1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Statepoint.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <array>
43 #include <cstring>
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46
47 const unsigned MaxDepth = 6;
48
49 // Controls the number of uses of the value searched for possible
50 // dominating comparisons.
51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
52 cl::Hidden, cl::init(20));
53
54 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55 /// 0). For vector types, returns the element type's bitwidth.
getBitWidth(Type * Ty,const DataLayout & DL)56 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
57 if (unsigned BitWidth = Ty->getScalarSizeInBits())
58 return BitWidth;
59
60 return DL.getPointerTypeSizeInBits(Ty);
61 }
62
63 namespace {
64 // Simplifying using an assume can only be done in a particular control-flow
65 // context (the context instruction provides that context). If an assume and
66 // the context instruction are not in the same block then the DT helps in
67 // figuring out if we can use it.
68 struct Query {
69 const DataLayout &DL;
70 AssumptionCache *AC;
71 const Instruction *CxtI;
72 const DominatorTree *DT;
73
74 /// Set of assumptions that should be excluded from further queries.
75 /// This is because of the potential for mutual recursion to cause
76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77 /// classic case of this is assume(x = y), which will attempt to determine
78 /// bits in x from bits in y, which will attempt to determine bits in y from
79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82 /// on.
83 std::array<const Value*, MaxDepth> Excluded;
84 unsigned NumExcluded;
85
Query__anonad94a6d20111::Query86 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87 const DominatorTree *DT)
88 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
89
Query__anonad94a6d20111::Query90 Query(const Query &Q, const Value *NewExcl)
91 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92 Excluded = Q.Excluded;
93 Excluded[NumExcluded++] = NewExcl;
94 assert(NumExcluded <= Excluded.size());
95 }
96
isExcluded__anonad94a6d20111::Query97 bool isExcluded(const Value *Value) const {
98 if (NumExcluded == 0)
99 return false;
100 auto End = Excluded.begin() + NumExcluded;
101 return std::find(Excluded.begin(), End, Value) != End;
102 }
103 };
104 } // end anonymous namespace
105
106 // Given the provided Value and, potentially, a context instruction, return
107 // the preferred context instruction (if any).
safeCxtI(const Value * V,const Instruction * CxtI)108 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109 // If we've been provided with a context instruction, then use that (provided
110 // it has been inserted).
111 if (CxtI && CxtI->getParent())
112 return CxtI;
113
114 // If the value is really an already-inserted instruction, then use that.
115 CxtI = dyn_cast<Instruction>(V);
116 if (CxtI && CxtI->getParent())
117 return CxtI;
118
119 return nullptr;
120 }
121
122 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
123 unsigned Depth, const Query &Q);
124
computeKnownBits(Value * V,APInt & KnownZero,APInt & KnownOne,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)125 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
126 const DataLayout &DL, unsigned Depth,
127 AssumptionCache *AC, const Instruction *CxtI,
128 const DominatorTree *DT) {
129 ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130 Query(DL, AC, safeCxtI(V, CxtI), DT));
131 }
132
haveNoCommonBitsSet(Value * LHS,Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)133 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
134 AssumptionCache *AC, const Instruction *CxtI,
135 const DominatorTree *DT) {
136 assert(LHS->getType() == RHS->getType() &&
137 "LHS and RHS should have the same type");
138 assert(LHS->getType()->isIntOrIntVectorTy() &&
139 "LHS and RHS should be integers");
140 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
141 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
142 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
143 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
144 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
145 return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
146 }
147
148 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
149 unsigned Depth, const Query &Q);
150
ComputeSignBit(Value * V,bool & KnownZero,bool & KnownOne,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)151 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
152 const DataLayout &DL, unsigned Depth,
153 AssumptionCache *AC, const Instruction *CxtI,
154 const DominatorTree *DT) {
155 ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
156 Query(DL, AC, safeCxtI(V, CxtI), DT));
157 }
158
159 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
160 const Query &Q);
161
isKnownToBeAPowerOfTwo(Value * V,const DataLayout & DL,bool OrZero,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)162 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
163 unsigned Depth, AssumptionCache *AC,
164 const Instruction *CxtI,
165 const DominatorTree *DT) {
166 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
167 Query(DL, AC, safeCxtI(V, CxtI), DT));
168 }
169
170 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
171
isKnownNonZero(Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)172 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
173 AssumptionCache *AC, const Instruction *CxtI,
174 const DominatorTree *DT) {
175 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
176 }
177
isKnownNonNegative(Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)178 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
179 AssumptionCache *AC, const Instruction *CxtI,
180 const DominatorTree *DT) {
181 bool NonNegative, Negative;
182 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
183 return NonNegative;
184 }
185
isKnownPositive(Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)186 bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
187 AssumptionCache *AC, const Instruction *CxtI,
188 const DominatorTree *DT) {
189 if (auto *CI = dyn_cast<ConstantInt>(V))
190 return CI->getValue().isStrictlyPositive();
191
192 // TODO: We'd doing two recursive queries here. We should factor this such
193 // that only a single query is needed.
