage.ipynb)\n", 1674 "<br><br><br><br>" 1675 ] 1676 }, 1677 { 1678 "cell_type": "markdown", 1679 "metadata": {}, 1680 "source": [ 1681 "## Easy plot signals from DataFrams" 1682 ] 1683 }, 1684 { 1685 "cell_type": "code", 1686 "execution_count": 24, 1687 "metadata": { 1688 "collapsed": false 1689 }, 1690 "outputs": [ 1691 { 1692 "data": { 1693 "text/html": [ 1694 "<table style=\"border-style: hidden;\">\n", 1695 "<tr>\n", 1696 "<td style=\"border-style: hidden;\"><div class=\"ilineplot\" id=\"fig_33a2ba1bb9fb4c9d8d5112c650cf3fe2\">\n", 1697 " <script>\n", 1698 " var ilp_req = require.config( {\n", 1699 "\n", 1700 " paths: {\n", 1701 " \"dygraph-sync\": '/nbextensions/plotter_scripts/ILinePlot/synchronizer',\n", 1702 " \"dygraph\": '/nbextensions/plotter_scripts/ILinePlot/dygraph-combined',\n", 1703 " \"ILinePlot\": '/nbextensions/plotter_scripts/ILinePlot/ILinePlot',\n", 1704 " \"underscore\": '/nbextensions/plotter_scripts/ILinePlot/underscore-min',\n", 1705 " },\n", 1706 "\n", 1707 " shim: {\n", 1708 " \"dygraph-sync\": [\"dygraph\"],\n", 1709 " \"ILinePlot\": {\n", 1710 "\n", 1711 " \"deps\": [\"dygraph-sync\", \"dygraph\", \"underscore\"],\n", 1712 " \"exports\": \"ILinePlot\"\n", 1713 " }\n", 1714 " }\n", 1715 " });\n", 1716 " ilp_req([\"require\", \"ILinePlot\"], function() {\n", 1717 " ILinePlot.generate('fig_33a2ba1bb9fb4c9d8d5112c650cf3fe2', '/nbextensions/');\n", 1718 " });\n", 1719 " </script>\n", 1720 " </div></td>\n", 1721 "</tr>\n", 1722 "<tr>\n", 1723 "<td style=\"border-style: hidden;\"><div style=\"text-align:center\" id=\"fig_33a2ba1bb9fb4c9d8d5112c650cf3fe2_legend\"></div></td>\n", 1724 "</tr>\n", 1725 "</table>" 1726 ], 1727 "text/plain": [ 1728 "<IPython.core.display.HTML object>" 1729 ] 1730 }, 1731 "metadata": {}, 1732 "output_type": "display_data" 1733 } 1734 ], 1735 "source": [ 1736 "# Signals can be easily plot using the ILinePlotter\n", 1737 "trappy.ILinePlot(\n", 1738 " \n", 1739 " # FTrace object\n", 1740 " ftrace,\n", 1741 " \n", 1742 " # Signals to be plotted\n", 1743 " signals=[\n", 1744 " 'sched_load_avg_cpu:util_avg',\n", 1745 " 'sched_load_avg_task:util_avg'\n", 1746 " ],\n", 1747 " \n", 1748 "# # Generate one plot for each value of the specified column\n", 1749 "# pivot='cpu',\n", 1750 " \n", 1751 "# # Generate only plots which satisfy these filters\n", 1752 "# filters={\n", 1753 "# 'comm': ['task_lrh'],\n", 1754 "# 'cpu' : [0,5]\n", 1755 "# },\n", 1756 " \n", 1757 " # Formatting style\n", 1758 " per_line=2,\n", 1759 " drawstyle='steps-post',\n", 1760 " marker = '+'\n", 1761 "\n", 1762 ").view()" 1763 ] 1764 }, 1765 { 1766 "cell_type": "markdown", 1767 "metadata": { 1768 "heading_collapsed": true 1769 }, 1770 "source": [ 1771 "# Example of Behavioral Analysis" 1772 ] 1773 }, 1774 { 1775 "cell_type": "code", 1776 "execution_count": 25, 1777 "metadata": { 1778 "collapsed": true 1779 }, 1780 "outputs": [], 1781 "source": [ 1782 "from bart.sched.SchedMultiAssert import SchedAssert\n", 1783 "\n", 1784 "# Create an object to get/assert scheduling pbehaviors\n", 1785 "sa = SchedAssert(ftrace, te.topology, execname='task_lrh')" 1786 ] 1787 }, 1788 { 1789 "cell_type": "markdown", 1790 "metadata": {}, 1791 "source": [ 1792 "## Get tasks behaviors" 1793 ] 1794 }, 1795 { 1796 "cell_type": "code", 1797 "execution_count": 26, 1798 "metadata": { 1799 "collapsed": false 1800 }, 1801 "outputs": [ 1802 { 1803 "name": "stdout", 1804 "output_type": "stream", 1805 "text": [ 1806 "Task residency [%] on LITTLE cluster: 99.7034764921\n" 1807 ] 1808 } 1809 ], 1810 "source": [ 1811 "# Check the residency of a task on the LITTLE cluster\n", 1812 "print \"Task residency [%] on LITTLE cluster:\",\\\n", 1813 "sa.getResidency(\n", 1814 " \"cluster\",\n", 1815 " te.target.bl.littles,\n", 1816 " percent=True\n", 1817 ")" 1818 ] 1819 }, 1820 { 1821 "cell_type": "code", 1822 "execution_count": 27, 1823 "metadata": { 1824 "collapsed": false 1825 }, 1826 "outputs": [ 1827 { 1828 "name": "stdout", 1829 "output_type": "stream", 1830 "text": [ 1831 "Task initial CPU: 1\n" 1832 ] 1833 } 1834 ], 1835 "source": [ 1836 "# Check on which CPU the task start its execution\n", 1837 "print \"Task initial CPU:\",\\\n", 1838 "sa.getFirstCpu()" 1839 ] 1840 }, 1841 { 1842 "cell_type": "markdown", 1843 "metadata": {}, 1844 "source": [ 1845 "## Check for expected behaviros" 1846 ] 1847 }, 1848 { 1849 "cell_type": "code", 1850 "execution_count": 28, 1851 "metadata": { 1852 "collapsed": false 1853 }, 1854 "outputs": [ 1855 { 1856 "name": "stdout", 1857 "output_type": "stream", 1858 "text": [ 1859 "Task running 99 [%] of its time on LITTLE? True\n" 1860 ] 1861 } 1862 ], 1863 "source": [ 1864 "import operator\n", 1865 "\n", 1866 "# Define the time window where we want focus our assertions\n", 1867 "start_s = sa.getStartTime()\n", 1868 "little_residency_window = (start_s, start_s + 10)\n", 1869 "\n", 1870 "# Defined the expected task residency \n", 1871 "EXPECTED_RESIDENCY_PCT=99\n", 1872 "\n", 1873 "result = sa.assertResidency(\n", 1874 " \"cluster\",\n", 1875 " te.target.bl.littles,\n", 1876 " EXPECTED_RESIDENCY_PCT,\n", 1877 " operator.ge,\n", 1878 " window=little_residency_window,\n", 1879 " percent=True\n", 1880 ")\n", 1881 "print \"Task running {} [%] of its time on LITTLE? {}\"\\\n", 1882 " .format(EXPECTED_RESIDENCY_PCT, result)" 1883 ] 1884 }, 1885 { 1886 "cell_type": "code", 1887 "execution_count": 29, 1888 "metadata": { 1889 "collapsed": false 1890 }, 1891 "outputs": [ 1892 { 1893 "name": "stdout", 1894 "output_type": "stream", 1895 "text": [ 1896 "Task starting on a big CPU? True\n" 1897 ] 1898 } 1899 ], 1900 "source": [ 1901 "result = sa.assertFirstCpu(te.target.bl.bigs)\n", 1902 "print \"Task starting on a big CPU? {}\".format(result)" 1903 ] 1904 }, 1905 { 1906 "cell_type": "markdown", 1907 "metadata": { 1908 "heading_collapsed": true 1909 }, 1910 "source": [ 1911 "# Examples of Data analysis" 1912 ] 1913 }, 1914 { 1915 "cell_type": "markdown", 1916 "metadata": {}, 1917 "source": [ 1918 "## Which task is the most active switcher?" 1919 ] 1920 }, 1921 { 1922 "cell_type": "code", 1923 "execution_count": 30, 1924 "metadata": { 1925 "collapsed": false 1926 }, 1927 "outputs": [ 1928 { 1929 "data": { 1930 "text/html": [ 1931 "<div>\n", 1932 "<table border=\"1\" class=\"dataframe\">\n", 1933 " <thead>\n", 1934 " <tr style=\"text-align: right;\">\n", 1935 " <th></th>\n", 1936 " <th>__comm</th>\n", 1937 " <th>__cpu</th>\n", 1938 " <th>__pid</th>\n", 1939 " <th>next_comm</th>\n", 1940 " <th>next_pid</th>\n", 1941 " <th>next_prio</th>\n", 1942 " <th>prev_comm</th>\n", 1943 " <th>prev_pid</th>\n", 1944 " <th>prev_prio</th>\n", 1945 " <th>prev_state</th>\n", 1946 " </tr>\n", 1947 " <tr>\n", 1948 " <th>Time</th>\n", 1949 " <th></th>\n", 1950 " <th></th>\n", 1951 " <th></th>\n", 1952 " <th></th>\n", 1953 " <th></th>\n", 1954 " <th></th>\n", 1955 " <th></th>\n", 1956 " <th></th>\n", 1957 " <th></th>\n", 1958 " <th></th>\n", 1959 " </tr>\n", 1960 " </thead>\n", 1961 " <tbody>\n", 1962 " <tr>\n", 1963 " <th>0.000156</th>\n", 1964 " <td><idle></td>\n", 1965 " <td>1</td>\n", 1966 " <td>0</td>\n", 1967 " <td>sudo</td>\n", 1968 " <td>1376</td>\n", 1969 " <td>120</td>\n", 1970 " <td>swapper/1</td>\n", 1971 " <td>0</td>\n", 1972 " <td>120</td>\n", 1973 " <td>0</td>\n", 1974 " </tr>\n", 1975 " <tr>\n", 1976 " <th>0.000217</th>\n", 1977 " <td>trace-cmd</td>\n", 1978 " <td>0</td>\n", 1979 " <td>1377</td>\n", 1980 " <td>swapper/0</td>\n", 1981 " <td>0</td>\n", 1982 " <td>120</td>\n", 1983 " <td>trace-cmd</td>\n", 1984 " <td>1377</td>\n", 1985 " <td>120</td>\n", 1986 " <td>64</td>\n", 1987 " </tr>\n", 1988 " <tr>\n", 1989 " <th>0.001509</th>\n", 1990 " <td><idle></td>\n", 1991 " <td>2</td>\n", 1992 " <td>0</td>\n", 1993 " <td>sh</td>\n", 1994 " <td>1074</td>\n", 1995 " <td>120</td>\n", 1996 " <td>swapper/2</td>\n", 1997 " <td>0</td>\n", 1998 " <td>120</td>\n", 1999 " <td>0</td>\n", 2000 " </tr>\n", 2001 " <tr>\n", 2002 " <th>0.001524</th>\n", 2003 " <td>sudo</td>\n", 2004 " <td>1</td>\n", 2005 " <td>1376</td>\n", 2006 " <td>swapper/1</td>\n", 2007 " <td>0</td>\n", 2008 " <td>120</td>\n", 2009 " <td>sudo</td>\n", 2010 " <td>1376</td>\n", 2011 " <td>120</td>\n", 2012 " <td>64</td>\n", 2013 " </tr>\n", 2014 " <tr>\n", 2015 " <th>0.001885</th>\n", 2016 " <td>sh</td>\n", 2017 " <td>2</td>\n", 2018 " <td>1074</td>\n", 2019 " <td>swapper/2</td>\n", 2020 " <td>0</td>\n", 2021 " <td>120</td>\n", 2022 " <td>sh</td>\n", 2023 " <td>1074</td>\n", 2024 " <td>120</td>\n", 2025 " <td>1</td>\n", 2026 " </tr>\n", 2027 " </tbody>\n", 2028 "</table>\n", 2029 "</div>" 2030 ], 2031 "text/plain": [ 2032 " __comm __cpu __pid next_comm next_pid next_prio prev_comm \\\n", 2033 "Time \n", 2034 "0.000156 <idle> 1 0 sudo 1376 120 swapper/1 \n", 2035 "0.000217 trace-cmd 0 1377 swapper/0 0 120 trace-cmd \n", 2036 "0.001509 <idle> 2 0 sh 1074 120 swapper/2 \n", 2037 "0.001524 sudo 1 1376 swapper/1 0 120 sudo \n", 2038 "0.001885 sh 2 1074 swapper/2 0 120 sh \n", 2039 "\n", 2040 " prev_pid prev_prio prev_state \n", 2041 "Time \n", 2042 "0.000156 0 120 0 \n", 2043 "0.000217 1377 120 64 \n", 2044 "0.001509 0 120 0 \n", 2045 "0.001524 1376 120 64 \n", 2046 "0.001885 1074 120 1 " 2047 ] 2048 }, 2049 "execution_count": 30, 2050 "metadata": {}, 2051 "output_type": "execute_result" 2052 } 2053 ], 2054 "source": [ 2055 "# Focus on sched_switch events\n", 2056 "df = ftrace.sched_switch.data_frame\n", 2057 "\n", 2058 "# # Select only interesting columns\n", 2059 "# df = df.ix[:,'next_comm':'prev_state']\n", 2060 "\n", 2061 "# # Group sched_switch event by task switching into the CPU\n", 2062 "# df = df.groupby('next_pid').describe(include=['object'])\n", 2063 "# df = df.unstack()\n", 2064 "\n", 2065 "# # Sort sched_switch events by number of time a task switch into the CPU\n", 2066 "# df = df['next_comm'].sort_values(by=['count'], ascending=False)\n", 2067 "\n", 2068 "df.head()\n", 2069 "\n", 2070 "# # Get topmost task name and PID\n", 2071 "# most_switching_pid = df.index[1]\n", 2072 "# most_switching_task = df.values[1][2]\n", 2073 "# task_name = \"{}:{}\".format(most_switching_pid, most_switching_task)\n", 2074 "\n", 2075 "# # Print result\n", 2076 "# logging.info(\"The most swithing task is: [%s]\", task_name)" 2077 ] 2078 }, 2079 { 2080 "cell_type": "markdown", 2081 "metadata": {}, 2082 "source": [ 2083 "## What are the relative residency on different OPPs?" 2084 ] 2085 }, 2086 { 2087 "cell_type": "code", 2088 "execution_count": 42, 2089 "metadata": { 2090 "collapsed": false 2091 }, 2092 "outputs": [ 2093 { 2094 "name": "stderr", 2095 "output_type": "stream", 2096 "text": [ 2097 "05:43:41 INFO : Residency time per OPP:\n", 2098 "05:43:41 INFO : Freq 450000Hz : 61.1%\n", 2099 "05:43:41 INFO : Freq 800000Hz : 33.1%\n", 2100 "05:43:41 INFO : Freq 950000Hz : 5.8%\n" 2101 ] 2102 } 2103 ], 2104 "source": [ 2105 "# Focus on cpu_frequency events for CPU0\n", 2106 "df = ftrace.cpu_frequency.data_frame\n", 2107 "df = df[df.cpu == 0]\n", 2108 "\n", 2109 "# # Compute the residency on each OPP before switching to the next one\n", 2110 "# df.loc[:,'start'] = df.index\n", 2111 "# df.loc[:,'delta'] = (df['start'] - df['start'].shift()).fillna(0).shift(-1)\n", 2112 "\n", 2113 "# # Group by frequency and sum-up the deltas\n", 2114 "# freq_residencies = df.groupby('frequency')['delta'].sum()\n", 2115 "# logging.info(\"Residency time per OPP:\")\n", 2116 "# df = pd.DataFrame(freq_residencies)\n", 2117 "\n", 2118 "df.head()\n", 2119 "\n", 2120 "# # Compute the relative residency time\n", 2121 "# tot = sum(freq_residencies)\n", 2122 "# #df = df.apply(lambda delta : 100*delta/tot)\n", 2123 "# for f in freq_residencies.index:\n", 2124 "# logging.info(\"Freq %10dHz : %5.1f%%\", f, 100*freq_residencies[f]/tot)" 2125 ] 2126 }, 2127 { 2128 "cell_type": "code", 2129 "execution_count": 47, 2130 "metadata": { 2131 "collapsed": false 2132 }, 2133 "outputs": [ 2134 { 2135 "name": "stdout", 2136 "output_type": "stream", 2137 "text": [ 2138 "Populating the interactive namespace from numpy and matplotlib\n" 2139 ] 2140 }, 2141 { 2142 "name": "stderr", 2143 "output_type": "stream", 2144 "text": [ 2145 "WARNING: pylab import has clobbered these variables: ['axes']\n", 2146 "`%matplotlib` prevents importing * from pylab and numpy\n" 2147 ] 2148 }, 2149 { 2150 "data": { 2151 "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5QAAAFiCAYAAACJYpdlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGS9JREFUeJzt3X2QZWV9J/DvD0YRdZABDKBBQUMSqXUFBeJCYtqXJUgZ\nNEtQ3I2AxVpspVwoE1e3tCw7+6LZqnUtqS3jioqQLKgr6KrIi2tsxaQQxMFAgPhSAQUStWAQ0fCm\nz/7Rl5mG6Zm+88ztPrenP5+qW5x7zulzf3Or+8f93uc551RrLQAAALCjdhu6AAAAAFYngRIAAIAu\nAiUAAABdBEoAAAC6CJQAAAB0ESgBAADosmSgrKpfq6qNCx4/rqqzVqI4AAAAplftyH0oq2q3JHck\nObq19v1lqwoAAICpt6NTXl+W5LvCJAAAADsaKE9JcuFyFAIAAMDqMvaU16p6fOanux7WWvvRslYF\nAADA1Fu3A/u+PMl1jw2TVTX+SZgAAACsOq21Wmz9jgTK1ya5aBsH76kJFjU7O5vZ2dmhywDYJn0K\nmGZ6FJNWtWiWTDLmOZRV9aTMX5DnkgnVBAAAwCo31ghla+2nSfZb5loAAABYRXb0Kq+w7GZmZoYu\nAWC79ClgmulRrKSxr/K6zQNUNedQAgAA7JqqaiIX5QEAAFi1tndxGebt6GChQAkAAKwZZlduW0/g\ndg4lAAAAXQRKAAAAugiUAAAAdBEoAQAAptDpp5+ed7zjHUvud/DBB+eLX/ziClS0NYESAABYs6pq\n2R87W9uO7Dc7O5vXve513a+5o1zlFQAAWOOW88qvO3erkmm/Kq0RSgAAgCmwcePGPP/5z89ee+2V\nU045Jffff//mbZ/73Ody+OGHZ8OGDTn22GNzww03bPXzl19+ed797nfn4x//eNavX58jjjgiSXLe\neeflsMMOy1577ZVnP/vZ+eAHPzixmgVKAACAgT344IN51ateldNOOy2bNm3KySefnIsvvjhVlY0b\nN+aMM87Iueeem7vvvjtnnnlmTjzxxDz00EOPOsbxxx+ft73tbTnllFPyk5/8JBs3bkyS7L///rn0\n0ktz77335rzzzsub3vSmzdt2lkAJAAAwsKuvvjoPP/xwzj777Oy+++456aSTctRRR6W1lnPPPTdn\nnnlmjjrqqFRVTj311Oyxxx65+uqrtzpOa22rabInnHBCDjnkkCTJi170ohx33HG56qqrJlK3QAkA\nADCwO++8M09/+tMfte6Zz3xmkuS2227Le97znmzYsGHz4/bbb8+dd9451rEvu+yyvPCFL8y+++6b\nDRs25POf/3zuuuuuidQtUAIAAAzswAMPzB133PGodbfddluS5KCDDsrb3/72bNq0afPjvvvuy2te\n85qtjvPYq8I+8MADOemkk/KWt7wlP/zhD7Np06accMIJE7vYj0AJAAAwsGOOOSbr1q3LOeeck4ce\neiiXXHJJrr322lRV3vCGN+QDH/hArrnmmrTW8tOf/jSXXnpp7rvvvq2Oc8ABB+TWW2/dHBgffPDB\nPPjgg9lvv/2y22675bLLLsuVV145sboFSgAAgIE97nGPyyWXXJKPfvSj2XffffOJT3wiJ510UpLk\nBS94Qc4999y88Y1vzD777JNDDz00F1xwwaL3qDz55JOTJPvuu2+OPPLIrF+/Puecc05e/epXZ599\n9slFF12UV77ylROru3Z2qLOq2rTfGwUAAKCqtprquVgom7TVkpcWe38WrF/0jVq37FUBAABMqdUS\n9qaVKa8AAAB0ESgBAADoYsrrClqJ+dmsPaZpAAAwFIFyxfnwzyT5kgIAgOGY8goAAEAXI5QAAMCa\n4TS0yRIoAQCANcG1JybPlFcAAAC6CJQAAAB0ESgBAADoIlACAADQRaAEAACgy5KBsqr2rqpPVtXN\nVXVTVb1wJQoDAABguo1z25D3Jfl8a+33q2pdkictc00AAACsArW9e7FU1VOSbGytPWs7+zT3cxnP\n/E1UvVdMUrmfEgAAy6qq0lqrxbYtNeX1kCQ/qqrzquobVXVuVT1x8iUCAACw2iwVKNcleX6S97fW\nnp/kp0n+47JXBQAAwNRb6hzK25Pc3lq7dvT8k1kkUM7Ozm5enpmZyczMzITKAwAAYCXNzc1lbm5u\nrH23ew5lklTVV5L829bat6pqNsmerbW3LtjuHMoxOYeSyXMOJQAAy2t751COEyifl+RDSR6f5LtJ\nXt9a+/GC7QLlmARKJk+gBABgee1UoBzj4ALlmARKJk+gBABgee3MVV4BAABgUQIlAAAAXQRKAAAA\nugiUAAAAdBEoAQAA6CJQAgAA0EWgBAAAoItACQAAQBeBEgAAgC4CJQAAAF0ESgAAALoIlAAAAHQR\nKAEAAOgiUAIAANBFoAQAAKCLQAkAAEAXgRIAAIAuAiUAAABdBEoAAAC6CJQAAAB0ESgBAADoIlAC\nAADQRaAEAACgi0AJAABAF4ESAACALgIlAAAAXQRKAAAAugiUAAAAdBEoAQAA6CJQAgAA0EWgBAAA\noMu6cXaqqluT3Jvk50keaq0dvZxFAQAAMP3GCpRJWpKZ1trdy1kMAAAAq8eOTHmtZasCAACAVWfc\nQNmS/L+q+npVvWE5CwIAAGB1GHfK67GttX+oqqcm+UJV3dJau+qRjbOzs5t3nJmZyczMzESLBAAA\nYGXMzc1lbm5urH2rtbZDB6+qdya5r7X2ntHztqPHWKuqKvODvTApFX9/AAAsp6pKa23RUyCXnPJa\nVU+sqvWj5SclOS7JDZMtEQAAgNVmnCmv+yf51PzoWtYl+d+ttSuXtSoAAACm3g5Ped3qAKa8js2U\nVybPlFcAAJbXTk15BQAAgMUIlAAAAHQRKAEAAOgiUAIAANBFoAQAAKCLQAkAAEAXgRIAAIAuAiUA\nAABdBEoAAAC6CJQAAAB0ESgBAADoIlACAADQRaAEAACgi0AJAABAF4ESAACALgIlAAAAXQRKAAAA\nugiUAAAAdBEoAQAA6CJQAgAA0EWgBAAAoItACQAAQBeBEgAAgC4CJQAAAF0ESgAAALoIlAAAAHQR\nKAEAAOgiUAIAANBFoAQAAKCLQAkAAEAXgRIAAIAuYwXKqtq9qjZW1WeXuyAAAABWh3FHKM9OclOS\ntoy1AAAAsIosGSir6peTnJDkQ0lq2SsCAABgVRhnhPK9Sf5Dkl8scy0AAACsIuu2t7GqXpHkh621\njVU1s639ZmdnNy/PzMxkZmabuwIAADDF5ubmMjc3N9a+1dq2T4usqncleV2Sh5M8IcleSS5urZ26\nYJ+2vWOwRVXFaahMVsXfHwAAy6mq0lpb9PTH7QbKxxzkt5O8ubX2u49ZL1COSaBk8gRKAACW1/YC\n5Y7eh9InVwAAAJLswAjlNg9ghHJsRiiZPCOUAAAsr0mOUAIAAEASgRIAAIBOAiUAAABdBEoAAAC6\nCJQAAAB0ESgBAADoIlACAADQRaAEAACgi0AJAABAF4ESAACALgIlAAAAXQRKAAAAugiUAAAAdBEo\nAQAA6CJQAgAA0EWgBAAAoItACQAAQJd1QxcAwHSoqqFLYBfUWhu6BACWkUAJwAI+/DNJvqQA2NWZ\n8goAAEAXgRIAAIAuAiUAAABdBEoAAAC6CJQAAAB0ESgBAADoIlACAADQRaAEAACgi0AJAABAF4ES\nAACALgIlAAAAXQRKAAAAuiwZKKvqCVX1taq6vqpuqqp3r0RhAAAATLd1S+3QWru/ql7cWvtZVa1L\n8tWq+s3W2ldXoD4AAACm1FhTXltrPxstPj7J7knuXraKAAAAWBXGCpRVtVtVXZ/kB0m+1Fq7aXnL\nAgAAYNotOeU1SVprv0hyeFU9JckVVTXTWpt7ZPvs7OzmfWdmZjIzMzPZKgEAAFgRc3NzmZubG2vf\naq3t0MGr6h1J/qm19t9Hz9uOHmOtqqok3ismqeLvj0nRo5g8PQpgV1BVaa3VYtvGucrrflW192h5\nzyT/MsnGyZYIAADAajPOlNcDk5xfVbtlPoD+eWvti8tbFgAAANNuh6e8bnUAU17HZjoZk2c6GZOj\nRzF5ehTArmCnprwCAADAYgRKAAAAugiUAAAAdBEoAQAA6CJQAgAA0EWgBAAAoItACQAAQBeBEgAA\ngC4CJQAAAF0ESgAAALoIlAAAAHQRKAEAAOgiUAIAANBFoAQAAKCLQAkAAEAXgRIAAIAuAiUAAABd\nBEoAAAC6CJQAAAB0ESgBAADoIlACAADQRaAEAACgi0AJAABAF4ESAACALgIlAAAAXQRKAAAAugiU\nAAAAdBEoAQAA6CJQAgAA0EWgBAAAoMuSgbKqDqqqL1XV31bVjVV11koUBgAAwHSr1tr2d6g6IMkB\nrbXrq+rJSa5L8qrW2s2j7W2pYzCvqpJ4r5ikir8/JkWPYvL0KIBdQVWltVaLbVtyhLK19o+ttetH\ny/cluTnJ0yZbIgAAAKvNDp1DWVUHJzkiydeWoxgAAABWj7ED5Wi66yeTnD0aqQQAAGANWzfOTlX1\nuCQXJ/mL1tqnH7t9dnZ28/LMzExmZmYmVB4AAAAraW5uLnNzc2PtO85FeSrJ+Unuaq29aZHtLsoz\nJhe8YPJc8ILJ0aOYPD0KYFewUxflSXJskj9I8uKq2jh6HD/RCgEAAFh1lhyhXPIARijH5tt/Js+3\n/0yOHsXk6VEAu4KdHaEEAACArQiUAAAAdBEoAQAA6CJQAgAA0EWgBAAAoItACQAAQBeBEgAAgC4C\nJQAAAF0ESgAAALoIlAAAAHQRKAEAAOgiUAIAANBFoAQAAKCLQAkAAEAXgRIAAIAuAiUAAABdBEoA\nAAC6CJQAAAB0ESgBAADoIlACAADQRaAEAACgi0AJAABAF4ESAACALgIlAAAAXQRKAAAAugiUAAAA\ndBEoAQAA6CJQAgAA0EWgBAAAoItACQAAQBeBEgAAgC5LBsqq+khV/aCqbliJggAAAFgdxhmhPC/J\n8ctdCAAAAKvLkoGytXZVkk0rUAsAAACriHMoAQAA6CJQAgAA0GXdJA4yOzu7eXlmZiYzMzOTOCwA\nAAArbG5uLnNzc2PtW621pXeqOjjJZ1trz11kWxvnGCRVlcR7xSRV/P0xKXoUk6dHAewKqiqttVps\n2zi3DbkoyV8n+dWq+n5VvX7SBQIAALD6jDVCud0DGKEcm2//mTzf/jM5ehSTp0cB7Ap2aoQSAAAA\nFiNQAgAA0EWgBAAAoItACQAAQBeBEgAAgC4CJQAAAF0ESgAAALoIlAAAAHQRKAEAAOgiUAIAANBF\noAQAAKCLQAkAAECXdUMXAAAA46iqoUtgF9RaG7qEVU2gBABgFfHhn0nyJcXOMuUVAACALgIlAAAA\nXQRKAAAAugiUAAAAdBEoAQAA6CJQAgAA0EWgBAAAoItACQAAQBeBEgAAgC4CJQAAAF0ESgAAALoI\nlAAAAHQRKAEAAOgiUAIAANBFoAQAAKCLQAkAAEAXgRIAAIAuSwbKqjq+qm6pqm9X1VtXoigAAACm\n33YDZVXtnuR/Jjk+yWFJXltVz1mJwljL5oYuAGAJc0MXALAdc0MXwBqy1Ajl0Um+01q7tbX2UJKP\nJXnl8pfF2jY3dAEAS5gbugCA7ZgbugDWkKUC5dOTfH/B89tH6wAAAFjjlgqUbUWqAAAAYNVZt8T2\nO5IctOD5QZkfpXyUqppkTbs479V4/mToAlYNf39Mlt+n8elT49CjmDy/U+PRo8alT+2cam3bg5BV\ntS7J3yV5aZI7k1yT5LWttZtXpjwAAACm1XZHKFtrD1fVG5NckWT3JB8WJgEAAEiWGKEEAACAbVnq\nojwAAACwqKUuygPLqqr2TnJ8ttyO5vYkV7TW7hmuKoAt9ClgmulRDM0IJYOpqlOTXJdkJsmeo8dL\nknyjqk4bsDSAJPoUMN30KKaBcygZTFV9K8nRj/0Grao2JLmmtXboMJUBzNOngGmmRzENjFAyjXzL\nAUw7fQqYZnoUK8Y5lAzpvya5rqquzPx8/yQ5KMlxSf7zYFUBbKFPAdNMj2JwprwyqKraJ8nvJHna\naNUdSa5srd09XFUAW+hTwDTToxiaQMlUqKp9k6S1dtfQtQAsRp8CppkexVCcQ8lgquqZVfWxqvpR\nkq8l+VpV/Wi07uBhqwPQp4DppkcxDQRKhvTxJJ9KcmBr7Vdaa7+S5MAkn07ysUErA5inTwHTTI9i\ncKa8Mpiq+va2Lme9vW0AK0WfAqaZHsU0cJVXhvSNqnp/kvOTfH+07hlJTkuycbCqALbQp4Bppkcx\nOCOUDKaq9khyRpITkzx9tPqOJJ9J8uHW2gND1QaQ6FPAdNOjmAYCJQAAAF1MeWVQVXV8kldly7dq\ntyf5v621y4erCmALfQqYZnoUQzNCyWCq6n1JDk1yQeanZyTJLyd5XZLvtNbOGqo2gESfAqabHsU0\nECgZzLauPlZVleTbo0tfAwxGnwKmmR7FNHAfSoZ0f1Udvcj6o5P800oXA7AIfQqYZnoUg3MOJUM6\nPcmfVdX6zM/3T+anadw72gYwtNOjTwHT6/ToUQzMlFcGV1UHJnna6OkdrbV/HLIegMfSp4Bppkcx\nJCOUDGo0x/+Z2XJlsnVV9YPmmw5gSuhTwDTToxiaEUoGU1XHJXl/ku/k0dM0Dk3yh621K4aqDSDR\np4DppkcxDQRKBlNVtyQ5vrV262PWH5Lkstbarw9SGMCIPgVMMz2KaeAqrwxp92y5Z9JCd8R0bGA6\n6FPANNOjGJxfNIb0kSTXVtVF2TJN46Akp4y2AQxNnwKmmR7F4Ex5ZVBVdViSV2bBlcmSfKa1dtNw\nVQFsoU8B00yPYmgCJQAAAF2cQ8lgqurlC5b3rqoPV9UNVXVhVe0/ZG0Ayebe9KdVdUtVbaqqu0fL\nf1pVew9dH7C2+SzFNBAoGdK7Fiy/J8k/JPndJNcm+V+DVATwaJ9IsinJTJJ9Wmv7JHlxkntG2wCG\n5LMUgzPllcFU1cbW2hGj5W8mOfyRm/BW1Tdba88btEBgzauqb7XWfnVHtwGsBJ+lmAau8sqQnlpV\nf5SkkjzlMdtqgHoAHuu2qnpLkvNbaz9Ikqo6IMlpSb43aGUAPksxBUx5ZUgfSrJ+9DgvyVOTpKoO\nTPLNAesCeMRrkuyX5Mujcyg3JflSkn2TvHrQygC2fJZ6cuY/S+2XbP4sdf2AdbGGmPLKVKmqC1pr\npw5dB0CSVNUemb+f252ttS9U1R8k+RdJbkrywdbaQ4MWCKx5VfXsJP8q8/ef/HmSv0tyYWvt3kEL\nY80QKBlMVX02Scujp2S8JMlfJmmttRMHKQxgpKouTLJ7kidm/kI8T05ySZKXJUlr7bThqgPWuqo6\nO8krknw5yQmZH5W8J8nvJfnD1tqXBiyPNUKgZDBVtTHz3/J/KMkvMh8sL8r8aEC11uaGqw4gqaob\nWmvPrap1Se5M8rTW2sNVVUn+prX23IFLBNawqroxyfNaaz+vqicmuay19ttV9Ywkn2mtHT5wiawB\nzqFkSEcmuS7J25PcOwqQ97fWvixMAlNit9G01/VJ9syWi148If4fCgyvJXncaPkJSZ6UJK217y1Y\nD8vKVV4ZTGvt50n+R1V9Isl7q+qH8TsJTJe/SHJzkoeS/HGSq6rqr5O8MMn5QxYGkPlZXtdW1deS\n/FaS/5YkVfVLSe4asjDWDlNemRpV9Yokx7TW3jZ0LQCPqKqDMz+L4u7RxS+OTHJLa83VqIHBVdU/\nS/LrSW5srd0ydD2sPQIlAAAAXZz/AQAAQBeBEgAAgC4CJQAAAF0ESgB2OVV1VlXdVFV/PnQtALAr\nc1EeAHY5VXVzkpe21u5csG5da+3hAcsCgF2OEUoAdilV9YEkz0pyeVXdU1UXVNVXk5xfVftV1Ser\n6prR45jRz+xbVVdW1Y1VdW5V3VpV+1TVwVV1w4Jjv7mq3jlafnZVXVZVX6+qr1TVr43Wf7Sq3ldV\nf1VV362qkxb8/Fur6m+q6vqqeldVPauqrluw/dCFzwFg2rmJPAC7lNbav6uq30kyk+TfJ3lFkt9s\nrT1QVRcmeW9r7a+q6hlJLk9yWJJ3JvlKa+2/VNUJSc7Y1uFHjyT5YJIzW2vfqarfSPL+JC8dbTug\ntXZsVT0nyWeSXFxVL09yYpKjW2v3V9XerbV7qurHVfW80X0tX5/kI5N9RwBg+QiUAOyqavTfz7TW\nHhgtvyzJc6oe2ZT1VfWkJL+V5PeSpLX2+aratL3jjn7mmCT/Z8GxHj/6b0vy6dGxbq6q/Re89kda\na/ePtt0zWv+hJK+vqj9K8uokR/X8YwFgCAIlALu6ny1YriS/0Vp7cOEOo1BY2drDefTpIXtmPjDu\nlmRTa+2IbbzmwuM/cty2jde4OPMjpH+Z5Outte2FWQCYKs6hBGAtuTLJWY88qarnjRa/kuRfj9a9\nPMmG0fofJPml0fmUe2R++mxaaz9J8vdV9fujn6mq+udLvPYXMj8SuefoZzaMjvVAkiuS/FmS83b6\nXwgAK0igBGBX1LaxfFaSI6vqm1X1t0nOHK3/kyQvqqobMz/19XtJ0lp7KMl/SnJN5sPoTQuO9W+S\nnFFV1ye5MfPnR27z9VtrV2T+fMqvV9XGJH+8YJ8Lk/xi9BoAsGq4bQgAPEZV/X2SF7TW7l6h13tz\nkvWttXeuxOsBwKQ4hxIAtrZi37ZW1aeSHJLkJSv1mgAwKUYoAQAA6OIcSgAAALoIlAAAAHQRKAEA\nAOgiUAIAANBFoAQAAKCLQAkAAECX/w8Bk9FUxtIingAAAABJRU5ErkJggg==\n", 2152 "text/plain": [ 2153 "<matplotlib.figure.Figure at 0x7fa24e11d710>" 2154 ] 2155 }, 2156 "metadata": {}, 2157 "output_type": "display_data" 2158 } 2159 ], 2160 "source": [ 2161 "# Plot residency time\n", 2162 "import matplotlib.pyplot as plt\n", 2163 "# Enable generation of Notebook emebedded plots\n", 2164 "%matplotlib inline\n", 2165 "\n", 2166 "fig, axes = plt.subplots(1, 1, figsize=(16, 5));\n", 2167 "df.plot(kind='bar', ax=axes);" 2168 ] 2169 }, 2170 { 2171 "cell_type": "markdown", 2172 "metadata": {}, 2173 "source": [ 2174 "# Example of Custom Plotting" 2175 ] 2176 }, 2177 { 2178 "cell_type": "code", 2179 "execution_count": 31, 2180 "metadata": { 2181 "collapsed": false 2182 }, 2183 "outputs": [], 2184 "source": [ 2185 "from perf_analysis import PerfAnalysis\n", 2186 "\n", 2187 "# Full analysis function\n", 2188 "def analysis(t_min=None, t_max=None):\n", 2189 " test_dir = te.res_dir\n", 2190 " platform_json = '{}/platform.json'.format(test_dir)\n", 2191 " trace_file = '{}/trace.dat'.format(test_dir)\n", 2192 " \n", 2193 " # Load platform description data\n", 2194 " with open(platform_json, 'r') as fh:\n", 2195 " platform = json.load(fh)\n", 2196 "\n", 2197 " # Load RTApp Performance data\n", 2198 " pa = PerfAnalysis(test_dir)\n", 2199 " logging.info(\"Loaded performance data for tasks: %s\", pa.tasks())\n", 2200 " \n", 2201 " # Load Trace data\n", 2202 " #events = my_tests_conf['ftrace']['events']\n", 2203 " events = [\n", 2204 " \"sched_switch\",\n", 2205 " \"sched_contrib_scale_f\",\n", 2206 " \"sched_load_avg_cpu\",\n", 2207 " \"sched_load_avg_task\",\n", 2208 " \"cpu_frequency\",\n", 2209 " \"cpu_capacity\",\n", 2210 " ]\n", 2211 " trace = Trace(platform, test_dir, events)\n", 2212 " \n", 2213 " # Define time ranges for all the temporal plots\n", 2214 " trace.setXTimeRange(t_min, t_max)\n", 2215 " \n", 2216 " # Tasks performances plots\n", 2217 " for task in pa.tasks():\n", 2218 " pa.plotPerf(task)\n", 2219 " \n", 2220 " # Tasks plots\n", 2221 " trace.analysis.tasks.plotTasks(pa.tasks())\n", 2222 "\n", 2223 " # Cluster and CPUs plots\n", 2224 " trace.analysis.frequency.plotClusterFrequencies()" 2225 ] 2226 }, 2227 { 2228 "cell_type": "code", 2229 "execution_count": 32, 2230 "metadata": { 2231 "collapsed": false, 2232 "scrolled": false 2233 }, 2234 "outputs": [ 2235 { 2236 "name": "stderr", 2237 "output_type": "stream", 2238 "text": [ 2239 "06:30:36 INFO : Loaded performance data for tasks: ['task_lrh']\n", 2240 "06:30:37 INFO : task task_lrh found, pid: [1388]\n", 2241 "06:30:37 INFO : Collected events spans a 11.783 [s] time interval\n", 2242 "06:30:37 INFO : Set plots time range to (0.000000, 11.782671)[s]\n", 2243 "06:30:37 INFO : Set plots time range to (0.000000, 11.782671)[s]\n", 2244 "06:30:37 INFO : PerfIndex, Task [task_lrh] avg: 0.80, std: 0.12\n", 2245 "06:30:38 INFO : task task_lrh found, pid: [1388]\n", 2246 "06:30:38 WARNING : Events [sched_overutilized] not found, plot DISABLED!