194 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
195 isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
196 }
197
isKnownNegative(Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)198 bool llvm::isKnownNegative(Value *V, const DataLayout &DL, unsigned Depth,
199 AssumptionCache *AC, const Instruction *CxtI,
200 const DominatorTree *DT) {
201 bool NonNegative, Negative;
202 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
203 return Negative;
204 }
205
206 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
207
isKnownNonEqual(Value * V1,Value * V2,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)208 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
209 AssumptionCache *AC, const Instruction *CxtI,
210 const DominatorTree *DT) {
211 return ::isKnownNonEqual(V1, V2, Query(DL, AC,
212 safeCxtI(V1, safeCxtI(V2, CxtI)),
213 DT));
214 }
215
216 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
217 const Query &Q);
218
MaskedValueIsZero(Value * V,const APInt & Mask,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)219 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
220 unsigned Depth, AssumptionCache *AC,
221 const Instruction *CxtI, const DominatorTree *DT) {
222 return ::MaskedValueIsZero(V, Mask, Depth,
223 Query(DL, AC, safeCxtI(V, CxtI), DT));
224 }
225
226 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
227
ComputeNumSignBits(Value * V,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)228 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
229 unsigned Depth, AssumptionCache *AC,
230 const Instruction *CxtI,
231 const DominatorTree *DT) {
232 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
233 }
234
computeKnownBitsAddSub(bool Add,Value * Op0,Value * Op1,bool NSW,APInt & KnownZero,APInt & KnownOne,APInt & KnownZero2,APInt & KnownOne2,unsigned Depth,const Query & Q)235 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
236 APInt &KnownZero, APInt &KnownOne,
237 APInt &KnownZero2, APInt &KnownOne2,
238 unsigned Depth, const Query &Q) {
239 if (!Add) {
240 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
241 // We know that the top bits of C-X are clear if X contains less bits
242 // than C (i.e. no wrap-around can happen). For example, 20-X is
243 // positive if we can prove that X is >= 0 and < 16.
244 if (!CLHS->getValue().isNegative()) {
245 unsigned BitWidth = KnownZero.getBitWidth();
246 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
247 // NLZ can't be BitWidth with no sign bit
248 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
249 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
250
251 // If all of the MaskV bits are known to be zero, then we know the
252 // output top bits are zero, because we now know that the output is
253 // from [0-C].
254 if ((KnownZero2 & MaskV) == MaskV) {
255 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
256 // Top bits known zero.
257 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
258 }
259 }
260 }
261 }
262
263 unsigned BitWidth = KnownZero.getBitWidth();
264
265 // If an initial sequence of bits in the result is not needed, the
266 // corresponding bits in the operands are not needed.
267 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
268 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
269 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
270
271 // Carry in a 1 for a subtract, rather than a 0.
272 APInt CarryIn(BitWidth, 0);
273 if (!Add) {
274 // Sum = LHS + ~RHS + 1
275 std::swap(KnownZero2, KnownOne2);
276 CarryIn.setBit(0);
277 }
278
279 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
280 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
281
282 // Compute known bits of the carry.
283 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
284 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
285
286 // Compute set of known bits (where all three relevant bits are known).
287 APInt LHSKnown = LHSKnownZero | LHSKnownOne;
288 APInt RHSKnown = KnownZero2 | KnownOne2;
289 APInt CarryKnown = CarryKnownZero | CarryKnownOne;
290 APInt Known = LHSKnown & RHSKnown & CarryKnown;
291
292 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
293 "known bits of sum differ");
294
295 // Compute known bits of the result.
296 KnownZero = ~PossibleSumOne & Known;
297 KnownOne = PossibleSumOne & Known;
298
299 // Are we still trying to solve for the sign bit?
300 if (!Known.isNegative()) {
301 if (NSW) {
302 // Adding two non-negative numbers, or subtracting a negative number from
303 // a non-negative one, can't wrap into negative.
304 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
305 KnownZero |= APInt::getSignBit(BitWidth);
306 // Adding two negative numbers, or subtracting a non-negative number from
307 // a negative one, can't wrap into non-negative.
308 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
309 KnownOne |= APInt::getSignBit(BitWidth);
310 }
311 }
312 }
313
computeKnownBitsMul(Value * Op0,Value * Op1,bool NSW,APInt & KnownZero,APInt & KnownOne,APInt & KnownZero2,APInt & KnownOne2,unsigned Depth,const Query & Q)314 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
315 APInt &KnownZero, APInt &KnownOne,
316 APInt &KnownZero2, APInt &KnownOne2,
317 unsigned Depth, const Query &Q) {
318 unsigned BitWidth = KnownZero.getBitWidth();
319 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
320 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
321
322 bool isKnownNegative = false;
323 bool isKnownNonNegative = false;
324 // If the multiplication is known not to overflow, compute the sign bit.
325 if (NSW) {
326 if (Op0 == Op1) {
327 // The product of a number with itself is non-negative.
328 isKnownNonNegative = true;
329 } else {
330 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
331 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
332 bool isKnownNegativeOp1 = KnownOne.isNegative();
333 bool isKnownNegativeOp0 = KnownOne2.isNegative();
334 // The product of two numbers with the same sign is non-negative.
335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
337 // The product of a negative number and a non-negative number is either
338 // negative or zero.
339 if (!isKnownNonNegative)
340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
341 isKnownNonZero(Op0, Depth, Q)) ||
342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
343 isKnownNonZero(Op1, Depth, Q));
344 }
345 }
346
347 // If low bits are zero in either operand, output low known-0 bits.
348 // Also compute a conservative estimate for high known-0 bits.
349 // More trickiness is possible, but this is sufficient for the
350 // interesting case of alignment computation.
351 KnownOne.clearAllBits();
352 unsigned TrailZ = KnownZero.countTrailingOnes() +
353 KnownZero2.countTrailingOnes();
354 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
355 KnownZero2.countLeadingOnes(),
356 BitWidth) - BitWidth;
357
358 TrailZ = std::min(TrailZ, BitWidth);
359 LeadZ = std::min(LeadZ, BitWidth);
360 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
361 APInt::getHighBitsSet(BitWidth, LeadZ);
362
363 // Only make use of no-wrap flags if we failed to compute the sign bit
364 // directly. This matters if the multiplication always overflows, in
365 // which case we prefer to follow the result of the direct computation,
366 // though as the program is invoking undefined behaviour we can choose
367 // whatever we like here.