\n", 2247 "06:30:38 WARNING : Events [sched_overutilized] not found, plot DISABLED!\n", 2248 "06:30:38 WARNING : Events [sched_overutilized] not found, plot DISABLED!\n", 2249 "06:30:38 WARNING : Events [sched_overutilized] not found, plot DISABLED!\n", 2250 "06:30:38 WARNING : Events [sched_overutilized] not found, plot DISABLED!\n", 2251 "06:30:39 INFO : LITTLE cluster average frequency: 0.595 GHz\n", 2252 "06:30:39 INFO : big cluster average frequency: 0.628 GHz\n" 2253 ] 2254 }, 2255 { 2256 "data": { 2257 "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7YAAALYCAYAAABIc24GAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XmcXFWZ//HvE8MSJCTdgkAgy0gSIApECQRkiz+UyYxK\n8PWTRRSTMUIjgyCZcQTRMVFBGCAKKtBBlgASIKK4QRCibZIfxoxI2CkImpAFwtKdBEQgMc/vj3ur\nc7tS1V29pE+dvp/361Wvrrp1733Oqaquqqfuec41dxcAAAAAALHqF7oBAAAAAAB0B4ktAAAAACBq\nJLYAAAAAgKiR2AIAAAAAokZiCwAAAACIGoktAAAAACBqJLZALzOzm8zsW1Wuu9zM3jCz2dugHVPM\nbGFPbmNmE8xsZTv3zzCz181ss5lVfP8xszlmNqkzbespZraDmT1lZruGiB87M2sys6nt3D/GzP63\nN9vUkY7a3MG2R5nZ0z3Qhm6/7tL/q/d0sx1Vvz8BQK0ws93NbIGZbTCzy7q5rxEdfU9BbeIJAzqQ\nJmKvpZfNaaJZvP2pLuzS00u1637M3Sdn2tPtL6+huPs3JL23vXXM7EBJB7r7zzvaXw99kW+T1Lj7\nW5JukHR+O9tMN7NbuhCr0z8mRKij1/e3JHXrS8c2UPX/ZOlrzt0Xuvt+3W5Ada+7wWZ2g5m9kH55\nK5jZV7obu7Qpqv79CQC6JfMD/mtm9qKZ3Whm7+zCrs6Q9JK77+LuX+7q5zTiRmILdMDdd3b3ge4+\nUNIKJYnmwPQyp4u7tW42q7vb9zgz61/tqh3c3yDp1s6E7sS6WzZK9FP5L/FzJE02s+0qbM4X/y4w\nsz0lTZB0d+CmdNe2+v/r6HX3XUk7SdrP3XeRdLykZdugHTX3/gKgzyr+gD9Q0gckjZP0tWo3znyW\nD5f0VMl+kTMktkAXmdmhZvYHM2sxszVm9v3sF1Iz+66ZrTWz9Wb2qJmNKbOPgWb2OzP7XpUxF6RX\nH0l/3TwxPYrzKzN7ycyazeyXZrZXZpspZvZceoTnL2Z2aoV9X2ZmC81sl048BpvN7Cwze1ZSQekH\niZlNS/u+xsymVLu/1ERJv8/EGGlmvzezdWb2spnN6cZj0WRm3zazRZL+JulmSUdJ+kG6j6skyd1X\nSWqRdHilrrfzmJxvZsvSx/sJMzshXb6/pGskHZ7Gak6X72Bml5vZivTX6mvMbMf0vglmtqrS42lm\nA8zsivQX73WWDMPa0cx+bWZnl7TrUaswvNvM5qZHAdelj/WYzH03mdkP08d1g5kttswRSzP7iJk9\nnW77/fSxqfT4fETSQ+7+dmb7oWb20/Q5eyXdh8ysn5l9Le3bWjObXXxt2pZhYlPM7Hkze9XMzjSz\nQ9J+thT3k64/xcz+X/o/us6SIb//p53n8HNm9mT6GppnZsPS5eVec22G35vZ/unrrMXMHjezj1f7\nWFbxuhsnaY67r0/XL7j7XRX68FEze9iS95/nzewbJfcfaWYPpu183sw+W2YfnXp/AoDucPc1kuZJ\nep+ZHZZ5j1pqZscU1yvzWT5b0mcl/Vf63nps6b7Tz4wGM3sm3ecPMvf1Sz+HXzaz5yR9tGTbQWZ2\nffoZvMrMvpVus336Pnt2ut470s+aqhNz9CwSW6DrNkk6V9K7lHwRPVbSWZJkZv+sJGEa5e6DJJ0o\nqTmzrZvZuyTNl7TQ3b9UTUB3Pzq9emB6xHiukv/j6yUNSy9/l/SDtB3vlHSlpInpEZ7DJS3N7tMS\n10l6n6SPuPuGTj0K0iRJh0gaoySh2UPSLpKGSJoq6YdmNqiaHaXt/SclSXLRtyTNc/fBkvaS9H2p\n849FxmcknS5pZ0lTJC2U9O/pPs7JrPeUpIOqaXeJZZKOTB/vGZJuNbPd3f0pSWdK+kMaqz5d/xJJ\nI9NYI9M+/ndmf7ur8uN5uaT3K3le6yX9l6TNkm5K+ylJMrOD0u1/XaHNv05j7ybpz5J+XHL/yZKm\nS6pL+3dRut9dJd0l6atK/g+ek3SEKv9SfoAyz62ZvUPSryT9Vcmv7XspOWopJc/NZCVHeN+j5Pkq\nfS4PTdt9ipLX+Vcl/R8lw91PMrOjS9ZdlrbzG5J+amaDSxuYJv8XSPqEpF2VvD7mSBVfc9ltt5P0\nSyVfzHaT9EVJPzaz0ZnVyj6WGe297hZLuihN1EdVWKfodUmfSd9/PirpC2nfZGbDJd2j5DHbVdJY\nSY9ktu3S+xMAdJFJyQ+dkv5F0gtKPhu+6e51kv5T0l3p+1JR9rP835R8bl2aDkWer/I/sH5UyQ+E\nByr5jPjndPkZ6X1j0/s/qbafYzdJelvSPko+c4+T9Pn0R9rPSPqmme2npJTEtPX7OnoJiS3QRe7+\nZ3df4u6b3X2FpFmSir8obpQ0UNL+ZtYvPbLyYmbzvSQ1SbrD3f9b3eDuze7+M3d/091fl3Rxph1S\nkugcYGYD3H2tuz+ZuW87SbdLGizp4+7+Zhea8B13X5fWCEpJ37/p7v9w93uVfMHet8p9FRON1zLL\n3pY0wsz2cve33f3BShtX8Vi4pJvc/an0eduULi/3Afhapj1Vc/efFJ9rd79T0rOSxpeLY2am5IN5\nWvoYvi7pO0oStaKyj6clQ6/+TdK57v5C2p/F6QftLyWNNrN90n2cJun2TH9L23yTu//N3TcqScYP\nMrOBxbsl/dTd/+Tu/1Dy5WFset+/Snrc3X+atu97kl7cKsAWg9L2Fx0qaU9JX3b3v7v7W5nn99OS\nrnD35e7+NyXJ5inWdjKPb6WvifuVPF+3ufsr6a/+C5V8ASl6yd2vTNt5p5IE+2Nl2nimktd0wd03\nK3k+xqZfuDpymKR3uvsl7r7J3X+n5MtZtha/0mNZ1N7r7ovpNmdLesLMnjWzieVWdPffu/sT6fXH\nlPyfF/8XTpV0v7vfkT4eze6eTWx77P0JADpgku42sxYl79tNklZJusfd50mSuz8g6U/aciS1M5/l\nWZe4+wZ3Xynpd9ryI+JJkr7r7qvdvUXJd4disr27kmT7vPRz6mVJ31P6OZ2+z35b0s8lTZN0mrsz\nDDoQElugi8xsdDqk8AUzW6/kF7p3SZK7/1bJ0aUfSlprZo2ZRMGUvDnvKKmxB9qxU7r/5Wk7fi9p\nkJlZmhCcrOTL+pq0vdkkc6SkjytJnMomPVUonQX51TQhKHpDyS+q1ViX/h2YWfZfSh6zJenQzn+r\ntHF7j0U77ZXKH2EcqGRYaKeY2WfToUkt6Qf1+5S+LsrYTUnN5EOZ9e9VchStqNLjuauS19BzW3Um\n+YHiTkmnpX0/RVLZSTTS4VSXWDJ8er2So6cqacPazPW/a8vzOUTJF5CsirNiK3k8s8/tUEkrSvpX\ntKeSmvai5yX1V3IEu1K7Sm9nJyBZXbL/FWmMUsMlXZl5Pl5Nl+9VZt1SQ7R1/1eky6XkdVbpsSyq\n+LpLf7D5jruPU/KaulPS3ApHnsenw4hfMrN1SmrXi6/DoZL+UqEPPfr+BAAdcEmT3L3O3Ue4+9lK\nRn6dWHwfTt+Lj0iXF7X3WVNJ9ofX7HeTPUv293zm+nAlBwFeyLTlWiWf30U3Kxkldo+7b/WZjN5D\nYgt03TWSnpQ0Mh3ud6Ey/1Pu/v30C+gYSaMlfbl4l6TrJN0n6R4z26mb7fiPdP+Hpu04Rpk6R3f/\njbsfp+QD4ek0dtFTkj4n6d6S4ZKd0WO/TKaJ+HPKHOFNjzKf4e57KflyfrVVngm53ceiQnsrtX9/\ntR2e2eE26RDPWZL+XVJ9OoTq8Uz80u1eUZLcjEk/1OvcfbAnw5g78oqkN5X8OFHObCVHPT8s6Q13\n/2OF9T6tZBKiY9PH7J+K3amiDWuUJEnJBkkS3d6RzUeVPD9FKyUNS4ckl9v3iMztYUqG/68ts241\nShPT4WmMUs9LOiPzfNS5+zvdfXEVMdZIGlryQ8pwbZ1Ut6e9110rd39NydHk4vD9UrcpmaRrb0+G\n8V+rLc/p80qG1JXdtXr2/QkAOut5SbeUvA8PdPf/yazT0XePznw3eUHJZ0xR9vpKSW9JelemLYPc\n/YDMOlcrGZ0z0cyO6ERc9DASW6DrdlYybPCNtLbiC9oyedK49IjJdkp+FXxT0j/S7YoJ59lKhkP+\n0tLJgqq0Vm2/lO6sJDlab2b1SuoHlbbj3WY2Ka1d3ahkkoV/ZHfm7rcrqU18oJ2EsTfdo8zwYUsm\n6Nk7vblOyWNcPMJX9WORUZqwle5Dlkw4Va+kprEck9TPkomfdkwvOyhJMlxJ0tkvPbr8vpJYe6ev\nC6VHKq+T9D0z260Y28yOqxC3VbrtDZJmmtme6aQVh5vZ9un9f0jbcrmSX5Mr2VnJh3Zz+jq5uExf\nK7lH0nvN7BOWzIp9jtr+ol7qAUkfKLZR0h+VfKG4JD3avqOZfTC9b46k8yyZKGrntF23Vzi6W0m2\n7e82s3PMbDszO1HSfmn7S10r6auWTqBlyaQhJ2bu3+r1kvFHJf/v/5XGmaBkuPPtZdqzdWM7eN2Z\n2dfT95bt0/eMc5Uc3S2UWX1nSS3u/raZHapk+HHRbZI+nP5v9Tezd1lSh93axm68PwFAd90q6eNm\ndlz62bajJRP1ZX+gLH0/7eh2qeyP3ndKOif9/K1T5rRr7v6CpN8o+awdmI5y2sfSORzM7DQlZS+T\nlXwGzrauna4IPYDEFui6/1TyZXGDkqN0t2fu2yVd1ixpuZJEp3juzux5Is9QMpTz7jQxKqf0zXm6\nkjfOFjP7pJJajwFpjAeVDGUt7r+fpPOUHDF6VcmEVl8obYe73yzpm5J+a+kMsBWUnuOy3C+i3T2C\nO0vJUcSicZIWm9lrSmpYznH35el901X9Y1GpfVdK+qQlM+AWZ389VUn9zsYKbXQldZN/V5LIvCHp\nWU/ql6+Q9AclQ57eJ2lRZrv5kp6Q9KKZvZQu+4qSSYQWp0OB71fbo5rtPZ7/KekxSf+r5Pn9jtq+\nr9+sZMKm9k6fdLOS4bKrlRxdLibE2fhlH0N3f0XJxGiXKHnMR6ptf9tu5L5W0m8lnZDe3qxkKPxI\nJb/Qr1RS6yQlSfstkhYoGTb7hpIa0zZt6EB2nT9KGiXpZSUTkv3ftJaqtI13S7pU0u3p8/GYpH/O\nrDJdbV9z2f+jt9P+/Esa5wdK6q2eybSnvddjR6+7zZJuTPe9WsmEdR919zfK7OssJROabJD0dUl3\nZPr4vJL66P9Q8rp5WMlkKqVtrOb9CQB6lCczxE9S8qP7S0o+H/5DHY++au+zq731i6NUHlFSy3tX\nyfqflbS9klF6zZLmStoj/b70XUmfdfc3PDkF5J8kzay2r+hZVk19c/pr7e8l7aDkif25u1+QHhG5\nQ8lQq+WSTnL3dek2FygZ4vgPJV9Ef5MuP1jJ7GI7KhmLfm66fAclX7A+oOSD9mRPJuQBcsvMnlZS\n+/FTd69YWxoLS045cp6S95F3Vppgwcx+LOlOd/95b7Yvjb2Dkpmjj0oTt2ilvySf7ltm8w3OktMe\nzXb3Q3sx5hRJU939qN6K2Vl96XUH1DIzu0FJHflLxeGkXfk+C6D2VJXYSsmkLO7+RjrcbJGSIwXH\nS3rF3f/HzL4iqc7dz0+HcN2m5BQgeykZfjbK3d3Mlkg6292XmNk9kq5y93lmdpak97n7WWZ2sqRP\nuPsp5doCAGhfWhv5W0k/cPf2jtj2eTEktgB6h5kdpWR29pszie3/qPrvs6M7WRIBoJdUPRQ5M9Rp\ne0nvUFLXc7ySCUqU/j0hvT5JyUnkN6ZDBpdJGm9me0oa6O5L0vVuzmyT3dddSoZYAehlZnatmb1W\n5nJ16LahOpacm+8lJfWrtwVuTi0oNwQYQA65+0JtPfN4Z77P9tpoEwCd07/aFS05d+CflUyacY27\nP2Fmu6c1U1IyoUbxNAxD1Hbyi1VKfunaqLanhlitLTNV7qV0qm1332Rm682s3t2bO9knAN3g7mcq\nOT0QIuXu96n6Uyz1ee4+W1u+tAJAqc5+nwVQgzpzxHazu4+VtLeko83sQyX384s4AAAAolXF91m+\n6wI1quojtkXuvt7Mfi3pYElrzWwPd38xHWZcnOVztdqey3BvJb9yrU6vly4vbjNM0pq0jndQ6dFa\nM+PNBAAAICfcvZpzandXZ77PbnVear6fAj2vK//7VSW2ZrarpE3uvs7MBkj6iKQZkn6h5LxNl6Z/\n7043+YWk28xsppIhG6MkLUknj9pgZuMlLZF0mqSrMttMVjLk45NKTotRrpOd7SMAAAAiY9YbOa2k\nTn6fLbeDUN9Pp0yZoptuuik3cUPGzlvckLG7+r9f7RHbPZWct6+fkuHLt7j7fDN7WNKdZjZV6fTo\nkuTuT5rZnUrO97RJ0lmZ03qcpeR0PwOUnO5nXrr8ekm3mNmzSk73w4zIAAAA6DFmNkfSMZJ2NbOV\nkv5bybm4O/t9FkCNqSqxdffHlJxftnR5s6QPV9jmYkkXl1n+kKQDyix/S+kbCQAAANDT3P1TFe7q\n1PfZWjFixIhcxQ0ZO29xQ8fuiqonjwIAAABQOyZMmJCruCFjh4hrJs2Y0ftxi0I+z10RX2Jrllzq\n60O3BAAAAABQAzo9K3JwxdKG3ptQAAAA1IhenFAIvYjSVQDdZTG9kZjZlpp9sy1JLgAAyAUzIwnq\nYyo9p+nymv8lo833U6AHFX/Hy9vLq6v/+/ENRQYAAAAAICPexLaujnpbAAAA5FZTU1Ou4oaMHa7P\noeKGfZ67Ir4a26Lm5i3XqbcBAAAA0Ie4S5HllkHFW2ObVV8vtbQkR3GzCS8AAOhTYq2xvemmm3T9\n9ddr4cKF3dpPv379tGzZMr3nPe/poZaFR40tgKx819g2N7edLZnhyQAAIIBFixbpgx/8oAYPHqx3\nvetdOvLII/WnP/0pdLMAoM/rG4ltUTHBdU+O4AIAAPSSDRs26GMf+5jOPfdctbS0aPXq1frGN76h\nHXbYIXTT0Eflr940f33O42PdVX0rsQUAAAjkmWeekZnp5JNPlplpxx131Ec+8hEdcMABW6177rnn\natiwYRo0aJDGjRunRYsWtd63efNmXXzxxRo5cqR22WUXjRs3TqtXr95qH4sWLdKwYcO0YMGCbdov\nAIgBiS0AAEAP2HffffWOd7xDU6ZM0bx589TSzuixQw89VI888ohaWlp06qmn6sQTT9Tbb78tSbri\niit0++23695779WGDRt0ww03aMCAAW22nzdvnk499VT99Kc/1dFHH71N+4XaNWHChFzFDRk7b3FD\nx+4KElsAAIAeMHDgQC1atEhmptNPP13vfve7NWnSJL300ktbrfvpT39adXV16tevn6ZNm6a33npL\nhUJBkvSjH/1IF110kUaNGiVJOvDAA1WfmTvkjjvu0Jlnnql58+Zp3LhxvdM5AL2uOHUQqkNiCwAA\n+pbit8HuXLpov/3204033qiVK1fq8ccf15o1a/SlL31JVrLPyy+/XGPGjNHgwYNVV1en9evX65VX\nXpEkrVq1Svvss0/FGFdddZVOPvlkjRkzpsvtRN9A3Wffj8t5bKtHYgsAAPqW4kSS3bn0gH333VeT\nJ0/W448/3mb5woULddlll2nu3Llat26dWlpaNGjQoNZT3gwdOlTLli2ruN+5c+fqZz/7ma666qoe\naScA9AUktgAAAD2gUCho5syZrRM9rVy5UnPmzNHhhx/eZr3XXntN/fv316677qq3335b3/zmN7Vh\nw4bW+z//+c/r61//upYtWyZ316OPPqrm5ubW+4cMGaL58+fryiuv1LXXXts7nUNNou6z78eVQsWl\nxrb21ddznlsAANDjBg4cqD/+8Y8aP368dt55Zx1++OE68MADdcUVV0hS63DkiRMnauLEiRo9erRG\njBihAQMGaNiwYa37mTZtmk466SQdd9xxGjRokE4//XS9+eabbfYxdOhQzZ8/X5dccoluuOGGXu4p\nANQe8x4abtMbzMyrbq9Z+aFExeWV7gcAADXLzBTTdxd0rNJzmi6v+alzOvX9tIc1NTUFOaoWKm7I\n2CHiJr9jNcm9d+MWhXqsu/q/339bNAYAAAAA0HXuUmTzNwXFEVsAABANjtj2PRyxBZDV1f/9/NXY\nFtXVbZnSn3pbAAAAAIhWfhPb5uYtU/q3tIRuDQAAANAp+Tuna/76nMfHuqvym9gCAAAAAPqE/NbY\nVrMuAACoKdTY9j3U2ALIosYWAAAAAPqI4nRAqA6JLQAAABAh6j77flwpVFxqbAEAAAAA6FUktgAA\nAD3gO9/5jv71X/+1zbJRo0aVXXbHHXeoX79++stf/tK6/PLLL9eQIUP01FNPqampSf369dPAgQO1\nyy67aL/99tNNN90kSVq+fLn69eunzZs3d7qNpTERtwkTJuQqbsjY4focKm7Y57krSGwBAAB6wDHH\nHKMHH3ywdSKkF154QZs2bdLSpUtbk9AXXnhBzz33nI4++ug2237729/WVVddpQULFmj//feXJO21\n11567bXXtGHDBl166aU6/fTT9fTTT3e7nUx0BKAvIrEFAADoAePGjdPGjRu1dOlSSdLChQv1oQ99\nSKNHj26zbOTIkdpzzz0lJUnm1772Nd1www1asGCBRo4cWXbfkyZNUl1dnZ588sl227BkyRIdfvjh\nqqur05AhQ/TFL35RGzdulKTWZPqggw7SwIEDNXfuXEnSr371K40dO1Z1dXU64ogj9Nhjj7Xub8SI\nEbriiit00EEHafDgwTrllFP01ltvtd7/85//XGPHjtWgQYM0cuRI3XfffZo7d67GjRvXpl0zZ87U\nCSecUPVjierkr940j30OFZca29pUX79lWrG6utCtAQAAfdD222+v8ePH6/e//70kacGCBTrqqKN0\n5JFHasGCBa3Lskdrv/KVr+jOO+/UggULNGLEiLL73bx5s372s59p3bp1OuCAA9ptQ//+/XXllVfq\n1Vdf1R/+8AfNnz9fV199dWtsSXr00Uf12muv6cQTT9TDDz+sqVOn6rrrrlNzc7MaGhp0/PHHtybD\nZqa5c+fqvvvu01//+lc9+uijrUOilyxZosmTJ+uKK67Q+vXrW/swadIk/fWvf21zdPmWW27R5MmT\nO/+gAjnmLv3ud6FbEY98JLYtLckrw11qbg7dGgAA0Ecdc8wxrQnkokWLdPTRR+uoo45qXbZw4UId\nc8wxres/8MADmjhxovbee++t9rVmzRrV1dVpt91207e+9S3deuutGjVqVLvxP/CBD+jQQw9Vv379\nNHz4cJ1xxhmtiXY5s2bNUkNDgw455BCZmT772c9qhx120OLFi1vXOeecc7THHnuorq5OH//4x1uP\nPl9//fWaOnWqjj32WEnSkCFDtO+++2r77bfXSSedpFtvvVWS9MQTT2jFihX62Mc+Vs1DiE7IX71p\n/vqcx8e6q/qHbgAAAEBPshndP/Gjf6NrdahHH320fvjDH6qlpUUvv/yy9tlnH+22226aPHmyWlpa\n9MQTT7Q5Ynv77bfrc5/7nOrr6zV9+vQ2+xoyZIhWrlzZqfjPPPOMpk2bpoceekhvvPGGNm3atNWw\n4KwVK1bo5ptv1ve///3WZRs3btSaNWtab++xxx6t1wcMGKAXXnhBkrRq1Sp99KMfLbvfyZMn69RT\nT9W3v/1t3XLLLTr55JO13XbbdaovANAZJLYAAKBP6WpS2hMOO+wwrV+/Xtddd52OOOIISdIuu+yi\nIUOGaNasWRoyZIiGDx/euv7o0aP1wAMPaMKECRowYIC+8pWvdCv+F77wBR188MG644479M53vlPf\n+973dNddd1Vcf9iwYbrwwgv11a9+tdOxhg4dqmXLlpW977DDDtP222+vBQsWaM6cOZozZ06n94+O\nNTU1BTmqFipuyNh5ixs6dlf03aHIdXXU1QIAgF41YMAAjRs3TjNnzmxzZPbII4/UzJkz2wxDLhoz\nZoweeOABXXbZZbryyiurjvXmm2+2uWzevFmvv/66Bg4cqJ122klPP/20rrnmmjbb7L777nruueda\nb59++um69tprtWTJErm7/va3v+nXv/61Xn/99Ypxi7MqT506VTfeeKN++9vfavPmzVq9erUKhULr\neqeddprOPvtsbb/99vrgBz9Ydb8AoCv6bmLb3ExdLQAA6HXHHHOMXn75ZR155JGty4466ii98sor\nbZJdsy1Dpg888EDdd999mjFjhmbNmiUza3N/OTvvvLN22mmn1ktTU5Muv/xy3Xbbbdpll110xhln\n6JRTTmmzn+nTp2vy5Mmqq6vTT37yEx188MG67rrrdPbZZ6u+vl6jRo3SzTffXDF2tl2HHHKIbrzx\nRp133nkaPHiwPvShD+n5559vXfe0007TE088oc985jOdewBRNeo+idtXY3eFxXQuMzPzbdJesyQB\nBgAANc3MOA9rJP7+979r991318MPP6x99tmn4nqVntN0efcLprexbfb9FLlX/H2po5fXZZfN0rp1\nWy8fPFj68pfP6PmGbWNd/d/vu0dsAQAAEMw111yjQw89tN2kFt2Tv3O65rHPHcddt04aPvyMrS7l\nkt1ORY7sPLZMHgUAAIAeNWLECJmZ7r777tBNAZATDEVOdsxQZAAAIsBQ5L6HochAedUORb7wwlka\nPnzrIccrVszSRRcxFBkAAAAAgCiQ2AIAAAARyl+9aR77HCouNbYAAAAAgG5ylyLLLYOixjbZMTW2\nAABEgBrbvocaW6B7qLFNcMQWAABExazmcx0AQC+jxhYAAETD3bn0wQu6Jn/1pvnrcx4f664isQUA\nAAAARI0a22TH1NgCAADUEGpsgepQY5vgiC0AAAAA1Biz5ILqkNgCAAAAEaLus+/H5Ty21WNWZAAA\nAACoIZddNktSMoz4wgtntS4fPFj68pfjG17cG0hsAQAAgAhNmDAhV3FDxu7tuOvWtUbW8OFbYq9Y\nMavc6ttEyOe5KxiKDAAAAACIGoktAAAAEKH81Zvmsc+h4lJjCwAAAADopsZGqVAI3Yp4cMQWAAAA\niFBe6k1rIXaouPvuGyauRI0tAAAAAAC9isQWAAAAiFD+6k3z1+dCIUxcKb4aWxJbAAAAAEDUSGwB\nAACACOVQJOU9AAAgAElEQVSt3jRkbGpsax+JLbqmvl4ySy719aFbAwAAAPQpDQ3JBdUhsZWkujqS\ntM5qaZHck0tLS+jWAAAA5E7e6k1DxuY8trWP89hKUnPzlutm4doBAAAAAOg0ElsAAAAgQnmrNw0Z\ne1vGveyyWVq3ru2yxYv/XIy8zeJ2pE/W2JrZUDP7nZk9YWaPm9k56fLpZrbKzB5OL/+S2eYCM3vW\nzJ42s+Myyw82s8fS+67MLN/BzO5Ily82s+E92VEAAAAAqDXr1knDh5/R5vLmm6FbFZ9qa2w3SjrP\n3d8r6TBJ/25m+0tySTPd/f3p5V5JMrMxkk6WNEbSRElXm7WO8b1G0lR3HyVplJlNTJdPlfRquvy7\nki7tgf5tW9kJlLpyydbzVtpXcZ1qYnW0blfrh8vtr66u+sejXD8rtaUzk1KVi1dNHzuzXUePe7nt\nKvWhqxNudfSYdWX/3W1Ldx6HruwLAABsJX/1pnnsc6i48dXYVpXYuvuL7r40vf66pKck7ZXeXa4o\ndZKkOe6+0d2XS1omabyZ7SlpoLsvSde7WdIJ6fXjJc1Or98l6dhO9qV3ZL+MS1smUOrKRep4X8WJ\nmbKTNVW6dLRudpKnjpK7jvqZrUsuTr5VqQ/l+pldlo2bbXtxnUqJTrl+VtpvR9tVmgCro8e9XLxK\nE2uVW15NElx8zCo9fx3FzSpuV9xnaR86SjCreW2VW7dcjGwbqnkuAAAAcqSxUZo2LXQr4tHpWZHN\nbISk90tanC76opk9YmbXm9ngdNkQSasym61SkgiXLl+tLQnyXpJWSpK7b5K03sx6/9BNdobkcpek\ngVsnd13R3NzxvortKXeEtLPrZvsmtZ9QZJOSjvpZ7Eel9cr1M7tMKn8kuLhO9v6OjhpX2m9H21V6\n3jt63MvFy26T3W+5fVWTBBcfs0rPX0dxy71+s89Vtg+VkvaOHo9y8co9l5V+HKm0L47eAgBQUV+s\nN63V2JzHtvZ1avIoM9tZ0k8knevur5vZNZK+md79LUlXKBlSHK/uJqs9rTPtqSYBbU/2yGs1iXRP\n6W67e2K7nnjey+2jJ19P7f1wsC3i9vbjV25fxSPMdXW1978JAACAmlF1Ymtm2ykZInyru98tSe7+\nUub+H0n6ZXpztaShmc33VnKkdnV6vXR5cZthktaYWX9Jg9x9q2+y06dPb70+YcKE6H5JqGkkDr2n\n3NH1UD8s1LLia7L4uAAA+qympqboavpCa2pqCvJdOFTckLFDxS0UmoIdtQ35PHdFVYltOvHT9ZKe\ndPfvZZbv6e4vpDc/Iemx9PovJN1mZjOVDDEeJWmJu7uZbTCz8ZKWSDpN0lWZbSYrGeL8SUnzy7Ul\nm9gC0drWR3cBAIhM6QGLGTNmhGsMgOhUe8T2CEmfkfSomT2cLvuqpE+Z2VglsyP/VVKDJLn7k2Z2\np6QnJW2SdJZ7sWhPZ0m6SdIASfe4+7x0+fWSbjGzZyW9KumU7nQMAAAA6MvyVm8aMjY1trWvqsTW\n3Rep/ERT97azzcWSLi6z/CFJB5RZ/pakk6ppDwAAAAD0ZQ0Nyd/GxrDtiEWnZ0UGAAAAEF7+zuma\nxz6HittHz2MLAAAAAECtIrEFAAAAIpS3etOQscP1OVTc+GpsSWwBAAAAAFEjsQUAAAAilL960zz2\nOVTc+Gpsqz3dDwAAAACglzQ2SoVC6FbEgyO2AAAAQITyV2+avz5zHtvqkdgCAAAAAKJGYgsAAABE\nKH/1pvnrc6EQJq4UX40tiS0AAAAAIGoktgAAAECE8lZvGjI2Nba1j8QWAAAAAGpMQ0NyQXVIbAEA\nAIAI5a3eNGRszmNb+0hsAQAAAABRI7EFAAAAIpS3etOQscP1OVRcamwBAAAAAOhVJLYAAABAhPJX\nb5rHPoeKG1+Nbf/QDQAAAAAAtNXYKBUKoVsRD47YAgAAABHKX71p/vrMeWyrR2ILAAAAAIgaiS0A\nAAAQofzVm+avz4VCmLhSfDW2JLYAAAAAgKiR2AIAAAARylu9acjY1NjWPhJbAAAAAKgxDQ3JBdUh\nsQUAAAAilLd605CxOY9t7SOxBQAAAABEjcQWAAAAiFDe6k1Dxg7X51BxqbEFAAAAAKBXkdgCAAAA\nEcpfvWke+xwqbnw1tv1DNwAAAAAA0FZjo1QohG5FPDhiCwAAAEQof/Wm+esz57GtHoktAAAAACBq\nJLYAAABAhPJXb5q/PhcKYeJK8dXYktgCAAAAAKJGYgsAAABEKG/1piFjU2Nb+0hsAQAAAKDGNDQk\nF1SHxBYAAACIUN7qTUPG5jy2tY/EFgAAAAAQNRJbAAAAIEJ5qzcNGTtcn0PFpcYWAAAAAIBeRWIL\nAAAARCh/9aZ57HOouPHV2PYP3QAAAAAAQFuNjVKhELoV8eCILQAAABCh/NWb5q/PnMe2eiS2AAAA\nAICokdgCAAAAEcpfvWn++lwohIkrxVdjS2ILAAAAAIgaiS0AAAAQobzVm4aMTY1t7SOxBQAAAIAa\n09CQXFAdElsAAAAgQnmrNw0Zm/PY1j4SWwAAAABA1EhsAQAAgAjlrd40ZOxwfQ4VlxpbAAAAAAB6\nFYktAAAAcs/MLjCzJ8zsMTO7zcx2MLN6M7vfzJ4xs9+Y2eDQ7czKX71pHvscKi41tgAAAEBUzGyE\npNMlfcDdD5D0DkmnSDpf0v3uPlrS/PQ20CsaG6Vp00K3Ih4ktgAAAMi7DZI2StrJzPpL2knSGknH\nS5qdrjNb0glhmlde/upN89dnzmNbPRJbAAAA5Jq7N0u6QtLzShLade5+v6Td3X1tutpaSbsHaiKA\nDpDYAgAAINfMbB9JX5I0QtIQSTub2Wey67i7S/Leb11l+as3zV+fC4UwcaX4amz7h24AAAAAENg4\nSQ+6+6uSZGY/lXS4pBfNbA93f9HM9pT0UrmNp0yZohEjRkiSBg8erLFjx7YO4ywmB33p9tKlS4PF\nX7p0aZD+F22L/a9YUdDw4cn+SxPZlSuT/haHJK9YUVBTU1OH2xfXr4XXS0e3ly5dqnXr1kmSli9f\nrq6y5MenOJiZx9ReAD3ETOJ/HwByxczk7tZLsQ6S9GNJh0h6U9JNkpZIGi7pVXe/1MzOlzTY3c8v\n2Zbvp+iWCy+cpeHDz2izbPbsMzV58rVbrbtixSxddFHbdcttX2ndGHT1f58jtgAAAMg1d3/EzG6W\n9CdJmyX9WdIsSQMl3WlmUyUtl3RSsEYidxoakr+NjWHbEQtqbAEAAJB77v4/7v5edz/A3Se7+0Z3\nb3b3D7v7aHc/zt3XhW5nVt7qTUPG5jy2tY/EFgAAAAAQNRJbAAAAIEJ5O6dryNjh+hwqLuexBQAA\nAACgV1WV2JrZUDP7nZk9YWaPm9k56fJ6M7vfzJ4xs9+Y2eDMNheY2bNm9rSZHZdZfrCZPZbed2Vm\n+Q5mdke6fLGZDe/JjgIAAAB9Sf7qTfPY51Bx+26N7UZJ57n7eyUdJunfzWx/SedLut/dR0uan96W\nmY2RdLKkMZImSrrazIpTNl8jaaq7j5I0yswmpsunKplOfZSk70q6tNu9AwAAAIAINTZK06aFbkU8\nqkps3f1Fd1+aXn9d0lOS9pJ0vKTZ6WqzJZ2QXp8kaU46m9xyScskjU9PbD3Q3Zek692c2Sa7r7sk\nHdvVTgEAAAB9Xf7qTfPX5333DRNXykGNrZmNkPR+SX+UtLu7r03vWitp9/T6EEmrMputUpIIly5f\nnS5X+nelJLn7Jknrzay+s+0DAAAAAORLpxJbM9tZydHUc939tex97u6SvAfbBgAAAKCC/NWb5q/P\nhUKYuFJ8Nbb9q13RzLZTktTe4u53p4vXmtke7v5iOsz4pXT5aklDM5vvreRI7er0euny4jbDJK0x\ns/6SBrl7c2k7pk+f3np9woQJ0R0iBwAAwNaampqi+yINoHZUldimEz9dL+lJd/9e5q5fSJqsZKKn\nyZLuziy/zcxmKhliPErSEnd3M9tgZuMlLZF0mqSrSva1WNInlUxGtZVsYgsAAIC+ofSAxYwZM8I1\nJhJ5qzcNGZsa29pX7RHbIyR9RtKjZvZwuuwCSZdIutPMpkpaLukkSXL3J83sTklPStok6ax0qLIk\nnSXpJkkDJN3j7vPS5ddLusXMnpX0qqRTutEvAAAAAIhWQ0Pyt7ExbDtiUe2syIvcvZ+7j3X396eX\nee7e7O4fdvfR7n6cu6/LbHOxu4909/3c/b7M8ofc/YD0vnMyy99y95PcfZS7H5bOpgwAAACgjLzV\nm4aMzXlsa1+nZ0UGAAAAAKCWkNgCAAAAEcpbvWnI2OH6HCpufDW2JLYAAAAAgKiR2AIAAAARyl+9\naR77HCpufDW2VZ/HFgAAAADQOxobpUIhdCviwRFbAAAAIEL5qzfNX585j231SGwBAAAAAFEjsQUA\nAAAilL960/z1uVAIE1eKr8aWxBYAAAAAEDUSWwAAACBCeas3DRmbGtvaR2ILAAAAADWmoSG5oDok\ntgAAAECE8lZvGjI257GtfSS2AAAAAICokdgCAAAAEcpbvWnI2OH6HCouNbYAAAAAAPQqElsAAAAg\nQvmrN81jn0PFja/Gtn/oBgAAAAAA2mpslAqF0K2IB0dsAQAAgAjlr940f33mPLbVI7EFAAAAAESN\nxBYAAACIUP7qTfPX50IhTFwpvhpbElsAAAAAQNRIbAEAAIAI5a3eNGRsamxrH4ktAAAAANSYhobk\nguqQ2AIAAAARylu9acjYnMe29pHYAgAAAACiRmILAAAARChv9aYhY4frc6i41NgCAAAAANCrSGwB\nAACACOWv3jSPfQ4VN74a2/6hGwAAAAAAaKuxUSoUQrciHhyxBQAAACKUv3rT/PWZ89hWj8QWAAAA\nABA1ElsAAAAgQvmrN81fnwuFMHGl+GpsSWwBAAAAAFEjsQUAAAAilLd605CxqbGtfSS2AAAAAFBj\nGhqSC6pDYgsAAABEKG/1piFjcx7b2kdiCwAAAACIGoktAAAAEKG81ZuGjB2uz6HiUmMLAAAAAECv\nIrEFAAAAIpS/etM89jlU3PhqbPuHbgAAAAAAoK3GRqlQCN2KeHDEFgAAAIhQ/upN89dnzmNbPRJb\nAAAAAEDUSGwBAACACOWv3jR/fS4UwsSV4quxJbEFAAAAAESNxBYAAACIUN7qTUPGpsa29pHYAgAA\nAECNaWhILqgOiS0AAAAQobzVm4aMzXlsax+JLQAAAAAgaiS2AAAAQITyVm8aMna4PoeKS40tAAAA\nAAC9isQWAAAAiFD+6k3z2OdQceOrse0fugEAAAAAgLYaG6VCIXQr4sERWwAAACBC+as3zV+fOY9t\n9UhsAQAAAABRI7EFAAAAIpS/etP89blQCBNXiq/GlsQWAAAAABA1ElsAAAAgQnmrNw0Zmxrb2kdi\nCwAAAAA1pqEhuaA6JLYAAABAhPJWbxoyNuexrX0ktgAAAACAqJHYAgAAABHKW71pyNjh+hwqLjW2\nAAAAAAD0KhJbAAAAIEL5qzfNY59Dxe2jNbZmdoOZrTWzxzLLppvZKjN7OL38S+a+C8zsWTN72syO\nyyw/2MweS++7MrN8BzO7I12+2MyG91QHAQAAACA2jY3StGmhWxGPao/Y3ihpYskylzTT3d+fXu6V\nJDMbI+lkSWPSba42M0u3uUbSVHcfJWmUmRX3OVXSq+ny70q6tMs9AgAAAHIgf/Wm+esz57GtXlWJ\nrbsvlNRS5i4rs2ySpDnuvtHdl0taJmm8me0paaC7L0nXu1nSCen14yXNTq/fJenY6poPAAAAAMi7\n7tbYftHMHjGz681scLpsiKRVmXVWSdqrzPLV6XKlf1dKkrtvkrTezOq72TYAAACgz8pfvWn++lwo\nhIkr9dEa2wqukfRPksZKekHSFT3SIgAAAAAAOqF/Vzd095eK183sR5J+md5cLWloZtW9lRypXZ1e\nL11e3GaYpDVm1l/SIHdvLhd3+vTprdcnTJgQ3dhvAAAAbK2pqSm6I0Sh5a3eNGRsamxrX5cTWzPb\n091fSG9+QlJxxuRfSLrNzGYqGWI8StISd3cz22Bm4yUtkXSapKsy20yWtFjSJyXNrxQ3m9gCAACg\nbyg9YDFjxoxwjQFqQEND8rexMWw7YlHt6X7mSHpQ0r5mttLMPifpUjN71MwekXSMpPMkyd2flHSn\npCcl3SvpLHf3dFdnSfqRpGclLXP3eeny6yW9y8yelfQlSef3SO8AAACAPipv9aYhY3Me29pX1RFb\nd/9UmcU3tLP+xZIuLrP8IUkHlFn+lqSTqmkLAAAAAABZ3Z0VGQAAAEAAeas3DRk7XJ9DxY2vxpbE\nFgAAAAAQNRJbAAAAIEL5qzfNY59Dxe2jNbYAAAAAgN7T2CgVCqFbEQ+O2AIAAAARyl+9af76zHls\nq0diCwAAAACIGoktAAAAEKH81Zvmr8+FQpi4Unw1tiS2AAAAAICokdgCAAAAEcpbvWnI2NTY1j4S\nWwAAAACoMQ0NyQXVIbEFAAAAIpS3etOQsTmPbe0jsQUAAAAARI3EFgAAAIhQ3upNQ8YO1+dQcamx\nBQAAAACgV5HYAgAAABHKX71pHvscKm58Nbb9QzcAAAAAANBWY6NUKIRuRTw4YgsAAABEKH/1pvnr\nM+exrR6JLQAAAAAgaiS2AAAAQITyV2+avz4XCmHiSvHV2JLYAgAAAACiRmILAAAARChv9aYhY1Nj\nW/tIbAEAAACgxjQ0JBdUh8QWAAAAiFDe6k1DxuY8trWPxBYAAAAAEDUSWwAAACBCeas3DRk7XJ9D\nxaXGFgAAAACAXkViCwAAAEQof/WmeexzqLjx1dj2D90AAAAAAEBbjY1SoRC6FfHgiC0AAAAQofzV\nm+avz5zHtnoktgAAAACAqJHYAujb6usls+QvAAB9SP7qTfPX50IhTFyJGlsAqC0tLZJ7ktwCAACg\nT+KILQAAABChvNWbhoxNjW3tI7EFAAAAgBrT0JBcUB0SWwDxqK9vv1a2o/tL1zUrfyndR7l1i+t0\nJiYAAD0ob/WmIWNzHtvaR2ILoPbV1bWtka2UYJa7v66u7T6KFympvS13Kd1HuXWL65TGJMkFAADo\ndUweBaD2NTdXvq+YXBYnierKPrqybqV1mKQKANBL8lZvGjJ2uD6HikuNLQAAAAAAvYrEFkDcikOM\ni0OOAQDIifzVm+axz6Hixldjy1BkAHHrzBBjAACASDQ2SoVC6FbEgyO2AAAAyD0zG2xmPzGzp8zs\nSTMbb2b1Zna/mT1jZr8xs8Gh25mVv3rT/PWZ89hWj8QWAAAAkK6UdI+77y/pQElPSzpf0v3uPlrS\n/PQ2gBpEYgsAAIBcM7NBko5y9xskyd03uft6ScdLmp2uNlvSCYGaWFb+6k3z1+dCIUxcKb4aWxJb\nAAAA5N0/SXrZzG40sz+b2XVm9k5Ju7v72nSdtZJ2D9dEAO0hsQUAAEDe9Zf0AUlXu/sHJP1NJcOO\n3d0ltXPC9N6Xt3rTkLGpsa19zIoMAACAvFslaZW7/296+yeSLpD0opnt4e4vmtmekl4qt/GUKVM0\nYsQISdLgwYM1duzY1qSgOJyT29yudHvFioKGD5ektkOPGxokqUnTpm1JcFesKKipqanD7Yvr10L/\nOrq9dOlSrVu3TpK0fPlydZUlPz7Fwcw8pvYCyCEzifcpAOg2M5O7Wy/GWyDp8+7+jJlNl7RTeter\n7n6pmZ0vabC7n1+yXbDvp9kEJw9xQ8belnEvvHCWhg8/o82y2bPP1IMPXiupSY2NW+KuWDFLF110\nRofbV1q3M0I91l393+eILQAAACB9UdKPzWx7Sc9J+jdJ75B0p5lNlbRc0knhmgegPSS2AAAAyD13\nf0TSIWXu+nBvt6Vaeas3DRk7XJ9DxY2vxpbJowAAAAAAUSOxBQAAACKUt3O6howdrs+h4sZ3HluG\nIgMAAABAjWlslAqF0K2IB0dsAQAAgAjlr940f33mPLbVI7EFAAAAAESNxBYAAACIUP7qTfPX50Ih\nTFwpvhpbElsAAAAAQNRIbAEAAIAI5a3eNGRsamxrH4ktAAAAANSYhobkguqQ2AIAAAARylu9acjY\nnMe29pHYAgAAAACiRmILAAAARChv9aYhY4frc6i41NgCAAAAANCrSGwBAACACOWv3jSPfQ4VN74a\n2/6hGwAAAAAAaKuxUSoUQrciHlUdsTWzG8xsrZk9lllWb2b3m9kzZvYbMxucue8CM3vWzJ42s+My\nyw82s8fS+67MLN/BzO5Ily82s+E91UEAAACgL8pfvWn++sx5bKtX7VDkGyVNLFl2vqT73X20pPnp\nbZnZGEknSxqTbnO1mVm6zTWSprr7KEmjzKy4z6mSXk2Xf1fSpV3sDwAAAAAgZ6pKbN19oaSWksXH\nS5qdXp8t6YT0+iRJc9x9o7svl7RM0ngz21PSQHdfkq53c2ab7L7uknRsJ/sBAAAA5Er+6k3z1+dC\nIUxcKb4a2+5MHrW7u69Nr6+VtHt6fYikVZn1Vknaq8zy1elypX9XSpK7b5K03szqu9E2AAAAAEBO\n9MisyO7ukrwn9gUAAACgY3mrNw0Zmxrb2tedWZHXmtke7v5iOsz4pXT5aklDM+vtreRI7er0euny\n4jbDJK0xs/6SBrl7c7mg06dPb70+YcKE6B5wAAAAbK2pqSm6oY/AttTQkPxtbAzbjlh0J7H9haTJ\nSiZ6mizp7szy28xsppIhxqMkLXF3N7MNZjZe0hJJp0m6qmRfiyV9UslkVGVlE1sAAAD0DaUHLGbM\nmBGuMZFoamoKcpAnVNyQscP1uUlSiLhhn+euqCqxNbM5ko6RtKuZrZT035IukXSnmU2VtFzSSZLk\n7k+a2Z2SnpS0SdJZ6VBlSTpL0k2SBki6x93npcuvl3SLmT0r6VVJp3S/awAAAACAPKgqsXX3T1W4\n68MV1r9Y0sVllj8k6YAyy99SmhgDAAAA6Fje6k1Dxg7X51Bx46ux7ZHJowAAAAAACIXEFgAAAIhQ\n3s7pGjJ2uD6HihvfeWy7M3kUAAAAAGAbaGyUCoXQrYgHR2wBAACACOWv3jR/feY8ttUjsQUAAAAA\nRI3EFgAAAIhQ/upN89fnQiFMXCm+GlsSWwAAAABA1EhsAQAAgAjlrd40ZGxqbGsfiS0AAAAA1JiG\nhuSC6pDYAgAAABHKW71pyNicx7b2kdgCAAAAAKJGYgsAAABEKG/1piFjh+tzqLjU2AIAAAAA0KtI\nbAEAAIAI5a/eNI99DhU3vhrb/qEbAAAAAABoq7FRKhRCtyIeHLEFAAAAIpS/etP89Znz2FaPxBYA\nAAAAEDUSWwAAACBC+as3zV+fC4UwcaX4amxJbAEAAAAAUWPyKAAAACBCeas3DRm7VmpsFy9erAsv\nVMmyP2v48J6PHVuNLYktAECqr5daWqS6Oqm5OXRrAADIvYaG5G9j45Zlb765vYYPP6PNek1NZ/Zi\nq2oXQ5EBAElS6578BQBEIW/1piFjcx7b2kdiCwAAAACIGoktAAAAEKG81ZuGjB2uz6HixldjS2IL\nAAAAAIgaiS0AAAAQofzVm+axz6Hixldjy6zIAAAAAFBjGhulQiF0K+LBEVsAAAAgQvmrN81fn0vP\nY9ubqLEFAAAAAKAXkdgCAAAAEcpfvWn++lwohIkrxVdjS2ILAAAAAIgaiS0AAAAQobzVm4aMTY1t\n7SOxBQAAAIAa09CQXFAdElsAAAAgQnmrNw0Zm/PY1