368 if (isKnownNonNegative && !KnownOne.isNegative())
369 KnownZero.setBit(BitWidth - 1);
370 else if (isKnownNegative && !KnownZero.isNegative())
371 KnownOne.setBit(BitWidth - 1);
372 }
373
computeKnownBitsFromRangeMetadata(const MDNode & Ranges,APInt & KnownZero,APInt & KnownOne)374 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
375 APInt &KnownZero,
376 APInt &KnownOne) {
377 unsigned BitWidth = KnownZero.getBitWidth();
378 unsigned NumRanges = Ranges.getNumOperands() / 2;
379 assert(NumRanges >= 1);
380
381 KnownZero.setAllBits();
382 KnownOne.setAllBits();
383
384 for (unsigned i = 0; i < NumRanges; ++i) {
385 ConstantInt *Lower =
386 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
387 ConstantInt *Upper =
388 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
389 ConstantRange Range(Lower->getValue(), Upper->getValue());
390
391 // The first CommonPrefixBits of all values in Range are equal.
392 unsigned CommonPrefixBits =
393 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
394
395 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
396 KnownOne &= Range.getUnsignedMax() & Mask;
397 KnownZero &= ~Range.getUnsignedMax() & Mask;
398 }
399 }
400
isEphemeralValueOf(Instruction * I,const Value * E)401 static bool isEphemeralValueOf(Instruction *I, const Value *E) {
402 SmallVector<const Value *, 16> WorkSet(1, I);
403 SmallPtrSet<const Value *, 32> Visited;
404 SmallPtrSet<const Value *, 16> EphValues;
405
406 // The instruction defining an assumption's condition itself is always
407 // considered ephemeral to that assumption (even if it has other
408 // non-ephemeral users). See r246696's test case for an example.
409 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
410 return true;
411
412 while (!WorkSet.empty()) {
413 const Value *V = WorkSet.pop_back_val();
414 if (!Visited.insert(V).second)
415 continue;
416
417 // If all uses of this value are ephemeral, then so is this value.
418 if (std::all_of(V->user_begin(), V->user_end(),
419 [&](const User *U) { return EphValues.count(U); })) {
420 if (V == E)
421 return true;
422
423 EphValues.insert(V);
424 if (const User *U = dyn_cast<User>(V))
425 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
426 J != JE; ++J) {
427 if (isSafeToSpeculativelyExecute(*J))
428 WorkSet.push_back(*J);
429 }
430 }
431 }
432
433 return false;
434 }
435
436 // Is this an intrinsic that cannot be speculated but also cannot trap?
isAssumeLikeIntrinsic(const Instruction * I)437 static bool isAssumeLikeIntrinsic(const Instruction *I) {
438 if (const CallInst *CI = dyn_cast<CallInst>(I))
439 if (Function *F = CI->getCalledFunction())
440 switch (F->getIntrinsicID()) {
441 default: break;
442 // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
443 case Intrinsic::assume:
444 case Intrinsic::dbg_declare:
445 case Intrinsic::dbg_value:
446 case Intrinsic::invariant_start:
447 case Intrinsic::invariant_end:
448 case Intrinsic::lifetime_start:
449 case Intrinsic::lifetime_end:
450 case Intrinsic::objectsize:
451 case Intrinsic::ptr_annotation:
452 case Intrinsic::var_annotation:
453 return true;
454 }
455
456 return false;
457 }
458
isValidAssumeForContext(Value * V,const Instruction * CxtI,const DominatorTree * DT)459 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
460 const DominatorTree *DT) {
461 Instruction *Inv = cast<Instruction>(V);
462
463 // There are two restrictions on the use of an assume:
464 // 1. The assume must dominate the context (or the control flow must
465 // reach the assume whenever it reaches the context).
466 // 2. The context must not be in the assume's set of ephemeral values
467 // (otherwise we will use the assume to prove that the condition
468 // feeding the assume is trivially true, thus causing the removal of
469 // the assume).
470
471 if (DT) {
472 if (DT->dominates(Inv, CxtI)) {
473 return true;
474 } else if (Inv->getParent() == CxtI->getParent()) {
475 // The context comes first, but they're both in the same block. Make sure
476 // there is nothing in between that might interrupt the control flow.