j4SWwAAAABA1EhsAQAAgAjlrd40ZOxwfQ4V\nlxpbAAAAAAB6FYktAAAAEKH81Zvmsc+h4sZXY9s/dAMAAAAAAG01NkqFQuhWxIMjtgAAAECE8ldv\nmr8+cx7b6pHYAgAAAACiRmILACivvj65dLSO2ZZ1s+uXu23Wdv3s7dLtsvsGAGwlf/Wm+etzoRAm\nrkSNLQCgr2hpkerqkuRSSq43N2+9jvuWdYqyyWh2e/e2y0pvZ+MW7y/dNwAAQAkSWwDAFu0lsuWS\n12ICWrp9uSS4dL3S2/X1W7Zpb1sAgKT81ZuGjE2Nbe0jsQUAbNFRMppNbrPJazFRrTYhLV2vuXnL\n0OPSpBcAgBxqaEj+NjaGbUcsqLEFAFSnuTkZGly8ZJPT5ubuH2Ut7p+jtQBQlbzVm4aMzXlsax+J\nLQAAAAAgaiS2AAAAQITyVm8aMna4PoeKG1+NLYktAAAAACBqJLYAAABAhPJXb5rHPoeKG1+NLbMi\nAwAAAECNaWyUCoXQrYgHR2wBYFupr08uAABsA/mrN81fnzmPbfVIbAGgJxXP9Zo932sxuS2X6BbP\n3Vq8L3t/udvFfXc1YSbZBgAAfRCJLQD0pOy5Xovndm1pSe4r/s0mli0tybotLVsu2XVKbxf3LbVN\ncrMJazYBzt5fLtkGAEQrf/Wm+etzoRAmrkSNLQCgPc3NbZPMurry6xUT3uJ6xdvZ/RRl92WW/M2u\nm02KS7cBAADoA0hsAWBbyyacUtukNLtOUXbd0m0r7b/SfttbDgCIWt7qTUPGpsa29pHYAsC2Vk1i\n2Z2klMQVAIA+p6Eh+dvYGLYdsaDGFgAAAIhQ3upNQ8bmPLa1j8QWAAAAABA1ElsAAAAgQnmrNw0Z\nO1yfQ8WNr8aWxBYAAAAAEDUSWwAAACBC+as3zWOfQ8WNr8aWWZEBAKhVxXMQM/M1ak19fXJ+7bo6\nXp/ANtLYKBUKoVsRDxJbAABqVUtL6BYA5bW0SO7JebYRTP7qTfPXZ85jW71uD0U2s+Vm9qiZPWxm\nS9Jl9WZ2v5k9Y2a/MbPBmfUvMLNnzexpMzsus/xgM3ssve/K7rYLAIDo1NdvOUoLAACq1hM1ti5p\ngru/390PTZedL+l+dx8taX56W2Y2RtLJksZImijparPWn/qukTTV3UdJGmVmE3ugbQAAxKOlZctR\n2vr6ZJgnAFSQv3rT/PW5UAgTV4qvxranJo8qHYdyvKTZ6fXZkk5Ir0+SNMfdN7r7cknLJI03sz0l\nDYzhwaUAACAASURBVHT3Jel6N2e2AQCgOr11xLM34rS0VF+72BPtqa9PhpXm+Yjxtnpeq9lvLTz+\ntdAGAOiinjpi+4D9//buPcyOssr3+G+FwHBRSEcFAgnBkcuAjgSHAQTRqKgBGeAcvHEUEocjrcjo\n4JERhYHknMEBHcFBvOwAMgFmZBAvgBBA0VZGB5xIwkVgC2hCCBAGOgnhJoSs80dVJdWVvburu3fv\nt96u7+d56sneVbVrvW919U6tfmtVmS0ys4+l83Zw95Xp65WSdkhf7yTpkdxnH5G0c4v5K9L5AIC6\n6+nZeKKdJQjZCXjxJDwb7Wy1rGioZKPd8mxesf51JElBvh9mg4/QtmpP9vli24ptGayv+W24D9xO\n8bPF/d9u/2TLiv1r1/6h2tbqc+36NlRfWx0/+X2QHzHPt32w9g+1LzKD9TWrWR1uXXWr/pdtb7GP\n0sY2tNtuNj87Vnt6Bj/Wyu4jEuoRqVu9acjY1NhWXycS24PdfV9Jh0n6pJkdkl/o7q4k+QUAYPj6\n+zee7GeX6mZJQKtEoL9/4LJ2yVE+CW6VEOYvC84vy2K0mp8lhoMlRPkT/3w/3AcfoW2VtGef7+/f\ndD/l981gCX9+G8X9nS0vbifra6skLB+72L+s/8V1i/OzfZRfXux3sU35fdrujw755fk2Zf3J7/9i\n21sdT8XtFH/u+e1mx2VxveJxWUwU8+0vfqb4R5bsfdn25tdt1f+srcWfhTTweGl1rLU6xvPba7Wf\n8/uGJBdQb28yoZxR3xXZ3R9L//1vM/uBpP0lrTSzHd398fQy4yfS1VdImpb7+FQlI7Ur0tf5+Sta\nxZs7d+6G1zNnzozuLwkAgFEabt1p/u6t2Ql6tp3s5Dx/It3uTq/FE/t281slp/ntDXdELkt0io9V\naVWDm193sM/m90WZ/dluO1k78vt0MP39A5PMbP3+/k33UU/PwOX5trfabn5+Nsqffa6YIBc/Oxzt\n7gZcdjut9l8+icuWZ/upp2fTYyyfpOfbUlwv238jbW++La1+FoN9rt3PKd/+gr7vf39jTd+8eUPH\ngfr6+oKcC4eKGzJ2uD73SQoRN+zPeSRGldia2daSNnP3tWa2jaR3S5on6VpJsyWdm/77w/Qj10r6\nNzM7T8mlxrtL+rW7u5k9bWYHSPq1pOMkXdAqZj6xBQDUUPHEupjEFJcVX7dKTosn7fnPFZOwkcgS\nw/x2hrr0ONMukWg1vziv3WcH2xeZfOJbdjutku2h2pjfVn4fDRVTGjyJb5VAF18P1o5W6w1nO2Vl\nbS1ur1VS2a6N7drcqefLltlO2Tbll2WvUwMGLObNE6ktgOEY7YjtDpJ+kN7YeKKkf3X3m81skaSr\nzOwESUslfUCS3P1eM7tK0r2S1kk6Kb1UWZJOkvQvkraSdIO73zjKtgEAxovBTpLzScxgJ/aDnZyX\nTQjLtmmo7XdquyM1VHvKJL6ttpN/P9z2j3TEs0xbhhOn7HHSqaRxODHbzSt7vJY1kmNvOG0q216e\n4zykutWbhowdrs+h4sZXYzuqxNbd/yBpRov5/ZIObfOZL0r6Yov5v5H056NpDwBgnBpNMjJWxipm\niL6MRRuq0A9sNJyfRxV+du0uZwaANjr1uB8AAAAAXVS3Z7qGjB2uz6Hixvcc21HfPAoAAAAA0FmN\nhtRshm5FPBixBQAAACJUv3rT+vWZ59iWR2ILAAAAAIgaiS0AAAAQofrVm9avz81mmLhSfDW2JLYA\nAAAAgKiR2AIAAAARqlu9acjY1NhWH4ktAAAAAFRMb28yoRwSWwAAACBCdas3DRmb59hWH4ktAAAA\nACBqJLYAAABAhOpWbxoydrg+h4pLjS0AAAAAAF1FYgsAAABEqH71pnXsc6i48dXYTgzdAAAAAADA\nQI2G1GyGbkU8GLEFAAAAIlS/etP69Znn2JZHYgsAAAAAiBqJLQAAABCh+tWb1q/PzWaYuFJ8NbYk\ntgAAAACAqJHYAgAAABGqW71pyNjU2FYfiS0AAAAAVExvbzKhHBJbAAAAIEJ1qzcNGZvn2FYfiS0A\nAAAAIGoktgAAAECE6lZvGjJ2uD6HikuNLQAAAAAAXUViCwAAAESofvWmdexzqLjx1dhODN0AAAAA\nAMBAjYbUbIZuRTwYsQUAAAAiVL960/r1mefYlkdiCwAAAACIGoktAAAAIMnMNjOzxWZ2Xfp+spn9\n2Mx+Z2Y3m9mk0G3Mq1+9af363GyGiSvFV2NLYgsAAAAkPi3pXkmevj9N0o/dfQ9Jt6TvAVQQiS0A\nAABqz8ymSjpc0sWSLJ19pKQF6esFko4O0LS26lZvGjI2NbbVR2ILAAAASOdLOlXS+ty8Hdx9Zfp6\npaQdut4q1FZvbzKhHBJbAAAA1JqZHSHpCXdfrI2jtQO4u2vjJcqVULd605CxeY5t9fEcWwAAANTd\nQZKONLPDJW0paVszu1zSSjPb0d0fN7Mpkp5o9eE5c+Zo1113lSRNmjRJM2bM2HAZZ5YcjKf3S5Ys\nCRZ/yZIlQfqfGYvtL1vW1PTpyfY3vVnUEjWbGy9JXrPmUTWbfRveN5t9WrPm0Q1rZ5/PllfheBnq\n/ZIlS7R69WpJ0tKlSzVSlvzxKQ5m5jG1FwAqy0zKf58W3wNAYGYmd285ejrGcd8m6bPu/ldm9iVJ\nT7n7uWZ2mqRJ7n5aYX3OTzEqp58+X9Onnzhg3oIFH9evfvUtSVKjMXD+7Nnf2mTd4jxJWrZsvs4+\n+8RN5lfdSH/3uRQZAAAAGCjLVM+R9C4z+52kd6TvAVQQiS0AAACQcvefu/uR6et+dz/U3fdw93e7\n++rQ7curX71pHfscKi41tgAAAACAUWo0pGYzdCviwYgtAAAAEKG6PdM1ZGyeY1t9JLYAAAAAgKiR\n2AIAAAARql+9af36vOnjf7onthpbElsAAAAAQNRIbAEAAIAI1a3eNGRsamyrj8QWAAAAACqmtzeZ\nUA6JLQAAABChutWbhozNc2yrj8QWAAAAABA1ElsAAAAgQnWrNw0ZO1yfQ8WlxhYAAAAAgK4isQUA\nAAAiVL960zr2OVTc+GpsJ4ZuAAAAAABgoEZDajZDtyIejNgCAAAAEapfvWn9+sxzbMsjsQUAAAAA\nRI3EFgAAAIhQ/epN69fnZjNMXCm+GlsSWwAAAABA1EhsAQAAgAjVrd40ZGxqbKuPxBYAAAAAKqa3\nN5lQDoktAAAAEKG61ZuGjM1zbKuPxBYAAAAAELWJoRvQSZPPnaxVL6ySJPVs2aP+z/UHbhEAAAAw\nNupWbxoydrg+h4obX43tuEpsV72wSn6WS5JsngVuDQAAAACgG8ZVYltGNqrLiC6AbshfSVJG9t00\n3M8NV8/nJL4BASBufX19QUbVQsUNGTtcn/sUatQ25M95JGqX2GajuozoAuiG/JUkZUw+d7Jsnqln\ny55hfW64+A4EAKDaGg2p2QzdiniMi8Q2Pwqb6dmyZ8OJ21Cjs2M9MjJe5Pcj+wwxyL4TQh6r+e+l\nMkJfScLvdhj5kXpJfNei0qrw3YpE/epN69dnnmNbXqUSWzObJemrkjaTdLG7n9tu3eKNooojG/mT\nw1YjE8XEdyxHRsaL/H4c7igUEEJ2zHKsDm3y56RVXRgpRmvZsVpMFPiuRRV167vV5nJlCYDyKvO4\nHzPbTNKFkmZJ2lvSsWa21ybrzbMBX6h+lg85wpElsdnlfVKS+Jb9PACMd6u2Et+HABCZ+j3TtX59\nbjbDxJXie45tlUZs95f0oLsvlSQzu1LSUZLuy680kr8OcqIGAK1ll76iOrI/xg73MnYAAOqsSont\nzpKW594/IumAQG1BC8XLt4Gq4zgdGjVy1ZBPZvP1tRzDqCKOy+qoW71pyNjU2FZflRJbiogqjpFv\nxIZjFrFodaxy/KKqODaB7ujtTf5tNMK2IxZVSmxXSJqWez9NyajtAHPnzt3weubMmdH9JQEAqqDn\n+eSeBT3Ph24JACT6+vqiq+kLrX7PdK1jn/vEc2zLqVJiu0jS7ma2q6RHJX1Q0rHFlfKJLQBgZPrP\nleQuWe6uo+cEaw4AbDJgMW/evHCNARCdyiS27r7OzE6WdJOSx/1c4u73DfExAAAAoJbqVm8aMna4\nPoeKS43tqLj7QkkLQ7cDAGqlhxvBAACAuFXmObYAgED6+5MJABCVuj3TNWTscH0OFZfn2AIAYtDT\nk9TXMloLAEAlNRpSsxm6FfEgsQWAOmKEFgCiV7960/r1mefYlselyAAAAACAqJHYAgAAABGqX71p\n/frcbIaJK8VXY0tiCwAAAACIGoktAAAAEKG61ZuGjE2NbfWR2AIAAABAxfT2JhPKIbEFAAAAIlS3\netOQsXmObfWR2AIAAAAAokZiCwAAAESobvWmIWOH63OouNTYAgAAAADQVSS2AAAAQITqV29axz6H\nihtfje3E0A0AAAAAAAzUaEjNZuhWxIMRWwAAACBC9as3rV+feY5teSS2AAAAAICokdgCAAAAEapf\nvWn9+txshokrxVdjS2ILAAAAAIgaiS0AAAAQobrVm4aMTY1t9ZHYAgAAAEDF9PYmE8ohsQUAAAAi\nVLd605CxeY5t9ZHYAgAAAACiRmILAAAARKhu9aYhY4frc6i41NgCAAAAANBVJLYAAABAhOpXb1rH\nPoeKG1+N7cTQDQAAAAAADNRoSM1m6FbEgxFbAAAAIEL1qzetX595jm15JLYAAAAAgKiR2AIAAAAR\nql+9af363GyGiSvFV2NLYgsAAAAAiBqJLQAAABChutWbhoxNjW31kdgCAAAAQMX09iYTyiGxBQAA\nACJUt3rTkLF5jm31kdgCAAAAAKJGYgsAAABEqG71piFjh+tzqLjU2AIAAAAA0FUktgAAAECE6ldv\nWsc+h4obX43txNANAAAAAAAM1GhIzWboVsSDEVsAAAAgQvWrN61fn3mObXkktgAAAACAqJHYAgAA\nABGqX71p/frcbIaJK8VXY0tiCwAAAACIGoktAAAAEKG61ZuGjE2NbfWR2AIAAABAxfT2JhPKIbEF\nAAAAIlS3etOQsXmObfWR2AIAAAAAokZiCwAAAESobvWmIWOH63OouNTYAgAAAADQVSS2AAAAQITq\nV29axz6Hihtfje3E0A0AAAAAAAzUaEjNZuhWxIMRWwAAACBC9as3rV+feY5teSS2AAAAAICokdgC\nAAAAEapfvWn9+txshokrxVdjS2ILAAAAAIgaiS0AAAAQobrVm4aMTY1t9ZHYAgAAAEDF9PYmE8oh\nsQUAAAAiVLd605CxeY5t9ZHYAgAAAACiRmILAAAARKhu9aYhY4frc6i41NgCAAAAANBVJLYAAABA\nhOpXb1rHPoeKG1+N7cTQDQAAAACAEL785flavXrT+ZMmSaeeemL3G5TTaEjNZtAmRIXEFgAAAIhQ\n/epNOx979Wpp+vRNE9hly+aPadyyeI5teVyKDAAAAACI2ogTWzOba2aPmNnidDost+zzZvaAmd1v\nZu/Ozf8LM7s7XfbPufl/Ymb/ns6/zcymj7xLAAAAwPhXv3rT+vW52QwTV4qvxnY0I7Yu6Tx33zed\nFkqSme0t6YOS9pY0S9I3zMzSz3xT0gnuvruk3c1sVjr/BElPpfPPl3TuKNoFAAAAAKiR0V6KbC3m\nHSXpO+7+krsvlfSgpAPMbIqkV7r7r9P1LpN0dPr6SEkL0tffk/TOUbYLAAAAGNeosR3/camxLW+0\nie3fmNmdZnaJmU1K5+0k6ZHcOo9I2rnF/BXpfKX/Lpckd18naY2ZTR5l2wAAAAAgSr29yYRyBk1s\nzezHaU1scTpSyWXFr5U0Q9Jjkr7ShfYCAAAAUP3qTUPG5jm21Tfo437c/V1lNmJmF0u6Ln27QtK0\n3OKpSkZqV6Svi/Ozz+wi6VEzmyhpO3fvbxOrTJMAAAAAADUx4ufYmtkUd38sffs/JN2dvr5W0r+Z\n2XlKLjHeXdKv3d3N7GkzO0DSryUdJ+mC3GdmS7pN0vsk3dIqpruT1QIAAACqX71pyNjh+hwqbnw1\ntiNObCWda2YzlNwd+Q+SeiXJ3e81s6sk3StpnaST3N3Tz5wk6V8kbSXpBne/MZ1/iaTLzewBSU9J\n+tAo2gUAAAAAqJER3zzK3Y939ze6+z7ufrS7r8wt+6K77+buf+buN+Xm/8bd/zxd9qnc/D+6+wfc\nfXd3PzC9mzIAAACANupXb1rHPoeKO85qbAEAAAAA3ddoSM1m6FbEY7SP+wEAAAAQQP3qTevXZ55j\nWx6JLQAAAAAgaiS2AAAAQITqV29avz43m2HiSvHV2JLYAgAAAACiRmILAAAARKhu9aYhY1NjW30k\ntgAAAABQMb29yYRySGwBAACACNWt3jRkbJ5jW30ktgAAAACAqJHYAgAAABGqW71pyNjh+hwqLjW2\nAAAAAAB0FYktAAAAEKH61ZvWsc+h4sZXYzsxdAMAAAAAAAM1GlKzGboV8WDEFgAAAIhQ/epN69dn\nnmNbHoktgDFjZv9iZv+v5LpLzew5M1swBu2YY2a3dvIzZjbTzJYPsnyemT1jZuvNbMy/a81sTzNb\nYmZPm9nJYx0vdsM5NgEAQPWR2ALYIE3E1qbT+jTRzN4fO4JNejqVXfcId5+da896M/vTEcQNzt3P\nkvT6wdZJ+5ft80fM7CujSIL/TtIt7r6tu184wm1EZZTHx3COTQCopPrVm9avz81mmLgSNbYAIubu\nr8hem9kfJJ3g7j8d5WYt8Oc7zszKfneWafsb3f33ZrankjtE/E5SYzhtcfd1kqZL+lXZzxW2sZm7\nvzySz0aucscWAAAYGUZsAQzJzPY3s/80s1Vm9qiZfc3MNs8tP9/MVprZGjO7y8z2brGNV5rZz8zs\nqyVj/iJ9eWc6ovl+M5tkZj8ysyfMrN/MrjOznXOfmWNmD6WX4/7ezP5Xm21/2cxuNbNth7EP1pvZ\nSWb2gKSm0tE+M/tM2vdHzWxO2e0VuXtT0q1KR3nN7Ij00uJVZvZLM/vzXFuWmtnfmdmdkp4xs1uU\nPOjuwrTvu5nZdmZ2WbqvlprZ6WZm6efnpNs8z8yelDTXzC41s2+Y2Q3p/r7VzHY0s39O23Cfmc3I\nteE0M3swjfdbMzs6t2yOmf1Hup/705/FrNzyyWm8FenyH+SWte33YMxsrpldZWYL0jbdY2Z/kVu+\nr5ndkS67UtKWhc+3jGtmH0zb/8r0/WFm9piZvapMuwDEwcympf9H/Tb9/vhUOn+ymf3YzH5nZjeb\n2aTQbc2rW71pyNjU2FYfiS2AMtZJ+rSkV0l6s6R3SjpJkszsPZIOkbS7u28n6f2S+nOf9TQJuEXS\nre7+t2UCuvtb05dvdPdXuvt3lXxnXSJpl3R6XtKFaTu2kfTPkma5+7ZpO5fkt2mJiyS9QdK73P3p\nYe0F6ShJfylpbyWjfTtK2lbSTpJOkPR1M9tumNvMks29lezHxWa2b9rPj0marGQE91rL/TFB0ock\nHS5pO3d/p5Kk+JPppcgPSvqapFdKeq2kt0k6XtJHc5/fX9JDkraXdHbajvdLOl3SqyW9KOk2Sf+V\ntuFqSeflPv+gpLek+3qepCvMbIfC9u9Xcsx8Ke1P5nIlieXeafzz0n3Qrt9blNiPkvRXkr4jaTtJ\n12rjsbGFpB9KWiCpR9J3JR2jjX+caLu/3f3flYyEX5AexxcruZLhqZJtAhCHlySd4u6vl3SgpE+a\n2V6STpP0Y3ffQ8n/Y6cFbCNqprc3mVAOiS2AIbn7He7+a3df7+7LJM1XkixJycnAKyXtZWYT3L3p\n7o/nPr6zkkts/93dzxxlO/rd/Qfu/oK7PyPpi7l2SNJ6SX9uZlu5+0p3vze3bHNJV0qaJOmv3P2F\nETThH919tbv/MX3/kqT/6+4vu/tCSc9I2nOY27zDzPqVJGIXSfoXSSdKarj7f3niMkl/VHKyJSUJ\n2QXuviLXFmljkryZpA9K+ry7P5v+zL4i6bjcuo+6+9fTn+kL6Ta/7+6L023+QNKz7n6Fu7ukqyTt\nm33Y3a/Ofs7ufpWkByQdkNv+Mne/JP3sZZKmmNn2ZjZF0ixJH3f3Ne6+zt2zm3QN1e+h3OruN6Yx\nr5C0Tzr/QEkT3f2f05/V95Qk7Jl2cd+cLv+kpHdI+pmka939hpLtARAJd3/c3Zekr5+RdJ+S/7+O\nVPJHMaX/Ht16C2HUrd40ZGyeY1t9JLYAhmRme1hyCfBjZrZGyQjfqyQprcG9UNLXJa00s0Z22aaS\nROu9SkbnSteNDtKOrdPtL03b8XNJ25mZufuzSpK5j0t6NG1vPsncTcmI3v9Na1JHongX5KfcfX3u\n/XOSXqHh2dfdJ7v7bu5+ZpqUTZf0f9LLYleZ2SpJU5WMDLdri7TxZkivVpLIL8ste1jJSdpgn38i\n9/qFwvvnleubmR1vZotz7XuD0mMiteGPG+7+XPryFZKmSep39zUt4rfr95QW67ayMvf6OUlbWnIz\nrp0krSism983g8ZN23p12sevlGwLgEiZ2a5K/pB3u6Qd3D37blkpaYc2HwMQGIktgDK+KeleSbul\nlxufrtz3h7t/zd33U3Jp6R6STs0WKRmFvEnSDWa29Sjb8X/S7e+ftuNtSpJnS9txs7u/W8klwven\nsTP3SfprSQvNbI8Rxu/WXXQflnS2u/fkplekl8WWacuTSkaTd83N20XSIyU/Pygzm65k1P6Tkia7\ne4+ke1TuZkzLJU1uc8l2mX6PxGMamNRLSTJbKm5aW/xRSf+m5BJvAOOUmb1C0vckfdrd1+aXpX94\nrNTd1OtWbxoydrg+h4obX40td0UGUMYrJK2V9JyZ/ZmkTygdHTOz/SRtJukOJaNkL0jK7rCbJZwn\np7Wt15nZe4dxGfBKSa+T9PtcO56XtMbMJks6K1vRzLZXcunoT9J1ns21Q2k7rkzrLX9iZjPd/feq\nposk/cDMfqLkktmtlfzP9vP0Erl2sv39spldJelsMzteyUjqKZK+PNRnS9pGycndk5ImpDHeUOaD\n7v6YmS2U9A0z+6SSn9Ob3f0XGnm/h/KfktalN4P5ppKR+79UUi+nweIqqS+/QtLnJV0qaZGZfcLd\nvzmK9gCooPQ+Bt+TdLm7/zCdvdLMdnT3x9NSiidafXbOnDnaddddJUmTJk3SjBkzNiQF2eWcvK/m\n+2XLmnrhhb4NN2nKHq+zZXqLwW60Z9mypqanf27d9PE+fWo2N95Eas2aR9VsDmzvmjWPblg7+3y2\nPPT+LfN+yZIlWr16tSRp6dKlGilL/vg0tsxsmpIaq+2VnAzNd/cLWqx3gaTDlJwcz3H3xWPeOAAt\nWe5xP2Z2iJIRuqmSFiupNXy7u7/VzN4h6XxJf6okqb1RUq+7P2dml0pa7u5nmpkpqR/dQdJRhdrQ\nLN7/dvdbcvN6lSSvWym5sc8vlYya7afk0tLzlCQqmyv5frlS0gwl3zOLJZ3k7veb2ey0L29Nt/u/\nJZ0h6a3u/nCb/hc/87KSG2T9Pn0/U9Jl7r5Lq32Wvt9VSVI+sXDJslpts7DsPZL+n6TdlSTqt0r6\na3d/thgnXf9nSk7Gvp2+n6RkdPE9Sn4u85WMSnqxb+n6G35W6fsTJH3Y3d+Rvt9N0r3uvkX6/h+U\n/IFjvZLv9zdl8dtsf0NfzaxHyTEzS9IWkn7q7u8bpN8ntEpsC9s8S9Lr3P343L5/SNLm7r7ekjsk\nX6TkkvQblBwjD+T62zJuOm8Pd39vut4blRz/+7v7Q8U2AYhT+n/UAiUlJqfk5n8pnXeumZ0maZK7\nn1b4rHfjfLqVvr6+IKNqoeKORezTT5+v6dNP3GT+smXzdfbZG+ePZZ9btWHBgo/rV7/6lqQ+NRoz\nB8yfPftbm6xbnCdt2ofhCvVzNjO5+7AfydetEdvsTnNL0ks8fmNmP3b3+7IVzOxwJZc57m5mByg5\nWS17wxAAHebur829vlXSXoVVzkqX/VQbb9JT3MZHc69d0uxBQv5R0vfN7PvZ59y9oU1rc99eeD8/\n/fdxtblex90XaOPNP+TuFyu5u21bLT6zWWF5n5LLe/PzNuyzNNE6RUlS2fKMp7jNwrKblFzC3WrZ\na1vMe3vh/WoNvFlUftmAvqXzPlp4f4lydzL25E7LW+Ten6HkjwNlt79Z7vUqSXPafLZtv1usm9/m\nvMKypUquJMje/0ZJ8t1uW+3inlJY7y4NrCUGMD4cLOkjku4ys2xg5fOSzpF0VfrHvqWSPhCmeaij\nRkNqNkO3Ih5dSWw9uXNmdvfMZ8zsPiU387gvt9qGu865++2WPK8yX7APYBxz9z8L3YZOShOteUOu\nCAAIzt3/Q+3vPXNoN9syHPWrN61fn3mObXldv3lU4U5zeTtr4F06H1Fy2SMAjAkz+5aZrW0xfSN0\n2wAAAFBeVxPb9DLkq5Xcaa7VjUCK11JX6s5zAMYXd/+4u7+yxXRS6LYBADCU+j3TtX593vRmUt0T\n23Nsu3ZX5Nyd5q7I3Wkub4WS5xtmpqrw3EEzI9EFAACoiZHcQAZAPXVlxDa909wlSu6o+dU2q10r\nKbub5YGSVreqr3V3pg5PZ511VvA2jMeJ/co+jWViv7JfY5nYp/Xarxha3epNQ8amxrb6ujVi2+pO\nc19QekdRd2+4+w1mdriZPajkuYYfbb0pAAAAABjfenuTfxvF50Ogpa6M2Lr7f7j7BHef4e77ptPC\nNKFt5NY72d13c/d93P2ObrQNAAAAiFHd6k1Dxg7X51Bx46ux7fpdkVE9sV1mEAv2a+exT8cG+3Vs\nsF87j306NtivAMYDElvwH9oYYb92Hvt0bLBfxwb7tfPYp2OD/RqvutWbhowdrs+h4sb33dC1uyID\nAABUSXJvS1QBN4sCMFqM2AIAgNoKfedfJhLa0ahfvWkd+xwqbnw1tozYAgAAAEDFNBpSsxm6FfFg\nxBYAAACIUP3qTevXZ55jWx6JLQAAAAAgaiS2AAAA49DKlSv11re+Vdtuu61OPfXUUW1r6dKl3all\nYAAAHB9JREFUmjBhgtavX9+h1qET6ldvWr8+N5th4krU2AIAAGAUdt11Vz3xxBPabLPNtM022+iw\nww7ThRdeqG222WZY25k/f7623357Pf3005KkuXPn6qGHHtLll18+Fs0GgKAYsQUAAKgQM9OPfvQj\nrV27VnfccYcWLVqkf/iHfyj9eXfX+vXrtWzZMu21114DtovxpW71piFjU2NbfSS2AAAAFbXTTjtp\n1qxZuueee3TbbbfpoIMOUk9Pj2bMmKGf//znG9abOXOmzjjjDL3lLW/RNttso9mzZ+uyyy7Tl770\nJW277ba65ZZbNtn2hAkT1Gg0tMcee6inp0cnn3zyhmXr16/XZz/7Wb3mNa/R6173Ol1//fUDPrtm\nzRqdcMIJ2mmnnTR16lT9/d//vdavX68XX3xR++67ry688EJJ0ssvv6yDDz54WIk5gERvbzKhHBJb\nAACAisme77p8+XItXLhQU6ZM0RFHHKEzzzxTq1at0j/90z/pmGOO0VNPPbXhM1dccYUuuugiPfPM\nM7r00kv14Q9/WJ/73Of09NNP653vfGfLZ8Zef/31WrRoke666y5dddVVuummmyQllzFff/31WrJk\niRYtWqSrr756wIjvnDlztMUWW+ihhx7S4sWLdfPNN+viiy/WFltsoSuuuEJnnnmm7r//fp1zzjly\nd51++uljvMfqqW71piFj8xzb6iOxBQAAqBB319FHH62enh4dcsghmjlzpqZOnarDDz9cs2bNkiQd\neuih2m+//TaMpJqZ5syZo7322ksTJkzQxIkTN2xrMKeddpq23XZbTZs2TW9/+9t15513SpKuuuoq\nnXLKKdp5553V09OjL3zhCxu2tXLlSi1cuFDnn3++ttpqK73mNa/R3/7t3+rKK6+UJL3+9a/XGWec\noaOOOkrnnXeeLr/8ci6DBjDmuHkUAABAC53KxYbILVvENV1zzTV6xzvesWHeSSedpO9+97u67rrr\nNsxbt27dgHWmTZs27LbtuOOOG15vvfXWeuaZZyRJjz322IDt7bLLLhteL1u2TC+99JKmTJmyYd76\n9esHrHP88cfr9NNP1/ve9z697nWvG3a7UE7d6k1Dxg7X51Bx46uxJbEFAABoYbgJ6VjaZZdddNxx\nx2n+/Plt1xlqVHQ4o6ZTpkzRww8/vOF9/vW0adP0J3/yJ3rqqac0YULri/9OOukkHXHEEbrxxhv1\ny1/+UgcffHDp2AAwElyKDAAAUHEf+chHdN111+nmm2/Wyy+/rBdeeEF9fX1asWLFhnWKlx0P9b7I\n3Tes84EPfEAXXHCBVqxYoVWrVumcc87ZsN6UKVP07ne/W5/5zGe0du1arV+/Xg899JB+8YtfSJIu\nv/xyLV68WAsWLNAFF1yg2bNn69lnnx1V/9Fa/epN69jnUHGpsQUAAECHTZ06Vddcc42++MUvavvt\nt9cuu+yir3zlKwOS1eKIrJkNmNfqfbv1P/axj+k973mP9tlnH+2333465phjBqx/2WWX6cUXX9Te\ne++tyZMn6/3vf78ef/xxPfzwwzrllFN02WWXaeutt9axxx6r/fbbT5/5zGc6uj+AOmg0JH51yrOh\n/npXJWbmMbUXAABUl5kNOYqJsdfu55DOr/xdpzg/jdvpp8/X9OknbjJ/2bL5OvvsTed3qw0LFnxc\ns2d/a5N1W81vt243+9BJI/3dZ8QWAAAAABA1ElsAAAAgQvWrN61fn5vNMHElamwBAAAAAOgqElsA\nAAAgQvV7pmv9+rznnmHiSvE9x5bEFgAAAAAqprc3mVBOVxJbM/u2ma00s7vbLJ9pZmvMbHE6ndGN\ndgEAAACxqlu9acjYPMe2+iZ2Kc6lkr4m6bJB1vm5ux/ZpfYAAAAAAMaJriS27n6rme06xGqVf04Z\nAAAYX8w4/UC86lZvGjJ2uD6HihtfjW23RmyH4pIOMrM7Ja2Q9Fl3vzdwmwAAwDjm7qGbAADokKrc\nPOoOSdPcfR8llyz/MHB7AAAAgEqrX71pHfscKi41tiPi7mtzrxea2TfMbLK79xfXnTt37obXM2fO\njG6IHAAAAJvq6+uL7kQaGEuNhtRshm5FPCqR2JrZDpKecHc3s/0lWaukVhqY2AIAAGB8KA5YzJs3\nL1xjIlG/etP69Znn2JbXlcTWzL4j6W2SXm1myyWdJWlzSXL3hqT3SfqEma2T9JykD3WjXQAAAACA\n+HWlxtbdj3X3ndx9C3ef5u7fdvdGmtTK3b/u7m9w9xnufpC739aNdgEAAACxql+9af363GyGiSvF\nV2NblZtHAQAAAAAwIiS2AAAAQITqVm8aMjY1ttVHYgsAAAAAFdPbm0woh8QWAAAAiFDd6k1DxuY5\nttVHYgsAAAAAiBqJLQAAABChutWbhowdrs+h4lJjCwAAAABAV5HYAgAAABGqX71pHfscKm58NbYT\nQzcAAAAAADBQoyE1m6FbEQ9GbAEAAIAI1a/etH595jm25ZHYAgAAAACiRmILAAAARKh+9ab163Oz\nGSauFF+NLYktAAAAACBqJLYAAABAhOpWbxoyNjW21UdiCwAAAAAV09ubTCiHxBYAAACIUN3qTUPG\n5jm21UdiCwAAAACIGoktAAAAEKG61ZuGjB2uz6HiUmMLAAAAAEBXkdgCAAAAEapfvWkd+xwqbnw1\nthNDNwAAAAAAMFCjITWboVsRD0ZsAQAAgAjVr960fn3mObblkdgCAAAAAKLWlcTWzL5tZivN7O5B\n1rnAzB4wszvNbN9utAsAAACIVf3qTevX52YzTFwpvhrbbo3YXippVruFZna4pN3cfXdJJ0r6Zpfa\nBQAAAACIXFcSW3e/VdKqQVY5UtKCdN3bJU0ysx260TYAAAAgRnWrNw0Zmxrb6qtKje3Okpbn3j8i\naWqrFc2SafLkrrQLAGph8mS+WwEAqJLe3mRCOVVJbCXJCu+91UruySRtTHJbTZycAUB5q1Yl362r\nBru2BgBQKXWrNw0Zm+fYVl9VnmO7QtK03Pup6bxNzJ07V5L0qU8lw+PthsitmCanJk9OTtx6eqT+\n/hG3FwAAAB3U19cX3Yk0gOqoSmJ7raSTJV1pZgdKWu3uK1utmCW2I5WNSmSX3UkkuQAAAKEVByzm\nzZsXrjGRqFu9acjY4focKm58NbZdSWzN7DuS3ibp1Wa2XNJZkjaXJHdvuPsNZna4mT0o6VlJH+1k\n/GyUVkqSWGlgIttudBcAAAAAUH3duivyse6+k7tv4e7T3P3baULbyK1zsrvv5u77uPsdo43Z07Ox\n3jbZfjIxMgsAAIDxoH71pnXsc6i41NhWBgksAAAAgFg1GlKzGboV8ajSXZEBAAAAlFS/etP69Znn\n2JZHYgsAAAAAiBqJrQbW4/L823Kyu0qzzwAAAMKoX71p/frcbIaJK1FjG6V8PW7+MUBor6cnuRmX\nxD7D2BvNI7l4djUAAMD4R2JbwInv8LHPMNYG++NJlrDmH+tVXF58dvVYGk8JdP5qjHZ/HMj/4SCT\nrdPuZyJtXD//KLZ2nxtP+xQAOqlu9aYhY1NjW31cigyg8vr7Nz6yqzhJmz7WKz9lCdFg2+jk1C6R\ni0XxUWmZ/BUa+VKE/LJMq0ettfq55ZcP9rnY9+loZPsbqJrse4DjExg7vb3JhHJIbAFELUtYGdHr\njPwfAPr7N07ZskyrPxxkU5nnhue32ypuXeUT2ezfOif2qK5Vq/jDUxXUrd40ZGyeY1t9XIoMACit\nzklnN+SThCxx4B4GAAAMjRFbAECl9fQMHMUsXg6dvxQyP3+oyySHusy3uHywbRfbM9i2i6Oy+W3m\na5Vbfa5sf4vrlm17u+VlttOqnUOt3+5y1uLPudXr4jHRqr2t2tbq+Gl1PA21X8rsj3bbaNXGdv0b\nbH8NdUwM1p5WP5/B2lhsX3asZuULZY69wfrEZc0jU7d605Cxw/U5VFxqbAEA6Kj+/o0jmfkRzVY1\nuNkoZ35Zu0Qr0y65WbVq6G1LG0/Gi/XD2baLJ+z57Ra32WpEPEscshj57ebjtqo5L75vtV+Ky1rt\n06G2U+xftqzYv3zbi+0sbiNTrMnOtls8JoqXbrdKyrLl+Xblt53ve7HtrY6nsv1rVV+eXze/reLy\n/LGZ3wfFfZ3vc6v2FNtb7Hexn/mfe6t6+uL9C9q1qRiz1e9Du/YCwHCQ2AIAKi9L7rI7JOcTwPwN\nr4ojntn7Vify+Zrg4rLss0NtOzvhL9YLF+uNpYHbyfdnKMU68sHqkdutW1wvv1/aXV6eJVPZPh9s\nO8X+ZcuK/SvexK1Yv53fRrG+O3udbbd4TGSfL77PJ2X9/Zu2q93x1OpnUzyeyvavuE6r4yPbVnF5\nJr+9YhsHOxbb3YSt2O9iP/M/91b19K0+06pNxX3d6vehVXtRTv3qTevY51BxqbEFAKDjhroRVZll\nw9lGmVri4dQbD2fd4SS9IzVUe1r9QWC42xluPXbZ9dutV/ZnOFScThxPwzXc/TiS43U4x9NI+jac\nNpX9/cpfWQHUUaMhNZuhWxEPElsAACqkCjfoqkIb0Fn8TMen+tWb1q/PPMe2PC5FBgAAAABEjcQW\nAAAAiFD96k3r1+dmM0xcKb4aWxJbAAAAAEDUSGwBAACACNWt3jRkbGpsq4/EFgAAAAAqprc3mVAO\niS0AAAAQobrVm4aMzXNsq4/H/QAAAAAY97785flavXrgvNtuu0PTp4dpDzqLxBYAAACIUN3qTUcb\ne/Vqafr0EwfM6+v7+JjHHZ1QcamxBQAAAACgq7qW2JrZLDO738weMLPPtVg+08zWmNnidDqjW20D\nAAAAYlO/etM69jlUXGpsWzKzzSRdKOlQSSsk/ZeZXevu9xVW/bm7H9mNNgEAAABAVTUaUrMZuhXx\n6NaI7f6SHnT3pe7+kqQrJR3VYj3rUnsAYEz09EhmA6fJk5Nlkye3fp/Ny6ah1m21/cGWt/sMACBu\n1NiO/7g8x7a8bt08amdJy3PvH5F0QGEdl3SQmd2pZFT3s+5+b5faBwAd0d+/6bws6ezpkdw3fZ+t\nkxlq3Vbbl9ovb8X4MyIAABhEq7tIT5oknXrqia0/EFi3RmzLnG7dIWmau+8j6WuSfji2TQKA7ujv\nT5LOLOktvs/mZdNQ67ba/mDLAQDjU/3qTevX52YzTFxJuvPOpqZPP3HAVEx0q6RbI7YrJE3LvZ+m\nZNR2A3dfm3u90My+YWaT3X3A6drcuXM3vJ45c2Z0Q+QAAADYVF9fX3Q3qwFQHd1KbBdJ2t3MdpX0\nqKQPSjo2v4KZ7SDpCXd3M9tfkhWTWmlgYgsAAIDxoThgMW/evHCNiUTd6k1Dxq5jje306XsGiz0S\nXUls3X2dmZ0s6SZJm0m6xN3vM7PedHlD0vskfcLM1kl6TtKHutE2AAAAAKia3t7k30YjbDti0bXn\n2Lr7Qnff0913c/d/TOc10qRW7v51d3+Du89w94Pc/bZutQ0AAACITd3qTUPGruNzbJcti+tZQ11L\nbAEAAAAAGAsktgAAAECE6lZvGjJ2uD6HihtfjS2JLQAAAAAgaiS2AAAAQITqV29axz6HihtfjW23\nHvcDAAAAACip0ZCaceWWQTFiCwAAAESofvWm9eszz7Etj8QWAAAAABA1ElsAAAAgQvWrN61fn5vN\nMHGl+GpsSWwBAAAAAFEjsQUAAAAiVLd605CxqbGtPhJbAAAAAKiY3t5kQjkktgAAAECE6lZvGjI2\nz7GtPhJbAAAAAEDUJoZuAAAAAIDW3F0vvPBCy2WHHHJIl1uToMa2q5EDxY2vxpbEFgAAAKiol156\nSeeff7mef37rwpIXddxxb9Eee+wRpF2I05e/PF+rV286f8mS2zRjxoED5t122x2aPr1LDesAElsA\nAACgwp57bgvtsstHBsxbvrxPt99+e5DEtq+vL9gIZqjY4frcp06O2q5eLU2ffuKmUfru2GT+Ndcc\n2bG43UBiCwAAAAAV02hIzbju3xQUN48CAAAAInTAAQcEiUuNbfeEfI7tdtvtFCz2SJDYAgAAAACi\nRmILAAAAROj2228PEpfn2HZPsxkmriStWfNosNgjQWILAAAAAIgaN48CAAAAInT33Q/r9NPnD5g3\naZJ06qmb3vW2k6ixHblWj9sZ7LE61NiWR2ILAAAAROjppyfoTW8amMQuWza/zdqoglaP2+nr+3jL\ndXt7k38bjbFu1fjQtUuRzWyWmd1vZg+Y2efarHNBuvxOM9u3W20DAAAAWilzDhvKo4/+Pkhcamy7\nGjlQXGpsWzKzzSRdKGmWpL0lHWtmexXWOVzSbu6+u6QTJX2zG21D2C+n8Yz92nns07HBfh0b7NfO\nY5+ODfZre2XOYUN68skwiceSJUuCxA0ZO1yfw+3rZ599MljskejWiO3+kh5096Xu/pKkKyUdVVjn\nSEkLJMndb5c0ycx26FL7ao3/0MYG+7Xz2Kdjg/06Ntivncc+HRvs10GVOYcN5sUXXwgSd3WxSLQG\nscP1Ody+XrfuxWCxR6Jbie3Okpbn3j+Szhtqnalj3C4AAACgnTLnsAAqoFs3j/KS69kIPwcAGIHJ\nk6Xnnw/dCgCorEqci06cuE7Ll980YN6LLz6ptWtXBWnP0qVLg8QNGTtcn0PFlf74x7XBYo+EuY/9\n76uZHShprrvPSt9/XtJ6dz83t863JPW5+5Xp+/slvc3dV+bWqcSXCwAAAMaeuxcHPbqq5Dks56dA\nh43kd79bI7aLJO1uZrtKelTSByUdW1jnWkknS7oy/RJZnU9qpfBfbgAAAKiVIc9hOT8FqqEria27\nrzOzkyXdJGkzSZe4+31m1psub7j7DWZ2uJk9KOlZSR/tRtsAAACAVtqdwwZuFoAWunIpMgAAAAAA\nY6Vbd0UetSo/HDtWZvZtM1tpZneHbst4YWbTzOxnZvZbM7vHzD4Vuk3jgZltaWa3m9kSM7vXzP4x\ndJvGCzPbzMwWm9l1odsyXpjZUjO7K92vvw7dnvHCzCaZ2dVmdl/6PXBg6DbFzsz2TI/TbFrD/1tD\nM7PJZvZjM/udmd1sZpNarNOx84Ey58BmdkG6/E4z23eksYYb28w+nMa8y8x+aWZv7Ebc3Hp/aWbr\nzOx/diJu2dhmNjP9nbnHzPq6EdfMXm1mN6bnQveY2ZwOxR0yHxiL42uouCM6tty98pOSSz8elLSr\npM2VPKl4r9Dtin2SdIikfSXdHbot42WStKOkGenrV0hqcqx2bN9unf47UdJtkt4Suk3jYZL0GUn/\nKuna0G0ZL5OkP0iaHLod421S8qz7v05fT5S0Xeg2jadJyWDHY5KmhW5L1SdJX5L0d+nrz0k6p8U6\nHTkfKHMOLOlwSTekrw+QdFuH+lkm9puz30VJszoRu+x5f7reTyX9SNIxXezzJEm/lTQ1ff/qLsWd\nK+kfs5iSnpI0sQOxB80HxvD4GirusI+tWEZsK/1w7Fi5+62Swtwnfpxy98fdfUn6+hlJ90naKWyr\nxgd3fy59uYWS/wD6AzZnXDCzqUr+w7pYmz5uDaPD/uwgM9tO0iHu/m0pqXt09zWBmzXeHCrpIXdf\nPuSaOFLJH1qU/nt0cYUOng+UOQfe0B53v13SJDPbYQSxhh3b3f8z97t4u6Sp3Yib+htJV0v67w7E\nHE7s/yXpe+7+iCS5+5NdivuYpG3T19tKesrd1402cIl8YEyOr6HijuTYiiWx5eHYiE56B8V9lfwy\nYpTMbIKZLZG0UtLP3P3e0G0aB86XdKqk9aEbMs64pJ+Y2SIz+1joxowTr5X032Z2qZndYWYXmdnW\noRs1znxI0r+FbkQkdvCNT+5YKWnQk/xRng+UOQdutU4nEszhnn+fIOmGbsQ1s52VJH7fTGd16qZB\nZfq8u6TJ6aXmi8zsuC7FvUjS683sUUl3Svp0B+KOtG2dOL6Go9SxFUtiyx2uEBUze4WSvyJ+Ov1L\nLUbJ3de7+wwlX6ZvNbOZgZsUNTM7QtIT7r5YjC522sHuvq+kwyR90swOCd2gcWCipDdJ+oa7v0nJ\n0xNOC9uk8cPMtpD0V5K+G7otVZHW0N7dYjoyv54n10m2PU/twPlA2XPg4vd4J86dS2/DzN4u6a+V\nXJrdjbhflXRauv9Nnft/rEzszZV8Hx0u6T2S/t7Mdu9C3C9IWuLuO0maIenrZvbKUcYtayyOr3KB\nh3Fsdes5tqO1QtK03PtpSv5aAFSOmW0u6XuSrnD3H4Zuz3jj7mvM7HpJ+0nqC9ycmB0k6UgzO1zS\nlpK2NbPL3P34wO2Knrs/lv7732b2AyWXmN0atlXRe0TSI+7+X+n7q0Vi20mHSfqNu3fyks6oufu7\n2i1Lb3izo7s/bmZTJD3RZr1OnA+UOQcurjM1nTdapc6/05v6XCRplrt3osStTNy/kHSlmUlJvelh\nZvaSu1/bhdjLJT3p7s9Let7MfiFpH0kPjHHcgySdLUnu/pCZ/UHSnkqetTyWxur4GtJwj61YRmw3\nPBw7/aviByWN9sAFOs6Sb9hLJN3r7l8N3Z7xIr0T4KT09VaS3iVpcdhWxc3dv+Du09z9tUouQfwp\nSe3omdnW2V/QzWwbSe+WxJ3nR8ndH5e03Mz2SGcdquTmLeiMYyV9J3QjInKtpNnp69mSNklaO3g+\nUOYc+FpJx6dxD5S0Onep9GgMGdvMdpH0fUkfcfcHOxCzVFx3/1N3f236f9jVkj7RgaS2VGxJ10h6\niyVPFdhayQ2VRlseVSbu/Uq++5TWuO4p6fejjFvGWB1fgxrJsRXFiK3zcOwxYWbfkfQ2Sa8ys+WS\nznT3SwM3K3YHS/qIpLvMLEu8Pu/uNwZs03gwRdICM5ug5A9yl7v7LYHbNN5Q8tEZO0j6QTqKMFHS\nv7r7zWGbNG78jaR/TU/6HpL00cDtGRfSP8AcKol68PLOkXSVmZ0gaamkD0iSme0k6SJ3f686dD7Q\n7hzYzHrT5Q13v8HMDjezB5Vcpt+R340ysSWdKalH0jfT772X3H3/LsQdEyX39/1mdqOku5Tco+Ki\n0d73o2SfvyjpUjO7U8m50N+5+6hvpJnLB16d5gNnKbncekyPr6HiagTHlqW3UAYAAAAAIEqxXIoM\nAAAAAEBLJLYAAAAAgKiR2AIAAAAAokZiCwAAAACIGoktAAAAACBqJLYAAAAAgKiR2AJAl5nZq8xs\ncTo9ZmaPpK/XmtmFodsHAAAQG55jCwABmdlZkta6+3mh2wIAABArRmwBIDyTJDObaWbXpa/nmtkC\nM/uFmS01s/9pZv9kZneZ2UIzm5iu9xdm1mdmi8zsRjPbMWRHAAAAQiCxBYDqeq2kt0s6UtIVkn7s\n7m+U9Lyk95rZ5pK+JukYd99P0qWSzg7VWAAAgFAmhm4AAKAll7TQ3V82s3skTXD3m9Jld0vaVdIe\nkl4v6SdmJkmbSXo0QFsBAACCIrEFgOp6UZLcfb2ZvZSbv17J97dJ+q27HxSicQAAAFXBpcgAUE1W\nYp2mpNeY2YGSZGabm9neY9ssAACA6iGxBYDwPPdvq9cqvJYkd/eXJL1P0rlmtkTSYklvHsuGAgAA\nVBGP+wEAAAAARI0RWwAAAABA1EhsAQAAAABRI7EFAAAAAESNxBYAAAAAEDUSWwAAAABA1EhsAQAA\nAABRI7EFAAAAAESNxBYAAAAAELX/DxETT5oBAJeEAAAAAElFTkSuQmCC\n", 2258 "text/plain": [ 2259 "<matplotlib.figure.Figure at 0x7f9affccd990>" 2260 ] 2261 }, 2262 "metadata": {}, 2263 "output_type": "display_data" 2264 }, 2265 { 2266 "data": { 2267 "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6oAAAObCAYAAABaWnwWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XecVNX5x/HvswjSmyjSsUYxGlQs0Rg3mhC7EqMIiGCM\nJerPlqhAjIC9xG7sUYkCxhZLFBUNq0aN2CBGVIogVZQOAi64z++Pe3dnZgvswJydmZ3P+/WaF3PO\nnHvvucPDsM+e+9wxdxcAAAAAALmiKNsTAAAAAAAgGYkqAAAAACCnkKgCAAAAAHIKiSoAAAAAIKeQ\nqAIAAAAAcgqJKgAAAAAgp5CoAgByipmV1eIxMwPH6R7v67RN2NbM7FQzm2hmS8xslZlNN7OxZrZP\n0rgRZla2uXPNBDN7OBPvGwAAdWGLbE8AAIBK9k96bpL+IWmSpBFJ/d9l8Hib8oXiN0n6P0m3SLpc\n0jpJP5DUR9K+kt6Lx90v6cUMzDFT+PJ0AEBeIFEFAOQUd5+Y3Daz7yQtqtyfLWbWRNI5km5390uS\nXnpN0l1mZuUd7j5P0rw6nuKG2MaHAACQfVz6CwDIK2a2pZndYmYfm9lKM1tgZs+Z2Q8qjdvWzEaZ\n2TwzW2tm883seTPbegP7bmdm75rZFDPrXMOwZpIaSlpY3YvuXrFqWd2lv2a2dXyJ8PL4suEHzeyY\n+DLknyaNKzGzN83s52b2oZl9G5/zcZX2t6OZPWJmX5jZajObYWZ3mVnrGt/EaLstzOzKePwaM/sm\nPt6BG9oOAIC6wIoqACDfbCmphaRrFK1WtlG0wvmOme3q7uUJ5COSukj6g6Q5kraVdIikptXt1My6\nS3pZ0mJJB7r70urGufuiuNbzD2a2XNI4d5+9gflWvtz2aUm7SRoiabqkX0u6o5pxLmkHSbfG57pY\n0u8lPWFmu7j7jHhcB0lzJV0Uj9le0jBFlxwfsIF5XSrpgnjsJEmtJO2t6P0EACCrSFQBAHnF3VdI\n+m1528yKJI2X9JWkfooSOymqdR3q7mOTNn+yun2a2Y8kjZP0oaRfu/vajUyjv6THJN0dbz9f0kuS\n7nX39yqNrbjc1sx6SzpQ0onuXj6X8Wb2rKKkuvJ2W0k6qDwpNbMPJS2QdKKkayXJ3d+U9GbSMd6R\nNEPSG2bW090n1XAOP5b0srvfkdT3z42cNwAAdYJLfwEAecfMTowv0V0qab2kVZKaS9o5adh7ki4x\ns/PMbPfk2tFKDpb0uqRXJB1TiyRV7v6uopsnHa7oxkqzJA1StKo7cAOb7i/pe0U3iEr2VA3jpyWt\nnMrdv5H0tZKSWjNrZGbDzOwzM1stqVTSG/HLO6tmEyUdaWZXmdlPzKzRBsYCAFCnSFQBAHnFzI5W\ntJr5iaIV1H0l7SPpG0mNk4b2lfScpEskTZY018z+VE3CeoSiy4Hvc/daf5WMu5e6+8vufrG7/0RS\nD0WrujdvYLMOkpa6+/eV+qutd5W0pJq+75R6ntdKGi7pb4rOZR9Jv4pfa6yaXRNvd4yixHZRXC+7\n1Qa2AQCgTpCoAgDyzUmKVhp/4+4vufv7kv6r6DLZCu7+jbuf6+6dFa1+PixppKQzK+3vMkWXvI4z\nsw3VdG6Qu0+T9LikrcysXQ3DFkhqY2YNKvW339TjKno/Rrn7Ne5e4u4fSFpei/mud/cb3H0PRfW7\nF0o6XtJfNmMuAABkBIkqACDfNFV0+WyygdrA/2nuPs3d/yhpqaIbGSVbp6jm8xVJL5nZTzZ08Phu\nuTWtOu4iabVqThTfkdRAiRXPcids6Jgb0UTR5c/JTq1hbLXfo+ruX7v7XxV9xU7l9wcAgDrHzZQA\nALmu8qW64yQda2Y3S3pBUi9J50paVj7WzFpJelXSo5I+V5SMHqvojravVD6Au683s5MkjVa0snpE\nfJOi6rSWNMvMHlOU2M1VtJp7kqTDJF3v7uuq29Ddx5vZW5Lui1ddZyi66+8e8ZDKlx5XV1dbue8l\nSYPM7ON4f79SdKOk6iTf2OlZRXf7/UhRAr+npF9KuqeGbQEAqDMkqgCAXFd5FfB+RTcT+o2iy3gn\nSjpa0Q2KyseukfSBpNMldVOUAH4mqb+7P1/tQdy/N7P+ir7W5kUzO8rdX69m6HJJIyT9QtINkraR\ntFbS/ySd4e4PVJp75fn3UfR1NNcrWhl+VtKfFF2avHwj26qavv9TlIBeHbdfUFS7O7Ga7ZK3fV3R\nSu45ilapv4zndLUAAMgyS/pecgAAkAVmdqeiuwa3rWk1FgCAQsKKKgAAdcjMBktqpeiuxY0UXS58\nlqQbSFIBAIiQqAIAULdWSTpf0g6StpT0haSh7n5jVmcFAEAO4dJfAAAAAEBO4etpAAAAAAA5hUQV\nAAAAAJBTSFQBAAAAADmFRBUAAAAAkFNIVAEAAAAAOYVEFQAAAACQU0hUAQAAAAA5hUQVAAAAAJBT\nSFQBAAAAADmFRBUAAAAAkFNIVAEAAAAAOYVEFQAAAACQU0hUAQA5w8weNrMrazl2lpmtNrNRoeeV\nTfF5HprJbcysxMxOq+G1Lc1slZmV1vbvopp9rDSz7puybZrHSfu9AQDkBxJVAMAmixOalfGjLE4c\ny9v9NmGXHj9qO/Yodx+UNJ8rzexjM1tnZsMrzfVnZvZfM1tqZkvM7BUz65H0eksze9TMvokfj5pZ\ni6TXf2Jm75nZcjObYWan1zQxMxthZo/U+qw3fp61fU9qu02Nr7v7d+7eXNLomsaYWWsze9DMFpjZ\nCjP73MwuTdpHC3efleacN8WmvDcAgDxAogoA2GTu3jxOSlpI+lJR4tgifozdxN3aZkxpmqSLJb2g\nqgnMJ5IOd/c2ktpL+kjSg0mvj5DUTtJ2knaIx4yQJDNrIOkfku5z91aS+kq62cz22Iy5ZoWZbZHO\n8Br6b5HUVNIu7t5S0jGSpm/u3AAAKEeiCgDIODPb18zeiVcv55vZHWbWMOn1W8xsYbw6+d/klc2k\nMS3MbIKZ3Vrb47r739z9JUkrVSnJcvev3X1e3CySVCZpQdKQ3SQ94+6r3H2FpGfiPilKWreS9Ei8\nr/clfSpp12rmfZikoZL6xivLH8X9p5rZlHgFcoaZnZG0TTsz+2f8fi02szeqOz8z29XMvjCzvrV9\nT+LV3SfN7BEzWy6pfAW6u5n9O57Py2a2VW33KamXpLHuvlyS3P1zd38q6ZhlZrZ9/HwrM3s+/rue\naGZXmdmblcaeaWZT4/O/M+m1HczsX2a2KGmVu1UN57mvmb0fH+crM7spjfMBAOQYElUAQAjrJZ2v\nKLn7saRDJZ0tSWb2S0kHSdopXp08QdKSpG09Tppek/Smu1+QqUmZWVczWypptaQjJf026eWXJR0f\nX9baRtLxkl6MX1sg6b+SfmNmDczsAEndJP073u9P4v0qTpSvkfRYvLK8Z7yPhZKOjFcgT5V0i5n1\njF/7vaQ5ilZ0t1GU6Fae+16SXpJ0rrv/Pc1TP0bSE/H7PVpREt9f0uD4eI0k/SGN/f1H0tVmNtjM\ndtrI2L8o+sVBe0VJ8imqutp9pKLkdw9JJ8YxUu5qSR0U/VKgi+JV7mrcJumW+By3l/R4rc8GAJBz\nSFQBABnn7h+6+0R3L3P3LyXdJ+ng+OV1klpI2tXMiuLVuK+SNu8kqUTS39398gzPa3Z86W87SZOV\neunvX+I/F0taFM/z7ng7l3SGpJGS1kp6XdKw8hVad/93vN9ypqorui+6+8z4+RuSXpH00/jlUkXJ\nWHd3/97d36o09YMlPStpoLu/qPS97e7PxcdeqyhRfNDdp8ftxyX13NAOKvk/RQnvuZI+MbNp8Upy\niviS6V9JGu7ua939U0mjVPWS4uvcfYW7z5E0oXwu7j7D3V9z93XuvkjRJccHq3qlknYys3buvtrd\n303jfAAAOYZEFQCQcWa2c3wp64L4ctOrFa2uyt3/JelORYnhQjO7N+mmRaZoda2xpHtDzc/dlypa\nQTzazFrG3aMlfS6puaSWkr6Q9Gh8Pp0k/VNSf3dvqOiS4EvN7IjaHtPMDjez/8SX9i6VdITi90TS\njYpqPF+JLwu+NHlTSWdKeitOcDfF3Gr6kn85sEbReddKnHRe6+69FJ3D45KeMLPWlYZuLWkLRavF\ntZ3L6vK5mFl7M3vMzObGcfSIEu9ZZadJ2lnSp/ElxkfW9nwAALmHRBUAEMLdkqZI2jG+FPOPSvo/\nx93viJOcHoqSi4vLX5J0v6LLcF80s6abMYeN3Q22oaI61e/i9mGS7nX3Ne7+raJEuTwRPUDSXHcf\nH89/qqIbNh1ew77LkhtmtqWkpyTdIGmbePX1RcUri3Fd7B/cfQdFl+leZGY/SzqPMyV1M7ObN37a\n1Qp2Z1x3XynpWknNFN2IKtk3ii4D75LU10UbVz7fayR9L+mHcRwNVA0/u8Srw/3dfWtJ10t60sya\n1PpEAAA5hUQVABBCc0V1iavNbBdJv1OcfJhZLzPbL7650mpFl9J+H29Xnridq2h183kza1zbg5rZ\nFvH4BpIamlljMyuKX+sTr/QWmdnWkm6W9KK7lyeq/5V0erxNE0WX+k6OX/tE0g8s+oobM7MdJB2V\n9HplCxXdrKj8EtdG8WORpDIzO1xS76R5H2VmO8bjV8TvR3Kyu1JRIv1TM7u2tu/HRmzy3ZXN7E/x\n32Oj+P0+X9JSRX9nFdz9e0lPSxphZk3iWBioDSfOyfNqLulbSSviVe2Lq99EMrOT479XSVoeH6Os\npvEAgNxGogoACOEPim7Ws0JRfepjSa+1jPuWSJqlKHm7MX4t+Xsxz1B0megz8YpkdSonWw8oSn5P\nUrSKu1rSyfFrnRTdjGiFpA8VJVaDkrYdrGh1d1583O7lr7v7FEXJ9l8UJUElkp509wckycwOMrOV\nSft6Iv5zsZm9H686nqfoEtklkvopqjktt6Ok8YoS0rcl/cXdX08+sfgOu7+QdLiZjazh/ahOTd81\n6hsZs6FEtkzSQ4pWTOcpulnWke6+upp9nyuplaLLe0dJGquonrS6eVRuj5S0l6L3/HlFq9I1Jbm/\nlPS/+O/hFkknJf0SAgCQZyy6PwQAAPnFzD5TdAOip9391GzPp76IfymwUNGq9A3ufmWG93+9osuf\n+TsDANSIRBUAAARjZj+QtKWkjyXto6i297TyuxADAFCdLbI9AQAAkB4z66qobrYyl9TD3au7s262\ntFB0uW9HRSu1fyZJBQBsDCuqAAAAAICcws2UAAAAAAA5Jacv/TUzlnsBAAAAoB5z9yp3ms/pRFWS\nuDQZIYwYMUIjRozI9jRQTxFfCIn4QijEFkIivlCTxFeOp+LSXwAAAABATiFRRUGaNWtWtqeAeoz4\nQkjEF0IhthAS8YV0kaiiIPXs2TPbU0A9RnwhJOILoRBbCIn4Qrpy+utpzMxzeX4AAAAAgE1nZvl5\nMyUAAAAAyISabtyDupHOIiSX/qIglZSUZHsKqMeIL4REfCEUYgsh5VJ8uTuPLDzSRaIKAAAAAMgp\n1KgCAAAAKAhxPWS2p1GQanrva6pRZUUVAAAAAJBTSFRRkHKpTgL1D/GFkIgvhEJsISTia8O6d++u\n1157LaP7HDFihAYOHJjRfdYlElUAAAAAyCIzy/gdifP9DsckqihIxcXF2Z4C6jHiCyERXwiF2EJI\nxBfSRaIKAAAAADmgtLRUF1xwgTp16qROnTrpwgsvVGlpqSRp2bJlOuqoo7TNNtuobdu2OvroozVv\n3ryKbWfOnKmDDz5YLVu2VO/evbVo0aJaHfOEE05Qhw4d1Lp1ax188MGaMmWKJOndd99Vhw4dUm6A\n9I9//EM/+tGPJElr1qzRoEGD1LZtW/Xo0UM33HCDunTpkqm3gkQVhYk6CYREfCEk4guhEFsIifja\nOHfXVVddpYkTJ2ry5MmaPHmyJk6cqKuuukqSVFZWptNOO02zZ8/W7Nmz1aRJE5177rkV2/fv31/7\n7LOPFi9erD/96U8aNWpUrS7/PfLIIzV9+nR988032muvvTRgwABJ0n777admzZql1M6OGTOm4vWR\nI0dq9uzZmjlzpsaPH69HH300o5cbk6gCAAAAgCSzzDw21ZgxY3T55ZerXbt2ateunYYPH65HHnlE\nktS2bVv16dNHjRs3VvPmzTVs2DC9/vrrkqTZs2fr/fff15VXXqmGDRvqoIMO0tFHH12rr+IZPHiw\nmjVrpoYNG2r48OGaPHmyVq5cKUnq16+fxo4dK0lauXKlxo0bp379+kmSnnjiCQ0bNkytWrVSp06d\ndP7552f0q39IVFGQqJNASMQXQiK+EAqxhZDyJb7cM/PYVPPnz1e3bt0q2l27dtX8+fMlSatXr9aZ\nZ56p7t27q1WrVjr44IO1fPlyubvmz5+vNm3aqEmTJhXbJu+nJmVlZRoyZIh23HFHtWrVStttt53M\nrOKy4X79+unpp59WaWmpnn76ae29994Vl/fOnz8/5VLfzp07b/qJV4NEFQAAAAByQMeOHTVr1qyK\n9uzZs9WpUydJ0k033aSpU6dq4sSJWr58uV5//XW5u9xdHTp00NKlS7V69eqKbb/88suNXoo7evRo\nPffcc3rttde0fPlyzZw5s2KfktSjRw9169ZN48aN05gxY9S/f/+KbTt06KA5c+ZUtJOfZwKJKgoS\ndRIIifhCSMQXQiG2EBLxVTv9+vXTVVddpUWLFmnRokW64oordPLJJ0uSVq1apSZNmqhVq1ZasmSJ\nRo4cWbFdt27d1KtXLw0fPlzr1q3Tv//9b/3zn//c6PFWrVqlLbfcUm3bttW3336rYcOGVRnTv39/\n3XrrrXrzzTd1wgknVPSfeOKJuvbaa7Vs2TLNmzdPd955JzWqAAAAAFCfmJkuu+wy9erVS3vssYf2\n2GMP9erVS5dddpkk6YILLtCaNWvUrl07HXDAATr88MNTEsMxY8bo3XffVdu2bXXFFVdo0KBBGz3m\nKaecom7duqlTp0764Q9/qB//+MdVks1+/frpjTfe0KGHHqq2bdtW9F9++eXq3LmztttuO/Xu3Vsn\nnHCCGjVqlKF3Q7JMFrxmmpl5Ls8PAAAAQP4ws4ze8AcJd999tx5//HFNmDCh2tdreu/j/ipLsayo\nAgAAAADS8tVXX+mtt95SWVmZPv/8c918883q06dPxvZPooqCRJ0EQiK+EBLxhVCILYREfGXP6NGj\n1aJFiyqP3XfffbP2W1paqrPOOkstW7bUoYcequOOO05nn312hmYtbZGxPQEAAAAAcsqAAQM0YMCA\njO+3a9eu+vjjjzO+33LUqAIAAAAoCNSoZg81qgAAAACAvEaiioJEnQRCIr4QEvGFUIgthER8IV0k\nqgAAAACAnEKNKgAAAICCQI1q9lCjCgAAAAD12LXXXqvTTz9dkjRr1iwVFRWprKwsy7PKrLQSVTN7\n0MwWmtnHSX1tzWy8mU01s1fMrHXSa0PNbJqZfWZmvZP69zazj+PXbsvMqQC1R50EQiK+EBLxhVCI\nLYREfG26kpISdenSJaVv6NChuv/++7M0o7qR7orqQ5IOq9Q3RNJ4d99Z0mtxW2bWQ1JfST3ibe4y\ns/Il3bslnebuO0naycwq7xMAAAAAUKDSSlTd/U1JSyt1HyNpVPx8lKTj4ufHShrr7uvcfZak6ZL2\nM7MOklq4+8R43N+StgHqRHFxcbangHqM+EJIxBdCIbYQEvG1YUVFRfriiy8q2oMHD9af/vQnrV69\nWocffrjmz5+vFi1aqGXLllqwYIFGjBihgQMHpnWMhx56SD169FDLli21ww476L777qt4bdddd9UL\nL7xQ0V6/fr223nprTZo0SZL0t7/9Td26dVO7du101VVXqXv37nrttdc286w3LBM1qu3dfWH8fKGk\n9vHzjpLmJo2bK6lTNf3z4n4AAAAAKHhmJjNT06ZN9dJLL6ljx45auXKlVqxYoQ4dOihxoWrttW/f\nXi+88IJWrFihhx56SBdeeGFFItq/f3+NHTu2YuzLL7+sbbbZRj179tSUKVN0zjnnaOzYsVqwYIGW\nL1+u+fPnb9Ic0rFFJnfm7m5mGb2N1uDBg9W9e3dJUuvWrdWzZ8+K38iUX+tOm3a67eQ6iVyYD+36\n1Sa+aBNftPOxXd6XK/OhXb/a5X3Zns/G2MjMJF8+fPNTovI75FZ3p9xNuXPxEUccUfH8pz/9qXr3\n7q033nhDPXv2VL9+/bTXXntp7dq1aty4scaMGaN+/fpJkp588kkdc8wxOuCAAyRJV1xxhW6//fZN\nOSWVlJRo0qRJWrZsmaToRlA1Sfvracysu6Tn3X33uP2ZpGJ3/yq+rHeCu+9iZkMkyd2vi8e9JGm4\npC/jMbvG/f0kHezuZ1VzLL6eBkGUlJTU+gMLSBfxhZCIL4RCbCGkXImvXP16mqKiIk2fPl3bb7+9\nJOnUU09V586ddeWVV6qkpEQDBw7UnDlzKsaPGDFCM2bM0COPPKJZs2Zp++231/r161VUVFTjMcaN\nG6eRI0dq2rRpKisr0+rVqzVkyBCNHDlSkrTffvvp97//vY466ihtu+22mjRpkrbffnv97ne/U8uW\nLXX99ddX7Ktjx4569NFHdcghh9T6HLPx9TTPSRoUPx8k6Zmk/pPMrJGZbSdpJ0kT3f0rSSvMbL/4\n5koDk7YB6kQufFCi/iK+EBLxhVCILYREfG1Y06ZNtXr16or2ggULKi6tre4S23Qvu/3uu+90/PHH\n65JLLtHXX3+tpUuX6ogjjkhJHPv166exY8fq2WefVY8ePSqS5g4dOmju3ETl5po1a7R48eK0jr8p\n0kpUzWyspLcl/cDM5pjZqZKuk/QLM5sq6ZC4LXefIulxSVMkjZN0dtLy6NmSHpA0TdJ0d38pEycD\nAAAAAPmmZ8+eGj16tL7//nu99NJLeuONNypea9++vRYvXqwVK1ZU9KW7KlxaWqrS0lK1a9dORUVF\nGjdunF555ZWUMSeddJJefvll3XPPPRowYEBF/69//Ws9//zzeuedd1RaWqoRI0bUyap0Womqu/dz\n947u3sjdu7j7Q+6+xN1/7u47u3tvd1+WNP4ad9/R3Xdx95eT+j9w993j187L5AkBtZFcLwFkGvGF\nkIgvhEJsISTia8Nuu+02Pf/882rTpo3GjBmjPn36VLy2yy67qF+/ftp+++3Vtm3bitXW5FXVja2w\ntmjRQrfffrtOPPFEtW3bVmPHjtWxxx6bMmbbbbfVAQccoHfeeUd9+/at6O/Ro4fuuOMOnXTSSerY\nsaNatGihbbbZRltuuWWGzr56adeo1iVqVBHCjPlLNOzWO9R1lx+qVdNmuuwkvsYXmZUrdTion4gv\nhEJsIaRcia9crVHNJ6tWrVKbNm00ffp0devWrdbbpVujSqKKgvPaR9N1yiOXSpLmN39Os875Rt3a\nt87yrAAAABAaieqmef7553XooYfK3fX73/9e7733nj744IO09pGNmykBeeXQPXfUvJuf0rybn5Kt\na66yMj6sAAAAkP+aN2+uFi1aVHm89dZbm7Xf5557Tp06dVKnTp00Y8YMPfbYYxmacc1IVFGQqJNA\nSMQXQiK+EAqxhZCIr7qxatUqrVy5ssrjwAMP3Kz93n///Vq6dKmWLVum8ePHa6eddsrQjGtGogoA\nAAAAyCnUqKKgFQ1toxnnfaHtOrTJ9lQAAAAQGDWq2UONKgAAAAAgr5GooiBRJ4GQiC+ERHwhFGIL\nIeVSfJV/BymPun2ka4sAf/cAAAAAkHO47Dd/UKOKgkaNKgAAAJA91KgCAAAAAPICiSoKUi7VSaD+\nIb4QEvGFUIgthER8IV0kqgAAAACAnEKNKgoaNaoAAABA9lCjCgAAAADICySqKEjUSSAk4gshEV8I\nhdhCSMQX0kWiCgAAAADIKdSooqBRowoAAABkDzWqAAAAAIC8QKKKgkSdBEIivhAS8YVQiC2ERHwh\nXSSqAAAAAICcQo0qCho1qgAAAED2UKMKAAAAAMgLJKooSNRJICTiCyERXwiF2EJIxBfSRaIKAAAA\nAMgp1KiioFGjCgAAAGQPNaoAAAAAgLxAooqCRJ0EQiK+EBLxhVCILYREfCFdJKoAAAAAgJxCjSoK\nGjWqAAAAQPZQowoAAAAAyAskqihI1EkgJOILIRFfCIXYQkjEF9JFogoAAAAAyCnUqKKgUaMKAAAA\nZA81qgAAAACAvECiioJEnQRCIr4QEvGFUIgthER8IV0kqgAAAACAnEKNKgoaNaoAAABA9lCjCgAA\nAADICySqKEjUSSAk4gshEV8IhdhCSMQX0kWiCgAAAADIKdSooqBRowoAAABkDzWqAAAAAIC8QKKK\ngkSdBEIivhAS8YVQiC2ERHwhXSSqAAAAAICcQo0qCho1qgAAAED2UKMKAAAAAMgLJKooSNRJICTi\nCyERXwiF2EJIxBfSRaIKAAAAAMgp1KiioFGjCgAAAGQPNaoAAAAAgLxAooqCRJ0EQiK+EBLxhVCI\nLYREfCFdJKoAAAAAgJxCjSoKGjWqAAAAQPZQowoAAAAAyAskqihI1EkgJOILIRFfCIXYQkjEF9JF\nogoAAAAAyCnUqKKgUaMKAAAAZA81qgAAAACAvECiioJEnQRCIr4QEvGFUIgthER8IV0kqgAAAACA\nnEKNKgoaNaoAAABA9gSvUTWzoWb2iZl9bGZjzGxLM2trZuPNbKqZvWJmrSuNn2Zmn5lZ70zNAwAA\nAACQ3zKSqJpZd0mnS9rL3XeX1EDSSZKGSBrv7jtLei1uy8x6SOorqYekwyTdZWZchow6Q50EQiK+\nEBLxhVCILYREfCFdmUoOV0haJ6mpmW0hqamk+ZKOkTQqHjNK0nHx82MljXX3de4+S9J0SftmaC4A\nAAAAgDyWsRpVMztD0k2S1kh62d0HmtlSd28Tv26Slrh7GzO7Q9J/3H10/NoDksa5+1OV9kmNKoKi\nRhUAAADInqA1qma2g6QLJHWX1FFSczM7OXlMnHFuKOskIwUAAAAAaIsM7aeXpLfdfbEkmdnTkn4s\n6Ssz29bdvzKzDpK+jsfPk9QlafvOcV8VgwcPVvfu3SVJrVu3Vs+ePVVcXCwpca07bdrptsuf+5fr\nVC6X5kcdm87sAAAgAElEQVQ7v9vlz3NlPrTrV5v4oh2qXd6XK/OhXb/a5X25Mh/a2WtPmjRJy5Yt\nkyTNmjVLNcnIpb9m9iNJoyXtI2mtpIclTZTUTdJid7/ezIZIau3uQ+KbKY1RVJfaSdKrknasfJ0v\nl/4ilJKSEhUXF3PpL4Iojy8gBOILoRBbCIn4Qk1quvQ3kzWql0gaJKlM0oeSfiuphaTHJXWVNEvS\nie6+LB4/TNJvJK2XdL67v1zNPklUERSJKgAAAJA9wRPVEEhUERqJKgAAAJA9QW+mBOSb5HoJINOI\nL4REfCEUYgshEV9IF4kqAAAAACCncOkvChqX/gIAAADZw6W/AAAAAIC8QKKKgkSdBEIivhAS8YVQ\niC2ERHwhXSSqAAAAAICcQo0qCho1qgAAAED2UKMKAAAAAMgLJKooSNRJICTiCyERXwiF2EJIxBfS\nRaIKAAAAAMgp1KiioFGjCgAAAGQPNaoAAAAAgLxAooqCRJ0EQiK+EBLxhVCILYREfCFdJKoAAAAA\ngJxCjSoKGjWqAAAAQPZQowoAAAAAyAskqihI1EkgJOILIRFfCIXYQkjEF9JFogoAAAAAyCnUqKKg\nUaMKAAAAZA81qgAAAACAvECiioJEnQRCIr4QEvGFUIgthER8IV0kqgAAAACAnEKNKgoaNaoAAABA\n9lCjCgAAAADICySqKEjUSSAk4gshEV8IhdhCSMQX0kWiCgAAAADIKdSooqBRowoAAABkDzWqAAAA\nAIC8QKKKgkSdBEIivhAS8YVQiC2ERHwhXSSqAAAAAICcQo0qCho1qgAAAED2UKMKAAAAAMgLJKoo\nSNRJICTiCyERXwiF2EJIxBfSRaIKAAAAAMgp1KiioFGjCgAAAGQPNaoAAAAAgLxAooqCRJ0EQiK+\nEBLxhVCILYREfCFdJKoAAAAAgJxCjSoKGjWqAAAAQPZQowoAAAAAyAskqihI1EkgJOILIRFfCIXY\nQkjEF9JFogoAAAAAyCnUqKKgUaMKAAAAZA81qgAAAACAvECiioJEnQRCIr4QEvGFUIgthER8IV0k\nqgAAAACAnEKNKgoaNaoAAABA9lCjCgAAAADICySqKEjUSSAk4gshEV8IhdhCSMQX0kWiCgAAAADI\nKdSooqBRowoAAABkDzWqAAAAAIC8QKKKgkSdBEIivhAS8YVQiC2ERHwhXSSqAAAAAICcQo0qCho1\nqgAAAED2UKMKAAAAAMgLJKooSNRJICTiCyERXwiF2EJIxBfSRaIKAAAAAMgp1KiioFGjCgAAAGQP\nNaoAAAAAgLxAooqCRJ0EQiK+EBLxhVCILYREfCFdJKoAAAAAgJxCjSoKGjWqAAAAQPYEr1E1s9Zm\n9qSZfWpmU8xsPzNra2bjzWyqmb1iZq2Txg81s2lm9pmZ9c7UPAAAAAAA+S2Tl/7eJulFd99V0h6S\nPpM0RNJ4d99Z0mtxW2bWQ1JfST0kHSbpLjPjMmTUGeokEBLxhZCIL4RCbCEk4gvpykhyaGatJB3k\n7g9Kkruvd/flko6RNCoeNkrScfHzYyWNdfd17j5L0nRJ+2ZiLgAAIH98/700YcKGx7hHj0z49lvp\nnXc2Pm79emnNmswcM6Svv5b22GPTtv30U2nevMzOB5uurKxutgHyRaZWMbeT9I2ZPWRmH5rZ/WbW\nTFJ7d18Yj1koqX38vKOkuUnbz5XUKUNzATaquLg421NAPUZ8IaT6FF/Ll0v33ScdcsiGx225pXTF\nFYm2uzRggPTll6njDjlEKi1NHffBB6lj/vxn6YADUvsWL5Zmzky0hw+XGjaUmjat/blsrs8/l1au\n3Pi44uIoiS736afSxx+njlmzRvrkk9S+f/xDuummRHvyZKlHD+mII5L3XZyyTXXvX2lp6vHcpRdf\nlK6+OnXcnDnSwoXaqA8/rJpsVT7mN99Iffqk9q1eHZ17uirvu7pzrMxdeu456YYbNr7/KVOiuSU7\n7jhp0aINb/fuu1KDBhse8/nn0qpVqX0NGkhvv73xeeWC+vTZhTri7pv9kNRL0jpJ+8TtWyVdKWlp\npXFL4j/vkDQgqf8BSb+qZr8+aNAgHz58uA8fPtxvueUWnzBhgpebMGECbdqb1Va/Zv7F/CU5Mx/a\ntGnTru/t3/zG/V//itr9+5evlU7wl1+OXh80yH3ffRPjP/wwen3//RP7kya4NMHvuy9qP//8BP/5\nzye45D5/fuJ4H30U7b+8fe65ieNNmDDBJ092v/HGxP4q719KnX/jxu4PP5xol5RE+3v44ZrPd9Uq\n9yeeSLQ/+8z99NMn+DXXpI6XJvhvfpNo33ZbdPyJE6P2q69O8FdfjY733HMT/MknJ/gDD7gff3zi\nfMoNGpR6Po8/PsG32SZxPrffnji/nXZKzPeMM9y/+y5qjx49wffeO/X9c3e/5ZbU4515ZtX3r/x8\ndt450b7nnuh499+fuj/J/ZprovbXX7sPGBDtb/z46PWJE93337/q/vv2Tf37Oe+8Cf7++6nv/6WX\nun/1VdX375lnote//db9ppuqvn8jR6YeL4qtqvFw0EHuZ5+daF98cbT/vn0T+5s6Ndr/9dcn9vev\nf03wX/4y0X7xxQn+f/+Xuv9nnpngS5Yk2gMGRK+ffnrV9++yy3Ln3zdt2rVp33LLLRX53aBBgzxK\nSavJMavrTPchaVtJM5PaP5H0gqRPJW0b93WQ9Fn8fIikIUnjX5K0XzX7dSCE8n8wNqR1RaIKZEry\nBzKQafkUXwsWJJ4vXep+4YXRTx6rV7u/9lp50hg9brnF/Z57Em1398mTE+0jjnBfv979gw8Sfffe\nG4373/8SfXPnRn3//nfqvubPd2/QING3fHnq8ZN/5Kiur0WLqH3GGe7z5kUJd/mYF1+MEtKnn47a\nU6dG2yxa5L7vvqn7ad48ajdtmvpeJfetWZPY9yOPVH0v/vIX91NOSZ3nl19G8zr22ERfWZn7Djuk\njvv++9T2FltEc7/ooiih+uCD6HjPPZf6Hjz9tPuhhyb6li5132OPqvueMiVxzlttVfU9HTw4aq9f\n737NNVHfE0+4P/VU6r7WrnVfvNj9Bz+o+ndRUpI4trv79OnR8z32iNplZe5Dh3pFYrxmjftjjyX2\ns2CB++uvux94YKJv5sxoHgcfnHq8L75w79w5te+TT9z33DNqd+lS9RzPPDOKw+iXCNFj3LjEeU+c\nmPj7cXfv27fqObZp477LLlX33bdv1F69OtH36KOeF/Lpswt1K2iiGu1fb0jaOX4+QtIN8eNSTySn\n18XPe0iaJKmRosuGZyj+qpxK+6yDtwaFiEQVIfGfMULKp/iS3F991b201P2ZZxI/WN9xR2pCUN1j\n0qSqff/5T2r7lFPc58yJVmHL+0aMSCRA5Y+333bfbbfUvoEDq+6/cWNPWnWNHosXuzdpkmh37er+\n4IOpY/7+d/c770yd56JF7r17pyYgyUlj48aJ96k8eZXczzkndd+/+12UhJ58cqJvzz3dW7VKHXfE\nEVXPp/IvAyT3hg2r9iWS7gk+aJD7DTekvv7vf7t36JDal1gNTzyGDava5x7Nv7x99NHRe5p8nj/7\nmfvIkVXf08rH+PBD91NPTe1buza1/emnUQyUtwcNch81KnXMK6+kvp+S+1FHVZ37vHlV+9avT203\nauS+bp37ddel9v/1r6nt4mL3MWMSv8yQojgaMiR13Msvu594YqK9YkX0C4zy9s9/7r5smfullyb6\nfvGLuv13vany6bMLdaumRDVj36NqZj+KL+FtFCeep0pqIOlxSV0lzZJ0orsvi8cPk/QbSeslne/u\nL1ezT8/U/IDq8D2qABCOmXT00dIvfiGdd162Z7NpPvpI2nPPDY9p3lw66CBp3Lio/Z//RHWwybWX\ny5dLrVqlbrdgQVRz+vnnGZ1yThk5Mqr5TXb66dL992dm/w0aRDfk2pA+faIa3XL77x/dhOqLL9I/\nXteu0uzZqX3Dh0fnGcKnn0q77pra97vfSXffnWjvs480cWKY4wN1oabvUc1YohoCiSpCI1EFgDDe\ne0/at0Dv5z9smHTNNdmeBQrFfvtFvxwB8lVNiSrfXYqCxHd5ISTiCyHlQ3x9/XXhJqlSPiepJdme\nAOqxfPjsQm4hUQUAABlVxE8XAIDNxKW/KGhc+gsAmfW//0m7757tWQCFg0t/ke+49BcAAAT31VfZ\nngEAoD4gUUVBok4CIRFfCCmX48t943dgRS4ryfYEUI/l8mcXctMW2Z4AAADIf9dfL02dKj34YLZn\nAgCoD6hRRUGjRhUAMsOqVBcBqAt9+khPP53tWQCbjhpVAAAAoJ5p2zbbMwDCIFFFQaJOAiERXwgp\nV+NrC4qJ6oGSbE8A9ViufnYhd5GoAgCAzfL991KTJtmeBQCgPqFGFQWNGlUA2HzUpwLZc9pp0gMP\nZHsWwKajRhUAAAAAkBdIVFGQqJNASMQXQiK+EE5JtieAeozPLqSLRBUAAAAAkFOoUUVBo0YVADYf\nNapA9lCjinxHjSoAAABQjzRsmO0ZAOGQqKIgUSeBkIgvhFRo8dW1qzR+fKLdr5/0xBPS0UeHO2b7\n9tLAgeH2n20dOkgdO1b3SklKa/DgqiNOOSXAhOrIL3+5adv96leZnUemXHyxdNdd2Z5F7RXaZxc2\nH4kqCpo3XqYvv16a7WkAQN6aNm3Tt12/vmrfY48lnnfqJF19derrl10m/frX0nbbJfqefbZ2x1u1\nKvG8eXPpmmuk225LHXPCCdL8+dKVV9Zun+n64x+l0aM3POaww6r2HXNMavvMM6t//ypr2VI68MBE\n+7bbpI8+kk4+OXXcsGGp34X71FPSgw9W3d+oUdGfW24p3XuvNHnyxudQG0ceKT33XNX+f/xj49s2\naCCNGJHad/jh0iGHJNrHHCPdc4/UrVui72c/k779dsP7btFCGjp043O46CJpq62qzmFTHXlk4vlp\np0kzZkhPPpk6JvlcgPqIRBUFqbi4WJJU9G1Hffzl3OxOBvVOeXwBIeRSfH31lbTzzrUb27NnavuZ\nZ6IEQ4pW94YNk0pKpN69o7477qiaUD30kLTDDlX3fcQRVftWrEhtn3de4nhSlIgOHSr95Cep44qK\nokeyiy6KEpZyDzwgLVuWOmaffaoes/I8zj1Xuuoq6ec/rzou2d13V+1LTsZ32y1KupLP58c/lv71\nryjJLvfHP0qLFknXXRe199gjSvLbt0/d94MPSpdeKu22W3FF369+lVp7PH586rlccYV0xhmpcxgx\nQvr8c2n48NT933mntN9+qX29eqW2//nPqqvkJ5wgHXecqthnn8TzJk2iWPnxjxN9N9wg3X+/1KNH\n1H7ooej96949MWblyuj9atpU6tIl2udrr0kLF6Ye64orUtu77Sb9/e/R+1V5Tl27JtoPPCA9/3zV\nuVenctzssIP0179Gz3v1it7n7bdPfa8/+kg6++zqt89VufTZhfywRbYnAGRT89JqfuIBANTKunW1\nH/vRR1His9120Q/x5atdO+wgPf64tNdeUbusTLr++mjFsLz+rnPnKJlNvhR1662jP//859Qf4M84\nI0qYkhPLP/9Z+v3voxXIJk2k996TfvCDqnPs3Dl1JUuSPvtM2mkn6fXXpQ8+kHbdNVrhqmzixNT2\nhRdGyUz5PB56SDrppKrbnXSS9PLL0tKl0rx5knvVy3Jvvjnx/IgjUldk77lHOvjgaHWtSZMoAZOi\nBGvw4NQaxuTVz5/8RHrjDen446NxZtG+FiyQ9t47Me6ss6IELzm5/uorqW3b1DnOmROtgJtJjRsn\n+jt0iP5ux45N9N1wg3T++dGqrFT9ZdwXXSTddFOiveWW0eXYffpI+++fWL287Tbp9NOjXxzccYdU\nWhrNuWnTRIwkx82uu0Zx0Lx5om/SpGjOTZtKa9ZEfZ06Re/HUUdJ778f9W21VbTqu/320iefpJ7j\nTjsl2j16VB8jkjR3bhRn5ed4ySWJGGnXLrpi4JRTovOQpBdfTJxHuRtvlHbZJXqvO3eOYgaol9w9\nZx/R9IDMmzBhgru7N72gl/9oyHn+h78+6R9Nn5/dSaHeKI8vIIRciq/Zs92jH5Nrfuy1l/snn0Tj\nJfcBAzJz7NWr3adPT7Qfesj9/fdTx0hR/4bMmBGN+9//3NevT/R/+WXUv3Jl1D72WPeiotRtt97a\nvVkz9wceSD3m6adXnccHHyTaK1ZEfe+/7/7dd+5//rN7cXHqNttv777jjtH8yj3wgPuHH274fNau\njfa9aFGib/Fi98sv3/B27psWWytWuA8d6l5Wlui7/fZoDhdf7L5uXdR3wglR39VXJ8adfLL7+een\n7m+vvdzvvTe176qr3Ocn/Re9ZEm0r9dfj863Jt9+mxoj7tF7MW9ezdusWRPt+4svEn1Ll7pfdlnq\nuBtuiMZdcon7999HfSNHuh95ZOq4vn3dzzwzmkfyv4Mzz0wdN2VK4r1ydy8tjd6/0tJE34IF7lde\nWfPcc10ufXYht8Q5X5VckK+nQUEqKSlRcXGxjrvuFr27sERLbKoObNVP/xp+ebanhnqgPL6AEHIp\nvubMSb3csbJWrVIvke3SJVppvOii8HOTopXTH/4wtfayttylN9+UfvrTqL1wYbTqucsuiTEzZkQr\ncZ06JfquvTZafUy+PHVTzJwZrRRv6P3NtEzF1rffRivRySuzX38tLV4crWhmwhtvSAcdFOarkd58\nM6rrrXwJeLJVq6SpUxNXAqRj662lkSMTl+4Wilz67EJuqenraUhUAUkHjxiuIivShMqFNQCAGqWb\nqJaVbfiHf6AQ8O8ASFVTokqNKgAAyKiPP45ultSyZWo/P5wD/DsAaot/KihIfJcXQiK+EFI+xFez\nZtFNYc47L9szQTryIbaQv4gvpItEFQCAemrhwuiuoXVZRTNkiLTttnV3PABA/USiioJEMT9CIr4Q\nUm3ja/bs6OtRjjwyuglQufPPr3oDmmnTokdNSkuj75z87W+ld96J+mbMkAYMqDr22ms37eZFyD4+\nuxAS8YV0kagCAFAP9e0rjRoVPS8ri+4yWlQk3X576rjrrpN23jlx91J3acoUqU0badiwqO/116VD\nD5X++lep/Oq9SZOiu6MCABACiSoKEnUSCIn4Qkg1xdf770tt20pffCH97GfSf/6TeG3tWmnEiNRL\ngGfMkG68URo6NGqvWhX9OXeutNtu0d16J0+Oktbbbks91htvSKNHV53DoYdu8mkhB/DZhZCIL6SL\nu/4CAJDnpk2TbrghusT3q68Sq57lfvSjqtvsuGPVvrfekg47LNEuKpKefFJ64YVEX/kqa3VefTWt\naQMAUCO+RxUQ36MKIL8NGSJdf330vG1bacmS7MyD/7IBAOnie1QBAKgHFi+W/vvf6IZI++wjPfqo\ndOutidezlaQCAJBJ1KiiIFEngZCIL4R08cUlOuSQqA71xhuls86Svvsu27NCfcBnF0IivpAuElUA\nAPLI998nno8cmb15VHbxxdmeAQCgPiFRRUHiu7wQEvGFkLp1K872FKrYZ5/oZk7Ib3x2ISTiC+ki\nUQUAII/k4g2LKn83KwAAm4tEFQWJOgmERHwhpFmzSrI9hRRHHintv3+2Z4FM4LMLIRFfSBeJKgAA\neSTXVlR33z3bMwAA1EckqihI1EkgJOILIXXtWpztKaTYYYdszwCZwmcXQiK+kC4SVQAA8khZWbZn\nAABAeCSqKEjUSSAk4gshffllSbangHqKzy6ERHwhXSSqAADkkVyrUQUAIAQSVRQk6iQQEvGFkLp0\nKc72FFBP8dmFkIgvpItEFQCAPMKKKgCgEJCooiBRJ4GQiC+ENHt2SbankIKvp6k/+OxCSMQX0kWi\nCgBAHsmlFdWHH5b22y/bswAA1EckqihI1EkgJOILIXXuXJztKVTIpaQZm4/PLoREfCFdJKoAAOSR\nXEoODzoo2zMAANRXJKooSNRJICTiCyHNmVOS7SlUaNMm2zNAJvHZhZCIL6SLRBUAgDySSyuqAACE\nQqKKgkSdBEIivhBSx47F2Z4C6ik+uxAS8YV0kagCAJBH/vKXbM8AAIDwSFRRkKiTQEjEF0LaZpuS\ntMa/+qq0Zo20226JvuOPj/qAZHx2ISTiC+kiUQUAoB757W+loUOj5999Jx16qNS4sbT33lFf377S\nk09GfeUaNZKeeip1P2ZS8pV6l18uffmldPXVQacPAIAkaYtsTwDIBuokEBLxhZAaNy6u8bXLL5dO\nPVVq2DBKTBs1Srx2//3RZcPNmyf6/vAHqUOHKLlt1izRf8YZ0q23SjNnRiuxPXpIJ58sde0qbZH0\nk0ODBpk7L2Qfn10IifhCukhUAQDIU82aSaNGSb/+dZRAnnqq1L179Nrxx6eObdQoNXGVpBtvTDz/\n/vvoz2HDov00aSIVxdddffxx4nm/flKrVlLv3tGfAACEwKW/KEjUSSAk4gshrV1bUvG8WTOpU6fo\n+bp1iSR1UzRoIH34oXTlldKOO0Z9O+8c9RUl/bTQpYt05pnSdttt+rGQm/jsQkjEF9JFogoAQB7q\n0kW6887oEt9M/fy3556pSWlRUdQHAEBdM8/hbw43M8/l+aH+OHjEcBVZkSYMH57tqQDABnXrJs2e\nLY0YIfGRBQDId2Ymd7fK/ayoAgAAAAByCokqChJ1EgiJ+EJIa9eWaKutpF69sj0T1Dd8diEk4gvp\n4q6/AADkmQ8+iC4BBgCgvsroiqqZNTCzj8zs+bjd1szGm9lUM3vFzFonjR1qZtPM7DMz653JeQAb\nw3d5ISTiCyFt6HtUgc3BZxdCIr6Qrkxf+nu+pCmSyu+ANETSeHffWdJrcVtm1kNSX0k9JB0m6S4z\n4zJkAAAAAEDmElUz6yzpCEkPSCq/a9MxkkbFz0dJOi5+fqykse6+zt1nSZouad9MzQXYGOokEBLx\nhZCSv0cVyCQ+uxAS8YV0ZXIV8xZJF0sqS+pr7+4L4+cLJbWPn3eUNDdp3FxJnTI4FwAAAABAnsrI\nzZTM7ChJX7v7R2ZWXN0Yd3cz29CXolb72uDBg9W9e3dJUuvWrdWzZ8+Ka9zLfzNDm3a67eLi4iqv\nL505UyUlJTkxP9r53a4uvmjTzlS7ceNivfNOiWbOzI350KZNmzZt2um0J02apGXLlkmSZs2apZqY\n+4Zyx9oxs2skDZS0XlJjSS0lPS1pH0nF7v6VmXWQNMHddzGzIZLk7tfF278kabi7v1tpv56J+QEb\nc/CI4SqyIk0YPjzbUwGAGpWVSVtuKU2fzl1/AQD1g5nJ3a1yf1Emdu7uw9y9i7tvJ+kkSf9y94GS\nnpM0KB42SNIz8fPnJJ1kZo3MbDtJO0mamIm5ALVR/tsdIATiC6F8+qm0fn2J2rbN9kxQH/HZhZCI\nL6Qr1Peoli+DXifpcTM7TdIsSSdKkrtPMbPHFd0heL2ks1k6BQBgw0pLpc6dpRYtsj0TAADCysil\nv6Fw6S/qCpf+AsgHl18uPfqo9MUX2Z4JAACZEfTSXwAAEF6jRlL//tmeBQAA4ZGooiBRJ4GQiC+E\n8vDD0vTpJdmeBuopPrsQEvGFdJGoAgCQJ1q3ln7602zPAgCA8EhUUZDKv8sJCIH4QigNGkh7712c\n7WmgnuKzCyERX0gXiSoAAAAAIKeQqKIgUSeBkIgvhPTBByXZngLqKT67EBLxhXSRqAIAkAdWrZIm\nTsz2LAAAqBt8jyogvkcVQO575hmpTx9pzRqpceNszwYAgMzge1QBAMhj69dLv/oVSSoAoDCQqKIg\nUSeBkIgvhLBundSoEfGFcIgthER8IV0kqgAA5IHSUqlhw2zPAgCAukGNKiBqVAHkvp/9TGrfXnrs\nsWzPBACAzKFGFQCAPNasmdSvX7ZnAQBA3SBRRUGiTgIhEV8IoahIMiO+EA6xhZCIL6SLRBUAgDzw\n8cfZngEAAHWHGlVA1KgCyH1m0qxZUrdu2Z4JAACZQ40qAAB5rmvXbM8AAIC6QaKKgkSdBEIivhAS\n8YVQiC2ERHwhXSSqAADkuI8+yvYMAACoWySqKEjFxcXZngLqMeILmTZ3rnTggVGdKvGFUIgthER8\nIV0kqgAA5IE2bbI9AwAA6g6JKgoSdRIIifhCSMQXQiG2EBLxhXSRqAIAAAAAcgqJKgoSdRIIifhC\nSMQXQiG2EBLxhXSRqAIAkOM+/VQqLc32LAAAqDskqihI1EkgJOILmfb551KnTtFz4guhEFsIifhC\nurbI9gQAAMCGFRVJ++6b7VkAAFB3WFFFQaJOAiERXwiJ+EIoxBZCIr6QLhJVAAAy5OmnpXHjEu05\nc6R77pEmTozaZWXS7NmSe2LM559LZ50lNW0qTZkS9b39tnTyyVKLFtKKFXU3fwAAcgWJKgoSdRII\nifgqTPvvLx1/vNS/v/Tee1Hi2bWr9LvfSXfdJU2dKp12mtStm/S//0lr1khXXCHtsot0771Re9q0\naMyBB0qjR0urVknz5knPPhsluRLxhXCILYREfCFd1KgCMXdXWVm0zFFUZFmeDYBcV74qWloaJZLv\nvhu1ly2LVlHXrEmMHTUqepQ75BBp0aKq+zzuuKp9PXpEf/7yl5mZNwAA+cA8+fqjHGNmnsvzQ/3R\n8oIDtbLN25Kkhit2VOlN07I8IwC5buBA6dFHo0Sy/JLdkBYskLbdNvxxAACoS2Ymd6+ySsSlv4Ck\n74qWSpKmnrZI6xsuyfJsAOS6u+6KklSpbpJUAAAKDYkqChJ1EgiJ+Kr/zjkne8cmvhAKsYWQiC+k\ni0QVAIBaWrdO+uEPs3Ps5s2zc1wAALKBGlVAUvsLj9bXjd/U1HNm6Ad37qyy6xZne0oActDKlVLL\nltk5Nv8dAgDqo5pqVP+fvfsOj6rK/zj+PumUkEZLaEkIvSsgCEqXIoIoImLButZ1rT9F17asdRXb\n6upa1t6wLa4dFRtgBRUUlCa9twCBtPP740xNJoFghkn5vJ4nz505c+fc771zEvjOKVer/ooAn13x\nH7/b2g0AACAASURBVDbt2BXpMEREREREBA39lVqq5DyJdi0a0r9zZkRikZpH83BqpnnzItebGkjt\nS8JFbUvCSe1LKkqJqoiIyH78+CNMmRLpKERERGoPzVEVCfDb6i2aoyoipUydCjfeGNkY9M+hiIjU\nRLqPqoiISDWVnh7pCERERA4tJapSK2mehIST2pdUtsaN/Y/VviRc1LYknNS+pKKUqIqIiJRj+nR4\n5JFIRyEiIlK7KFGVWmngwIGRDkFqMLWvmuWyy2Dt2gPbt3lz/+Onn4bNm2H4cH/ZgAGwYQMMHuwv\ne/11yM/3P8/Kgg8+CC7r2dP/WO1LwkVtS8JJ7UsqSvdRFRERKUd09P73SU+HO++Edu3c6sATJsBp\np0FUFJxxBqSmwsiRcPrpbv+333aLIxUU+G958847Lklt2RLq1nVlL7wA/ftD06bhOTcREZGqSqv+\nSq00a9askN/sadVfqQxltS+pnlq2hFWryn79H/+As86CtLRDE4/al4SL2paEk9qXlEWr/oqIiFSi\nzz5z28suO3RJqoiISG2hHlWRAOpRFZGSQvWojh4Nb70VmXhERERqEvWoioiIVNCaNaWT1MmT4b//\njUw8NU1hcSFb87by4k8vlrvfrvxdFBYXBpXt2Luj1H4HUrY1byszFs8IKssvymdPwR7f8027N7Fm\n5xrW5a7b7zkcaiXPp6CogOd/fD6orNgWs3PfzqCykue4Y+8OZq+azeLNiyt0PGttyBh25+8OKssr\nyGNf4b7yTyZE/QdaVlRcRO6+3P3Wf7DHK6nk9StL7r5cim1xhevfW7iXlxa8tN+6i4qLKly3SHWl\nRFVqJd3LS8JJ7avmCFzF1ysuzi2SFCnVqX0VFBX4Hu8p2MODXz2IucVQUFTA/PXzyXkgh7S70pj0\n+iRWbF/Bh0s/5Jhnj+G6j64DYFveNl79+VUSb0/kkncuAWDLni20/2d7ku9M5n+//g+Ajbs30uq+\nViTfmcym3ZsoLC5k2bZl/OXdv5B8ZzLWWvYW7uX2z28n7a40xr40lvW71vPmojcZ/8p44v8eT8O7\nGrItbxsAmfdn0vze5mRMy/DF8cJPL9D6gda8/evbbMvbxoNfPcj9c+8n+Y5kVu9cTbEtZs3ONTz4\n1YO+pC2/KJ8lW5cwb908wCUV7y95n0FPD+Lu2XcHXaeTXz2ZVxa+4jvev7/7Nw3vasiSrUsAWJu7\n1neOc1bN4Zs133Dmm2fS6B+NOO2N01i+bTm78nexYOMCLn/vcpLuSALgjV/eoMejPYj/ezz1bqvH\ntrxtdHioA8l3JtPvyX4MenoQ+UX57rM507Bj7w4Kiwv5YuUXmFtM0PX7acNPDHt2GMl3JpNXkMdb\ni99iwvQJxP09jvq31/clse8teY+6t9Xl2BeO9Z3jSwteov0/2/PB0g+Czjv5zmQ+Xv4xv2//nZs+\nucl3jvlF+RQUFfDMD8/Q8aGOvjjyCvL4ccOPXPzOxTS4w61Elrsvl4mvTuSFn14AXDL92HeP0eTu\nJizavAhrLYs3L/bVvX3vdhZsXMA1H14TdI6f/f4ZD3/zMBe/fTF9n+gLuC9Jbpl1i+/6AWzfu513\nfnuH/k/251/f/Mt3PgOeGkCDOxrw98/+zta8rTz41YPMWDyD5DuT+Xbtt779tuzZQuzUWIptsa+N\n/P2zv3PKa6f4zvHamddyz+x7fO1h+HPDaXBHA26adZOv7N3f3iX5zmTe/e3dA/2VjKjq9LdLqgYN\n/ZVa6UAWU9q2Dd54w63M2b499Ot36OOU6kkLRtQcpsRApKuvhvPOgzZtIhMPVK/2ZW4xXN7nctLq\npHHX7Lt8vXzx0fHsKyq/t61L4y78tPGnoLKGdRuyec9m3/MWDVpwUa+LuGfOPUHlJaXWSWVr3tYD\nirnkMe455h6u/ODKoH3qxdZjd4G/B7FP8z60SW3Dsz8+C8AXZ33B67+8zrS503z7PDfuOU5747Sg\neh4/7nGenP8ks1fNLvP4bdPaMrnbZO6efTfb9m47oHPwapnUkpU7Vu53vyb1mrBh9wZYDmSVfj3U\n9UuKT2LHvuDevG5NuvHDhh+Cyv49+t889cNTQed43/D7eOz7x1i4aaGvLC46jvwi/z2Z6sTUIa8w\nL6iutDppbMkLnprTtUlXftzwo+95h4YdqB9Xn2/WfgO4a3BM9jE8Pu9x3z4X9ryQL1Z+EdS+Qp1j\ns8RmrMldE1TWu1lvvl7zdVDZo6Mf5ekfng46x5JtBKBnRk9WbF/h+3wT4xLJzQ/uFS55jg+MeIBL\n37s0aJ/r+l/HbV/c5nvevWl35p0/j6quOv3tkkOrrKG/SlRFAgQmqtOnu1tMHHssbN0Ks2fv//0i\nUrOUTFS//x569IhMLNVJ7r5cX2+XiITXEc2OYO65cyMdhshB0xxVkYMwfjxcd12koxARqT6+X/e9\nklQREfnDlKhKraR5EhJOal8104wZ0KlTpKOouu3rvSXvcccXd3D4vw+PdChysJZHOgCpyarq3y6p\numIiHYCIiEh1cNxxkY6gahv5/MhIhyBSK+Wk5kQ6BJGwUI+q1EqazC/hpPZV/eXmQtOm/ueLy7+D\nxyFVFdvXpNcmRToEqQwhFlKSqi8hJiHSIRyQqvi3S6o2JaoiIiIlbN4MGzb4n7dtG7lYqoMXF5R/\nH1QREZGKUqIqtdIfnSexcaNbDbROHWjcGPLz9/8eqT00D0fCSe1LwkZzVCWM9LdLKkqJqshB2LkT\nmjd3t63ZtQsKCvb/HhGRmia/KJ8bP7nxoN8/KHNQqbJRbUYFPR+YOZCpg6b6no/IGcEjxz7C0Oyh\nFT7e6LajD2g/gykVR1U0MHPgQb0vJzWHOjF1yt1nSNYQTul8Sshyr7qxdRneevhBxRAJodrM8e2P\n3+/7BrQaEI5wDljrlNac1vU0ujTuElR+Uc+LuKrvVRGKSiT8lKhKrfRH50lYC/Hxrke15H0WRTQP\nR8KpKrWvDbs2MPWzqfvfEXh23LO+x5f0uoT/TvwvH0/+mEGZg3hw5IO8dcpbfHrmp7w+4XXaN2zP\ns+OeZdXlq/jgtA98Ce1TY5/izZPf5Pye5zMsexgAnRp1Yue1O6kTU4eEmASGZg9lTLsx5E7J9R2v\nV0YvPjrjI948+U06NurI8NbDeWfSO+y9fi+fnfmZb7/ezXrz8viXybs+j4dHPewre2DEAzSp18S3\n3xNjnmDHtTuCzq93s948ffzTQWWTukzyxZGVnMVz454j7/o8ll661LdPZnKm73G/Fv3o2Kgjv1/2\ne1Ai2aVxF3Kn5BJloqgbW5ebB9zMrim7+GTyJwzNHsqw7GFc1/86Ppn8CWuvWOs75w9O+4B9f93H\np2d+CsAzxz/D5qs3s/iSxbx1ylsMbz2cjo068ty451h/5Xoe/fOjDM0eyqg2o5h5xkxeOPEFrj/q\neq7pdw0fnv4huVNymXnGTE7tcipvnfIW267Zxj3H3OM7/0eOfYQZE2cwtt3YoOvw3Ljngr6U6NCw\nQ9C1OrfHueROyQ36zJolNuO/E/8bVBYbFcufDvsTj45+1Fd23mHn8eMFP/LDBT/Qt3lfOjfuzH/G\n/oflf1nOLQNvAVy7yZ2Sy4enf8i49uNIrZPK6xNeJ3dKLm+c/AbX9ruWKf2n8PEZH7Pxqo2+uk/t\ncirzzp/HgyMf9JXdPuR2lvx5CVP6T/GV9W3el6/O/Yo+zfsAcEzrY0K2EYDOjTv7Hg/JGsKpXU71\nnWOXxl0YnDWY64+6nt8v+x2Ax497nK/O/Ypnxz3LtOHTAOjYqCMrL1vJP0f9k86NO7Ng44JSx6mK\nqtLfLqkejLU20jGUyRhjq3J8UvP8tnoL7f7ZluI7tjB9OrzyClx+OVx1Fcye7d/v11/h2GPht9+g\nXj03FLhevcjFLSKVa/lyyM52j8eNg9dfj2w8VdWqHatoeV/Lcvd5efzL9G/Zn4zEDMa+NJYJHSdw\natdTK3Qcay3rdq0jIzHDV1ZQVMC2vdtoXK8xAJv3bCYxLpH4mHjfPo9//zj9W/anZVJL6sbWDVn3\nrvxdPPH9E4zvOJ6MxAyM59vH/KJ8HvjqAa7oewVRJor56+ezascqemb0JD0xHYCZy2YSHx1P+4bt\naVSvEQCjnh/F+I7jGd9xPA3i3f1kH/7mYSZ2nkhqnVQACosLuXfOvUzqMomm9ZuyaPMiftv6W1Dv\n3qwVswCXlHjPcdPuTSQlJBEXHVfmtSq2xUybM41Lj7jUt1+o61dZ9hTs4dFvH+WyPpf5rt2anWv4\ncNmHDMseRpSJokn9JizYuIDl25bTu1lv3/X7ePnH1ImpQ98WfX31vbLwFdqktiE7JZukhCQA1uWu\nIzY6lvpx9UmISaCouIhpc6ZxSpdTSK+fTnRUdMjYSrYRgN35uykoLiA5ITnke6y1TJszjZM6nURG\nYgYxUTG+6weQXj8dYwyrdqzikxWfMCRrCM0aNANg/vr5rNm5hmPbHuur78OlH5IQk0D7hu0pKC4g\nIzGDkc+P5Jwe5zC+43jffmtz19K0flOijL8Pac3ONb66wX22G3Zt8F0/7zmu27WOlknl/x6KVGXG\nGKy1pbp+lKhKrTRr1qyQ3+wFJqq33w5z5sC115ZOVBcvdreq+PVXJapSWlntS6qP+fOhRw/3uKr9\nM1SV2ldZierM02eyJW8LKQkpDGs9LAKRycGoSm1Lah61LylLWYlqpQz9Nca0MMZ8YoxZaIxZYIy5\n1FOeaoz50BjzqzHmA2NMcsB7phhjfjPGLDLGHFMZcYhUpuJit1BSKNZqyK9ITTZvXqQjqLi9hXv5\n/PfPKSwuZOHGhfzjy3/Q/p/tMbcYdufv5ps13/DXj/9Kyp0pmFv8f8C+X/c9t8y6hX998y/A9Sh9\nufJLrnz/St745Q0AVu9czaTXJmFuMTz+/eOA6/ELlaR+ftbnDM4azIROE5SkiojIQauUHlVjTFOg\nqbV2vjGmPvAdcDxwFrDZWnuXMeYaIMVae60xpiPwAtALaAbMBNpaa4tL1KseVTmkAntUb70V9uxx\nQ3z79YMrr4TYWJgyBdasccMBFy1Sj6pITfTMMzB5MqSluVvVVHVzV8/l0ncv5Zu13/DU2Kc4879n\nBr1+RrczeOaHZ/Zbz4icEby35D3f814ZvTi+/fFc//H1vrLM5ExiomJYsnVJqfef2uVUnjvhuYM/\nERERqXXK6lGNqYzKrbXrgfWex7uMMb/gEtAxgHeptKeBWcC1wFjgRWttAbDCGLME6A3MrYx4RMIh\nNhaefhomTHALKYlIzRcdeupbRL204CVOec2txvrGyW/w5qI3efoH/8I0JZNU4ICSVCAoSQX4Zu03\nfLP2m6CyFdtXlPl+JakiIlJZKn3VX2NMJtAD+ApoYq313jJ9A+BdMi8DWB3wttW4xFbkkDiYe3ld\nfTU08S/6qKG/UibdK07C6Z0P3/E9HvfyuKAkNZLO6HZGpEOQP0h/uySc1L6koiqlR9XLM+z3NeAv\n1tpcE/A/eWutNcaUN45XY3yl2tAcVZGaa+FCN+y3qqqKU2K+PPtLjmxxZKTDEBGRGqTSElVjTCwu\nSX3WWvump3iDMaaptXa9MSYd8N6cag3QIuDtzT1lpZx55plkZmYCkJycTPfu3X0rhnm/mdFzPa/o\n84EDB4Z8ffUm/z3P5i97nu8KnmX+wnTo2ZsvvuhAbi7AQKyFPXtm4aqI/PnoedV6Xlb70vPq8XzB\nAnAzVWDMmMjHU/J5867NwTvCNsuzXR655zcefSP5S/OZtXRWlbg+eq7neq7nel61n8+fP5/t27cD\nsGLFCspSWYspGdwc1C3W2ssDyu/ylN1pjLkWSC6xmFJv/Isp5ZRcOUmLKcmhFriY0ilTpzOj6GJO\nzDqXZz+fxZa7ZjNkCDz5JMTEwCmnwIIFWkxJpKZ5+WWYOBF69oSvv656oyeu+fAa7pp9V6TD8Hns\nuMc497BzIx2GiIhUU2G9PQ3QDzgNGGSMmef5GQHcAQwzxvwKDPY8x1r7M/AK8DPwLnCRMlI5lLzf\n7uxPSzuAfo1GlyrX0F8pz4G2L6najKmav+cr5q+IdAhBUhJSIh2CVBL97ZJwUvuSiqqsVX+/oOyk\nd2gZ77kNuK0yji8SDrmso5jCkK8pURWp+YqL979PJBTbqhPYXUPvYlyHcZEOQ0REaqDK6lEVqVa8\n4+TLs5edRNu4kK8pUZXyHEj7kqqvMPT3VBHXrGvVWST/1K6nEmX0X4maQn+7JJzUvqSi9K+LSBkM\nhhRyQr6mRFWk5hs/PtIRhDZrxaxIh+CTEJMQ6RBERKSGUqIqtVJF5knsyXPb+vX9ZUpUpTyah1O9\nffRRpCMo3+JvF5f7ev24+qTXT/c9n9h5Iq+Mf4XRbf3z7Ue1GcV7p74X9L6TO51cbr1Htzqac3qc\nQ/MGzQ8iaqkO9LdLwkntSyqqUu+jKlIT2DpbmfXDMrblbSU+JgHvdLC4gFHASlRFaq6YKv4vY4OE\nBuxlr+95j6Y9mLd+Hn2a9+HCnhcyJGsIMVExfLfuOwZlDqJObB0ATuhwAoXFhRTbYl/ZnHPm0CC+\nAdkp2cRGxfLywpcZmDmQ/zvy/xiaPZTFWxbT5V9deOnElxjddjT14uoxd/Vc7plzD2PajtFCSiIi\nEjZV/J9jkfDY3zyJwS/2IrowidPTbwj5uhJVKY/m4VRv3t/t1NTIxlGWhJwE2AEDMwdy59A76dCw\nA8//9DwX9LwgaL9RbUYFPY+OiiY6KjqorE/zPkHPN1y1gUZ1G2E8F6FTo05suGoDjes1DnrP9JOm\nV+YpSRWhv10STmpfUlFKVEVCmP+nhXTNbgrAtOmzfeVLl8KLL0JSUqQiE5FD4cor4dwqfGvQhJgE\nLu9zOb2b9QYolaQerMCEFNy97UqWiYiIHAqaoyq10sHOk8jNhX/8AxYsgEmTXNmePfD+++5n69bK\ni1GqL83Dqf6ysoKH+1cle5fsZdHFixjTbkykQ5EaRn+7JJzUvqSi1KMqUkHnnAOPPx5cduKJkJkJ\nF1wA11wTkbBERERERGoMJapSK/2ReRKh5qZecYXrfSkuPviYpObQPBwJl7W5a9nYaCNx0VW0u1eq\nNf3tknBS+5KK0tBfERGRauLlBS9TN7Yu6Ynp+99ZRESkGlOiKrVSWfMkWjRO4mh7IzkZaWW+V6v9\nyv5oHk719eqr8PDDkY6ibPd9dR8D7cBIhyE1lP52STipfUlFaeivSICEuBg+vfmWcvdRoipSc73/\nvttW1WH8Tes35dhmx0Y6DBERkbBTj6rUSponIeGk9lV9eb+I6ts3snGEsnrnar5e8zWH9z080qFI\nDaW/XRJOal9SUUpURSpIPaoiNV/jKnjr0Dmr5pBeP50uTbpEOhQREZGwU6IqtdIfmSehRFX2R/Nw\nJBxe/eVVBmQO4Osvv450KFJD6W+XhJPal1SUElWRSlBY6H6uuw5GjIA//znSEYlITfP1mq85JvuY\nSIchIiJySChRlVqpsu+j2rcv7NnjHp9+Orz22kFXLzWA5uFIOKzYvoKjWx2t9iVho7Yl4aT2JRWl\nRFVkPxITg5+HSlQbNfI/HjQovPGISO0zd/VcALJTsiMciYiIyKGhRFVqpYrMk+jUCWgxhxb3toBL\n2pEbtWq/71m3Dm64AW66yT2W2kXzcKqvFSvg8MOhWbNIRxJs0+5NHNP6GIwxal8SNmpbEk5qX1JR\nSlRFDtDrE14HG82+6M0HtP8778D06TB7dpgDE5FKs3o1XH01REdHOpJgBcUFRBn9ky0iIrWH/tWT\nWulg5km0Tm0NhfEc6KK/l14KHTpAUZH7sbbCh5RqSvNwqq969SC7Co6unf7zdAqLCwG1LwkftS0J\nJ7UvqaiYSAcgUtV5/3NoDjhF9Vu8GE4+2c1rtRZOOgkSEuCBByA5ubIjFZFI+nLll8xYPIOslCxO\n63oas1e54RSv/vwqo9uOZky7MeQV5PH5ys8ZnDWYmKgYlm1bxgdLP+CNRW+QFJ/EtOHT2Ja3jbd/\ne5tPf/+U1DqpPH7c42zcvZGJnSZG+AxFREQOHSWqUivNmjXrgL/Z21PglvNNTnCZZcnFlM46C9q3\nD/3e3Fy3/egjGDwY0tNdkrpiBXTuDD//7HpdU1Lg1ltd3fPnuxWEGzeGnBzXG/vtt27bqpWbO7d4\nMdx3n9v/xBNhyBB3jAULoFcvKC6GqCj44gtYvtwNY7z+enf8Zctg/Xr/PgCvvgr33OM/tz17YMoU\nl2R79/vpJ7jgAmjQAHbvhvPOg7p14Y47IDbWHXvnzuB6DzvMJeblyc11dYO7Jg0awKZN8NtvLp7D\nDoP4eFi50g3LjI11cwijouDOO921NAYmTXJl3uM3agRt2rjn337rbh/kfW3FCvj8c/e+ceNg2DDY\nvt19HuDf78sv3fWKjnbXo1kz+Ne/4Mcf3XnddhvUqQNXXAEnnODeGxUFc+fOYtGigZx5pr+u6GgX\nd0wM/POfsHChe+8dd0BcHPz1r7BlC2RkuPnN1sJ330F+vvvcsrKgoMCVFRe7Xr+mTWHXLhcPuPnU\nSUnw/vvw5pvuuJdf7trRqlXuJyYGevZ0r/36K2ze7HoRu3Vz9V57raszK8sNgQ28fi1auJ+lS117\nARgzxt2Sae5cePppd03POw969HDnk5jozs/r3/+GefPcZ3rrre7Y1dWMxTNYsHEBfZv35Y1Fb/Dg\n1w/6Xnvk20f4YcMPvudPznuSHuk9+Hbtt+XWOf3n6aXKXvjpBQD+78j/Ayr290ukItS2JJzUvqTC\nrLVV9seFJ1L5PvnkkwPe993f3rXc7Noi53e3Ey//PuR+F11kLVi7Zo3bPvWUtS1buscff+y2c+a4\nLVg7caLbTp3qtnXqWJuU5B736OG2DRr492/f3m1TU902JsbaE090j5s39+/n/enWzW1HjfKXZWa6\nbYsW/jJvjM2alT5m165um5joL/vPf9z28stL19Gzp9tGRwcfMy3N2uuuc7FERbmyzExX1rCh2y8j\nw9rkZGuvv95/fiXjTksrXXbTTf6yevXc9rDDSp9Lhw5u26SJv2zCBP+xvWXe2Lt3d9vhw13Mgce8\n4ILScXTpEnj9Pwn6DOrXd9sBA/zn9+c/l67jnntKx+2t19s2wNo2bdy2USN/WXp6cF1HHuk/L2+Z\nt+0ElrVr57/e3ut7222l4+jY0W1TUvxlp5wSfOz27a3t2ze4/sAfb9k557jYFy/+w7/Kla5nT2u/\n/rr8fX7f/rvt83gfy80c0p91ueustRX7+yVSEWpbEk5qX1IWT85HyR/NUZVa6Y9+o1dYXMhDXz/E\ntDnTeOy7x3C/Yweua1cYMMA9vugitz3xRH/Zq6+67bXXuh5EgHvvddvHHnPbI46Ao45yj99+221v\nv931cAG89JLbnnuuv6d0yhS3ffddtx01Ci6+OLhs8mTX8wfwzDPBdcXGul7UwLj79XO9koF1/Otf\n/jqmTXM9a9995xaYKi6GP//Z9Wpu2eJ69M47DyZOdL2ahW6kNY88Am3busd33OG2b7zhtvXrw/nn\nB8dx5ZVwyinu8Ztvuu1VV/lvL/TAA2771ltu27On/3p7r98tt7jPAdxCWADnnOPvFf7rX932wgvd\ntm1bOPVU99i7aNZdd8GIEQMBeP55graffup6aAPjPvxwNyQc4E9/ctuzz3ZtBOCpp4KvQXIy/O1v\n7rH3czn9dNezD/D66257xhmQluYe332323rbVUyM/3P/+GO3HTnS/QCceabbXnaZ/9ZLDz3ktv/8\np9t27gzeX6MZM9z2+ONdLzb4286tt/qv3803u+2FF1bfoe/rctfR6r5WvtvFHEqJca4xq0dCwkVt\nS8JJ7UsqSomqSAUlJ8GK7Su45N1LWL1zNRe+fSF7Cvb4hl8erFat3LDNQFlZ/sQwsKykUGWhNGlS\n9muZmf66St471ivUPWRbtIDU1LLr9d7m4+qr3bZpUzesGdxw5JKuuKJ0WUZG6eeB964tS1bWgQ0t\nPdDr17Rp8PPmzf3J4IGIivInpV6hrl+oz+BAP/dWrUqXHcj1a9WqdPIY6vodaBwtWvhf87bhktfv\nQBQXuy85nnnGDTkPLC8q8j8vKnJlgQoLXV+ul7X+L0LKKwtl1Y5VXP3B1WRMy9j/zmFSL64aj5MW\nERGpICWqUisd7L28OnRwvVfFtpg2qW2YNnwa8THxAPz+eyUGKNXali2zIh1CtbVuHbz4Ijz6qOut\nj452vd+TJ7u53Fdd5S+PiXG96zEx7uf4410Pfr167kuV2FjXMz1smHseFeXKxo51PfajR/vLTj3V\n9bB/W8YU0qfmP8Xdc+4+tBejDLoXoYSL2paEk9qXVJQWUxLZj86NO/Onw9yYzPgEtwBOUXFRrbyn\nYageVZHKcvLJ8MorZb9eUOBfxMkrsJd1+3Z44gm3GJjXggXuJ9CMGf7hyl4vvFD2cV9Z+Aq3fHpL\n+cGH2dDsoRE9voiIyKGmRFVqpYrMk2jeoDmPHvdoUFmxLSY6KrqSo5KaIi1tYKRDqDashSVLXC/p\npk1/vL46df54HSVd/v7lFNmicvfp37I/49qPIzkhmfeXvs+63HVc2fdKjmp1FF+s/IKXFrzEnoI9\nnNHtDEa1GcWT855ky54tHNXqKPq37A/ADR/fQNP6TenapCuFxYUMyhrEGW+cwbDsYQzMHOg7luZ5\nSbiobUk4qX1JRSlRFTkIRXb/PareeZg1iXpUpTLNmgXt2lVefZ9/Xjn1BP7u5u7L9d2iKlBGYgZT\nB03l1s9v5dvzviU5IRnj+QU5u8fZQfuOaTeGMe3GBJVd1OuiUnXePvT2UmUvnFhOV6+IiEgNVvvG\nLorwx+dJFNvi/SaqRxzxhw4h1ZjmqO7fb7/5V6GuagIXpGpwRwO2790e9PpFPS9i4UULObvH2Sy9\ndCkpdVJ8SeqhoHleEi5qWxJOal9SUepRFTkIxbaYaBM89Dc6xEjglSsPUUCHiHpUpTJt3RrpgEmA\nmQAAIABJREFUCCru1ZNeZUTOCK3AKyIiEmZKVKVWOth5EvPXz+ewfx9GQkwCfZr3CXrt3nvdPUFL\nSkiAXbvc4wO5VYpUf5qjWv1Za/lkxSdBZZ+e+SlHtjiSmKjI/tOpeV4SLmpbEk5qX1JRSlRFKmhi\n54k8dtxjxEfHB5Uff7zbrl0bvH/btpCX5x536eK2O3fCr7+6x7Gx/n2XLy99vB07yo6l5H0jAZYu\nLV0WeC/J/b0fYN++0O8rKHC3DwGIj/fvU/Kcyzqet44Dic9a/3ULdX/MktfF2tC3CFq/3v+eQKHu\nuwmwbFnpsj2lpyiGjMsbR3k2bnTbwOv33Xel91u8OPT78/NLH8Pa4HuKesv27g0dZ2Eh5OaW3n/V\nqvJjLynUuYb6fANX5q0uVu1cxZBnhvieF9xQEPEEVUREpDbRHFWplf7IPIkGcQ2oH1ef2OjY/e9c\nhhNO8K9wmpjotvXrw08/Be+Xnu62devChg3ucaNGbrtnD3z5pXscF+e2BQXw88/BdQQOSd62zW29\nyXF2tv/WHd5hvcnJMGeOe+xNcLzzbePi/HW0aOG2CQml7z3ZpYs/+fImiN5jxsXBmjXBZW3alE7W\nevTwJ07epLRbN38dixa5xw0bum27dvDjj8F1NGniPzdvb3eHDv46vvrKPfauFJufDwsXBteRkeF/\n7I0j8Fx++cU9jvL8Ne3cGT77bFZQHX08ne/Fxe4WKgBZWW4bH+9P/r2fQUqKP15v4te8udtmZ/uT\n2JQUt83JgfffD467e3c3DxT8iWKPHv74vV+UeK9R27bwww/BdTRuDCtWuMfeuJs29dfp/dy9IwXy\n8+Hdd4PrMMb/xYd3ZEHswf/qHDJFxcGZf1VKUjXPS8JFbUvCSe1LKkqJqkgFVcaiKaFuoTF4cOmy\nnj3d9vDDSycsw4f7y7z/8R81qnQdxxzjf807J7BNG7ft0sWfDHoT2qOPdtvAYcppaW573HFl1x/I\nm8TGxLjkBaC/uwMHo0f7exW9SU/HjqV7Zb11tG3rL2vQwG2PPdZf5k0Q27cvHUfv3m57+OH+svr1\n3XbUKP/18yb6oa6f972DBvmTNe+xRo6E1auD62jdunQPrPfLhX79Stc/fHjpMu+1Sknx91p26uS2\nPXr4405O9r9Wske1ZUu3DVwYyLv/6NH+Mu/nHur6eb+gaNLE/4WDN8E+5hh/HAkJbjtyZOl5zN7z\n69vXn+h7RxZUZQs3+b+xeHn8yxGMREREpHaqOl8RixxCf2SexP5W+01Lgyuv9CdV4eLtTQsUKgGO\nCfFbfqgWRfImaOBPKKuyunUPbL/9X7+BIRfX8vb+VjeBn6NXamrpLxdCzcEO1Xu6v+t35plwxhkw\nd67rwZ882fU8//QTzJgBr70G553n9ps/3w3vTklxX0x06+ZWE05Odl8aJCXBsGHw17+6+A4/3PU0\n33ADnHWWe33IEFfn++/DpEkuhq15/pWeJnSaUH7Ah5jmeUm4qG1JOKl9SUUpURWpoJKJ6p6CPXz6\n+6fUi61H96bdSUpI4u67IxScSDX3+uuu9zo52W0D5eTAuHHwn//4y0r2zpY13znQsGFwUYnbmB55\nJNxzj3v80bKPmPzmZAAOSz/sIM5CRERE/qhq0MchUvn+yDyJUD2qp79xOqe9cRqPfvdoqde8wy2l\nNpkV6QCqlcsvh//9zw0vHjcu8r8zm/e4CcLx0fG8dOJLkQ0mBM3zknBR25JwUvuSilKPqkgFhVpU\n5cxuZxIXHVdqAZZZs4IXpBERv+houO8+uOSSSEcSLL/ITazOSc2hTVqbCEcjIiJSOylRlVrpYOdJ\nPDvuWY5scWSpckvoe5IMGOC27dr5V7oFN7/PuxJqoDp1Qt+OJtQ807LUq1f6VizlCVV3hw6h58Bm\nZJQur1u3clZxLeu2LvHxocsbNy5d5l3Up6RQ8aWkhJ43W7euu62Ld46pdz5lWZ9BqLmocXEDQ8Yd\nFeXmRJaUlVV65WQIPee4rLm+3sWcvK974yrr+oWaJ9qhQ+i24607UKg5qrD/2/MEmjq16iWpADOX\nzwRgRM6ICEcSmuZ5SbiobUk4qX1JRSlRFamA07qedlDvi4ry3+bk11/dirZFRXDhhf59UlPhmWfc\nirHelWljY11Z27bB5ffc4+7bGh/vbnNjDFx7rav35ZddstC8uSuLjnaryA4d6t7jTSTuvNOt0tqj\nB5x+uj8Rq18fPv7YvS82Fq6/3pUvW+YW1YmJ8a+O+8svbsEab69xUpJbSKpRI/fTunVwIte5s1v9\nNfB+nX/7G/TqBSed5G45k5ICV1/tti+/7FYGbtvW7QdunuLhh8PYsXD22a7sxhvdyrdPPOESfe+i\nPvHx8PzzkJnpVr+97bbgz+Coo/yrLV93nUsYn3/erVScmekW74mPh6efdqviNmniv9VLw4buC4j+\n/eHEE915XnstNGvm5llGRbljTJni9n/iCXfLmE6d/MesV8/dbubEE+HWW11i+n//5875zTdd0tyu\nnVsICODRR92tbhIS/LeV+fvf3WrC993nViBOTnZxN2kC06e7xb06d4abb3b7d+jgFh3q2dPVDe61\n7t3duefl+ReVSkiAF190bal1a3cscIsRNW8Ozz7rv6XNDTe4+iZPdrfWadLEnUvdum5O6MCBbnvH\nHW7/adNgzBiqpPqx9clJzeGCnhdEOhQREZFay9iKfP19iBljbFWOT6qvWbNmVdo3e+YWw8zTZzJz\n2UwaxDdgylFTKqXe6m7pUpfoNG4M33zjFqvx2rnTve69r2dNU5ntSw69i9++mI6NOnJx74sjHUpI\nal8SLmpbEk5qX1IWYwzW2lJjvbSYkkglSIxPZF/RPq77+Doy7slg6DNDIx1SxLVu7XoXY2ODk1Rw\nt+6pqUmqVG9zVs3h4W8fjnQYIiIitZ4SVamVKvMbvdwpufRu1pt9hW7S6f8m/Y+fN/1cafVL9aNv\njKuvJ+c9CUBa3bQIR1I2tS8JF7UtCSe1L6kozVEV+YPqx9UPet60flPW7VrHv7/7NwbD+I7jSakT\nYmUiEalyjGeVqVCLpomIiMihox5VqZUOxb287vjiDm774jY+Xv5x2I8lVYvuFVd9/b7jdwAMIZZF\nriLUviRc1LYknNS+pKKUqIpUkk9WfBL0/KYBN5EYl8j46eOJ/3s8Pf/dk4+WfcRnv39GsS2OUJQi\nUp4V21dwVvezaN6geaRDERERqdU09FdqpXDMk9iVv6tU2Y597qaoMybOYMTzIzjrv2exaucqRrUZ\nRYeGHViydQmtU1oTFx3HSZ1OotgW88rCVyi2xaTWSWVkzkh27NvB/379HwCZyZn0a9GPVTtX8dnv\nnwHQtUlXujTuws+bfub7dd9TWFzImtw1ZCZn+uo3xjAiZwRpddL4cNmHbNi1gZU7V5JeP5246Dh+\n2fwLUwdNZeHGhcxfP5/8onw27N5Ay6SW/Lb1N3JSctict5kYE0NKnRRfvVEmigmdJhAdFc2rP79K\nflG+b39jDANaDaB5g+be1dyCro23bMnWJcxdPRdjDL0yetE2rS3z1s9j4caFGGMYnDWY9PrpfPr7\np6zasQpjDGPbjaV+XH3e+vUtduzdwdJtS8lOycZay4odK2id0pqUhBRGtRnFzn07eevXtwB8sa3J\nXUNqnVTqxtalc+POdGvSjUWbF/Ht2m8pskWs2rmKrOQs3/7b926n0BbSqG4jX1mUieLEjicSHx3P\n67+8zp6CPSzZtoSclBwKigt4aPpDtEpqFXQ9RuaMJLVOKh8s/YCNuzcSZaI4qdNJxEbF8urPr7K3\ncC/14uoxrv049hbu5bVfXgPccPIhWUPYtGcTHyz9AIC2aW3pldGLZduWMXvVbIwxHJ5+OO0btmf+\n+vks2LgAYwyDMgeRkZjBZ79/xsodK4kyURzX7jgS4xJ5+7e32Za3jWXbl5GVnAXAsm3LyEnNISk+\nidFtR5Obn8uMxTOCrt+6XetIik+iXlw9OjXqRPem3Vm8ZTHfrPkGYwx9mvehdUpr5q6eS5P6TXx1\nA3y0/CPW5a4jPiaeG46+gTqxIW4WG0EN4htwYc8LfUOAqyLN85JwUduScFL7korS7WlEKkmLe1uw\neudq1lyxhmbTmvHU2Ke4cdaNrNyxko/P+JjBzwxmzjlz6PtEXwBO6HACr//yOlP6T+H2L24Pquva\nftdyx5d3EGWifL2v5/Q4hyfmPUFqnVS25m0FYEy7McxYPIP2DduzaPMiOjTswK78XazauYqrj7ya\nf8z+B0OyhvDR8o8Al+h6e4z+M/8/AIxqM4p3fnvHV0eXxl1Yk7uGrXlbubzP5dw7915G5IzgvSXv\nAXBql1N5/qfnueDwC3jku0cAaFyvMRt3b+TmATdz86c30yujF4s2LyI3P5c2qW34betv1I2ty56C\nPQC0TGrJyh0radGgBat2riKtThrtG7bny1Vf0qlRJxZuWkjvZr35bu13FNkiclJzWLJ1ie+aAb73\nes8zIzGDhnUb8uOGH7n+qOu59fNbg67peYedx2PfP8YpnU/hxQUvAjCu/TjeWPQGbdPa8uuWX2mb\n1pai4iKWblvKNf2u4c4v72Rg5kBmrZgF4Ltuk7tN5ukfngYgIzGDtblrfefeqVEntuRtYf2u9VzZ\n90rumXMPw7KH8eGyD4M+g3N7nMvj8x4HIL1+Out2rWPqoKnc8MkNQXH/5Yi/cP9X95MQk8Dewr0A\nTOoyiRd+eoFmic1Yk7uGxLhEemb05JMVn9C5cWcWbFxAz4yeLNy4kLzCPN9nMLbdWP67+L9B18/7\nGTeq24hWya34du233HD0DUz9bGpQHN7P+6SOJzH95+kAnNjhRF775TVap7Rm6balZCZn0iC+AT9u\n+JEODTvwy+ZfgurITslm2bZlTOoyifeXvM/sc2bTNq1tGb9RsH7XevIK8gCIiYrxfemxcfdGdufv\npk5sHRrVbcTqnasptsU0rNvQrcBduI91u9YBLsnfU7CHHXvdl0ZRJopmDZoRExXD9r3b2Za3jeio\naFo0aMGa3DUMe3YYzxz/DL2a9SozLhEREak8uj2NSIBwzJO4pNclXNr7Ut/z1DqpZe7btUlXhmUP\nA+CqI68C4Pqjruf0rqcDcN7h5wHw/AnPkxSfBMD4juMBmHn6TAD6tejH4MzBAHx97tcAnNHtDHqk\nu/u+nN3jbAAu7nWxb77dfcPvA+DKvlcCLkkd0GpAUB1ndT+Lrk26AjC522QA/tz7zwDUja3LmHZj\nXB1Hujomdp7Ixb3c/Sa9950877DzfAnIcyc8B7heZXCJw62DXRL55dlfAi5pP6LZEQB8PNnN6f3T\nYX+idWprAJ4c41ZiveyIywDXm3jTgJuCrt8pnU+hd0ZvAM4//HwAnh33LE3rNwVgQqcJAFze53IA\nemb0ZGj20KBzP7XLqRyecTgA5x52LgAX9byIurF1AZeYAVzR9woABmcN5qq+VwVdj8ndJtNiawvf\ntQS4pPclgEuSph0zLWj/49sfz6VHuHZzWR93fvePuJ9+LfoB7jMFePPkNwFITkjmuLbHAfD5WZ/7\n6ujb3H0B8umZn7r4e5xLTmoOAE8f75LqvxzxF8B9UTB10NSg63dyp5Pp06wPABf2vBCA/4z9D5nJ\nme71zicHXb/OjTtzTOtjAPjq3K8AmNhpIt2bdgfgnVPfAeCFE17w/S48PMrd9uWKPlcE/X7sKdjD\nSwteouNDHTG3GN9P+j3pZD+QTfYD2bS8ryVRf4vC3GJocncTsh/IJv2edGKmxpB5fybZD2Rzwisn\nMGXmFBJuTSDr/iyy7s+izq11SLsrzVdP5v2ZxE6NxdxiSLkzhewHsml1Xyui/hZFi3tbsGjzIqo6\nzfOScFHbknBS+5KK0tBfkUpyTf9rAFibuxaAfi37sWbnmkiGJFJlLd22lGtmXsPc1XNZv2t9pdQ5\nc9lMZi6b+YfrSU5IroRoRERE5I9Qoiq10qGaJ1FkiwDIzc8FIDEu0ZUXF1FYXHhIYqhsWghq/9I6\npsGS0K9ZNJ0BXDt6c9GbkQ4jpDZpbSIdQrk0z0vCRW1LwkntSypKiapIJUtOSGZkzkjf/VW7Nunq\nm1vYqXEnABLjE/lm7TeA/z6s+UX5fPr7p0F1xUbF+hZk2r53O4Bv8Znc/Fx+2vgTANFR0QAUFBXw\nyfLg1YfjY+J9yZE3Dq9d+bv4bt13gP/+kUW2yDcn05uU1olxx9xTsIdft/wKQKO6jXxlc1fPDarX\nYn31lkxst+VtY+e+nUFlewv3+s7FyxjjO1ZeYV7Que/Yu4MlW10mGBcdB8C+wn18vvLzoDpiomJ8\nvXW5+3KD6ti5byc/b/oZgNjoWBe3tXy6IvgziIuO882t3Ve0L+i1Xfm7+GHDD4Ab1gtQWFxY6pZE\n3utXbItZunUpAE3qNQFgd/5uX1vwKrbFfLnKDYsuKi4Kinv73u2s3rkagISYBN/1mbsm+DNo1qCZ\n75p64w6sY/n25QDER8cD7jPwfmZeUSaKFdtX+OIMrGPH3h0s3rzYd428x/Eu8uVlsb451d62XNUW\nUBIREZGqR3NUpVYK5zyJurF1eefUd4iLjqNVUiu6NelWap8hWUN8CZz3P/nj2o/zLfjiNTxnOODm\nU3pXFW7fsD0AJ3U8iU17NgH+hGVch3GlVh/2zoUdnDWYNbluKLJ37uL4DuPZuHsjANHGJbtj240F\nXJLiTXAHZQ3yveaNOynBzZ09scOJvjq8RuaMBFzS7k2Oe2b0BNxcR2+ylpGYAbg5qlv2bAmq49g2\nxwJu0Z+SdZzU8SS25G3xHcNbhzeZ9xqRMwKATo06sbvAJVqdG3f21bF5z2YA3xzUzo07l0qivfMw\n+zTv40t6vfNvA6+f93M8vv3x5C/JD6pjSPYQAIa3Hu67fil1UnzXb8OuDYD/3p3eOagJMQm+Xvmj\nWx3ti3tb3jYA0hPTfXVs2r0p6JiHpR8GuIWu8ovyfecAMKHjBF/ymFY3DXBtx1vmNarNKN9j75cF\n3jmoEzpN8H0GifFupMAJHU4o1Ya9c4+7N+3ua5sdG3WkPI3qNmJEzgiObXMsPZr2YECrAYxuO5oh\nWUMYmTOSETkj6NqkK8NbD2dUm1GMyBnBqDajGJg5kO5NuzO67WhG5IxgRM4IRrcdTc+MnhzZ4kiO\na3scw1sPp1VSKwC6NenG0OyhvjpG5oz0td2qTPO8JFzUtiSc1L6kotSjKhJG8y+YT0JMAr9s+qXU\nf869PXBe0VHRpYaFehMXb49cIG9iVLLOUnV4ekq9ySy4Xlbw9ySGiitwf69QZTFRpf+MeI8ZGLc3\nsfX24IG/JzgmKuaA4g6Mv2TvZrnXL0QPXqjr1zq1dZlxBJ6LN6byrl/g5+uNI9S5hOszKG9/7+df\nso6yrp83uQ8U6vpFm9KfQZP6ruc4VBv2GpkzkjHtxlBYXMjYdmNJT0wv95z+qKLiIrbmbaVRvUZh\nO4aIiIj8MUpUpVY6VPMkvL19PdJ7sPCihQA8NOohhrceTl5hnm/FXYC0Ommc2+Nctu/d7pvLGhsd\n63qKWg2kTWob33DbVkmt6Ny4M/Vi67Fz305fQpEUn8TFvS6m2BbTIL4B4JKewVmDGd56OG3T2tKi\ngVuRtkm9JrRNa8voNqNJiEnwJQaJ8Ymc2+Nc6sfVJyUhxRdf/5b9GZw1mCb1mtAm1c3h+8ewfzAo\ncxArtq+gRVILXzJSL7YeTes3pU1am6CEo2dGT/q37M/v23/3lcVFx9EssRmTOk9i8ZbFvjrqxNTh\n5E4n0y6tHc0bNPcluJ0bd6Z3s97sLdzLvPXzfPU0rteYM7udyfrd633DqeNj4hnbbixHNDuC7JRs\n3+eRk5pD96bdaVq/qa+X2ft5nX/4+ewp2OP7DGKiYhiRM4Jh2cNol9bOt4pw8wbN6dioI1EmioLi\nAl9y2SC+AReMv4CYqBhfcg4wMHMgw7KHkZWS5VtJt2HdhuSk5jCm3RiSE5J9SWtifCJndT+L1Dqp\nNKzb0FdHn+Z9GNBqACl1Unw96/Vi69EyqSUndTyJtmltfYlpvdh6TOoyicykTNLrp/vi6960O32b\n98UY4xumG22iSa+fzuldT2f59uW+HuaEmATGdxxP18ZdaZXUinqx9QDo0LADh6cfTk5qTtAquQ3r\nNuScHuewNW+r7zOIi45jdNvR9G/Rn5zUHNLquB7c7JRsrj/qesa1H+frXT5UoqOiq3WSqnleEi5q\nWxJOal9SUbqPqoiExfJty0mISaBRvUbMWzcv6L6UuftyWbF9BV2adIlghCIiIiISabqPqkgAzZMI\nv6yULN8QzsAkFVyPYU1OUtW+JJzUviRc1LYknNS+pKKUqIqIiIiIiEiVoqG/IiIiIiIiEhEa+isi\nIiIiIiLVghJVqZU0T0LCSe1LwkntS8JFbUvCSe1LKiqiiaoxZoQxZpEx5jdjzDWRjEVql/nz50c6\nBKnB1L4knNS+JFzUtiSc1L6koiKWqBpjooF/AiOAjsApxpgOkYpHapft27dHOgSpwdS+JJzUviRc\n1LYknNS+pKIi2aPaG1hirV1hrS0AXgLGRjAeERERERERqQIimag2A1YFPF/tKRMJuxUrVkQ6BKnB\n1L4knNS+JFzUtiSc1L6koiJ2expjzInACGvteZ7npwFHWGv/HLCP7k0jIiIiIiJSg4W6PU1MJALx\nWAO0CHjeAter6hMqYBEREREREanZIjn091ugjTEm0xgTB5wMzIhgPCIiIiIiIlIFRKxH1VpbaIy5\nBHgfiAaesNb+Eql4REREREREpGqI2BxVERERERERkVAiOfRXREREREREpBQlqiIiIiIiIlKlKFEV\nERERERGRKkWJqoiIiIiIiFQpSlRFRERERESkSlGiKiIiIiIiIlWKElURERERERGpUpSoiohIxBlj\nco0xmWW8dqYx5vNDG1H5jDEdjTHfRDoOOXDGmJuNMc8e4L4DjTGrynn9X8aYvx5gXXcbYy440DhF\nRMRRoioiUg0ZYyYZY771JHhrjTHvGGP6eV672RhT4HltmzHmS2NMn4DXSv1n3RhTbIzJPtTn4WWt\nTbTWrojU8Q/CVOAfkQ6iospLwIwxTxljphpj+nvaTq4xZpenbXifF3l+vM+LPfvkGmN2et77lDFm\nahnHCNzf+3NVeM/ax1ZaRdZeaK39+wHufjdwnTEmtrKOLyJSGyhRFRGpZowxVwD3An8HGgMtgIeA\n4wJ2e9Famwg0Ar4AXj8EcUWH+xhVgTEmHRgIvHmQ74+p1IAqjwWstfYLzxcHiUAnz2tJnrJoz4/3\ndYCunucNrLVfeOsp5zje/b0/d1c00Cp8DUux1q4HFgFjIh2LiEh1okRVRKQaMcYkAbcAF1lr37TW\n5llri6y1b1trrw3cFcBaWwg8AzQ1xqQd4DHONMYs9fSQLTPGTCpjv5uNMa8aY541xuwAJhtjkowx\nT3h6eVd7euiiPPvnGGM+NcZsN8ZsMsa8FFCXr0fXGJNmjJlhjNlhjPkKaF3iuO2NMR8aY7YYYxYZ\nY04KeO0pY8xDxpj/eeKfG9hTbIzpFPDe9caYa40xTY0xu40xqQH7HWaM2VhG8j0M+M5am19i/3me\nY75ijHnZ26vo6cVcbYz5P2PMOuAJ41xrjFlijNns2T8loL4+xpjZnh7x+caYAQGvzTLG/M0Y84Xn\neO8f6Gd7AMx+nh9sPX+YMWaF5xr+COQaY6L2c52yPO1tpzHmA6DhQRxziqetLg/8PSjZa+yJy9vm\nzzWlRyjMAo49qBMXEamllKiKiFQvfYEE4I0D2dkYEw+cCay01m45gP3rAfcDI6y1DTzHm1/OW8YA\n0621ScALwFNAPi657AEcA5zr2Xcq8J61NhloBjxQRp0PAXuApsDZwFl4eug88X0IPIfrLZ4IPGyM\n6RDw/pOBm4EUYAlwq+e9icBM4B0gHcgBPvL0eM0CJgTUcTquV7ooRHxdgMXeJ8aYONzn8aTnmC8C\nxxPcq9jE81pL4HzgUs+1O9oTyzbPeWOMaQb8D/ibtTYFuAp4rUQyegruc20MxHn28cbzgzFmYoi4\nq4o/ksROBEYCybjrVt51egH4BkjDtb3JBHwmB3Cdmnrem+F577+NMW08r/l6jY0xI4DLgSFAG1xv\ne8ke5UVAt4qfrohI7aVEVUSkekkDNltri/ez3wRjzDZgJS5hHFeBYxQDXYwxday1G6y1P5ez72xr\n7QzP4yRcEnG5p6d3E3AfLrkAl8BmGmOaWWvzrbWzS1bm6cE8AbjRU8dC4Gn8yc1oYLm19mlrbbG1\ndj5uWPNJAdW8bq391pNkPg90D3jvWmvtvZ7j77LWehdEegY4LSCGiUBZC+8kAbsCnvcBoq21D3p6\nt98Avi7xnmLgJmttgbV2Ly5Z/au1dq21tgDXSz7ec+zTgHeste8BWGtnAt/i75GzwH+stUs8db0S\ncI5Ya7tZa3291VXQ954eUO/PsAN8nwUesNausdbuo5zrZIxpCfQEbvBc88+BtwhIkg/wOnnf/xnw\nNu5LkJImAE9aa3+x1uYBN1E6Gc/FJdciInKAlKiKiFQvW4CG3uG05XjZWptirW1irR1qrZ3nKS8A\nghZ1Mf5FXgqstbtx/xm/AFjrGULbrpzjrA543MpT9zpvEgI8guv5BPg/3H/gvzbGLDDGnBWivkZA\nDBC44M/KEsc4IjDRASbheizBJTMbAvbPA+p7HrcAlpVxHv8FOhq38vAwYIe19tsy9t0GJAY8zwDW\nlNin5IJFmwKHCgOZwBsB5/AzUOg5j1bASSXOsR+uh89rfRnnWB308LRN78+HFXhv4HUt7zplANs8\niaPX7xWMM9T700Psl14irtUh9kkEtlfw+CIitVq1WYxAREQAmAPsw/WQvlbGPpayh1euJHjRJYAs\nXJK0BsBa+wHwgWfY8K3AY7ghqqGOEzjEcZUntrRQPb7W2g3AnwCMW6F4pjHmU2ttYPKmo/+oAAAg\nAElEQVS4yRNLS/zDa1uWiP9Ta+0xZZxfeVYSukcMa+1eY8x0XC9de1wPa1l+xA0F9VqHG8ocqCVu\n2LHvECFiOctaO6dk5caYlcCz1to/lRNDVVdpK+yWU2+Z18kY0wpIMcbUtdbu8RS3AkIN5S5LqPf/\nGGK/dbgvQbxahNinA+UPoRcRkRLUoyoiUo1Ya3cANwIPGWPGGmPqGmNijTEjjTF3enYrbw7ge0B7\nY8xpnvelArcBr1pri40xjT311sP1vu6m7P/cBx3HWrsO+ACYZoxJ9Cx209oYczSAMeYkY0xzz+7b\ncUlHcYk6inBDeW82xtQxxnQkeG7h20DbgPhjjTG9jDHtD+Dc3wbSjTF/McbEe2LsHfD6M7j5sGMo\ne9gvuHmuh3nmpgLMBoqMMZcYY2KMMWOBXuW8H1xP822eIaoYYxoZY7yrwj4HHGeMOcYYE22MSTBu\nQabAZPgPLVbkOf8E709l1BlYPRATWL8JvjVLyON4znF/Q9oDlXmdrLW/44YB3+JpI/1xQ78ryvv+\no3BDr6cHnIP3PF4BzjJuka+6wA0h6hkAvHsQxxcRqbWUqIqIVDPW2mnAFcBfgY24nqWL8C+wVObt\nQTzzRkfi5khuAH4CtgIXenaJwi0MswY3zPiogNdKVRfiOGfgFvf52VPvdPxDVnsCc40xubihtpcG\n3Ds1sJ5LcENZ1+MWKHoyIP5c3AJNEz0xrgNu9xyzrJhswHuH4XqU1wG/4ha+8db9JS5x/s5aG/Je\no579NgAf4xZMwjPH9ATgHNyw4FNxi/wEDvUtGdP9wAxcz/VOXE95b099q4GxwHX4P98rCU7wbInH\ngYsELTDGnFJW+Lje3zzcglV7gN3GmNYl6ykn9v29ZoFrA+rfA3wU8PoPJvg+qtM85S2AL8s5VvBB\nyr5O3v/bTAKOwLXDG3FznX0O4Dqtw32ea3FfXJxvrf014HVvu3oPtzDYJ7g25e0l3+c5TjquR/Wg\nbmckIlJbGWvDNTpnPwd2c54CFzHIxi1aUNYqkCIiImFljJkJvGCtfXI/+3UAnrbW9i7j9a+Ah621\nT4d6XUozxjwGvFLBOatVjqdt/ATEeUYp3A0ssdY+EuHQRESqlYglqkFBuEVB1gC9y/sWW0REJFyM\nMb2A94EWnkWlKvLeo3G9aZtxPaoPA9me3lep4Ywx43C3PaqL67kttNaeENmoRESqt6oy9HcosFRJ\nqoiIRIIx5mnc/Vkvq2iS6tEOt1jONtzQ6fFKUmuVP+GG0i/Bze0ua7i8iIgcoKrSo/ok8K219uFI\nxyIiIiIiIiKRFfFE1bNq4hqgo2eRj8DXIp9Fi4iIiIiISNhYa0utCF8V7qM6ErfC4qZQL0Y6kZaa\n6eabb+bmm2+OdBhSQ6l9STipfUm4qG1JOKl9SVmMCX13tKowR/UU4MVIByEiIiIiIiJVQ0QTVc8N\n5Yfibu4ucsisWLEi0iFIDab2JeGk9iXhorYl4aT2JRUV0aG/npUVG0YyBqmdunfvHukQpAZT+5Jw\nUvuScFHbknBS+5KKivhiSuUxxtiqHJ+IiIiIiIgcPGNMyMWUqsIcVREREREREREfJapSK82aNSvS\nIUgNpvYl4aT2JeGitiXhpPYlFaVEVURERERERKoUzVEVERERERGRiNAcVREREREREakWlKhKraR5\nEhJOal8STmpfEi5qWxJOal9SUUpURUREREREpErRHFURERERERGJCM1RFRERERERkWpBiarUSpon\nIeGk9iXhpPYl4aK2JeGk9iUVpURVREREREREqhTNURUREREREZGI0BxVERERERERqRaUqEqtpHkS\nEk5qXxJOal8SLmpbEk5qX//P3p3HR1Wdfxz/noAY9gRBZBGCqLUuGCtSlyqDuxat/lotqCh1qa9a\nVLCrrQhaXLpQrbWt1qrggmhpXam7jNaCIkooohZRwg4SIOyRJc/vj5tJJiuZkMO9M/N5v17zYs65\nd859ZuYh8OSecy9SFWqh6pzLc85Ncc597Jz7yDl3bJjxAAAAAADCF+oaVefcRElvmtlDzrmWktqa\n2fqk7axRBQAAAIAMVd8a1dAKVedcR0mzzeyABvahUAUAAACADBXFiyn1kbTaOfewc+4D59wDzrk2\nIcaDLMI6CfhEfsEn8gu+kFvwifxCqsIsVFtK+pqkP5vZ1yRtlvTzEOMBAAAAAERAmFN/95M0w8z6\nVLS/IennZjY4aR+77LLLVFBQIEnKy8tTYWGhYrGYpKrfzNCmTZs2bdq0adOmTZs27ei3i4qKVFpa\nKkkqLi7WxIkTo7VGVZKcc29JutLM5jvnxkpqbWY/S9rOGlUAAAAAyFBRXKMqSddKetw5N0dSP0m3\nhxwPskTitzuAD+QXfCK/4Au5BZ/IL6SqZZgHN7M5ko4JMwYAAAAAQLSEOvV3V5j6CwAAAACZK6pT\nfwEAAAAAqIZCFVmJdRLwifyCT+QXfCG34BP5hVRRqAIAAAAAIoU1qgAAAACAULBGFQAAAACQFihU\nkZVYJwGfyC/4RH7BF3ILPpFfSBWFKgAAAAAgUlijCgAAAAAIBWtUAQAAAABpgUIVWYl1EvCJ/IJP\n5Bd8IbfgE/mFVFGoAgAAAAAihTWqAAAAAIBQsEYVAAAAAJAWKFSRlVgnAZ/IL/hEfsEXcgs+kV9I\nFYUqAAAAACBSQl2j6pwrlrRB0k5J281sQI3trFEFAAAAgAxV3xrVlmEEk8QkxcxsbchxACk7f/L5\nenrI09Wef+Ohb+jty99WvDiuP7zzh2p9d79ztxasXaB7z763wb6mjvGdQ79Ta//mGKMpcU/5aMou\n92/O9x6VMZryHfS5u48WjlzY7N9BOoxx/uTzK/8+DSwYqAVrF0iSlm1YVtl//bHXa8pHU6r11ddf\n3xgDCwZKkt4sfrNRYyT2W71ltQr3K9SyDcsqnxetLJKkyv6E5O1d2nSp1Z8YI7GtKWNL0tT5U/XN\ng79Z7XUNjbFg7QId2OlArd6yusGxG4oved+aY6zeslrry9ZrYMFAFa0s0vqy9eqY21GSavUf2OlA\nLVi7oPIzTuyXvG99/TXH7tKmS2U8TR2jofimfDRFB3Y6sPI4uxp76vypateqXeUYyZ95Y+NLjOHz\n89ud+Or6/JL3a+7vIOo50pT4kjVnfFM+mqKVP14pINOEXahKUq3qGfAtHo8rFovt1hjTiqfVej5r\n+axg/OJ4rb5nPnlGxaXFuvfsexvsa+oYndt03u046hqjKXG/MP+FXe7fnO89KmMkPr94PN7oMRat\nX+TlO0iHMZL/Dq0rW6fi0mJJUmlZaWX/kfsdqRfmv1Ctr77++sZYV7ZOkmr9R7G+MRL7le0o09IN\nS1VaVlr5fOWm4D+Dif6E5O25LXNr9SfGSGxrytiStHj9Yk351xSV9Sxr1Bibtm3Skg1LVLajrMGx\nG4oved+aY5TtKNOO8h3auG2jVm5aqR3lO9QyJ/ivRc3+JRuWaNO2Tdq4baOWblhauV/yvvX11xw7\nt2VuZTxNHaOh+FZtXqXSstLK4+xq7MXrFyvH5VSOkfyZNza+xBg+P79dxbf6o9Uq2bek0Z9f8n7N\n/R1EPUeaEl+y5oxv1eZVSgfN8X8vZJew16iapNecc7Occ1eFHAsAAAAAIALCXqPazcxWOOe6SHpV\n0rVm9u+k7XbZZZepoKBAkpSXl6fCwsLK38Ykrh5Gm/aeat/0xk36sM2HkqT1n6yXJKlP8IcWijZt\n2rRp06ZNO7R217ZdNbn/ZEnR+v8TbdrJ7aKiIpWWBjNziouLNXHixDrXqIZaqCZzzo2RtMnMxif1\ncTElRFbenXkq/Xlptee543JVdlOZxsbH6u537q7WF5sQU3FpsYpHFjfY19QxhhcOr7V/c4zRlLgn\nFE3Y5f7N+d6jMkZTvoOcW3JUPqa82b+DdBgj7868yr9PhfsV1jltd+SxIzWhaEKtqb919dc3RmJ9\nZ82pv/WNkTz1d792+1VOi92v3X6V0/cS/QnJ22tO/U0eI3lqbapjS8HU314de1V7XUNjbNq2Se1a\ntaucYljf2A3Fl7xvzTES02J7duhZ57TE5P52rdpp07ZN6tmhZ51TGxvqb+y0zlTGaCi+ResXae8W\ne1eb+tvQ2Ilpu4kxkj/zxsZX19Tf5v78die+xk79ba7vIOo50pT4kjVnfIvWL5KN4f/LSF/1XUwp\ntKm/zrk2zrn2Fc/bSjpd0tyw4kF2Sfx2B/CB/IJPZQvKdr0T0ATkFnzi30akKsyLKXWV9LRzLhHH\n42b2SojxACkZVDCo1vP+3ftLkmIFMc1ZOada33mHnFd5RdKG+po6Rl37N8cYTYm7ZEvJHn3vURmj\nKd9B7469vXwH6TBG8t+h+q7Ym8inmlf9rat/V1f9zc/Nb9QYif2ietXfwr0LpYLGjcFVf7nqbypX\n/T2w1YFa0GEBV/1Nw6v+ApkoMlN/68LUXwAAAADIXJGb+gsAAAAAQF0oVJGVWCcBn8gv+ER+wRdy\nCz6RX0gVhSoAAAAAIFJYowoAAAAACAVrVAEAAAAAaYFCFVmJdRLwifyCT+QXfCG34BP5hVRRqAIA\nAAAAIoU1qgAAAACAULBGFQAAAACQFihUkZVYJwGfyC/4RH7BF3ILPpFfSBWFKgAAAAAgUlijCgAA\nAAAIBWtUAQAAAABpgUIVWYl1EvCJ/IJP5Bd8IbfgE/mFVFGoAgAAAAAiJfQ1qs65FpJmSVpqZufU\n2MYaVQAAAADIUFFeo3q9pI8kUZECAAAAAMItVJ1zPSWdLelvkmpV0YAvjV0ncf7k8yVJd79zt+5+\n5+5qfUB9WIcDn8gv+EJuwSfyC6kK+4zqXZJ+Iqk85DiAOk0rniZJeuaTZ/TMJ89U6wMAAADgR2iF\nqnNusKQvzGy2OJuKPSwWi4UdAjIY+QWfyC/4Qm7BJ/ILqWoZ4rGPl3Suc+5sSbmSOjjnHjGzS5N3\nGj58uAoKCiRJeXl5KiwsrEz0xBQC2rSbs/2HlX/QtOJp2vLpFm3fuV3ulorfoyyUXNxJfaTW41qr\nxeIWKtyvUG/f+nak4qdNmzZt2rRp06ZNO6rtoqIilZaWSpKKi4tVn9Cv+itJzrmBkn7MVX+xp8Tj\n8cq/MA3JuzNPpT8vVWxCsG98eLyyD6hPY/MLaAryC76QW/CJ/EJ9onzV3wQqUgAAAABANM6o1ocz\nqgjb+ZPP19NDnq684u/IY0dW9gEAAADYPfWdUaVQBQAAAACEIh2m/gJ7TGJhN+AD+QWfyC/4Qm7B\nJ/ILqaJQBQAAAABEClN/AQAAAAChYOovAAAAACAtUKgiK7FOAj6RX/CJ/IIv5BZ8Ir+QKgpVAAAA\nAECksEYVAAAAABAK1qgCAAAAANIChSqyEusk4BP5BZ/IL/hCbsEn8gup2mWh6pz7rXOug3NuL+fc\n6865EufcsD0RHAAAAAAg++xyjapzbo6ZHemcO1/SYEk3SPq3mfXzHhxrVAEAAAAgY+3OGtWWFX8O\nljTFzNZLonoEAAAAAHjRmEL1eefcJ5KOlvS6c25fSWV+wwL8Yp0EfCK/4BP5BV/ILfhEfiFVuyxU\nzeznkk6QdLSZbZO0WdK3fAcGAAAAAMhO9a5Rdc59W9Wn+JqkEklFZrZxD8TGGlUAAAAAyGD1rVFt\nWdfOFc5R7bWonSQd6Zy7wsxe382AciW9KWlvSa0kPWtmN+7OmAAAAACA9Ffv1F8zG25m36vx+Jak\ngZLu2N0Dm1mZpEFmViipn6RBzrlv7O64QGOwTgI+kV/wifyCL+QWfCK/kKrGXEypGjNbJGmv5ji4\nmW2peNpKUgtJa5tjXAAAAABA+trlfVRrvcC5QyQ9bGbH7fbBncuR9IGkvpL+YmY/rbGdNaoAAAAA\nkKFSXqPqnHu+ju58Sd0lXdIcQZlZuaRC51xHSS8752JmFk/eZ/jw4SooKJAk5eXlqbCwULFYTFLV\nFALatGnTpk2bNm3atGnTph39dlFRkUpLSyVJxcXFqk9DV/2NqfbFlEokLTCzL+sdsYmcc6MlbTWz\n3yX1cUYVXsTj8cq/MEBzI7/gE/kFX8gt+ER+oT71nVHNaeA1byq4yu8ASblm9qaZzWuuItU519k5\nl1fxvLWk0yTNbo6xAQAAAADpq6Ezqn+RdKik6ZJOkfSCmd3abAd27ghJExUUyzmSHjWz39bYhzOq\nAAAAAJCh6juj2lChOk9SPzPb6ZxrI+ltM/ua5zhrxkChCgAAAAAZqilTf7eZ2U6p8jYytV4MpKvE\nwm7AB/ILPpFf8IXcgk/kF1JV71V/JR3inJub1O6b1DYz6+cxLgAAAABAlmpo6u9BkrpKWlpj0/6S\nVpjZAs+xMfUXAAAAADJYU6b+3i1pvZkVJz8krZd0l6c4AQAAAABZrqFCtauZza3ZaWb/ldTHX0iA\nf6yTgE/kF3wiv+ALuQWfyC+kqqFCNa+BbbnNHQgAAAAAAFLDa1QnS3rDzP5ao/8qSaea2Xe9B8ca\nVQAAAADIWE25j+p+kp6WtE3S+xXdR0vaW9L5ZrbCU6zJMVCoAgAAAECGSvliSma2UtLxkm6RVCxp\noaRbzOzYPVGkAj6xTgI+kV/wifyCL+QWfCK/kKqG7qOqitOZb1Q8AAAAAADwrt6pv1HA1F8AAAAA\nyFxNuY8qAAAAAAB7HIUqshLrJOAT+QWfyC/4Qm7BJ/ILqaJQBQAAAABECmtUAQAAAAChYI0qAAAA\nACAthFaoOuf2d85Nc87Nc8596Jy7LqxYkH1YJwGfyC/4RH7BF3ILPpFfSFWD91H1bLukUWZW5Jxr\nJ+l959yrZvZxiDEBAAAAAEIWmTWqzrlnJP3RzF5P6mONKgAAAABkqEivUXXOFUg6StK74UYCAAAA\nAAhbmFN/JUkV036nSLrezDbV3D58+HAVFBRIkvLy8lRYWKhYLCapaq47bdqptpPXSUQhHtqZ1Sa/\naJNftNOxneiLSjy0M6ud6ItKPLTDaxcVFam0tFSSVFxcrPqEOvXXObeXpBckvWhmd9exnam/8CIe\nj1f+hQGaG/kFn8gv+EJuwSfyC/Wpb+pvaIWqc85JmihpjZmNqmcfClUAAAAAyFBRLFS/IektSf+V\nlAjiRjN7KWkfClUAAAAAyFCRu5iSmb1tZjlmVmhmR1U8Xtr1K4Hdl7xeAmhu5Bd8Ir/gC7kFn8gv\npCq0QhUAAAAAgLpE5j6qdWHqLwAAAABkrshN/QUAAAAAoC4UqshKrJOAT+QXfCK/4Au5BZ/IL6SK\nQhUAAAAAECmsUQUAAAAAhII1qgAAAACAtEChiqzEOgn4RH7BJ/ILvpBb8In8QqooVAEAAAAAkcIa\nVQAAAABAKFijCgAAAABICxSqyEqsk4BP5Bd8Ir/gC7kFn8gvpIpCFQAAAAAQKaxRBQAAAACEgjWq\nAAAAAIC0EGqh6px7yDm3yjk3N8w4kH1YJwGfyC/4RH7BF3ILPpFfSFXYZ1QflnRmyDEgG02ZUvV8\nxIjgz/PPD/6Mx6v6AAAAAOxxoa9Rdc4VSHrezI6oYxtrVOFHLBYUpJJUUCAVF0t5eVJpqTR2rDRh\nQtAHAAAAwBvWqAIAAAAA0kLLsAPYleHDh6ugoECSlJeXp8LCQsViMUlVc91p025Ue8QI6e23FcvL\nU/zNN6VWraTt2xWTJOcUr/gz2FuKt2sntWql2EUXSffeG378tNOmnXgelXhoZ1ab/KLtq53oi0o8\ntDOrneiLSjy0w2sXFRWptLRUklTcwAxGpv4iK8ULCxUrKgoaTP1FM4vH45U/kIHmRn7BF3ILPpFf\nqA9Tf4Eksby8sENABuMfYvhEfsEXcgs+kV9IVaiFqnPuCUnTJR3snFvinPtemPEgi5x3XtXzwYOD\nPwcNCv6Mxar6AAAAAOxxoRaqZjbUzLqb2d5mtr+ZPRxmPMge8cLCqsa99wZ/Pv108GcsVtUHNEHy\nehyguZFf8IXcgk/kF1LF1F8AAAAAQKSEfjGlhnAxJQAAAADIXFxMCQAAAACQFihUkZVYJwGfyC/4\nRH7BF3ILPpFfSBWFKgAAAAAgUlijCgAAAAAIBWtUAQAAAABpgUIVWYl1EvCJ/IJP5Bd8IbfgE/mF\nVFGoAgAAAAAihTWqAAAAAIBQsEYVAAAAAJAWKFSRlVgnAZ/IL/hEfsEXcgs+kV9IFYUqAAAAACBS\nWKMKAAAAAAgFa1QBAAAAAGmBQhVZiXUS8In8gk/kF3wht+AT+YVUhVqoOufOdM594pz71Dn3szBj\nAQAAAABEQ2hrVJ1zLST9T9KpkpZJek/SUDP7OGkf1qgCAAAAQIaK4hrVAZIWmFmxmW2XNFnSt0KM\nBwAAAAAQAWEWqj0kLUlqL63oA7xjnQR8Ir/gE/kFX8gt+ER+IVUtQzx2o+b0Dh8+XAUFBZKkvLw8\nFRYWKhaLSapKeNq0adOmTZs2bdq7106ISjy0M6udEJV4aIfXLioqUmlpqSSpuLhY9Qlzjeqxksaa\n2ZkV7RsllZvZr5P2YY0qAAAAAGSoKK5RnSXpIOdcgXOulaTvSnouxHgAAAAAABEQWqFqZjskjZD0\nsqSPJD2ZfMVfwKea01CA5kR+wSfyC76QW/CJ/EKqwlyjKjN7UdKLYcYAAAAAAIiW0NaoNgZrVAEA\nAAAgc0VxjSoAAAAAALVQqCIrsU4CPpFf8In8gi/kFnwiv5AqClUAAAAAQKSwRhUAAAAAEArWqAIA\nAAAA0gKFKrIS6yTgE/kFn8gv+EJuwSfyC6miUAUAAAAARAprVAEAAAAAoWCNKgAAAAAgLVCoIiux\nTgI+kV/wifyCL+QWfCK/kCoKVQAAAABApLBGFQAAAAAQCtaoAgAAAADSAoUqshLrJOAT+QWfyC/4\nQm7BJ/ILqQqlUHXOXeCcm+ec2+mc+1oYMSC7FRUVhR0CMhj5BZ/IL/hCbsEn8gupCuuM6lxJ50t6\nK6TjI8uVlpaGHQIyGPkFn8gv+EJuwSfyC6lqGcZBzewTKVg4CwAAAABAMtaoIisVFxeHHQIyGPkF\nn8gv+EJuwSfyC6nydnsa59yrkvarY9MvzOz5in2mSfqRmX1QzxjcmwYAAAAAMlhdt6fxNvXXzE5r\nhjGYGwwAAAAAWSYKU38pRgEAAAAAlcK6Pc35zrklko6VNNU592IYcQAAAAAAosfbGlUAAAAAAJoi\nClN/AQAAAACoRKEKAAAAAIgUClUAAAAAQKRQqAIAAAAAIoVCFQAAAAAQKRSqAAAAAIBIoVAFAAAA\nAEQKhSoAABHjnLvROffAHjjOcOfcv30fBwCAVFGoAgCylnOu2Dm3xTm30Tm30jn3sHOubcW2uHNu\na8W2xOPZim0x59ySpHEuTtpni3OuPKm9oZ5jf8s5V+ScW++cW+2ce905VyBJZnaHmV3l/xMAACCa\nKFQBANnMJA02s/aSviapv6Sbkrb90MzaJz2+VecgZo8n9pF0lqRlSa/pUHN/59yBkiZKGmVmHSX1\nkfQnSTub/R0CAJCGKFQBAJBkZsslvSTpsN0cyjVin0JJC81sWsWxN5nZP81siSQ558Y65x6tHNC5\nS51zi5xzJc65myrOBJ+ctO9TzrmJzrkNzrkPnXNHJ7325865BRXb5jnnzqsz6MBdzrlVFWd5/+uc\n293PAgCAJol0oeqce6jiH8y5jdj398652RWP/znn1u2JGAEAac9JknNufwVnQ2fX3ObB+5IOqfi3\nK+aca1dju1UG4NyhCs62DpXUTVJHSd1r7H+OpCcqtj0n6d6kbQskfaPizO4tkh5zznWtI6bTJZ0o\n6aCKs7wXSFrTxPcHAMBuiXShKulhSWc2Zkczu8HMjjKzoyT9UdI/vEYGAMgETtIzFb/c/LekuKTb\nk7bd45xbl/S4pTkOamYLJcUk9ZD0lKTVyetjVb1A/o6k58xsupltl3SzkgrZCv82s5fMzCQ9JunI\npGNNMbOVFc+fkvSppK/XEdZ2Se0lfdU5l2Nm/0u8DgCAPS3ShaqZ/VtStTOjzrm+zrkXnXOznHNv\nOee+UsdLL1Lwm2UAABpikr5lZvlmVmBmI8zsy6Rt11ZsSzzGNNuBzd41s++a2b4KzmSeJOmXdeza\nXdLSpNdtVe0znauSnm+RlOucy5Eqpw3PThTbkg6XtE8d8byh4EzsnyStcs7d75xr3/R3CABA00W6\nUK3HXxX8x6G/pJ9I+nPyRudcb0kFkt7Y86EBAJA6M5sl6WnVvT52uaSeiYZzrrXqKDTrUvFv4l8l\n/VBSJzPLl/Sh6pnSbGZ/rPj39VBJByv4dxYAgD2uZdgBpKJiDc9xkv7uXOW/sa1q7DZE0t8rpj8B\nALA7Glyj6pzbO3kfMytr1KDOnSDpq5KeNbPVzrlDFKwznVDH7v+QNMM5d5yCta1jdxVXkrYKzgyX\nSMpxzl2q4IxqXTH1l9RC0gcKzsqWiasQAwBCkm5nVHMklSbWolY8av72+bti2i8AoHncW+M+qu8l\nbeshaauCom6LpM3OuQMqtu3ql6Wlks6VNNc5t1HSi5L+Kek3Sa83STKzeZKulTRZwdnVjZK+kPRl\nzX2TJF77kaTxkmZIWqmgSH27xn6J13ZQcPZ1raRiBcXtb3fxPgAA8MKFeeLROVcsaYOC39huN7MB\ndexTIOl5Mzuiov0fSXeZ2RQXnFY9wsz+W7HtEEkvmlmfPfMOAADYsypmF62TdKCZLQo7HgAAfAj7\njKpJilWcGa2rSH1C0nRJX3HOLXHOfU/SxZKucM4VKVhnc27SSzibCgDIOM65c5xzbSquCvw7Sf+l\nSAUAZLKwz6gulNTfzLhPGwAA9XDOPaDgNjVO0nuSrjGzT8ONCgAAf8IuVD+XtF7B1N/7zeyB0IIB\nAAAAAERC2Ff9PcHMVjjnukh61Tn3ScW9UwEAAAAAWSrUQtXMVlT8udo597SkAZIqC1XnHLeYAQAA\nAIAMZma1brsWWqHqnGsjqYWZbay4OMTpkm6puR+3Q4UPY8eO1dixY8MOAxmK/OhIB1cAACAASURB\nVIJP5Bd8IbfgE/mF+gQ3cqktzDOqXSU9XRFYS0mPm9krIcYDAAAAAIiA0ApVM1soqTCs4yO7FRcX\nhx0CMhj5BZ/IL/hCbsEn8gupCvs+qkAoCgv5HQn8Ib/gE/kFX8gt+ER+IVWh3p5mV5xzFuX4AAAA\nAABN55yL1sWUAAAAAGSP+i6ag+yRyklIpv4iK8Xj8bBDQAYjv+AT+QVfyC34lMgvM+ORpY9UUagC\nAAAAACKFNaoAAAAAvKtYixh2GAhJfd8/a1SBCus3bdPs/5VIkvLa5arwK51CjggAAABAMqb+Iuu8\nMvsjnTL+CJ329/466vGuWrFmU9ghIcOwzgs+kV/whdyCT+QXUkWhiqxzwYmFev37/9D2O5fLbW+n\nsm3bww4JAAAAISkoKNDrr7/erGOOHTtWw4YNa9Yxsw2FKrJSLBYLOwRkMPILPpFf8IXcgk9Rzi/n\nXLPfOodb8ew+ClUAAAAAQKRQqCIrsU4CPpFf8In8gi/kFnxKh/zatm2bRo4cqR49eqhHjx4aNWqU\ntm3bJkkqLS3V4MGDte+++6pTp04655xztGzZssrXLly4UAMHDlSHDh10+umnq6SkZJfHKysr0yWX\nXKLOnTsrPz9fAwYM0OrVqyXVno6cPJW4uLhYOTk5mjBhgnr16qV99tlH9913n9577z3169dP+fn5\nuvbaa5vzowkFhSoAAACA0DnXPI+mMDONGzdOM2fO1Jw5czRnzhzNnDlT48aNkySVl5friiuu0OLF\ni7V48WK1bt1aI0aMqHz9RRddpGOOOUZr1qzR6NGjNXHixF1O/504caI2bNigpUuXau3atbr//vuV\nm5tb8VlUn45c11gzZ87UggULNHnyZF1//fW6/fbb9cYbb2jevHl66qmn9NZbbzXtw4gIClVkpSiv\nk0D6I7/gE/kFX8gt+NSY/DJrnkdTTZo0STfffLM6d+6szp07a8yYMXr00UclSZ06ddL555+v3Nxc\ntWvXTr/4xS/05ptvSpIWL16sWbNm6Ve/+pX22msvnXjiiTrnnHN2ec/YVq1aac2aNfr000/lnNNR\nRx2l9u3b1/PZ1B5r9OjRatWqlU477TS1b99eF110kTp37qzu3bvrxBNP1OzZs5v+YUQAhSoAAACA\nrLd8+XL17t27st2rVy8tX75ckrRlyxZdffXVKigoUMeOHTVw4ECtX79eZqbly5crPz9frVu3rnxt\n8jj1GTZsmM444wwNGTJEPXr00M9+9jPt2LGj0fF27dq18nnr1q1rtTdtSu9bMFKoIiulwzoJpC/y\nCz6RX/CF3IJP6ZBf3bt3V3FxcWV78eLF6tGjhyRp/Pjxmj9/vmbOnKn169frzTfflJnJzNStWzet\nW7dOW7ZsqXztokWLdjn1t2XLlrr55ps1b948TZ8+XS+88IIeeeQRSVLbtm21efPmyn1XrlyZ8vtJ\n9ysPU6gCAAAAyHpDhw7VuHHjVFJSopKSEt1666265JJLJEmbNm1S69at1bFjR61du1a33HJL5et6\n9+6t/v37a8yYMdq+fbvefvttvfDCC7s8Xjwe19y5c7Vz5061b99ee+21l1q0aCFJKiws1OTJk7Vj\nxw7NmjVL//jHP1IuPHc19TjqKFSRlViHA5/IL/hEfsEXcgs+RT2/nHO66aab1L9/f/Xr10/9+vVT\n//79ddNNN0mSRo4cqa1bt6pz5846/vjjddZZZ1UrHCdNmqR3331XnTp10q233qrLLrtsl8dcuXKl\nLrjgAnXs2FGHHnqoYrFY5ZV9f/WrX+mzzz5Tfn6+xo4dq4svvrhWvI15T+nMRbnSds5ZlOND+su5\nMV+fXfe5+nTLDzsUAACAjOacS/uzfGi6+r7/iv5aVTVnVJGV0mGdBNIX+QWfyC/4Qm7BJ/ILqaJQ\nBQAAAAAPHn/8cbVv377W44gjjgg7tMhj6i+yGlN/AQAA9gym/mY3pv4CAAAAANIahSqyEusk4BP5\nBZ/IL/hCbsEn8gupolAFAAAAAEQKa1SR1VijCgAAsGewRjW7sUYVAAAAAJDWKFSRlVgnAZ/IL/hE\nfsEXcgs+ZVJ+3XHHHbrqqqskScXFxcrJyVF5eXnIUWWelmEHAAAAAABRFI/HNWzYMC1ZsqSy78Yb\nbwwxouzBGVVkpVgsFnYIyGDkF3wiv+ALuQWfyC+kKvRC1TnXwjk32zn3fNixAAAAAMguOTk5+vzz\nzyvbw4cP1+jRo7VlyxadddZZWr58udq3b68OHTpoxYoVGjt2rIYNG5bSMSZMmKC+ffuqQ4cOOuCA\nAzRp0iRJqjVWzanEsVhMo0eP1gknnKD27dvr3HPPVUlJiS6++GJ17NhRAwYM0KJFi5rhU4ieKEz9\nvV7SR5Lahx0Iskc8Huc3e/CG/IJP5Bd8IbfgU2PWqLpbal34tUlszO5dWdg5J+ec2rRpo5deekmX\nXHJJtam/zqUW5+bNm3X99ddr1qxZOuigg7Rq1SqtWbOm0WM9+eSTevnll7XPPvvouOOO03HHHaf7\n779fjzzyiC6//HLdcssteuihh1J7k2kg1ELVOddT0tmSbpN0Q5ixAAAAAAjP7haYzSlxG5W6bqfS\nlFvs5OTkaO7cuerZs6e6du2qrl27Nmos55y+973vqU+fPpKks846Sx9//LFOPvlkSdIFF1yg0aNH\npxxPOgh76u9dkn4iictkYY/iN8bwifyCT+QXfCG34FM251fbtm315JNP6r777lP37t01ePBg/e9/\n/2v06xNFrSTl5uZq3333rdbetGlTs8YbFaEVqs65wZK+MLPZkprnPD8AAAAApKBNmzbasmVLZXvF\nihWVU3Lrmpqb6tRfSTr99NP1yiuvaOXKlTrkkEMqb2/Ttm3basdeuXJlg+M05djpKsypv8dLOtc5\nd7akXEkdnHOPmNmlyTsNHz5cBQUFkqS8vDwVFhZW/kYmMdedNu1U24nntmi7EqIUH+30bieeRyUe\n2pnVJr9o+2on+qISD+3MakdZYWGhHn/8cY0bN06vvvqq3nrrLQ0YMEBScDZzzZo12rBhgzp06CAp\n9am/X3zxhWbMmKFTTz1VrVu3Vtu2bdWiRYvKY//mN7/RkiVL1KFDB91xxx21Xp98vKZMO46SeDyu\noqIilZaWSgouHlUfF4U365wbKOnHZnZOjX6LQnzIPPF4XLFYTDk35uuz6z5Xn275YYeEDJLIL8AH\n8gu+kFvwKR6Pa9CgQZEstN5//31ddtllWrx4sc477zzt3LlTffv21a233ipJuuKKK/Tss8+qvLxc\n8+bN01//+ld99tlneuSRR1RcXKy+fftq+/btysnJqXP8lStXasiQISoqKpJzTkcddZT+/Oc/65BD\nDpEkjRgxQo8//ri6dOmin/70p7r66qsrxxs0aJCGDRumyy+/XJI0evRoLVu2rPLiSa+99pquueYa\nzZ8/fw98UrvHOVfn91/RX+tUcZQK1R+Z2bk1+ilU4RWFKgAAwJ5RX6GC7JBqoRqF29PIzN6U9GbY\ncQAAAAAAwlf3+Wkgw6XDegmkL/ILPpFf8IXcgk/ZkF/t2rVT+/btaz3+85//hB1aWorEGVUAAAAA\nSGeZepuYsERijWp9WKMK31ijCgAAsGewRjW7pbpGlam/AAAAAIBIoVBFVsqGdRIID/kFn8gv+EJu\nwSfyC6miUAUAAAAARAqFKrISNzSHT+QXfCK/4Au5BZ+yJb8OP/xwvfXWW016bU5Ojj7//PNmjqj5\n3HHHHbrqqqskScXFxcrJyVF5ebm343HVXwAAAABoBh9++GHYIaQsHo9r2LBhWrJkSYP73XjjjXso\nogBnVJGVWCcBn8gv+ER+wRdyCz5len7t2LEj7BC82rlz5x4/JoUqAAAAgKxVUFCgO++8U4cddpg6\ndeqkyy+/XF9++aUk6YUXXlBhYaHy8/N1wgknaO7cudVe95vf/Eb9+vVT+/bttXPnThUUFOj111+X\nJH355ZcaOXKkevTooR49emjUqFHatm1b5et/+9vfqnv37urZs6ceeuihRsW6detW/ehHP1JBQYHy\n8vJ04oknqqysTJL03HPP6bDDDlN+fr4GDRqkTz75pFqs48eP15FHHqm8vDwNGTJEX375pTZv3qyz\nzjpLy5cvV/v27dWhQwetWLFCY8eO1Xe+8x0NGzZMHTt21IQJEzR27FgNGzasWjwPPvigevTooe7d\nu2v8+PFN+wLqQaGKrJQt6yQQDvILPpFf8IXcgk9Rz69JkybplVde0Weffab58+dr3Lhxmj17tq64\n4go98MADWrt2ra6++mqde+652r59e+XrJk+erBdffFGlpaVq0aKFnHNyLrgl6G233aaZM2dqzpw5\nmjNnjmbOnKlx48ZJkl566SWNHz9er732mubPn6/XXnutUXH++Mc/1uzZszVjxgytXbtWv/3tb5WT\nk6P58+froosu0j333KOSkhKdffbZOueccyrP9Drn9Pe//10vv/yyFi5cqP/+97+aMGGC2rZtq5de\nekndu3fXxo0btWHDBnXr1k1SUPhecMEFWr9+vS6++OLK95UsHo9rwYIFeuWVV/TrX/+6skhvDhSq\nAAAAAMLnXPM8Uj6s04gRI9SjRw/l5+frl7/8pZ544gk98MADuvrqq3XMMcfIOadLL71Ue++9t955\n553K11133XXq0aOH9t5771rjTpo0STfffLM6d+6szp07a8yYMXr00UclSU899ZQuv/xyHXrooWrT\npo1uueWWXcZZXl6uhx9+WH/4wx/UrVs35eTk6Nhjj1WrVq305JNPavDgwTrllFPUokUL/fjHP9bW\nrVs1ffr0ytdfd9112m+//ZSfn69zzjlHRUVFkiQzq/N4xx9/vM4991xJUm5ubp37jRkzRq1bt9bh\nhx+u733ve3riiSd2+T4ai0IVWSnT10kgXOQXfCK/4Au5BZ8alV9mzfNogv3337/yea9evbR8+XIt\nWrRI48ePV35+fuVj6dKlWr58eZ2vq2n58uXq3bt3rXElacWKFbWOuSslJSUqKytT3759a21bsWJF\ntTGcc9p///21bNmyyr799tuv8nnr1q21adOmBo/Xs2fPXcZU1+fWXChUAQAAAGS1xYsXV3vevXt3\n9erVS7/85S+1bt26ysemTZv03e9+t3LfuqbDJnTv3l3FxcXVxu3Ro4ckqVu3brWOuSudO3dWbm6u\nFixYUOexFi1aVNk2My1ZsqTyeA2p6z0kT2FuaL+a76Exx2ssClVkpaivk0B6I7/gE/kFX8gt+BTl\n/DIz/fnPf9ayZcu0du1a3XbbbRoyZIiuvPJK3XfffZo5c6bMTJs3b9bUqVN3eSYyYejQoRo3bpxK\nSkpUUlKiW2+9VZdccokk6cILL9SECRP08ccfa8uWLY2a+puTk6PLL79cN9xwg1asWKGdO3dqxowZ\n2rZtmy688EJNnTpVb7zxhrZv367x48crNzdXxx9//C7H7dq1q9asWaMNGzZU+0zq+pxqGjdunLZu\n3ap58+ZpwoQJ1Yr43UWhCgAAACBrOed00UUX6fTTT1ffvn110EEH6aabbtLRRx+tBx54QCNGjFCn\nTp100EEH6ZFHHmnwLGqym266Sf3791e/fv3Ur18/9e/fXzfddJMk6cwzz9TIkSN18skn6+CDD9Yp\np5zSqHF/97vf6YgjjtAxxxyjffbZRzfeeKPKy8t18MEH67HHHtO1116rLl26aOrUqXr++efVsmXL\net9z4niHHHKIhg4dqgMOOECdOnXSihUr6j2jmtznnNPAgQN14IEH6tRTT9VPfvITnXrqqY36bBrD\n1bd4Ngqccxbl+JC+4vG4YrGYcm7M12fXfa4+3fLDDgkZJJFfgA/kF3wht+BTPB7XoEGD6r1wT5j6\n9OmjBx98UCeffHLYoWQ051yd339Ff60qnTOqAAAAAIBIoVBFVuI3xvCJ/IJP5Bd8IbfgE/nVeIcd\ndpjat29f69Gct35JB3VPWgYAAACALLBw4cKwQ6hm3rx5YYcQCZxRRVbiXnHwifyCT+QXfCG34BP5\nhVRRqAIAAAAAIoWr/iKrcdVfAACAPaO+q74iO6R61V/WqAIAAADYIxp7D1KAqb/ISqyTgE/kF3wi\nv+ALuQWf4vG4zIxHlj9SQaEKAAAAAIgU1qgiq7FGFQAAAAhPfWtUOaMKAAAAAIgUClVkJdbhwCfy\nCz6RX/CF3IJP5BdSRaEKAAAAAIgU1qgiq7FGFQAAAAhP5NaoOudynXPvOueKnHMfOefuCCsWAAAA\nAEB0hFaomlmZpEFmViipn6RBzrlvhBUPsgvrJOAT+QWfyC/4Qm7BJ/ILqQp1jaqZbal42kpSC0lr\nQwwHAAAAABABoa5Rdc7lSPpAUl9JfzGzn9bYzhpVeMUaVQAAACA89a1RbRlGMAlmVi6p0DnXUdLL\nzrmYmcWT9xk+fLgKCgokSXl5eSosLFQsFpNUNYWANu2mtm3RdiVEIR7atGnTpk2bNm3atDO5XVRU\npNLSUklScXGx6hOZq/4650ZL2mpmv0vq44wqvIjH44rFYpxRhReJ/AJ8IL/gC7kFn8gv1CeKV/3t\n7JzLq3jeWtJpkmaHFQ8AAAAAIBpCO6PqnDtC0kQFxXKOpEfN7Lc19uGMKrzijCoARNvmzVKrVtJe\ne4UdCQDAh8idUTWzuWb2NTMrNLN+NYtUAACQWSqWJEmSXn1Vuu02aflyadCgoO+DD6RZs6r2WbRI\natdOOuoo6YsvpDVrpOHDJeekG2+UduyQtm6VXnlF2n9/6dlnq177xRfSr38tlZUF7f/8R3rpJWnO\nHOnSS4OxP/hAuv126YYbpJKSYL/HHpOuvDI4zt/+VjXe229Ly5ZVfz//+lf197RzpzR9evBnXbZt\nkz75RJo/v/a2jRuD15lJxcXSI48En40kbd8eHN856S9/CWKdMUN67jlpyZKgP9mOHdKqVVXjbtsW\nfHYLFwafwXnnBbH/6lfS5MnBMd99N9hPCsa8/35pyBBp5cqqcadPly65RFq3TvrsM+mee6RYTDrz\nTGnFiqr9/vnPILbkz2HKFGnevNrvu6REKi+XNm2S/v3v4JiJHFi3TlqwINg+Y0b115WXB9+9FGxb\nuLD69vfekzZsqPrc339fuvzyqs9+8+YgJ0aNktavr3rd4sVB/Anjxkn77it16RJ8dwkffCB99FHw\n3Ex66y1pxAhp4sTg+0r0S9Knn1Y9T8Re0+bN0oMPBs+3b68+xqRJQb6/+GLt1778ctX3BmQcM4vs\nIwgPaH7Tpk0zMzP38zz7fPnacINBxknkF+BDOubX8uVmo0ebBf/tNrvnnqrnicfpp1c9P/dcs+9/\nv/r2Ll3Munev3jdxotmTT1bvmzXLbOTI6n1//3vt49X1MKvd9/77ZldeWdUeOtSsX7/q+zz+uNnN\nN1e133vP7MMPzYYMCdp//KPZ1KnVX/PTnwbHW73abOfOoO+MM8zuvLP6fjNmmD322K5j/8UvzPr0\nMTv4YLOLLw76OnZs3Ps+4ojE82k2a5bZ4MHVtw8b1rhxrr3WrFu3qvY555itX199n3vuMdu40exv\nfwveu2TWu3ftsZ580qxnz+D5QQcFf65bF3wWf/iD2c9+FvTdd1/Va+67L/jsTzyxqm/0aLOvfrX6\n2MnfZ+Jx+eW1+x58sHbfn/9s1qJFVXvECLMVK6rvE4uZDRgQPL/00uDPt94K3vfkyVX7LV8e5EH3\n7mZXXRX0ffKJWUFB1bHuuKP62GPGmL39tlnbtlV58cQTYf3NTk06/uzCnlFR86nmIzIXU6oLU3/h\nCxdTgk9cMAI+pVN+ORecvZs2rfpZKwSGDpWeeCLsKJLFJcWadcS99qo6O5jNunaVOnQIzq42tzPP\nDM62Rl06/ezCnlXf1F8KVWQ1ClUAaH6bNwdTEr/97bAjATLfMcdIM2eGHQXQdJG8jyoAAMgs770n\nDRgQdhRA9sgJ7YozgF+kNrJS4ubDgA/kF3yKcn59/LH0u9/tej9EVTzsAJDBovyzC9HEGVUAALDb\n7roruDJt8hVTAQBoKtaoIquxRhUAmkfNW6QA2DMuvFB68smwowCaLnL3UQUAAJmhd++wIwCyV/v2\nYUcA+EGhiqzEOgn4RH7Bpyjm1+LFYUeA5hEPOwBksCj+7EK0UagCAAAAACKFNarIaqxRBYCm+/JL\n6VvfCu6ZCiA8/HcZ6Yw1qkAdLLdUW7ftCDsMAEhL69f7L1I7dpS+//2qdsuW0uDBUteufo+7775+\nx08HHTvW7svGe3ZGdQ3o4YeHHQHgVxb+uAGS1klsb61Xiz4KNRZkHtbhwKco5dfunMU544zqrz/q\nKGnsWOnDD4P2fvtJv/+99MEH0gUXBH0nniitWCE9/7z03e9WvXbGjNrjjx1bvf21r0mrV1e1f/AD\nafZsafLk6vsNGSJt3SrNnFnVV7MoPvJI6d57ax/zwgtr940bV/X81FODwv7NN2vvl+zxx2v3vfpq\n1fOvfEV6663q70cKPtOf/KSqXVgo3XefdOutVX0vvyxt3izdeGNV36BB0nPPSb17xyv7Fi2SSkur\n9rn+eunOO6WdO4P21VdLn35a9X1JUs+e0nnnSQcdVD2u//s/qU2bht/zX/9a+3Pp06fuz6pLl+rt\n4cOlCROq2qefLj32mHT++UG7b19p2jSprEwqKAj6brhBevFFqbxc6tAh6PvBD4L3mOzSS6U33qje\nd/rptYvE22+vGlsKPoO6cqQuP/xh9XZubvXXPvqotGWL9PTTVX1XXSVNmiQdd1zjjhEFUfrZhTRh\nZpF9BOEBzW/atGlmZtZmZH/rdv137Oxf/d6mvvO/cINCxkjkF+BDlPJr+XKzoNxs+HH11WbbtwfP\n+/Uze+edqjH+8hez1aur2uXlZg89ZLZjR1VfSYnZnXdWP/Z775n94hdmEyYE7RNOMLv4YrMXXzRb\ntCjok8y++U2zeDwYt7zc7G9/M1uxomr8Tz4J9jv7bLP77zf77LOgf+nSoH/27CD2M88M2rfeWhVD\nu3ZB36mnmn35ZdUxDz88iCPxviSzF14IxjEzW7eu6piTJ5sNHWrWubPZ/Plm69cH+/TtG+xzzTVm\nzzwT9F1wQfDZbN1aFcOsWWZffFF1/C1bgtdNnhwcx8xs3rygL7GPWfAZPfqo2euvV/VNnDjN3n67\n+vcxdarZu+9W/+zXrq36/BYvDsZety74fM3M7rsv6MvNNbvttuCzHDIk6OvSxeyxx8zKysyOOcbs\niCOCzyahdWuzgQPNnn22qi8vz+yHPzT75z+D7yvx+V12mdncucFxt2wJxnnvPbOdO4PXvfFG8Lpk\nTzxhdvfd1fsWLgxyzCz4bCWzUaOCY5WXB++xoMDsjjuC924WPE+8x9//3mzVqiDPu3QJjpFw4olm\n3bubff/7Zv/3f2affx687qtfDT7bTz8N9jv9dLPf/c5sxowgPzdsCPZL5IOZ2QcfmO2zT/D3J/FZ\nz5sXjJMOovSzC9FSUfPVqgVZo4qsdv3fJuk/i2bqf5veUf+8szRtzJiwQwKAtLF8udSjR/3bu3aV\nFi6UWrcO2g88IH3961K/fnsmvvnzg7NcrVo1vF9ZWXAWK5lZcMbw4IODdnGxVFIi9e9ftc/cucF7\nO/DAqr5//St4fz17VvWtWyfl5VW/1+zGjVVTSnfuDGJo27Zqe3Gx1KKFtP/+jXyzSdavr3va7p6y\nfbu0bFn1M4xr1gSfQ/JntXlzMJU4kR+Jvtatdz3F+P33g7PkPu7fG49LJ53UcAzr1gXf/0knVfXt\n3Bm89+Rc2rEjGCd5rDvukE47rXouAdmsvjWqFKqApIFjxyjH5VCoAkAjbd4cTJu98sra22bODG5Z\n0759ME0SAID6cDElIAnrJOAT+QWfGptf778vDRsWnHHasiXo27xZuusu6dvfrr7v7NnBI9mSJcGZ\nOSlYs/n009KPfhSsGZWk11+vu0i99VbpiCOCY1Ckphd+dsEn8gupahl2AAAAYPctWxZcOOeGG6T7\n769+sZwVK6pPuZSkzz4LLtDzgx8E7b33DqafrlwZXNho5crg4kDjxwcXmPnTn4L9OneW8vOrX2wo\n2ejRzf/eAADZh6m/gJj6CyC9PfKIdNllwfPTTqt+hdhU9OoVTNlNdsAB0uefN+71ixc3bU0lACB7\nMfUXAIAM8OyzQUH5la8Et80YOrSqSJWaXqRKtYtUqfFFqkSRCgBoPhSqyEqsk4BP5Bd8+uc/41qy\nJLii7Smn1L4PaFiGDAk7AuwufnbBJ/ILqWKNKgAAaaS8POwIanvqKemCC8KOAgCQSTijiqwUi8XC\nDgEZjPyCT716xcIOoZqhQylSMwU/u+AT+YVUUagCAJBGonZG9eSTw44AAJCJKFSRlVgnAZ/IL/hU\nXBwPOwRkKH52wSfyC6miUAUAII1E7YwqAAA+UKgiK7FOAj6RX/CpZ89Y2CFUOuww6Ywzwo4CzYWf\nXfCJ/EKqKFQBAEgjUTqjOmYM904FAPhBoYqsxDoJ+ER+wafFi+Nhh1DplFPCjgDNiZ9d8In8Qqoo\nVAEASCNz5oQdAQAA/oVWqDrn9nfOTXPOzXPOfeicuy6sWJB9WCcBn8gv+LRyZSyl/W++WXrySalb\nt6q+k06S/vWv5o0L6Y+fXfCJ/EKqWoZ47O2SRplZkXOunaT3nXOvmtnHIcYEAECk7bOPtHlz3du+\n9jXplluCfSZNksaPl1q1CrYddpi0eHGwbcCAoO/qq6WdO6ULL5SOPjrYJkmDBkk33BCsh/3Wt4K+\n//wneN3990sjRgR9e+/t730CALJbaGdUzWylmRVVPN8k6WNJ3cOKB9mFdRLwifyCT2Vl8crn/fpJ\nU6cGz//xD2n6dGnwYOm446Q//rGqSJWCQvWss6qKVEm67z7pgQek006T8vODIvfDD4OzrYMHB2de\nr7wyKFiPP15q2VIaPlyaNSvoa9t2j7xl7CH87IJP5BdSFeYZ1UrOuQJJ3woNgQAAIABJREFUR0l6\nN9xIAABID0OHSrffLvXqJX30kfTVr+7eeM4F04ST5eUFhWyytm2Ds68AAPgUeqFaMe13iqTrK86s\nVjN8+HAVFBRIkvLy8lRYWFg5xz3xmxnatFNtx2KxWtvXLVyoeDweifhop3e7rvyiTbu52rm5MUlx\n9ekjFRQE21etimvVqmjER5s2bdq0aTfULioqUmlpqSSpuLhY9XFmVu9G35xze0l6QdKLZnZ3Hdst\nzPiQPQaOHaMcl6NpY8aEHQoANKh3b+mNN6S+fcOOBACA3eeck5m5mv05YQQjSc45J+lBSR/VVaQC\nPiV+uwP4QH7Bp7KyuFqGPh8KmYifXfCJ/EKqQitUJZ0g6RJJg5xzsyseZ4YYDwAAAAAgAkKd+rsr\nTP3FnsLUXwDp4IsvpK5dpSVLpJ49w44GAIDdF7mpvwAAIDXPPSfl5Eg9eoQdCQAAflGoIiuxTgI+\nkV/w5YUXpIED43K1fu8M7D5+dsEn8gupolAFACBNLFgg9e8fdhQAAPhHoYqslLiXE+AD+QVf2raV\nvv3tWNhhIEPxsws+kV9IFYUqAABpYNky6b33xLRfAEBWoFBFVmKdBHwiv+DDO+9IvXpJpaXxsENB\nhuJnF3wiv5AqClUAANJAcbF0/PFSq1ZhRwIAgH/cRxUQ91EFEH2nnip95SvSn/4UdiQAADQf7qMK\nAEAa++QT6Ywzwo4CAIA9g0IVWYl1EvCJ/IIPy5YFt6Yhv+ALuQWfyC+kikIVAICIW748+LNbt3Dj\nAABgT2GNKiDWqAKItuefl37wA2np0rAjAQCgebFGFQCANHbUUWFHAADAnkOhiqzEOgn4RH6huW3b\nJu3YETwnv+ALuQWfyC+kikIVAICImzJFKi8POwoAAPYcClVkpVgsFnYIyGDkV/b68svg7GeyNWuC\n/vqYSWvXSq+8UrXfzp1SSYn0738H29u1k77znWAb+QVfyC34RH4hVRSqAAA0gx/+UMrNlY49Vpo1\nSzrxRMk5qXNn6ZprgqLzoouCvmeekZ56SrrgAiknR9pnn+AeqWPHSpdcIrVsKXXpIp10knTbbdKE\nCZxRBQBkF676i6wUj8er/WYvb+Qgrc+PS192UOstB2rL3e+HFhvSX838QubZsEH69a+lJ56Qjj46\nmJrr28KFUkEB+QV/yC34RH6hPvVd9bdlGMEAUbM1Z5Uk6e1LinTiI/1DjgZAlG3bJnXsWNVeuHDP\nHDc3d88cBwCAKOCMKiCpw6gTtDFvuuZfUaKv3Huwyu9cE3ZIACKorExq3TqcY2/ZEt6xAQDwhTOq\nQAOeGPqAFq2mOAVQv9WrpdtvD+/4FKkAgGzCxZSQlWrey+ubAw7VNd88MZxgkHG4V1zmefhhad99\npbvvDjsS8gv+kFvwifxCqihUAQDYhaVLw44AAIDswhpVIMmnS9ewRhVANePGSaNH+z1GmzbBGtT6\nfOMbwe1tAADINKxRBQCgCf70p13v07GjNGpUMD34mmukI4+UHnxQ+upXpb/+VbrnHqlfP2n48OB+\nqVOnBmdpCwqkr39d6tZNuvZaae+9g6L0qKOk3r2l004LHmef7ftdAgAQLZxRRVaq715enFFFc+Be\ncZmlVy9pyZLa/aNGSXfdJc2dKx1yiNSy4le/ZpKr9Xvh5kN+wRdyCz6RX6gPZ1QBAEjRq6/WLlJ7\n95buu08680zpjjuCs6DJfBap6crMtOHLDXpj4Rs6ousR6tS6k95Z+o6KVhbpmwd9Uw/Nfkijjhul\nuavmauuOrTr1gFNVtqNM05dM1+QPJ6v93u1180k3a+3WtZr84WTNXjlbJ/U+ST874WfauG2jpnw0\nRdOXTNeggkEaXjhcJVtK9N7y9/TBig90Rt8zdGiXQzV9yXSt2LRC/br202ufv6YDOx2ojV9u1OL1\ni/X/7d15fFTV2cDx35klmWxkJftqSEKAhH1HdgTCIgIVXOpbrdq3b221dtG2aqXaWvel6ltxr1at\nqHUpLigurwouIKvsYU1ICEv2dSa57x+HO5MhEyBKmBCe7+fj5869c+fMc+89hnnuOfecBlcDl+Rf\nQu+Y3iz5dgk7y3fS1NxERmQGl+ZfSkl1CSv2rSAkIISRySMpqy1jd8VudpbvJDMqk0kZk3C1uNhX\ntY/V+1czO2c2gbZASmtKOVBzgKzoLAKtgXxR9AUlNSU4bA7OTT2XcIdnQt4dR3aQEJqAzWLj7e1v\nU1xdTE50DpPPmcyR+iO8sfUN3tz6JhPSJzAyZSSbD27G1eJiTOoY7vjsDu6achfl9eVYlIWEsAS2\nHNqCQlHRUEF0cDQ9AntQUl3ChrINbDq4if5x/QmyB5EYlkh8aDwr963EUmGhxWhh2+FtvLn1TUqq\nS7gg9wJSeqRQ2VjJ1kNb+Xr/1yzouwBXi4sdR3aw/ch2AC7Ju4SooCiO1B9hdclqGl2NzMieQc/g\nnny0+yO2H95OdHA0BVkFBNuDqXPWEWwP5ouiL4gNiWXroa0UVxez6eAmxqSOYWrmVArLC9lTsYcR\nySNYtX8V07OmU91YjYGBVVnZU7mHlB4pLN+1HIfNwfj08QRYA9h8cDNrS9fSK6oXfWP7sqdiD1/v\n/5pNBzcxLm0cA+IHsLtiN1sPb6XwSCEzs2eSGJZIeUM5eyv3UlxVzJTMKcSHxvP8+uf5ePfHBFgD\nuG7EdWRFZbH9yHYKjxRis9gYlz6OCEcET695mh1HdpAYlsjCfgupbKyk8EghI1NGsnr/asamjcVq\nseJsdrJ813JyY3JJi0ijrLaMQ3WHSApL4s2tb/LD/j9kY9lG6p319Ivth6vFxTNrn+Fg3UHSI9K5\nsO+FOGwOVu1fxdDEoSzdvpTzMs/DYZOJlkX3Iy2qQrTSukV1zx647z69ffBguOwy/8YmhDj9jk06\nlYLnn4eLL/ZPPGeKyoZKyhvK6fVQL1LCUyirLaPOeZyHcLsIh81Bg6vhtH3fkMQhrNq/6rR9nz+E\n2EOoddb6O4wuITEskf3V+095uQVZBSy9eOkpL1eI06W9FlUZ9VeIdnz1FTz7rP5h+ve/+zsaIURX\nsHq1JKntaW5pZmf5Tq579zoi7owg48EMmo1mdlfsPiOSVOC0JqlAt09SAUlSW+mMJBXgYO3BTilX\nCH+TRFWclU52Lq8pU+DCCzs3FtH9yFxx3UNLi/f6K69Anz7+iaW1rli/lu9cju02G5kPZfLglw/6\nOxzxXe3ydwDiu+gR2MPfIZyUrvi3S3Rtfk1UlVJPKaUOKKU2+DMOIb6LwkLYtAl27/Z3JEKIU+3g\nQbBaPevLlsG8eW2fRxXQ1NzE5Ocm+zsMIc5a6RHp/g5BiE7h7xbVp4Fpfo5BnIW+76hz+/ZBr14w\nf75eNpze3mKii5NRDc98NTXe61Om+CcOX7pS/apqrCLwdsneu40Mfwcgvosn1zzp7xBOSlf62yXO\nDH4d9dcwjE+VUun+jEGI76KhATIzdYtqSAg0N/s7IiGEOP068uzpD/r8gCWblgAwL3ceY1LHMOWc\nKcx+aTZTzplCZmQmCWEJJPdIZsErC7hq0FXkx+UzIH4A9c56Jjw7getGXMfc3Lkk90jmtc2vccMH\nN2BVVp6Z8wyX/fsyKhoqGJI4hOzobIYmDuWad67BqqxMyJjAtMxpjEkdw8wXZ1KQVcDolNH0junN\nzvKdXP7G5QDkx+UzL3ceM7JmUNlYyaR/TGJ8+ngGJwzmoS8fwtniJNIRyX8P+W/69OzDj9/8MU3N\nTQBMzJhI3559+dtXfwMgLzaP4UnD6Rfbj+veu45JGZOY3ms6fXr2oam5iTn/mgPoAZU2HNhAY3Mj\nY9PGEmgN5IqBV/DL935JaU0pAdYAksKSuG/qffz3f/6bhLAEftDnBwxJHILD5uDuFXcT4YggITSB\nhNAEDAx+texXDE8aznmZ59E/rj97K/dy/bLr+WH+D7mo30VkR2fz2d7PuO+L+2gxWri438X0j+/P\nZ3s/46vir8iMzGRBvwWkR6Rz+//dTmNzI+PTxmOz2BiTOobFqxeTEJZAv9h+VDdWM3/JfGZlz6J3\nTG/iQ+P5bO9n/HvLvwGIDorm2uHX8vrW1/mm5BsAEkITmJ0zm8dWPwbowYAW9l1IhCOC2S/NBmBs\n2limnDOFvNg85vxrDhGOCNLC0+gb25dAayBPr30am8XG+TnnU5BVQFhAGHd8dgcB1gDm5s6lT88+\nfL73cxZ/s5ifDP4Jo1JGkRWVxQNfPMDqktVcOehKooKi6Bfbj+fWPUe9q57eMb2xKAtXvXUVMcEx\njEsbx5zec0gITWDyc5MJtgdzad6l5PbMZVnhMt7Z8Y77eBaNX8RrW17j3R3vMiB+AFMzp5IXm8eN\ny2+kqKrIPajUsKRhfFX8FQBDE4fSp2cfcmNyuXH5jfSK6kVyj2T39svfuJyfDP4JBVkF5ETnsLpk\nNZe8dglDEofwX/3/i+m9prN0+1Le3fHud/+fWIguzO+j/h5NVN8yDCPPx3sy6q/oFCczj+qiRbBy\nJdxyC/z617BihWe/bdtg5ky9DAmBsjK9FAJkrrju4K23YLb+vcyGDdCvn3/jae149au2qZaQgBBq\nmmrYXbGblftWUlheyO0Tb2d3xW4qGipYU7KGOmcd1464FsMw2HJoC4XlhUQ6IhmdOhrAPVVIWnga\nmVGZVDdW8+rmVymqKmJe7jxye+ayrnQdAx4b4DOOm8feTGVDJflx+VzY90LCAsMAWFOyhtTwVKKD\no0/5eWlqbsJusaNaDdVcXFVMfGg8Vov1OJ/ULcPHPudnGIZ7+hmA8vpyqhqrSItIc++zv3o/AdYA\nwgPDsVvtAKwrXUdaRBoRjgj3fgdrDxITHOMVW3l9OZFBkQDUO+upbqomNiTW6zMWZfE6V80tzViU\nxascX47UHyEqKMprW72zniB70HE/913/dlU2VHpNteNqcVFWW0ZsSCw2i24TqW2qpbqpmuigaPe5\nqm2qxaIsXnFVNVYRYg/xumbOZqf7M6Zd5bvIiOycJuBth7eRFZXldZ5bjBYsytMRscHVQFFVEekR\n6e5jdDY7aWxuJDQg1Gs/q7J6xf9F0RdkRWWd8P+DpuYmAqwBXtt8nYszhfzbKNoj86gK0UE2G+Tm\n6tcrV0JWFgQHw9KlepAVi787zgshOk15ued1V0pSAQ7XHeb1La9jVVZGpoyk8EghL218iQe+fACA\n/nH9WXdgnddn7vr8Lgy8b/xe9951bcrOiMhgV4X3iDpJYUkUVxe712/+6OZ2YxuTOobXLnyNniE9\nfb4/MGHg8Q/uezj2Bz1AUo+kk/qsr8FolFLuJBUgMijSnViaEsMS23yuf3z/Ntt8nY/WZQXZg9ok\nkb4+c6KE23Rskmp+R2dpnaQC2Cy2NucmJCCEkICQNtuO5eta+ErMOitJBciOzm6zrXWSCnoqo15R\nvby22a32NrH6mt90RPKIk4rDV50+U5NUIb6LLp+o/uhHPyI9PR2AiIgIBgwY4L4bY44eJuuy3tH1\n8ePH+3y/6GAlpp07P6axEUC///Off8w998DBg+MJDIT6+o/RRfj/eGS9a623V79k/cxYb2yEN97Q\n67Gx/o/n2PUNwRtY9NdFAJ5nCs3cMgOdpLZaBzB2Ge3u33p9V8auNu8XVxe3u3/r9WFJw/j08k87\n/fhlXdZlXdZl/cxeX7t2LRUVFQDsPs6opNL1V4hWWnf9/eXt21jWdCvJSRaWPTWcw+/8nEmT4Kmn\nwG6HBQvg22+l668Q3c2rr+qB0kAvlyzxbzzH+v3y33PHZ3f4Owy3EckjeGPhG17dVoUQQoiT1V7X\nX4s/gjEppV4EVgDZSql9SqnL/RmPOHuYd3eOp8RYy27LByQGnQN5L3q9ZxjS9Ve072Tql+i6XC69\nzMuDf/7Tv7H4UvhNob9D8PKzoT+TJLWbkL9dojNJ/RId5e9Rfy/y5/cLcTwlxhrijUGMiJnGM3zg\n9Z48oypE99fSAgEB/o6irVpnrb9DcLt57M3My53n7zCEEEJ0Q/JTW5yVzH7yvhj2GjbuKqOpCeKN\nwTTpmQewtxq/QBJVcTzHq1+i61u7Vi/PO8+/cbTnbefbHf6MrwFd0iPSv3cs1424rlMH6RGnl/zt\nEp1J6pfoqC4/mJIQp52tibynUlCucC6K+xNOp94cFubZxTDgBLMDCCHOUJVHx1RLTvZvHO1JCU9h\nb+VeANLC0yjIKuB/V/0vc3PnMiNrBmPTxhJgDWD9gfWkhqfSp2cfbBYbeyv3UlpTis1iIy82D7vV\nzvuF7+NqcZEQlkCkI5K5L89lUsYkBicMJicmh3pnPZe9fhk/H/ZzpmZOJTEskW2Ht/HixhcJDwwn\nPDD8BNEKIYQQ343fB1M6HhlMSXSWjz/+2Oedve1Fh8l+MobVFxczKEsPrX/fkhX86r1fYzyxwp2c\n9u2rB0/68kudsP7rX3p9+HCIiTmNByK6pPbqlzgz/OxnUFUFjz7qfYOqq4i7Jo6U/BRun3g7EzMm\nEmANoNHVSKAt0N+hiTOc/O0SnUnql2iPzKMqRAdYLO03l+bnw2OPQUKCZ9uCBXDOOXD11XDDDach\nQCFEpxoxomsmqY2uRspqyvjqwq9Ii0hzb5ckVQghRHcjiao4K7V3R89m1Q+e2q3tT6o+bJj+Edva\n9dfrQVdaWk5VhOJMJneMz1x798Inn0CfPv6OxLcFryyADIgPjfd3KKIbkr9dojNJ/RIdJcPBCNFK\nRkIkT436gtzUnu3uI4MoCdF93XGHnh+5Kz510uBq4J0d7/Dk7CelBVUIIUS3Jz+5xVnpeHN5XT5l\n+HG7/h5vEKWSEigshEOHvkdw4ownc8WduZqb9XLWLP/G4csjXz2Cq8VFRGmEv0MR3ZT87RKdSeqX\n6Cjp+itEB/lKVF0u3e33b3+DN97Qra67dp3+2IQQp0ZXHNX71k9u5drh1xIVGOXvUIQQQohOJ4mq\nOCt15DkJhwNI/Jq3t78NmTYMNQnwfoZ11Cj47DP9euVKSEqChx7SP3Yvvhiio09Z6OIMIM/hnLnM\neZO7Whf/jWUbqWmq4aaxNxEVJImq6Bzyt0t0JqlfoqMkURXiBPLzgW9c/OXTv8CF66mo/RTo77WP\nrylp/vY33cpaWQmzZ0N8PMTGnpaQhRDf0YcfwiWX6JtNXcnyncvJj8uXJFUIIcRZQxJVcVbqyFxe\nLbgAeOuit4j65URw+B7a99jBV373O7jzTrj5ZnjqKd0VeOBAPeXFvffq5DYwEJxOCA7u2PyrLhfs\n2KFfp6ToOVx9qa3Vz8taLJCcfOLujI2NsH+/fp2UpEcyrqyE0lJdhtWqk+/SUr09KAgmTDj13STL\nymDrVl3ukCG6VbuqCg4fBrtdnyvD0PPYlpZCjx5QUOA5ZqdTf8bh8C734EFdtmHo8gCys9ue+y1b\noL4eGhr00mLRreYBAfoc1dWBzdb+9CW+6pdhQFGRfgayuVmXC7os0C15hgGRkdCvn3797bf6++Li\n9PVraoIvvtDXICtLX6O6OtiwQZeRkqJjrKiAnTv1+Rs9Wtev6mp9/mw2XRbosvbv1/Vn6FC97dAh\nXWZUFKSmeh9XQwPU1OjzceiQjjEpCUJD9Xk362ROTttzf6aIi4Nrr+14nW5wNfD53s/ZdHATKeEp\nDE4YzMqilZTWlHKg5gDj0seRFZXFlkNb2Fm+k4kZE2k2mimqKqLwSCG7KnZR3VjNwn4LcbY42X54\nO7sqdtHoamRBvwU8s+4Z8mLzAJmLUHQeqVuiM0n9Eh0liaoQJ1Dn1JlEhEMPYHLsD9jf/lYnFq+9\n5r1dKU83wiefhIkT4aKL9P5Dh+pE4MgRz/Kcc3QiuH27p4xBg2D3bv2+1aoTHHMJ0LOnTr5iY3UC\nBtC7t060EhL04E6tjRoFK1ZARobnGdqwMJ3EXHghvPyy9/7JyTq5as38rvx8WL9eJ4np6fq1GVt0\ntE5ijhzR0/ns2QNz5sDGjfDNN5CWpmPs3x/WrfMuPy1N72+364QTdFLW+ryATrhcLn1eP/zQe5t5\nTL7KDQ72JIfp6fr8tj4f8fE6+c3Nhc2b9fGZSW1qqp6+pDXzPPs6Vzk5OuFuLSZGJ3nmdQed7BUX\nw/DhOvlOSdE3AqqqPNfTvNbgia1PH9i0yTuOyEgoL9c3Ecxk2CyjNfOcjhypu6u3Zpbbul4NHQpf\nf+29X+v3TaGhOpk1jz09XZ/fjz5qu9+2bd7zEZ8pvi7+mqfWPMXfV//9pD/zl8/+clL7Lf5mcZtt\nD3/9MAD3T73/pL9PCCGEONN1sadwhDg9vssdPXU0Q7XZ4VDdIcLuCCPx3kReT8khKsbJ7t3H7t+2\njNGj9TIvD/78Z/3aTMD69tU/6EGPHAx6vlYzmXnjDb186y1PWX/4g35tJgFz5kDE0QFBX3pJL199\n1ROLOZKp+bkxY+DXv9avJ0/Wy7vvBvP0PPGEXr75pl7a7bpLM8CSJXqZnq4TYPAkaldc4Wml/MlP\n4MABnTx9/rlOnn70I/3e73+vl1ddBb/5jX79yit6+fDDurUT4NZb9fKTT/QyMxP+fjRHeP55vfzx\nj/XzwKBbIgEeeEAnhAC3366XH3ygl4MHe77TPFcLF+rkufUxP/64Tm5bx7F2rV726QNXX61fL13q\n+Z4pU8YD+ly2jhFg8dE8xHymuaAArrlGv37/fb2cNs3TmvnPf+qlec3CwuCWW/TrRYv08uKL4cor\n9WuzVfPee3U9A8/+y5d74vjxj72P/ac/hZ//XL82z9Hll3vO3+WX6+Wnn+pl375w2236dWmpXt5w\nA8ybp18/8ohepqR46uc77+jl55/rlstjbyb4UlOjb3B8+qnnxgXopHzbNs96aam+CbN+vV5vadE3\nIcxk3TD0jaOSEs+NnuZmfUNg794TT0ezt3Ivj3z1CAteWcCwJ4Z1KEk9VUYmjwTkOS/ReaRuic4k\n9Ut0lLSoCnECAdYA9+v0DLjoPDhcd5hgezCrrl5F5kOZNDU3sWGDvc1nj/3xe7zuhPn5bVvrxozR\niUplpW6tBN2ydiyzK+fw4bo7J/h+HjY3Vy9HjNDLsDBPF82FC3XS1TrG+HjvuH3Fn5vraRWzHf2L\nkpWlWyJBtzaDTkZfflknKObzf8OHe8oxz5WZoLX+rpQU7+9s/Z75Ojy8beITGam7wvo6ltZycjzH\nsnlz2/dNx57T2Fj9vaBbxEEn8+a1MreFhrZfpq9Be/r2bdsCaibtreMfPNiz7XiJVnq693pKysld\n25wcfR2PHPHUHV/7+TqGzEy9/OlPdevs4cOezwYGtv1MdbW+CfPQQ7pVuSv5aNdH/PDfP6S4utiv\nccjcqUIIIc4mkqiKs1JHnpMYmzaW9f+tm2kiIiAhHlwtLmKCY0gMS8Si2u+YcKJWmu/iRM/OdcZ3\n+vruUxFH6zJORdwnc2PgVJ6/9so6fPhjYPz3KqMjNzk6Uu7x9vuu1+C7lrF/P/zrX/D2254bLF1B\n6+Opd9Zzwb8uoLKx8rifOTf1XEYmj8Rhc/DBrg8ItAYyv898EkIT2FC2ga+KvyI0IJTs6Gz6xfZj\nx5Ed1DTVEOGIIMIRQVJYEh/u+pCm5iZSw1OJD40n2B7Mq5tfJaVHCgVZBe7vkue8RGeRuiU6k9Qv\n0VGSqApxAjaLjby4PK9tzhYnNov3/z7H/kAfNcrzTKHpeK1XvpxsonW88jr63vG2fZfE72TK6Ghs\nvhJmf8TxffY/0bG0l/C1V1ZHbgyc7Pk7VXXBV2zbt+uBuLqi/q0G9Q7+S3Cb96f3ms4fzv0D/eP7\ns+XQFoYkDvF6f9GERV7rF+RecFLfOyN7Rptt8/rMO6nPCiGEEN2NJKrirPRd7+itLV3LoMWDiAmO\nITs62+u9K6+Effs86zExnufjamr00nzWsblZj6B6LHPwpdbMMk6W+fxda+0lMS0+BjA+UXJilm9u\nMwzf5bSndSyty/DVgni8cl2utmUce06V0iPgdoRZ7om2tf7uY0VHj293/2OPSSnfz2oeWxfM72r9\nnGZrvs6fr7pg7uurTpj19HhOlKB2Zov+6WK3Q21TLXP+Ncdr+1WDruL2ibcTG+LpA35skno6SIuE\n6CxSt0RnkvolOkoSVSE6qCCrgMUzFxPuCPfa/sc/6qU5vYspP9+TbObn62VMDKxerV+bU5wo5Rls\nxhQU5ElYysv10nzesabG8yyf/ejjsU6nZ1Afk73Vo7NmGeazpHa7HoXX/H7Qz6x+/LF+bSY65jOi\n9fWeAWzi4jyfW7bM+zsTEjzHZyZ5ZhxVVZ5Bl8znRwMDPYMLmXr29AwMZI66az7bWlMDa9bo1+az\nsA5H2ziCgjzJ6+HD3nFXV8OqVZ7vB32ujz1/YWGea2AmvWbctbV6oB/wPHMZHu45fybzGWLD8AyU\nZT4j2tTkGSTK5HB4Rtg1z585qFFAgKcMs+4EBnoPlAT6WV9zRGBzlOPERL2sqvJMaWM+YxsQ4Bmo\nyxQainuQsMqjPV/NQbIqKz1lmM85NzXBu+96l6GUZ0Aw8/wFt22k7HK2H9nOBzs/cK833dSE3dr2\nOXQhhBBCdA4Z9VeclT4+NpPogNQeqST1SCI0QGeMhmFQ3VRNdWM1hmG4f4QHHmfckzFjPK/NBG7W\nrLatVeZIvOeeq5Mi8AyqM2eOZ5uZOM2e3baMqVP1sqDAkzCYZRQU6BF5wTMA0Hnn6WXruVnN0WMX\nLPC0mJlJ0qxZbVv/Bgzw7GO+Z454fOmlni7RZtI4bZoniTaZAz5lZ3sSZnNwoosv9rRMmknS1Knt\nn78hQzwtkWlpennRRZ4EziyjoKBtGeYN4AkTPMmaOfjSggWeKYDMazBuHDQ0fOxVxsCBejlliuf8\nmaMzz5/v2c/87ilT9DIy0nOc5jyns2Z54jaTxmnTPNtMZvfVtDTP+TPjvvRSz/kwb3xMm9b22M2u\nubGx3lMFmcdutgSbdWXOnLatz2b9GznSU1/NgZnak5Cg64tZJ8dPvlgNAAAYfUlEQVSO1YMyjRzp\nuVZWq64HGRn6psawYTBpkn7PbteJ+ujRnvl1rVY93dO55+rpekz5+TBjhqdepKfrKake+OIB9z5b\nfralSyWp3+fvlxDHI3VLdCapX6KjpEVViA469tnUelc9CfcmYLfYuW/qfVwz7Bp3MmKztR2x9lTx\n1Spl9/Fb+vs8V/p9tR7t1kw6ugpf5+BkW/pO5jlXX8d7JrQk+uJrBGlfdc3m418UX/v5YrHoaXRm\nzdIJdesbJccy5xP2xeVqG0dLi/cow+ZUNa1vJpndoS0WWPLtUp5d9ywAf530V3Jick7uIIQQQghx\nykiiKs5K3/U5iRB7CH1j+7bZ/ssRvyTQGkh1o/fDhhs2eKZNMef4BN1dNTycNkJDPa12rfn6sW+x\n+E6UwsJ8P5vYXlLlKyFISIDo6LbbIyPbJlsOh6eV6/toL772WqZ9JX1RUW0HsAJP6++xn/c1rUp4\nuE5sjk1GbTbfMfo69p49x7tbWI/9Tl/7m11yTybu9hK/9rYHBfne7ivRS0ho23UdfJ/r9spt73op\n1fZ8m/MJT5nSsTp0vJsevpLlY79XqbZxKuW5vp/t1f3Qx6eP54YxN5x8YKeJPOclOovULdGZpH6J\njpJEVYgOqLixok2LKkB8aDzl9eWsO7COz/d+TkxwDDkxOe4uhgkJej5UgHXr9ByTdXXwwx/qbVdf\nrbswvvCCfg40JkZ3mQwMhBdfhF699A/5yy7T+7/wAkycqLs2Tp6sf2D/7W+6jFdf1S1D6enwyCP6\nR/0DD+huj6mpnoTmwQdh5kxdzrXX6u+6+mrdHffDD/UP/oQEXQbo5zlTU3UXV7Mb7/r1uvUrLU0P\nJBUVBU8+qT938826S2Zyso4L4E9/0l2Ly8s9c8befbeeT/W223QZ0dFw7716ac672q+fJ47bb9dd\nNePidOsbwP33666uL7ygu5dGRcG8eTrB+uADnQj27AmPP673X7kS+vTRz3qa/27ef78+z0uW6Na2\njAz46CN9Xp5/Xh9nSoonQbv+ep1gTZ8OV1yhz/P99+tz9M47+pqkp8M99+j933lHd2OOjvZ0Bf7j\nH/X5nzkTFi3SZf/2t/r51WXLdPxZWXob6KlczM+ac9fef7/uGhsbq5/9jYyEV17RZbz+uj4X/frp\n6w06MZw6Ve9ndie+7z7dPfq55/RNlagouOYafUPlP//R35WcrK8L6PqRnw+7dnm6GL/wgu7y/eST\n+hokJMCdd+pjePBB3d122DDPM8Wvvaa7wPuaF9jfnC1OQuwhLJ652N+hCCGEEGctZXThIRqVUkZX\njk+cuU7lXF6O2x2svno1j3/zOA9++SBDEodQWlPKvl/uO/GHRbckc8WduW79+FYWfbKIB6c9yC+G\n/8Lf4fgk9Ut0FqlbojNJ/RLtUUphGEabfmsymJIQ31PDTQ30je2Lq0WPIvPGwjcoqipCLVIE3h7I\n46sfZ9PBTRyuO+znSIUQJ/JNiR4Ge3qv6X6ORAghhDi7SYuqEKdIzsM5bDu8jeLri0m6L4m/z/g7\n9668l+1HtpMansreyr3Eh8bT4GpgQd8FxIXEcajuEGkRaTS6GsmLy8MwDEpqSnDY9AN7SWFJNDU3\ncbDuIDaLjUZXI+GOcI7UH6HeWY9SCrvFTnxoPHXOOoLtwQTbgylvKCfAGkBJdQlKKZpbmkkNTyXY\nHkxlYyWhAaHUO+tpatZD8lY1VpEfl09pTSlFVUW0GC3UOmvJic6huLoYwzCoc9ZhURaC7EHsKt9F\nZFAkja5GhicPx6qsHKg9gN1ip7G5kZ7BPTEwUCgCbYE4bA7CAsJwtjgpqy0DoMVowWFzUNVYRb3T\nM1lsj8Ae7K3cS72rnhajhfjQeKKDoimqKsLAoLaplnBHOAHWADaWbSTYHkyds849n+WBmgP6+Fz1\nxIbEYhgGFmUhwBrAnso9GIbB4frDOGwO7BY7IQEhpPRIwdniJNAaSIvRwrcHvyXQGkhRVRE9Q3ri\nanGR0iOFcEc4pTWl2Cw26p31JIQlYFEWqhqriHREUtVYhUVZ3Oc0JTyFyoZKrBYr9c56qhqrsFvt\nlNaUEh0UTa2zltTwVCzKQnFVMaEBoRgYZEdn09zSzMayjdgsNizKwjmR51DZWMmeij1YLVZCA0LJ\njMykrLbMfU7rnHXEh8azr2ofDpuDFqOFpLAkeob0dF/XpuYmknskE2gNZE3pGgzDoLyhnL499bPX\n+6r2EemIpMVoIScmx/2ZHoE9KK4qxtXioqKhAqvFit1ip6m5ibjQOA7UHMBqsbqvYWxILA2uBuJC\n4gi0BbLtsJ7XqN5ZT0hACAHWAOblznN/pqvo9VAvguxBfHP1N11qpF8hhBCiu2qvRVWeURXiFIkJ\njqG4qti9HmANcCeCz5z/DBP/MZG/TPwLV7x5BY+tfowZWTNYun0pPx74Y55c8yQWZSEsIIzKxkrm\n5c7j1c2vEuGIoKJBTz45MWMiH+76kP5x/Vl3YB0AY9PG8n97/o+pmVN5r/A9QI9K7GpxMeWcKby/\n8336xfZjY5me7HNA/ADWlq6lV1QvdhzRk5Tmx+Wz/sB6BsYPZE3pGpLCkthfvR8Dw/2dgxIGuVua\npvWaxrs73uXivIt5YcMLAO7y5veZzyubXvGKe3jScL4s/pIQewi1zlqvOMwlQE50DlsPb2V6r+m8\ns+Mdesf0ZsuhLQCMThnN5/s+Z2TySFYWrfTa9j9D/odHVz2KQhEfGk9JTQkL+y3kpY0vkRCaQEmN\nnj9mVMooVuxbwYT0CXy0+yMAJp8zmQ92fuC1LTQglJqmGi4fcDlPr32awQmDWV2iJ4UdkTyCL4q+\ncJ93gLzYPDaUbXBfg0hHJDVNNThbnIxLG8cnez4hIyKDXRW7vM7fzOyZ/GfbfwDc19SsC4HWQBqb\nGwG4qN9FvLjxRZLCkiiu1vVrVvYs3tr2llddMGO7rP9l/GPdP8iNyWXLoS0YGO5zNSxpGF8Vf+V1\nDczvVCgyozLZcWQHVw+6msXfLCbSEUl5g543aGjiUL7e/7X7egLu82bW5UhHJBGOCHZV7GJSxiSW\n7/Ke3NWsTwPjB7L9yHYGxg8kK1rPd1NUVcTa0rVsLNtIeX05FQ0V7K7cTUl1CQdqDxAbEktmZKa+\naVFdxK7yXQTaAsmJzqHB1cCB2gNsPbSVniE9yY3JxdXios5ZR5A9CJvFRnl9OTaLDYfNQUJYAvXO\nekpqSjhcd5jEsEQSwhKoc9ZRWF7IV1d+JUmqEEII4WfS9VeclTpjLq9/zv0nX175pXt9dOpo9lTu\nAXTrIUDvGD26Up+efZiZPROAu6bcBcDvxvyO2TmzvbY9WvAo4YF6eODfjPoNAE/OflKXnzKaub3n\nAvDyD14G4I5Jd1CQpSeOfGj6QwAsGr8Ihb5Jdeu4WwF4fcHrgO7eeEneJQB88qNPALh+5PWMSx8H\nwH3n3QfAn8b/CQCHzcHlAy73KmtB3wX8MF+PCvW/M/5Xxz/5LgYnDPaK4/WF+jvjQuL41chfAbqb\nNMBVg65yn49n5jwDwK9G/ors6Gz3cQH8dfJfAciKynLHccu4WwA98vKMrBnu7we4c/KdxIfGu89D\n67IGJwzmgt4XAPDvBf9272PG8ftzfw/Ab0f/lmC7Hvb2pnNv0sc0TR/ThPQJ7jheufAVAG4ccyMD\nG/SIR48U6BGg7p96P6arB13tFeOs7Fks7LfQa787J9/JmFQ92e6vR/0agCdmPwFAeGA4F+dd7BX3\npfmXMjljslcZvxj+C/rF9gPg7il3ex17So8Urht+HQC3jr8VgP8Z+j9My5zmte3e8+4lPSJdx3u0\nTt43VdeJvj37uuM2r9nVg6/m3LRzveL959x/EhUUpc/lKD0q1OOzHqemqYbsh7NRixRqkSLl/hRm\nvTiL3y3/HXetuIvF3yxmWeEyNpRtoKy2jI1lG3lj6xs8tfYplhUuY/uR7Wws28irm19l6falrNq/\niuqmanaW72Tp9qW8V/gen+79lGWFy3h7+9usLFrJp3s/5f2d7/OPdf9gyaYlfLb3MzYf2szyXct5\nfv3zvLb5NQDCAn0Mt9yFyFyEorNI3RKdSeqX6ChpURXiFDF/0Fc3VpMUlkRqeCoAUUFRHK7Xz6ea\niapVWVlTsgbA3c23qbmpTQuUzWKjslHPV1PVWOW1f52zjg1lG9z7ATibnSzf6V2G3WLHQHehN1vH\nzP3rnHWsP7Ae0N0uQCfVH+/+2P0aPD/cG1wN7K3c67Wt3lXPin0rvL/Tane3QprP7totuoWqsrHS\n3fIcYA1wl2u2nraO2+wuWuesA3SXUvNcbD60GYAgux6G19ni5MPdH3qVYbVYKa0p9Tp/oQF6ctea\npho2HdzkjheOXoNjzl+ANcD9/ea1MOOudda64zC7/BqGwfqy9ZDsKcP8TsDdKtr6nJrnr/U1MKdI\naW7Rcw2Z172ysZKiqiKvbQ2uBlYUeV+DQGugu36YrbNhAWHuc1FYXgjgTsIbXY18vu/zNudvd8Vu\nfaxNujU8xB7iPn/m9THPh7PZyad7PvUqw6IsHKk/AkB1U7XX/l2V+f+pEEIIIfxHElVxVurMUefC\nAsMoul4nEndNvovMqEwiHBEARAZFAroV0kwAzEThgt4X8Pz6573KmtZLt3Cdm3quO9Hq07MPAAVZ\nBe4uvWbCMiN7BnetuMudNAGcl3keoLtdmgmD2VL5gz4/4M1tbwI6eQY4P+d8bvrwJoLsQe4Ed2za\nWADm5s51J21mS+X83Pk8uupRr7gnnzPZfWxm92ezhXB+n/nuZyrdZfSZzw0feM9XOT1LD2bTK6qX\nO9EaED8AgHm589yJk5m8zs2dy9LtS73LODogzsjkke64zXlw5+XOc3fHNa/B9F7TeWz1Y15lTM2c\nCuhrYHZnNhOZC3pf4E4yzeTr/N7nc1vGbeD0lDExYyIAkzImuZ/HTe6R7C7jlc26NdZs+Z6VM4vr\nl11PdFA0zYZOVMel6VbuS/Mvpbxe33BICNNz1MzPnc9dK+7yjruXjjstPM19DYYmDXWfq8oGnXSb\nrZ3z+szji+IvvMowW+eTeyRT79Jx94/X89HM6T3HfQPGvAYzsmfwwsYXfJ6/AfED3HXYbOk1OWwO\nFIqhSUMZnTKa3jG9CQ8M53D9YRpcDUQFRbmf6a1qrKK2qZYWo4WU8BTqnfUYGNgsNlqMFgqPFBIb\nEktoQKj7Od3C8kLCAsKIcEQQZA+iwdVAWW0Zja5GEsISCA0IpdHVSE1TTZd7ZtYXGTVTdBapW6Iz\nSf0SHSWJqhCd6Dejf+N+Xf8H/UP/w8s+pH98f6obq7kgV3c9vWH0DeTE5PD83Oepd+pBgK4YcAXB\n9mCeu+A5sqKyiA6O5jejfoNSikcLHmVG9gxKqkuYmjkVhWLR+EVkR2fz8vyXMTBI6ZHCovGLCLAG\n8GjBowyIH0B8aDyGYaCU4s7JdzIrZxajUkZx5cArCbQFcs3Qa0gMS+S9S98jwBpAr6he3DbhNgBe\nu/A18uLyCLIFkRmZCehundN7TadXVC/2VO4h0hHJbRNuIzYklsdmPkZUUBRZUVks7LcQq8XKPVPu\nYULGBFwtLgJtgQDcNuE2hicN597z7qWkuoRIRyQ3nXsTkY5IXpr3EvGh8eT2zOWvk3S337sm38X0\nrOk4bA53N9PbJtxGflw+z855lqrGKmKCY7hy4JWEBYbx6oWvkhqeSlJYEvdM0ZOavjD3Bcalj6O0\nptSdAN467lby4vJ4cd6LNDU3kdIjhYenP4zD5uCZ85+hd0xvknok4Wx2opTilrG3MDd3LtN6TdPH\np6z8cdwfSemRwpsXvYlFWUgNT+WWsbe4vzMvLo+ooCiv7sgFWQWMSB7BropdOGwOfjrkpySGJfLv\nBf8mxB5CVlQWvx75a5RSPDHrCYYnD8dusdMzRE9A+peJf2Fs2lgSwhLYV7mP8MBw7p5yN7EhsSz5\nwRKig6LJi8vjzxP/DMA9U+5h8jmTcdgc7qT99gm3MzhhME/NforyhnKigqL4xbBfEB4YzpIfLCEx\nLJGMiAx3Gc9d8Bxj08ZyqO4Qg+IHucsdnDCYp89/mpqmGuJD4/nDuX8g3BHO4pmLyY7OJicmh0cK\nHkEpxeKZixmYMJDMyEz3DRwhhBBCCJNfR/1VSk0DHgCswBOGYdx5zPsy6q/oFDKXl+hMUr9EZ5L6\nJTqL1C3RmaR+ifZ0uXlUlVJW4GFgGtAHuEgpleuveMTZZe3atf4OQXRjUr9EZ5L6JTqL1C3RmaR+\niY7y56i/w4AdhmHsNgzDCbwEnO/HeMRZpKKiwt8hiG5M6pfoTFK/RGeRuiU6k9Qv0VH+TFSTgH2t\n1ouObhNCCCGEEEIIcRbz52BK8vCp8I9t29j9xBOwahVUVEB4OKg23eKF+M52r12r65cQnUDql+gs\nUrfOUGPGwI03+juKE9q9e7e/QxBnGL8NpqSUGgHcahjGtKPrvwNaWg+opJSSZFYIIYQQQgghujFf\ngyn5M1G1AVuBScB+4CvgIsMwNvslICGEEEIIIYQQXYLfuv4ahuFSSl0DvIeenuZJSVKFEEIIIYQQ\nQvh1HlUhhBBCCCGEEOJY/hz1t11KqWlKqS1Kqe1KqRv8HY/oPpRSKUqpj5RS3yqlNiqlfuHvmET3\nopSyKqXWKKXe8ncsontRSkUopV5RSm1WSm06OtaDEKeEUup3R/9t3KCUekEpFejvmMSZSSn1lFLq\ngFJqQ6ttUUqp95VS25RSy5RSEf6MUZwZulyiqpSyAg8D04A+wEVKqVz/RiW6ESfwS8Mw+gIjgJ9J\n/RKn2LXAJmRkc3HqPQi8bRhGLpAPyOMy4pRQSqUDVwGDDMPIQz+StdCfMYkz2tPo3/Gt3Qi8bxhG\nNrD86LoQx9XlElVgGLDDMIzdhmE4gZeA8/0ck+gmDMMoNQxj7dHXNegfeon+jUp0F0qpZKAAeAKQ\nOY/EKaOUCgfONQzjKdDjPBiGUennsET3UYW+kRt8dLDLYKDYvyGJM5VhGJ8C5cdsng08e/T1s8Cc\n0xqUOCN1xUQ1CdjXar3o6DYhTqmjd5AHAl/6NxLRjdwP/AZo8XcgotvJAA4qpZ5WSn2jlHpcKRXs\n76BE92AYxhHgXmAveiaGCsMwPvBvVKKbiTMM48DR1weAOH8GI84MXTFRle5yotMppUKBV4Brj7as\nCvG9KKVmAmWGYaxBWlPFqWcDBgGPGoYxCKhFus6JU0QplQlcB6SjexmFKqUu8WtQotsy9Eiu8ntf\nnFBXTFSLgZRW6ynoVlUhTgmllB14FXjeMIzX/R2P6DZGAbOVUruAF4GJSql/+Dkm0X0UAUWGYXx9\ndP0VdOIqxKkwBFhhGMZhwzBcwGvov2lCnCoHlFLxAEqpBKDMz/GIM0BXTFRXAVlKqXSlVACwAHjT\nzzGJbkIppYAngU2GYTzg73hE92EYxu8Nw0gxDCMDPQjJh4ZhXObvuET3YBhGKbBPKZV9dNNk4Fs/\nhiS6ly3ACKVU0NF/JyejB4UT4lR5E/ivo6//C5CGAnFCNn8HcCzDMFxKqWuA99Cjzj1pGIaMbChO\nldHApcB6pdSao9t+ZxjGu36MSXRP0q1JnGo/B/559CZuIXC5n+MR3YRhGOuO9gBZhX7G/htgsX+j\nEmcqpdSLwDggRim1D7gF+CvwslLqx8Bu4EL/RSjOFEp3ExdCCCGEEEIIIbqGrtj1VwghhBBCCCHE\nWUwSVSGEEEIIIYQQXYokqkIIIYQQQgghuhRJVIUQQgghhBBCdCmSqAohhBBCCCGE6FIkURVCCCGE\nEEII0aVIoiqEEEJ0EqVUtFJqzdH/SpRSRUdfVyulHvZ3fEIIIURXJfOoCiGEEKeBUuqPQLVhGPf5\nOxYhhBCiq5MWVSGEEOL0UQBKqfFKqbeOvr5VKfWsUur/lFK7lVJzlVL3KKXWK6XeUUrZju43WCn1\nsVJqlVLqXaVUvD8PRAghhOhMkqgKIYQQ/pcBTABmA88D7xuGkQ/UAzOUUnbgb8A8wzCGAE8Df/ZX\nsEIIIURns/k7ACGEEOIsZwDvGIbRrJTaCFgMw3jv6HsbgHQgG+gLfKCUArAC+/0QqxBCCHFaSKIq\nhBBC+F8TgGEYLUopZ6vtLeh/qxXwrWEYo/wRnBBCCHG6SddfIYQQwr/USeyzFeiplBoBoJSyK6X6\ndG5YQgghhP9IoiqEEEKcPkarpa/XHPMawDAMwwnMB+5USq0F1gAjOzNQIYQQwp9kehohhBBCCCGE\nEF2KtKgKIYQQQgghhOhSJFEVQgghhBBCCNGlSKIqhBBCCCGEEKJLkURVCCGEEEIIIUSXIomqEEII\nIYQQQoguRRJVIYQQQgghhBBdiiSqQgghhBBCCCG6FElUhRBCCCGEEEJ0Kf8PnidciMD8bYcAAAAA\nSUVORK5CYII=\n", 2268 "text/plain": [ 2269 "<matplotlib.figure.Figure at 0x7f9aff0a02d0>" 2270 ] 2271 }, 2272 "metadata": {}, 2273 "output_type": "display_data" 2274 }, 2275 { 2276 "data": { 2277 "image/png": "iVBORw0KGgoAAAANSUhEUgAAA7UAAAISCAYAAAATN+jXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xu8pnVd7//XGwjSQlfIFjnplBx0FJ08oLV/6uydEpaJ\ndhD9dXCKnIraaodfDbl/QQcJLCs74G4qBE1wT6WVJ2QgV9mvgm05hiIzIC1kRhkVHDUVHOTz++O6\nFtzcs9bcc8+s71rrXvN6Ph7rse7vdX2v6/qumzcLPuv6fq87VYUkSZIkSZPokKUegCRJkiRJ+8ui\nVpIkSZI0sSxqJUmSJEkTy6JWkiRJkjSxLGolSZIkSRPLolaSJEmSNLEsaiVJByTJtyXZlGRHknuS\nfDbJ1Ul+OMkhfZ91Se5L8ugG11+b5PwkWehz76/+Z53r681LPbblomUmJEkHl8OWegCSpMmV5NXA\n64FrgV8EbgO+CfhO4H8Bu4B3Nh7GWuBXgF8HltOHr78J+OOhbZ9ZioEsU+8CngncsdQDkSRNNota\nSdJ+SfJs4HeA36+qVw/tfmeS3waOXMwhLdiJkiOq6p4DPM2Oqrp+H693KEBVfe0ArzkxquqzwGeX\nehySpMnn9GNJ0v76Jbqi5Bfn2llVM1V1w3wH91NPzx/atqrf/vKBbU9Psrmf1vzlJB9P8kf9vgvo\n7tIC7J6d5jtw7EOTXJzkP/qp0bcm+eXBqcr99OX7krw4yZ8k+Qz93cMkpyR5R5KdSb6S5LZ+qvWh\n475Zc/zsv5FkQ5L/AO4Bntjve06Sa5N8Icl/JrkqyROGjj+0P/5TSb6U5P1JnjD8nia5rD//8PWn\nk7x/aNt/SfK/kmxPcneSjyV5xVCf2SnDz0jy1iSf76edvyHJEUN9vyHJRf0/r7v7sf5lkkcOnevR\nQ8etT/Lh/v3+TJI/TfJNQ31e1Y/vy0nuSvJ/krxonH8GkqSVwzu1kqSx9UXdfwPeXlVfPYBTzTdd\nuPrrfCPwPuBfgJcDXwS+Gfi2vt+fAMcD5wD/Fbj/TmeSw/pjHw/8GnBDf9z/CxwF/MLQNf8AeA/w\ng8DX99veDdwJ/CRdAX8C8Hy6PwqPuqt6SD+GB36oqnsHmuuAjwM/B3wJ+FSS7wb+hm7K9g/S3X3+\nJeADSZ5UVdv7Yy8AzqOb+n018HTgb2cvMzSOud7jGtye5GHAPwJHAOcD/wGcCbyxv2v9h0PHvwW4\nAngx8O39eD7XfyfJ4cBm4EnAb9L985sCzui/f3qOMZHkov79eAPw83Tv928AT0zy7VV1X5IfBH4b\n+FXgA8BDgCfTTXuXJB2ELGolSfvjaLrC77bG13kcXRH0i1X1kX7bPwCXA1TVjiQ7+u3XVdV9A8e+\njK7QfXZV/WO/7f39Tdrzk1zUT4Fl4Pj1s40kRwOPBX62qt410O/KfRz7L/df90tyUlXdOrDpjMFp\nzkneALy/ql48sO39wK10Rd7P9nctfxb446qavUt+TZKvARfNMY65pmWHBxe7rwIeDTyxqj7eb/u7\nJFN079UlQ+/tW6vqVwf6PYPu/b6g3/ZDdOtlXzj03v3VHGOZ/TlX0f2h4YKq+o2B7dvoCu7voSv4\nvw3498E+wFXznVeStPI5/ViStJzdTPewqY1JfjDJiWMceyZd0f3PSQ6b/aK7g/h1dEXXoHcMNvqC\n91bg4iQ/nuTkMcf+Z8DThr62D+y/aqigPRn4FuCKofF+he5O57P7rqcBDwU2DV3vbWOOb9CZ/TVm\nhq59NfAIYPVQ/3cPtT9CVxTPOgP41FBBO8rz6P6/ZPjnvx74T+BZfb/rgTVJfj/Jc5M8dIxrSJJW\nIItaSdL+uJOu2HpMy4tU1efppjl/ErgEuC3JDUm+dx8Of2Q/vt3AVwe+rqO7S/mIof6fmuMczwM+\nSDeFdmu/PvQn93H4n6qqfxv6GpyqPXy9R/bf/2xovF8FvptuyjTAsf33nUPHzzmldx89EngOe75X\nm5j7vbprqH0P3dTlWY8AdjCe2Z//Fvb8+b9hdgxV9Wbgp4Bn0N2hvTPJXyVpmkVJ0vLl9GNJ0tiq\n6t4k08AZSQ7fz3W19wCHD20bLp6oqg8D35/uM2+fTreWdFOSJ1fVR/dy/s/SrQ39gXn2D0+d3mPt\naVX9B91aXpI8GfgZ4JIkM1V1oFNeh693Z/99A3DNHP1n3+PZYvgY4GMD+4+Z45i72fM9hu59Hvx4\noc/SPRzrVfOMdds82+fzWeAJI3s92OzP/zy69bnz7aeqNtLdvX843cdHvR743+x5912SdBCwqJUk\n7a+LgGngdcDwR/qQ5JuBb9zLE5Bvo5tKO+i757tYv6bzuiS/AryQbr3tR+mKY+im5P7nwCFXAd8H\nfKmqto76YUapqg8n+Xm6h1I9gQVex1lVNyWZoVvX+rq9dP13ugdLnU33/s966Rx9bwOOSXL07Prh\nJI8FTuXBRe1VwP8Abq+qhfgs3fcBZyd5wRhTkK8G7gMeU1XX7ssB/Z38TUmeCawf1V+StDJZ1EqS\n9ktVfSDJzwG/k2Q1cBlwO91TaL+Drvh7Gd1Th+fyNuB/JvlluinBz2KoMEvyArpi5R3ADN001FcC\nXwD+ue82e7f255NcBXytqj4IvBX4UeDaJK+nKwYPp3v40/cAL6qqr8z38yV5Et1TeN9G95TiQ+me\nWLwb+Lu9vjn776eBv+mfHvwXdHc8j6F7wvBtVfW7VbUrye8Cr0nyRbo1wk8HfmyO822ie/Lzn/fH\nHE13J/gzPPgBUr9LVyR/oO+3je69fhzwf1XVuB+X8+fAK4Ark/wm3TrYI+nW2v7eXH9kqKpbk1wM\n/GGSU+keCHY3cCLwXOBPq2o6yUa6f/7/Qjfl+hS6B1O9b8wxSpJWCItaSdJ+q6o3JLme7mm8v01X\nNH0R+D90xejgXbrh6ba/Sfdk45+hK7TeDfwwXYE7axvwZbqP4Tm2P/f1wPOq6pN9n3fRrbc9lwc+\ns/bQfor0d/bnXk/3UUBfoluz+W4emM4719igm+Z7G91HzJxAV2D9O/CCqvrQ3t6X/VVV703ybOA1\ndB9X9BC6acH/zIOfunwBXVH643Tv37/QFeofHTrfx5N8P93H4rwD2Er3z+o1DPzMVfWFJN9O9/79\nEt3HJO0CbmLPJxaP/Iig/r0/g+7jgdb33++ke4rxnUPHDY73NUk+Rlfc/3S//3a66dizU6D/ke6P\nFT8MPJxuvfVb+mtIkg5CqZrvIwIlSdIkSXIf3Ufi/NpSj0WSpMXi048lSZIkSRPLolaSJEmSNLGc\nfixJkiRJmljeqZUkSZIkTSyLWkmSJEnSxLKolSRJkiRNLItaSZIkSdLEsqiVJEmSJE0si1pJkiRJ\n0sSyqJUkSZIkTSyLWkmSJEnSxLKolSRJkiRNLItaSZIkSdLEsqiVJGk/JZlJ8h3z7HtWkpsaXvu+\nJN/S6vySJE0Ki1pJkvZf9V977qj6QFU9bn9PnOTYJH+W5JNJvpDkY0kuSPLQ/R7tnte4LMmvL9T5\nJElaCha1kiQtM0mOAv4ZOAJ4ZlU9DHge8HBg2dydTXLoUo9BkiSLWkmSDszpST6a5K4klyY5AiDJ\n2iS3z3ZK8pQkH+rvum5K8r/3cpf054DPV9UPVdUnAKpqe1X9bFV9ZLhzkukk5wy01yX5QP86SX43\nyc4kn0/y70mekGQ98H8Dv5jki0n+pu9/XJK/SvLpJLcm+R8D570gyV8meUuSzwMvP+B3T5KkA2RR\nK0nS/gtdYXgG8FjgFOB/7tEpORx4B3Ap8E3AlcCLmGfqMvBc4O1jjGPeadD92J4FnFxVDwd+ALiz\nqjYCbwUurqojq+qsJIcA7wQ+BBwHfAfw6iRnDJzvhcBf9Oe6YowxSpLUhEWtJEn7r4A/rKodVfU5\n4LXAy+bo90zg0Kr6g6r6WlW9A7h+L+c9CvjUAo1xN3Ak8Pgkh1TV1qq6Y2B/Bl4/HTi6qn6jqu6t\nqv8A/hR46UCff6qqvwWoqrsXaIySJO23w5Z6AJIkTbjbB15/gu4O57DjgB1zHJc5+gLcOc95xlZV\nf5fkD4E/Ah6T5O3AL1TVF+fo/hjguCSfG9h2KPAPA+3tCzEuSZIWindqJUk6MI8eev3JOfp8Cjh+\njuPmmzJ8DfDiJPMVvcO+BHzDQPtRgzv7O8RPA1bTTZH+f2Z3DZ3nE8B/VNU3DXw9rKpeMNB/vjFL\nkrQkLGolSdp/AX46yfH9E4tfA7xtjn7/DHwtyc8kOSzJWXRTfefzO8DDgMuTPBqgv8brkzxxjv5b\ngO9N8pAkJwHn0BefSZ6W5BlJvg74MnA38LX+uJ08+GnK1wNfTPKL/bkOTfLEJE8b+HklSVpWLGol\nSdp/RfewpauBjwM3A78xtJ+q+irwvXTF5ueAHwTeBXx1zpN263O/nW497HVJvkB393YXcMvguXu/\n259rJ/Am4M8H9j0M2AjcBcwAnwV+q9/3Z8DqJJ9L8vaqug94AbAGuBX4TH/swwau6Z1aSdKykqo2\n/21Kcinw3cCnq+q0ftuv0z01sejWC62rqtv7fecBP0b31+NXVtXV/fanApcBXw+8p6pe1WTAkiQt\noiTXAZdU1eVLPRZJkiZZyzu1bwLOHNr2uqp6clWtAf4aOB8gyWrgbLq1PmcClwysI3ojcE5VnQyc\nnGT4nJIkLXtJnp3kUf3045cDTwSuWupxSZI06ZoVtVX1AbopVoPbBp+0+I10U6AAzgKurKrdVTVD\nN7XqGUmOBY6sqtmPPXgz3ef6SZI0aU6lW/v6OeBnge+vqp1LOyRJkibfon+kT5LXAj8MfAU4vd98\nHPAvA9220z0lcjcP/uiAHez59EhJkpa9qvoT4E+WehySJK00i17UVtVrgNck2QD8HvCjC3HeJD64\nQpIkSZJWsKra40n8i17UDrgCeE//egdw4sC+E+ju0O7oXw9uH/7w+vu1euiVDm4XXHABF1xwwVIP\nQyuU+VIrZkstmS+1ZL40n/k+vn1RP9InyckDzbOAD/Wv/xZ4aZLDk3wzcDJwfVXdAXyh/3y90E1b\n/uvFHLM0MzOz1EPQCma+1IrZUkvmSy2ZL42r2Z3aJFcCzwGOTnI73ZOOvyvJqXQf2/Nx4KcAqurG\nJJuAG4F7gXPrgduu59J9pM9D6D7SxydFSpIkSZKAhp9Tu9iS1Er5WbS8TE9Ps3bt2qUehlYo86VW\nzJZaMl9qyXxpPknmXFNrUStJkiRJWvbmK2oXdU2tNImmp6eXeghawcyXWjFbasl8qSXzpXFZ1EqS\nJEmSJpbTjyVJkiRJy57TjyVJkiRJK45FrTSC6zrUkvlSK2ZLLZkvtWS+NC6LWkmSJEnSxHJNrSRJ\nkiRp2XNNrSRJkiRpxbGolUZwXYdaMl9qxWypJfOllsyXxmVRK0mSJEmaWK6plSRJkiQte66plSRJ\nkiStOBa10giu61BL5kutmC21ZL7UkvnSuCxqJUmSJEkTyzW1kiRJkqRlb9HX1Ca5NMnOJDcMbPut\nJB9L8uEkb0/y8IF95yW5OclNSc4Y2P7UJDf0+97QarySJEmSpMnTcvrxm4Azh7ZdDTyhqp4MbAPO\nA0iyGjgbWN0fc0mS2Qr8jcA5VXUycHKS4XNKTbmuQy2ZL7VittSS+VJL5kvjalbUVtUHgM8Nbdtc\nVff1zeuAE/rXZwFXVtXuqpoBbgGekeRY4Miqur7v92bgRa3GLEmSJEmaLEv5oKgfA97Tvz4O2D6w\nbztw/Bzbd/TbpUWzdu3apR6CVjDzpVbMlloyX2rJfGlcS1LUJnkN8NWqumIpri9JkiRJWhkOW+wL\nJlkHfBfwHQObdwAnDrRPoLtDu4MHpijPbt8x37nXrVvHqlWrAJiammLNmjX3/6Vndm6+bdvjtgfX\ndSyH8dheWW3zZbtVe3bbchmP7ZXVnt22XMZje5Hbt90G99zD9NatXfvUU7v9W7fC130day+6qGtv\n2AC7d3f7jziC6cc8Bq66irXf8i0P9B8+vrf21FPn3b/P7VtvhTPPXPr3y/Z+t7ds2cKuXbsAmJmZ\nYT5NP9InySrgnVV1Wt8+E3g98Jyq+uxAv9XAFcDpdNOLrwFOqqpKch3wSuB64N3A71fVVXNcy4/0\nURPT09P3/8slLTTzpVbMlloyXwe5jRth/frR++Z6vbdjewuWr324libLfB/p0+xObZIrgecARye5\nHTif7mnHhwOb+4cb/3NVnVtVNybZBNwI3AucO1ChngtcBjwEeM9cBa3Ukv/RVkvmS62YLbVkvtSS\n+dK4mhW1VfWyOTZfupf+FwIXzrH9X4HTFnBokiRJkqQV4pClHoC03M3O75daMF9qxWypJfOllsyX\nxmVRK0mSJEmaWBa10giu61BL5kutmC21ZL7UkvnSuCxqJUmSJEkTy6JWGsF1HWrJfKkVs6WWzJda\nMl8al0WtJEmSJGliWdRKI7iuQy2ZL7VittSS+VJL5kvjsqiVJEmSJE0si1ppBNd1qCXzpVbMlloy\nX2rJfGlcFrWSJEmSpIllUSuN4LoOtWS+1IrZUkvmSy2ZL43LolaSJEmSNLEsaqURXNehlsyXWjFb\nasl8qSXzpXFZ1EqSJEmSJpZFrTSC6zrUkvlSK2ZLLZkvtWS+NC6LWkmSJEnSxGpW1Ca5NMnOJDcM\nbPuBJB9N8rUkTxnqf16Sm5PclOSMge1PTXJDv+8NrcYrzcd1HWrJfKkVs6WWzJdaMl8aV8s7tW8C\nzhzadgPwYuAfBjcmWQ2cDazuj7kkSfrdbwTOqaqTgZOTDJ9TkiRJknSQalbUVtUHgM8NbbupqrbN\n0f0s4Mqq2l1VM8AtwDOSHAscWVXX9/3eDLyo1ZilubiuQy2ZL7VittSS+VJL5kvjWi5rao8Dtg+0\ntwPHz7F9R79dkiRJkqRlU9RKy5brOtSS+VIrZkstmS+1ZL40rsOWegC9HcCJA+0T6O7Q7uhfD27f\nMd9J1q1bx6pVqwCYmppizZo1909fmP2Xw7Zt27Zt2z4Y2rOWy3hsr6z2rOUyHtuL3Ib592/d+sD+\nrVthenr+/a3zNdf1F+Lnt71o7S1btrBr1y4AZmZmmE+qat6dByrJKuCdVXXa0Pb3A79QVf/at1cD\nVwCn000vvgY4qaoqyXXAK4HrgXcDv19VV81xrWr5s0iSJEkCNm6E9etH75vr9d6OXcxxaiIloaoy\nvL3ZndokVwLPAY5OcjtwPnAX8AfA0cC7k3yoqp5fVTcm2QTcCNwLnDtQoZ4LXAY8BHjPXAWtJEmS\nJOngdEirE1fVy6rquKo6vKpOrKpLq+qv+9cPqapHVdXzB/pfWFUnVdXjqup9A9v/tapO6/e9stV4\npfkMT4WRFpL5UitmSy2ZL7VkvjSuZkWtJEmSJEmtWdRKI8wuVpdaMF9qxWypJfOllsyXxmVRK0mS\nJEmaWBa10giu61BL5kutmC21ZL7UkvnSuCxqJUmSJEkTy6JWGsF1HWrJfKkVs6WWzJdaMl8al0Wt\nJEmSJGliWdRKI7iuQy2ZL7VittSS+VJL5kvjsqiVJEmSJE0si1ppBNd1qCXzpVbMlloyX2rJfGlc\nFrWSJEmSpIllUSuN4LoOtWS+1IrZUkvmSy2ZL43LolaSJEmSNLEsaqURXNehlsyXWjFbasl8qSXz\npXFZ1EqSJEmSJpZFrTSC6zrUkvlSK2ZLLZkvtWS+NC6LWkmSJEnSxGpW1Ca5NMnOJDcMbDsqyeYk\n25JcnWRqYN95SW5OclOSMwa2PzXJDf2+N7QarzQf13WoJfOlVsyWWjJfasl8aVwt79S+CThzaNsG\nYHNVnQJc27dJsho4G1jdH3NJkvTHvBE4p6pOBk5OMnxOSZIkSdJBqllRW1UfAD43tPmFwOX968uB\nF/WvzwKurKrdVTUD3AI8I8mxwJFVdX3f780Dx0iLwnUdasl8qRWzpZbMl1oyXxrXYq+pPaaqdvav\ndwLH9K+PA7YP9NsOHD/H9h39dkmSJEmSOGypLlxVlaQW8pzr1q1j1apVAExNTbFmzZr75+TP/sXH\ntu1x22vXrl1W47G9strmy7Zt27ZtT1wb5t+/desD+7duhenpbv8RRzC9YQPs3r334xeyPXj9xbie\n7QVvb9myhV27dgEwMzPDfFK1oHXlg0+erALeWVWn9e2bgLVVdUc/tfj9VfW4JBsAquqivt9VwPnA\nbX2fx/fbXwY8p6p+co5rVcufRZIkSRKwcSOsXz9633C/jRu77/Mdu9D2Nk5NpCRUVYa3H7LI4/hb\n4OX965cDfz2w/aVJDk/yzcDJwPVVdQfwhSTP6B8c9cMDx0iLYvavRlIL5kutmC21ZL7UkvnSuJpN\nP05yJfAc4OgktwO/AlwEbEpyDjADvASgqm5Msgm4EbgXOHfgtuu5wGXAQ4D3VNVVrcYsSZIkSZos\nzYraqnrZPLueO0//C4EL59j+r8BpCzg0aSyz8/qlFsyXWjFbasl8qSXzpXEt9vRjSZIkSZIWjEWt\nNILrOtSS+VIrZkstmS+1ZL40LotaSZIkSdLEsqiVRnBdh1oyX2rFbKkl86WWzJfGZVErSZIkSZpY\nFrXSCK7rUEvmS62YLbVkvtSS+dK4LGolSZIkSRPLolYawXUdasl8qRWzpZbMl1oyXxqXRa0kSZIk\naWJZ1EojuK5DLZkvtWK21JL5UkvmS+OyqJUkSZIkTSyLWmkE13WoJfOlVsyWWjJfasl8aVwji9ok\ntyb5qaFt72o3JEmSJEmS9s2+3KndDaxN8qYkR/Tbjm84JmlZcV2HWjJfasVsqSXzpZbMl8a1L0Xt\nl6vqbOBjwD8keUzjMUmSJEmStE8O29eOVfW6JP8GXA0c1W5I0vLiug61ZL7UitlSS+ZLLZkvjWtf\n7tT+yuyLqroGOAP4gwO5aJJXJbkhyUeSvKrfdlSSzUm2Jbk6ydRA//OS3JzkpiRnHMi1JUmSJEkr\nx7xFbZKnJnkK8MkkT5n9Ah4BvHt/L5jkicCPA08Hngy8IMljgQ3A5qo6Bbi2b5NkNXA2sBo4E7gk\niU9t1qJxXYdaMl9qxWypJfOllsyXxrW36cevB6p//TTgg0P7/9t+XvNxwHVVdTdAkr8Hvg94IfCc\nvs/lwDRdYXsWcGVV7QZmktwCnA78y35eX5IkSZK0Qsxb1FbV2tnXST5UVftbxA77CPDaJEcBdwPf\nRVcwH1NVO/s+O4Fj+tfH8eACdjs+fVmLyHUdasl8qRWzpZbMl1oyXxrXPj8oaqFU1U1JLqZ74NSX\ngC3A14b6VJKa6/jZLg2HKEmSJEmaEIte1AJU1aXApQBJXkt393VnkkdV1R1JjgU+3XffAZw4cPgJ\n/bY9rFu3jlWrVgEwNTXFmjVr7v9Lz+zcfNu2x20PrutYDuOxvbLa5st2q/bstuUyHtsrqz27bbmM\nx/Yit2H+/Vu3PrB/61aYnn5g/9ato4/vLUi+hq+/XN4/2/vc3rJlC7t27QJgZmaG+aRq7pueSQaf\ncHw28DYgfbuq6pXznnWEJI+sqk8neTTwPuCZwGuAO6vq4iQbgKmq2tA/KOoKunW0xwPXACfV0MCT\nDG+SFsT0wC9DaaGZL7VittSS+TrIbdwI69eP3jfcb+PG7vt8x/YWLF97G6cmUhKqKsPb93an9l/p\npvmmfz3oQKvHv0zyCGA3cG5VfT7JRcCmJOcAM8BLAKrqxiSbgBuBe/v+Vq9aNP5HWy2ZL7VittSS\n+VJL5kvj2tuDoi5rddGqevYc2+4CnjtP/wuBC1uNR5IkSZI0mQ6Zb0eSdyb52/778NffLuYgpaU0\nuL5DWmjmS62YLbVkvtSS+dK49jb9+Jl0D3C6Eriu33b/mtqWg5IkSZIkaV/srag9Fnge8LL+693A\nlVX10cUYmLRcuK5DLZkvtWK21JL5UkvmS+Oad/pxVd1bVe+tqh+hu2t7C/D3SX5m0UYnSZIkSdJe\nzFvUAiT5+iTfB/w58NPAG4B3LMbApOXCdR1qyXypFbOllsyXWjJfGte804+TvAV4AvAe4Neq6oZF\nG5UkSZIkSftgb2tqfxD4EvAq4FXJgz7jtqrqYS0HJi0XrutQS+ZLrZgttWS+1JL50rj29jm1e52a\nLEmSJEnSUrNwlUZwXYdaMl9qxWypJfOllsyXxmVRK0mSJEmaWBa10giu61BL5kutmC21ZL7UkvnS\nuCxqJUmSJEkTy6JWGsF1HWrJfKkVs6WWzJdaMl8al0WtJEmSJGliWdRKI7iuQy2ZL7VittSS+VJL\n5kvjsqiVJEmSJE2sJSlqk5yX5KNJbkhyRZIjkhyVZHOSbUmuTjI11P/mJDclOWMpxqyDl+s61JL5\nUitmSy2ZL7VkvjSuRS9qk6wCXgE8papOAw4FXgpsADZX1SnAtX2bJKuBs4HVwJnAJUm8wyxJkiRJ\nWpI7tV8AdgMPTXIY8FDgk8ALgcv7PpcDL+pfnwVcWVW7q2oGuAU4fVFHrIOa6zrUkvlSK2ZLLZkv\ntWS+NK5FL2qr6i7g9cAn6IrZXVW1GTimqnb23XYCx/SvjwO2D5xiO3D8Ig1XkiRJkrSMLcX048cC\nrwZW0RWs35jkhwb7VFUBtZfT7G2ftKBc16GWzJdaMVtqyXypJfOlcR22BNd8GvBPVXUnQJK3A98G\n3JHkUVV1R5JjgU/3/XcAJw4cf0K/bQ/r1q1j1apVAExNTbFmzZr7py/M/sth27Zt27ZtHwztWctl\nPLZXVnvWchmP7UVuw/z7t259YP/WrTA9/cD+rVtHHz/ggMc7fP3l8v7Z3uf2li1b2LVrFwAzMzPM\nJ91N0cWT5MnAW4GnA3cDlwHXA48B7qyqi5NsAKaqakP/oKgr6NbRHg9cA5xUQwNPMrxJkiRJ0kLb\nuBHWrx+9b7jfxo3d9/mOXWh7G6cmUhKqKsPbF/1ObVV9OMmbgQ8C9wH/BmwEjgQ2JTkHmAFe0ve/\nMckm4EbgXuBcq1dJkiRJEizR59RW1euq6glVdVpVvbx/svFdVfXcqjqlqs6oql0D/S+sqpOq6nFV\n9b6lGLMOXsNTYaSFZL7UitlSS+ZLLZkvjWtJilpJkiRJkhaCRa00wuxidakF86VWzJZaMl9qyXxp\nXBa1kiRpn2PDAAAgAElEQVRJkqSJZVErjeC6DrVkvtSK2VJL5kstmS+Ny6JWkiRJkjSxLGqlEVzX\noZbMl1oxW2rJfKkl86VxWdRKkiRJkiaWRa00gus61JL5UitmSy2ZL7VkvjQui1pJkiRJ0sSyqJVG\ncF2HWjJfasVsqSXzpZbMl8ZlUStJkiRJmlgWtdIIrutQS+ZLrZgttWS+1JL50rgsaiVJkiRJE8ui\nVhrBdR1qyXypFbOllsyXWjJfGpdFrSRJkiRpYlnUSiO4rkMtmS+1YrbUkvlSS+ZL47KolSRJkiRN\nrEUvapOcmuRDA1+fT/LKJEcl2ZxkW5Krk0wNHHNekpuT3JTkjMUesw5urutQS+ZLrZgttWS+1JL5\n0rgWvaitqq1V9a1V9a3AU4EvA+8ANgCbq+oU4Nq+TZLVwNnAauBM4JIk3mGWJEmSJC359OPnArdU\n1e3AC4HL++2XAy/qX58FXFlVu6tqBrgFOH2xB6qDl+s61JL5UitmSy2ZL7VkvjSupS5qXwpc2b8+\npqp29q93Asf0r48Dtg8csx04fnGGJ0mSJElazpasqE1yOPA9wF8M76uqAmovh+9tn7SgXNehlsyX\nWjFbasl8qSXzpXEdtoTXfj7wr1X1mb69M8mjquqOJMcCn+637wBOHDjuhH7bHtatW8eqVasAmJqa\nYs2aNff/SzE7jcG2bdu2bdu2bdu2bdsH0Ib592/d+sD+rVthevqB/Vu3jj5+IdvD118u75/tfW5v\n2bKFXbt2ATAzM8N80t0UXXxJ3ga8t6ou79uvA+6sqouTbACmqmpD/6CoK+jW0R4PXAOcVEMDTzK8\nSVoQ0wO/DKWFZr7UitlSS+brILdxI6xfP3rfcL+NG7vv8x3bW7B87W2cmkhJqKoMb1+SO7VJvoHu\nIVGvGNh8EbApyTnADPASgKq6Mckm4EbgXuBcq1dJkiRJEixRUVtVXwKOHtp2F12hO1f/C4ELF2Fo\n0h78S7RaMl9qxWypJfOllsyXxnXIUg9AkiRJkqT9ZVErjTC7aF1qwXypFbOllsyXWjJfGpdFrSRJ\nkiRpYlnUSiO4rkMtmS+1YrbUkvlSS+ZL47KolSRJkiRNLItaaQTXdagl86VWzJZaMl9qyXxpXBa1\nkiRJkqSJZVErjeC6DrVkvtSK2VJL5kstmS+Ny6JWkiRJkjSxLGqlEVzXoZbMl1oxW2rJfKkl86Vx\nWdRKkiRJkiaWRa00gus61JL5UitmSy2ZL7VkvjQui1pJkiRJ0sRaWUVtsufXOH3tb/85+s+5rmOC\nxm//5d1/epmNx/4rp//9v7uWyXjsv7L6z7vmcULGb/8D7P8TP7Fv/Yf7/cRPdF8jzj+93H5e+y+f\n/vNYWUWtJEmSJOmgcthSD2BBVbXpa/+Duv+c6zomaPz2X9791zY+v/0P3v73/+5aJuOx/8rqv7bx\n+e2/zPtv3Ajr14/u/8d//OB+Gzfu0/nXjjse+x88/ee5W7skd2qTTCX5yyQfS3JjkmckOSrJ5iTb\nklydZGqg/3lJbk5yU5IzlmLMkiRJkqTlZ6mmH78BeE9VPR54EnATsAHYXFWnANf2bZKsBs4GVgNn\nApckcdq0Fo2flaaWzJdaMVtqyXypJfOlcS16cZjk4cCzqupSgKq6t6o+D7wQuLzvdjnwov71WcCV\nVbW7qmaAW4DTF3fUkiRJkqTlaCnueH4z8Jkkb0ryb0n+JMk3AMdU1c6+z07gmP71ccD2geO3A8cv\n3nB1sPOz0tSS+VIrZkstmS+1ZL40rqUoag8DngJcUlVPAb5EP9V4VlUVsLeVxGOuMpYkSZIkrURL\n8fTj7cD2qvo/ffsvgfOAO5I8qqruSHIs8Ol+/w7gxIHjT+i37WHdunWsWrUKgKmpKdasWXP/X3pm\n5+ZPXHvbtq69dWvXPvVU24vcnn29XMZje2W1zZftVu3ZbctlPLZXVnt223IZj+1Fbj/pSV17rv9/\nvfVW1vZPOZ6+9VaYnn5g/623dv1h/uN7a9euPfD/n771Vvj5n1/692u5tE85Zbz3bxm0t2zZwq5d\nuwCYmZlhPqlxH628AJL8A/DjVbUtyQXAQ/tdd1bVxUk2AFNVtaF/UNQVdOtojweuAU6qoYEnGd4k\nLYjpgV/G0kIzX2rFbKkl86WWzJfmk4Sq2uNzfZaqqH0y8KfA4cDHgR8FDgU2AY8GZoCXVNWuvv8v\nAz8G3Au8qqreN8c5LWolSZIkaYVaVkVtCxa1kiRJkrRyzVfU+nmv0gh+VppaMl9qxWypJfOllsyX\nxmVRK0mSJEmaWE4/liRJkiQte04/liRJkiStOBa10giu61BL5kutmC21ZL7UkvnSuCxqJUmSJEkT\nyzW1kiRJkqRlzzW1kiRJkqQVx6JWGsF1HWrJfKkVs6WWzJdaMl8al0WtJEmSJGliuaZWkiRJkrTs\nuaZWkiRJkrTiWNRKI7iuQy2ZL7VittSS+VJL5kvjsqiVJEmSJE0s19RKkiRJkpY919RKkiRJklac\nJSlqk8wk+fckH0pyfb/tqCSbk2xLcnWSqYH+5yW5OclNSc5YijHr4OW6DrVkvtSK2VJL5kstmS+N\na6nu1Bawtqq+tapO77dtADZX1SnAtX2bJKuBs4HVwJnAJUm8w6xFs2XLlqUeglYw86VWzJZaMl9q\nyXxpXEtZHA7PhX4hcHn/+nLgRf3rs4Arq2p3Vc0AtwCnIy2SXbt2LfUQtIKZL7VittSS+VJL5kvj\nWso7tdck+WCSV/Tbjqmqnf3rncAx/evjgO0Dx24Hjl+cYUqSJEmSlrPDlui6/7WqPpXkvwCbk9w0\nuLOqKsneHmXsY461aGZmZpZ6CFrBzJdaMVtqyXypJfOlcS35R/okOR/4T+AVdOts70hyLPD+qnpc\nkg0AVXVR3/8q4Pyqum7oPBa6kiRJkrSCzfWRPote1CZ5KHBoVX0xyTcAVwO/CjwXuLOqLu4L2amq\n2tA/KOoKunW0xwPXACf5obSSJEmSpKWYfnwM8I4ks9d/a1VdneSDwKYk5wAzwEsAqurGJJuAG4F7\ngXMtaCVJkiRJsAymH0uSJEmStL/8vFdJkiRJ0sSyqJUkSZIkTSyLWkmSJEnSxLKolSRJkiRNLIta\nSZIkSdLEsqiVJEmSJE0si1pJkiRJ0sSyqJUkSZIkTSyLWkmSJEnSxLKolSRJkiRNLItaSZIkSdLE\nsqiVJEmSJE0si1pJkiRJ0sSyqJUkSZIkTSyLWkmSJEnSxLKolSRJkiRNLItaSZIkSdLEsqiVJEmS\nJE0si1pJkiRJ0sSyqJUkSZIkTSyLWkmSJEnSxLKolSRJkiRNLItaSZJWqCQzSb5jqcchSVJLFrWS\nJA2YrxBMsjbJ7f3rjyb5Yv91b5KvDLTvG3j91ST3DLQvGTzPHNe4bKj/F5N8aC9jfViS30tyW9/3\nliS/m+QRfZfqvw7k/bggyVsO5BySJLVkUStJ0oONLASr6glVdWRVHQl8APjp2XZVHTKw763AxQP7\nzt2Haw/2P7KqvnWujkkOB64FHg98Z3+9bwM+Czx9rJ+4oSSHLvUYJEkrm0WtJEkHLvu570D8CHAi\n8OKqugmgqj5TVa+tqqv2GER3F/jXB9oPumOc5JeSbE/yhSQ3JfnvSc4EzgPOHrxrnOThSf4sySf7\nY349ySH9vnVJ/r8kv5Pks8D5jX5+SZIAOGypByBJ0gpwQFN8h+xrEfxc4L1V9eV97D/vHegkpwI/\nDTytqu5I8mjgsKq6NcmFwGOr6kcGDrkMuAN4LPCNwLuA24GN/f7TgSuARwKH7+P4JEnaL96plSRp\n+QjwC0k+N/D1pnn6HgV8aj/OP5evAUcAT0jydVX1iaq6deCY+49LcgzwfOBnq+orVfUZ4PeAlw6c\n75NV9UdVdV9V3T3mGCVJGot3aiVJWj4K+K2q+pV96HsncNyCXLTqliSvBi6gK2zfB/xcVc1VND8G\n+DrgU8n9te4hwCcG+sz5ICxJklrwTq0kSZPpGuA7kzx0H/t/CRjs+6jBnVV1ZVU9i65oLeDi2V1D\n57kduAd4RFV9U//18Ko6bfB0+/pDSJJ0oCxqJUna0+FJvn7ga9QTfOeb1jvv+tgkRwxeY6D/vq6p\nfQtdgflXSU5NckiSRyT55STPn6P/FuC7knxTkkcBrx4Yyyn9g6GOoCtY76abkgzd2tlV6W/L9ndv\nrwZ+J8mR/XUfm+TZ+zhuSZIWlEWtJEl7eg/w5YGv89n7R/3sbfvwvgKOB74ycP4vJXlsv+8Xhz6n\n9tNznrjqq3QPi7oJ2Ax8HriObq3tv8xxyFuADwMzwFXA2wbGdgTwm8Bn6NbpHk331GOAv+i/35nk\ng/3rH6F7ANSNwF19n9k7vwf82biSJI0jVf53R5IkSZI0mbxTK0mSJEmaWBa1kiRJkqSJZVErSZIk\nSZpYFrWSJEmSpIl12FIPYKEk8YlXkiRJkrSCVdUeH323YopaAJ/krBYuuOACLrjggqUehlYo86VW\nzJZaMl9qyXxpPv1Hpu/B6cfSCDMzM0s9BK1g5kutmC21ZL7UkvnSuCxqJUmSJEkTy6JWGmHdunVL\nPQStYOZLrZgttWS+1JL50riyUtahJqmV8rNIkiRJkh4syZwPivJOrTTC9PT0Ug9BK5j5UitmSy2Z\nL7VkvjQui1pJkiRJ0sRy+rEkSZIkadlz+rEkSZIkacVpVtQmuTTJziQ3DGw7KsnmJNuSXJ1kamDf\neUluTnJTkjMGtj81yQ39vje0Gq80H9d1qCXzpVbMlloyX2rJfGlcLe/Uvgk4c2jbBmBzVZ0CXNu3\nSbIaOBtY3R9zSZLZ28pvBM6pqpOBk5MMn1OSJEmSdJBquqY2ySrgnVV1Wt++CXhOVe1M8ihguqoe\nl+Q84L6qurjvdxVwAXAb8HdV9fh++0uBtVX1k3NcyzW1kiRJkrRCLZc1tcdU1c7+9U7gmP71ccD2\ngX7bgePn2L6j3y5JkiRJEoct1YWrqpIs6K3VdevWsWrVKgCmpqZYs2YNa9euBR6Ym2/b9rjtwXUd\ny2E8tldW23zZbtWe3bZcxmN7ZbVnty2X8dheWe3ZbctlPLaXrr1lyxZ27doFwMzMDPNZiunHa6vq\njiTHAu/vpx9vAKiqi/p+VwHn000/fv/A9OOX0U1fdvqxFs309PT9/3JJC818qRWzpZbMl1oyX5rP\nfNOPF7uofR1wZ1Vd3BeyU1W1oX9Q1BXA6XTTi68BTurv5l4HvBK4Hng38PtVddUc17KolSRJkqQV\nar6ittn04yRXAs8Bjk5yO/ArwEXApiTnADPASwCq6sYkm4AbgXuBcwcq1HOBy4CHAO+Zq6CVJEmS\nJB2cmt6pXUzeqVUrToFRS+ZLrZgttWS+1JL50nyWy9OPJUmSJElaMN6plSRJkiQte96plSRJkiSt\nOBa10giDn5kmLTTzpVbMlloyX2rJfGlcFrWSJEmSpInlmlpJkiRJ0rLnmlpJkiRJ0opjUSuN4LoO\ntWS+1IrZUkvmSy2ZL43LolaSJEmSNLFcUytJkiRJWvbmW1N72FIMRlqJLr8c7rlndL8jjoCXv7z9\neCRp9veSv3ckLbR9/f+efXXEEd33Azmnv+sOXha10gjT09OsXbt2ZL977oH162Hjxu77fDZuXLix\nafLta76kcU1PT3PPPWvv/70kLSR/d2m2+Bz+f55R/x80X7/Z31Pr13f52rZt7ZznH3VOHZxcUytJ\nkiRJmlgWtdII/iVaLZkvtWK21JL5UkvmS+OyqJUkSZIkTSyLWmkEPytNLZkvtWK21JL5UkvmS+Oy\nqJUkSZIkTSyLWmkE13WoJfOlVsyWWjJfasl8aVwWtZIkSZKkibUkRW2SVyW5IclHkryq33ZUks1J\ntiW5OsnUQP/zktyc5KYkZyzFmHXwcl2HWjJfasVsqSXzpZbMl8a16EVtkicCPw48HXgy8IIkjwU2\nAJur6hTg2r5NktXA2cBq4EzgkiTeYZYkSZIkLcmd2scB11XV3VX1NeDvge8DXghc3ve5HHhR//os\n4Mqq2l1VM8AtwOmLO2QdzFzXoZbMl1oxW2rJfKkl86VxLUVR+xHgWf1044cC3wWcABxTVTv7PjuB\nY/rXxwHbB47fDhy/WIOVJEmSJC1fi17UVtVNwMXA1cB7gS3A14b6FFB7O02zAUpDXNehlsyXWjFb\nasl8qSXzpXEdthQXrapLgUsBkryW7u7rziSPqqo7khwLfLrvvgM4ceDwE/pte1i3bh2rVq0CYGpq\nijVr1tw/fWH2Xw7btlu1t24FWD7jsW3b9sHdnjXt7yfbDdqzlst4bC9Ne+vWaaanH7z/QH7fzJ5v\n1lznH3c8i/l+2F749pYtW9i1axcAMzMzzCfdTdHFleSRVfXpJI8G3gc8E3gNcGdVXZxkAzBVVRv6\nB0VdQbeO9njgGuCkGhp4kuFN0qLauBHWr3/g+6h+ktTavv5ekqRxbdzYfR/+3bKvv2+G+w2fb77z\nj3NOrTxJqKoMb1+SO7XAXyZ5BLAbOLeqPp/kImBTknOAGeAlAFV1Y5JNwI3AvX1/q1dJkiRJEocs\nxUWr6tlV9YSqWlNV7++33VVVz62qU6rqjKraNdD/wqo6qaoeV1XvW4ox6+A1OxVCasF8qRWzpZbM\nl1oyXxrXkhS1kiRJkiQtBItaaYTZxepSC+ZLrZgttWS+1JL50rgsaiVJkiRJE8uiVhrBdR1qyXyp\nFbOllsyXWjJfGpdFrSRJkiRpYlnUSiO4rkMtmS+1YrbUkvlSS+ZL47KolSRJkiRNLItaaQTXdagl\n86VWzJZaMl9qyXxpXBa1kiRJkqSJZVErjeC6DrVkvtSK2VJL5kstmS+Ny6JWkiRJkjSxLGqlEVzX\noZbMl1oxW2rJfKkl86VxWdRKkiRJkiaWRa00gus61JL5UitmSy2ZL7VkvjQui1pJkiRJ0sSyqJVG\ncF2HWjJfasVsqSXzpZbMl8ZlUStJkiRJmlgWtdIIrutQS+ZLrZgttWS+1JL50rgsaiVJkiRJE8ui\nVhrBdR1qyXypFbOllsyXWjJfGteSFLVJzkvy0SQ3JLkiyRFJjkqyOcm2JFcnmRrqf3OSm5KcsRRj\nliRJkiQtP4te1CZZBbwCeEpVnQYcCrwU2ABsrqpTgGv7NklWA2cDq4EzgUuSeIdZi8Z1HWrJfKkV\ns6WWzJdaMl8a11IUh18AdgMPTXIY8FDgk8ALgcv7PpcDL+pfnwVcWVW7q2oGuAU4fVFHLEmSJEla\nlha9qK2qu4DXA5+gK2Z3VdVm4Jiq2tl32wkc078+Dtg+cIrtwPGLNFzJdR1qynypFbOllsyXWjJf\nGtdSTD9+LPBqYBVdwfqNSX5osE9VFVB7Oc3e9kmSJEmSDhKHLcE1nwb8U1XdCZDk7cC3AXckeVRV\n3ZHkWODTff8dwIkDx5/Qb9vDunXrWLVqFQBTU1OsWbPm/jn5s3/xsW173PbatWv3qf/WrQBLP17b\nk9Xe13zZtr0/7W3buvatt8LGjd3+rVu7/aeeatv2gbW3bVte47G97+0nPWktL3/5gf++2bp1munp\nhfn/oSOOgI997IHzzeZr+PzjjudAfj7bS9/esmULu3btAmBmZob5pLspuniSPBl4K/B04G7gMuB6\n4DHAnVV1cZINwFRVbegfFHUF3Tra44FrgJNqaOBJhjdJi2rjRli//oHvo/pJUmv+vpE0l4X43bBx\nY/d9+Dz7eu596TfuOP2dt/IloaoyvP2QxR5IVX0YeDPwQeDf+80bgYuA5yXZBvz3vk1V3QhsAm4E\n3guca/WqxTT7VyOpBfOlVsyWWjJfasl8aVxLMf2Yqnod8LqhzXcBz52n/4XAha3HJUmSJEmaLIt+\np1aaNLPz+qUWzJdaMVtqyXypJfOlcVnUSpIkSZImlkWtNILrOtSS+VIrZkstmS+1ZL40LotaSZIk\nSdLEsqiVRnBdh1oyX2rFbKkl86WWzJfGZVErSZIkSZpYFrXSCK7rUEvmS62YLbVkvtSS+dK4LGol\nSZIkSRPLolYawXUdasl8qRWzpZbMl1oyXxqXRa0kSZIkaWJZ1EojuK5DLZkvtWK21JL5UkvmS+Oy\nqJUkSZIkTSyLWmkE13WoJfOlVsyWWjJfasl8aVwWtZIkSZKkiWVRK43gug61ZL7UitlSS+ZLLZkv\njcuiVpIkSZI0sUYWtUluTfJTQ9v+//buP8ay867v+PsTb2JwKEzdoPVPMVFdhyyttXaIcYMiBmSs\nEGBttSgOAsGiEEcKkEBVlHX/oNCqbhyFQgTKH5sf7hZiR8Y0FSmYeDdkEiTUFpOd/Np41o4yIuvg\ndep0QggVXddf/rhn7PF4Z+7c9X3mzLn7fkmjOc+5z733O9rPzr3fOec597+3K0naXVzXoZbMl1ox\nW2rJfKkl86VJbedI7RlgIcldSS7s9l3esCZJkiRJkrZlO03t31bVrcDngU8k+Y7GNUm7ius61JL5\nUitmSy2ZL7VkvjSpPdudWFXvSPJJ4AHg4nYlSZIkSZK0Pds5UvsraxtVdQy4Cfitc33CJC9Lcnzd\n19eSvCXJxUmOJjmZ5IEkc+vuc3uSh5M8lOSmc31u6Vy4rkMtmS+1YrbUkvlSS+ZLk9r0SG2SVwAF\nfDnJdRtu/sNzfcKqWgau7Z7jBcCjwIeAQ8DR7ojw27rxoST7gFuBfYzW8h5LcnVVPXWuNUiSJEmS\nZsNWR2p/vft6J/DxdeO1fdNwI/BIVX0JOAAc6fYfAW7ptm8G7qmqM1W1AjwCXD+l55fGcl2HWjJf\nasVsqSXzpZbMlya16ZHaqlpY205yvKq+v8Hzvx64p9veW1Wnu+3TwN5u+zLgf6y7zym8+rIkSZIk\nie2tqW0iyYuAHwV+b+NtVVWMTn3ezFa3SVPlug61ZL7UitlSS+ZLLZkvTWrbVz9u4IeAv6iqr3Tj\n00kuqarHklwKPN7tfxS4ct39ruj2PcfBgweZn58HYG5ujv379z/9n2LtNAbHjluNl5cBdk89jh07\nduzYsWPHZxvDdB5veXmRxcVn3z7N90Nne/xpzne8+8dLS0usrq4CsLKywmYyOih6lhuS9Vc4vhX4\nIJBuXFX1lk0fdRuSfBC4v6qOdON3AE9U1Z1JDgFzVbV2oai7Ga2jvRw4BlxVGwpPsnGXNBWLi4tP\n/+fayuHDcNttz3wfN0+C7edLmtTi4iInTy74+0ZN+Ltr2KbxXuTw4dH3jY+z3cfeat5aviat0/dY\nsy8JVZWN+7c6UvsXjE7zTbe93vPqHpO8mNFFot64bvfbgXuTvAFYAV4HUFUnktwLnACeBN5s9ypJ\nkiRJgq0vFPWfWz1pVX0DeMmGfV9l1Oiebf4dwB2t6pG24l+i1ZL5UisLCwucPNl3FZpV/u5SS+ZL\nk9rqc2o/zDNHajeqqjrQrCpJkiRJkrbhBVvcdgOjCzT9KaPPpX0nz/6sWum88MxFFaTpM19qxWyp\nJfOllsyXJrXVmtpLgR8Efrz7+kPgnqr63E4UJkmSJEnSOJseqa2qJ6vq/qr6KUZHbR8BPp7k53es\nOmkXcF2HWjJfasVsqSXzpZbMlya15efUJvkm4IeB1wPzwLuAD7UvS5IkSZKk8TY9Upvkd4A/A64F\n/l1VvbKq/n1VPbpj1Um7gOs61JL5UitmSy2ZL7VkvjSprY7U/gTwDeCtwFuTZ10EuarqW1sWJkmS\nJEnSOFt9Tu1WV0aWzhuu61BL5kut+Dm1asnfXWrJfGlSNq6SJEmSpMGyqZXGcF2HWjJfasVsqSXz\npZbMlyZlUytJkiRJGiybWmkM13WoJfOlVsyWWjJfasl8aVI2tZIkSZKkwbKplcZwXYdaMl9qxWyp\nJfOllsyXJmVTK0mSJEkaLJtaaQzXdagl86VWzJZaMl9qyXxpUja1kiRJkqTBsqmVxnBdh1oyX2rF\nbKkl86WWzJcmZVMrSZIkSRosm1ppDNd1qCXzpVbMlloyX2rJfGlSvTS1SeaS3Jfk80lOJPmeJBcn\nOZrkZJIHksytm397koeTPJTkpj5qliRJkiTtPn0dqX0X8EdV9XLgGuAh4BBwtKquBj7ajUmyD7gV\n2Ae8Bnh3Eo8wa8e4rkMtmS+1YrbUkvlSS+ZLk9rx5jDJtwGvrqr3A1TVk1X1NeAAcKSbdgS4pdu+\nGbinqs5U1QrwCHD9zlYtSZIkSdqN+jji+VLgK0nuSvLJJO9J8mJgb1Wd7uacBvZ225cBp9bd/xRw\n+c6Vq/Od6zrUkvlSK2ZLLZkvtWS+NKk+mto9wHXAu6vqOuAbdKcar6mqAmqLx9jqNkmSJEnSeWJP\nD895CjhVVX/eje8DbgceS3JJVT2W5FLg8e72R4Er193/im7fcxw8eJD5+XkA5ubm2L9//9N/6Vk7\nN9+x40nH69d1bDV/eRmg/3odD2u83Xw5djzpeGRh19TjeLbGa/t2Sz2OJxvDdB5veXmRxcVn3z6N\n90Nr+872+JPW83x+Psf9j5eWllhdXQVgZWWFzWR0UHRnJfkE8LNVdTLJrwIXdTc9UVV3JjkEzFXV\noe5CUXczWkd7OXAMuKo2FJ6kznYAd7MfLzn7fuc7f+P8xcXFp/9zbWf+4cNw223t6nH+rM1fZO3F\nf3fU4/xZmb+4uMjJkwu86U27ox7nz9b8j33sua+Nfdbj/Mnmr71XafH4698Hnfv7pUXWXhufbz3O\nn7X5oaqec0sfR2oBfgH4QJIXAV8Afga4ALg3yRuAFeB1AFV1Ism9wAngSeDNGxtaqaWzvWhL07PQ\ndwGaUQsLC5w82XcVmlW+Nqqthb4L0MD00tRW1aeAV57lphs3mX8HcMf4x52khu3Pdb7ztzP/8OHt\nzT/bXyZb1ON85zvf+c53vvOd32r+2vuerd7TPN96xr1ner7zJ63H+f3P3+xo7wsme2jp/LN+fYc0\nbeZLrZgttWS+1JL50qRsaiVJkiRJg2VTK43huiG1ZL7UitlSS+ZLLZkvTcqmVpIkSZI0WDa10hiu\n6zC8CoUAAAvOSURBVFBL5kutmC21ZL7UkvnSpGxqJUmSJEmDZVMrjeG6DrVkvtSK2VJL5kstmS9N\nyqZWkiRJkjRYNrXSGK7rUEvmS62YLbVkvtSS+dKkbGolSZIkSYNlUyuN4boOtWS+1IrZUkvmSy2Z\nL03KplaSJEmSNFg2tdIYrutQS+ZLrZgttWS+1JL50qRsaiVJkiRJg2VTK43hug61ZL7UitlSS+ZL\nLZkvTcqmVpIkSZI0WDa10hiu61BL5kutmC21ZL7UkvnSpGxqJUmSJEmDZVMrjeG6DrVkvtSK2VJL\n5kstmS9NyqZWkiRJkjRYvTS1SVaSfDrJ8ST/q9t3cZKjSU4meSDJ3Lr5tyd5OMlDSW7qo2adv1zX\noZbMl1oxW2rJfKkl86VJ9XWktoCFqrq2qq7v9h0CjlbV1cBHuzFJ9gG3AvuA1wDvTuIRZkmSJElS\nr6cfZ8P4AHCk2z4C3NJt3wzcU1VnqmoFeAS4HmmHuK5DLZkvtWK21JL5UkvmS5Pq80jtsSQPJnlj\nt29vVZ3utk8De7vty4BT6+57Crh8Z8qUJEmSJO1mfTW131tV1wI/BPxcklevv7GqilHju5mtbpOm\nynUdasl8qRWzpZbMl1oyX5rUnj6etKr+qvv+lSQfYnQ68ekkl1TVY0kuBR7vpj8KXLnu7ld0+57j\n4MGDzM/PAzA3N8f+/fufPn1h7T+HY8etxsvLALunHseOHZ/f4zW7pR7HszVes1vqcTzZGKbzeMvL\niywuPvv2abwfWnO2x5+0nufz8znuf7y0tMTq6ioAKysrbCajg6I7J8lFwAVV9fUkLwYeAH4NuBF4\noqruTHIImKuqQ92Fou5m1PheDhwDrqoNhSfZuEvaUYcPw223PfN93DxJas3fN5LOZhq/Gw4fHn3f\n+DjbfeztzJu0Tn/nzb4kVNXGazP1cqR2L/ChJGvP/4GqeiDJg8C9Sd4ArACvA6iqE0nuBU4ATwJv\ntnuVJEmSJEEPa2qr6otVtb/7+qdV9R+7/V+tqhur6uqquqmqVtfd546quqqqvrOqPrLTNev8tvFU\nGGmazJdaMVtqyXypJfOlSe14UytJkiRJ0rTY1EpjrC1Wl1owX2rFbKkl86WWzJcmZVMrSZIkSRos\nm1ppDNd1qCXzpVbMlloyX2rJfGlSNrWSJEmSpMGyqZXGcF2HWjJfasVsqSXzpZbMlyZlUytJkiRJ\nGiybWmkM13WoJfOlVsyWWjJfasl8aVI2tZIkSZKkwbKplcZwXYdaMl9qxWypJfOllsyXJmVTK0mS\nJEkarD19F6CtHT7cdwVaXl7kZS9bGDvvwgu393gXXui/q56x3XxJk1peXuSaaxb6LkMzanFx0aNp\nAzaN9yIXXgh/93fTqWejc82X77G2dtttfVfQTqqq7xqmIknNys+i3cUXbrVkvtSK2VJL5kstmS9t\nJglVlefsn5VG0KZWkiRJkmbXZk2ta2olSZIkSYNlUyuN4WelqSXzpVbMlloyX2rJfGlSNrWSJEmS\npMFyTa0kSZIkaddzTa0kSZIkaebY1EpjuK5DLZkvtWK21JL5UkvmS5PqralNckGS40k+3I0vTnI0\nyckkDySZWzf39iQPJ3koyU191SxJkiRJ2l16W1Ob5F8BrwD+QVUdSPIO4H9X1TuSvA34h1V1KMk+\n4G7glcDlwDHg6qp6asPjuaZWkiRJkmbUrlpTm+QK4LXAe4G1og4AR7rtI8At3fbNwD1VdaaqVoBH\ngOt3rlpJkiRJ0m7V1+nHvwH8MrD+aOveqjrdbZ8G9nbblwGn1s07xeiIrbQjXNehlsyXWjFbasl8\nqSXzpUnteFOb5EeAx6vqOM8cpX2W7jzirc4l9jxjSZIkSRJ7enjOVwEHkrwW+CbgW5P8DnA6ySVV\n9ViSS4HHu/mPAleuu/8V3b7nOHjwIPPz8wDMzc2xf/9+FhYWgGf+4uPY8aTjhYWFXVWP49kamy/H\njh07duzYseOzj5eWllhdXQVgZWWFzfR2oSiAJN8H/Ouq+tHuQlFPVNWdSQ4BcxsuFHU9z1wo6qqN\nV4XyQlGSJEmSNLt21YWiNljrRN8O/GCSk8APdGOq6gRwL3ACuB94s92rdtLaX42kFsyXWjFbasl8\nqSXzpUn1cfrx06rq48DHu+2vAjduMu8O4I4dLE2SJEmSNAC9nn48TZ5+LEmSJEmzazeffixJkiRJ\n0jmxqZXGcF2HWjJfasVsqSXzpZbMlyZlUytJkiRJGizX1EqSJEmSdj3X1EqSJEmSZo5NrTSG6zrU\nkvlSK2ZLLZkvtWS+NCmbWmmMpaWlvkvQDDNfasVsqSXzpZbMlyZlUyuNsbq62ncJmmHmS62YLbVk\nvtSS+dKkbGolSZIkSYNlUyuNsbKy0ncJmmHmS62YLbVkvtSS+dKkZuojffquQZIkSZLUztk+0mdm\nmlpJkiRJ0vnH048lSZIkSYNlUytJkiRJGqzBN7VJXpPkoSQPJ3lb3/VodiS5MsnHknwuyWeTvKXv\nmjRbklyQ5HiSD/ddi2ZLkrkk9yX5fJITSW7ouybNjiS3d6+Nn0lyd5IL+65Jw5Tk/UlOJ/nMun0X\nJzma5GSSB5LM9VmjhmHQTW2SC4DfBl4D7AN+PMnL+61KM+QM8EtV9V3ADcDPmS9N2VuBE4AXN9C0\nvQv4o6p6OXAN8Pme69GMSDIPvBG4rqr+GXAB8Po+a9Kg3cXoffx6h4CjVXU18NFuLG1p0E0tcD3w\nSFWtVNUZ4IPAzT3XpBlRVY9V1VK3/TeM3hRe1m9VmhVJrgBeC7wXeM5V/KRzleTbgFdX1fsBqurJ\nqvpaz2Vpdvw1oz/6XpRkD3AR8Gi/JWmoqupPgf+zYfcB4Ei3fQS4ZUeL0iANvam9HPjSuvGpbp80\nVd1fpq8F/me/lWiG/Abwy8BTfReimfNS4CtJ7kryySTvSXJR30VpNlTVV4FfB/4S+DKwWlXH+q1K\nM2ZvVZ3utk8De/ssRsMw9KbWU/bUXJJvAe4D3todsZWelyQ/AjxeVcfxKK2mbw9wHfDuqroO+Aae\nvqcpSfKPgV8E5hmdvfQtSX6i16I0s2r02aO+39dYQ29qHwWuXDe+ktHRWmkqkrwQ+H3gd6vqv/Vd\nj2bGq4ADSb4I3AP8QJL/0nNNmh2ngFNV9efd+D5GTa40Dd8N/FlVPVFVTwL/ldHvNGlaTie5BCDJ\npcDjPdejARh6U/sg8E+SzCd5EXAr8Ac916QZkSTA+4ATVfWbfdej2VFV/6aqrqyqlzK6wMqfVNVP\n9V2XZkNVPQZ8KcnV3a4bgc/1WJJmy0PADUm+uXudvJHRBe+kafkD4Ke77Z8GPKigsfb0XcDzUVVP\nJvl54COMrr73vqryCo+alu8FfhL4dJLj3b7bq+qPe6xJs8lTqzRtvwB8oPuD7xeAn+m5Hs2IqvpU\nd2bJg4yuCfBJ4HC/VWmoktwDfB/wkiRfAn4FeDtwb5I3ACvA6/qrUEOR0anqkiRJkiQNz9BPP5Yk\nSZIkncdsaiVJkiRJg2VTK0mSJEkaLJtaSZIkSdJg2dRKkiRJkgbLplaSJEmSNFg2tZIk7QJJ/lGS\n493XXyU51W1/Pclv912fJEm7lZ9TK0nSLpPk3wJfr6r/1HctkiTtdh6plSRpdwpAkoUkH+62fzXJ\nkSSfSLKS5F8keWeSTye5P8mebt4rkiwmeTDJHye5pM8fRJKklmxqJUkalpcC3w8cAH4XOFpV1wD/\nF/jhJC8Efgv4l1X13cBdwH/oq1hJklrb03cBkiRp2wq4v6r+f5LPAi+oqo90t30GmAeuBr4LOJYE\n4ALgyz3UKknSjrCplSRpWP4fQFU9leTMuv1PMXpdD/C5qnpVH8VJkrTTPP1YkqThyDbmLAPfnuQG\ngCQvTLKvbVmSJPXHplaSpN2p1n0/2zYbtgGqqs4APwbcmWQJOA7885aFSpLUJz/SR5IkSZI0WB6p\nlSRJkiQNlk2tJEmSJGmwbGolSZIkSYNlUytJkiRJGiybWkmSJEnSYNnUSpIkSZIGy6ZWkiRJkjRY\nNrWSJEmSpMH6e89xlgN1GPAvAAAAAElFTkSuQmCC\n", 2278 "text/plain": [ 2279 "<matplotlib.figure.Figure at 0x7f9afdcd3cd0>" 2280 ] 2281 }, 2282 "metadata": {}, 2283 "output_type": "display_data" 2284 } 2285 ], 2286 "source": [ 2287 "analysis()" 2288 ] 2289 }, 2290 { 2291 "cell_type": "markdown", 2292 "metadata": {}, 2293 "source": [ 2294 "<br><br><br><br>\n", 2295 "Advanced TraceAnalysis and PerfAnalysis usage: use pre-defined functions to plot trace data and RTApp performance metrics<br>\n", 2296 "[notebooks/tutorial/06_TraceAnalysis.ipynb](06_TraceAnalysis.ipynb)\n", 2297 "<br>\n", 2298 "[notebooks/tutorial/07_PerfAnalysis.ipynb](07_PerfAnalysis.ipynb)\n", 2299 "<br><br><br><br>" 2300 ] 2301 } 2302 ], 2303 "metadata": { 2304 "kernelspec": { 2305 "display_name": "Python 2", 2306 "language": "python", 2307 "name": "python2" 2308 }, 2309 "language_info": { 2310 "codemirror_mode": { 2311 "name": "ipython", 2312 "version": 2 2313 }, 2314 "file_extension": ".py", 2315 "mimetype": "text/x-python", 2316 "name": "python", 2317 "nbconvert_exporter": "python", 2318 "pygments_lexer": "ipython2", 2319 "version": "2.7.13" 2320 }, 2321 "toc": { 2322 "toc_cell": false, 2323 "toc_number_sections": true, 2324 "toc_threshold": 6, 2325 "toc_window_display": false 2326 } 2327 }, 2328 "nbformat": 4, 2329 "nbformat_minor": 0 2330} 2331