477 for (BasicBlock::const_iterator I =
478 std::next(BasicBlock::const_iterator(CxtI)),
479 IE(Inv); I != IE; ++I)
480 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
481 return false;
482
483 return !isEphemeralValueOf(Inv, CxtI);
484 }
485
486 return false;
487 }
488
489 // When we don't have a DT, we do a limited search...
490 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
491 return true;
492 } else if (Inv->getParent() == CxtI->getParent()) {
493 // Search forward from the assume until we reach the context (or the end
494 // of the block); the common case is that the assume will come first.
495 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
496 IE = Inv->getParent()->end(); I != IE; ++I)
497 if (&*I == CxtI)
498 return true;
499
500 // The context must come first...
501 for (BasicBlock::const_iterator I =
502 std::next(BasicBlock::const_iterator(CxtI)),
503 IE(Inv); I != IE; ++I)
504 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
505 return false;
506
507 return !isEphemeralValueOf(Inv, CxtI);
508 }
509
510 return false;
511 }
512
isValidAssumeForContext(const Instruction * I,const Instruction * CxtI,const DominatorTree * DT)513 bool llvm::isValidAssumeForContext(const Instruction *I,
514 const Instruction *CxtI,
515 const DominatorTree *DT) {
516 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
517 }
518
computeKnownBitsFromAssume(Value * V,APInt & KnownZero,APInt & KnownOne,unsigned Depth,const Query & Q)519 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
520 APInt &KnownOne, unsigned Depth,
521 const Query &Q) {
522 // Use of assumptions is context-sensitive. If we don't have a context, we
523 // cannot use them!
524 if (!Q.AC || !Q.CxtI)
525 return;
526
527 unsigned BitWidth = KnownZero.getBitWidth();
528
529 for (auto &AssumeVH : Q.AC->assumptions()) {
530 if (!AssumeVH)
531 continue;
532 CallInst *I = cast<CallInst>(AssumeVH);
533 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
534 "Got assumption for the wrong function!");
535 if (Q.isExcluded(I))
536 continue;
537
538 // Warning: This loop can end up being somewhat performance sensetive.
539 // We're running this loop for once for each value queried resulting in a
540 // runtime of ~O(#assumes * #values).
541
542 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
543 "must be an assume intrinsic");
544
545 Value *Arg = I->getArgOperand(0);
546
547 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
548 assert(BitWidth == 1 && "assume operand is not i1?");
549 KnownZero.clearAllBits();
550 KnownOne.setAllBits();
551 return;
552 }
553
554 // The remaining tests are all recursive, so bail out if we hit the limit.
555 if (Depth == MaxDepth)
556 continue;
557
558 Value *A, *B;
559 auto m_V = m_CombineOr(m_Specific(V),
560 m_CombineOr(m_PtrToInt(m_Specific(V)),
561 m_BitCast(m_Specific(V))));
562
563 CmpInst::Predicate Pred;
564 ConstantInt *C;
565 // assume(v = a)
566 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
567 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
568 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
569 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
570 KnownZero |= RHSKnownZero;
571 KnownOne |= RHSKnownOne;
572 // assume(v & b = a)
573 } else if (match(Arg,
574 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
575 Pred == ICmpInst::ICMP_EQ &&
576 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
577 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
578 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
579 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
580 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
581
582 // For those bits in the mask that are known to be one, we can propagate
583 // known bits from the RHS to V.
584 KnownZero |= RHSKnownZero & MaskKnownOne;
585 KnownOne |= RHSKnownOne & MaskKnownOne;
586 // assume(~(v & b) = a)
587 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
588 m_Value(A))) &&
589 Pred == ICmpInst::ICMP_EQ &&
590 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
591 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
592 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
593 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
594 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
595
596 // For those bits in the mask that are known to be one, we can propagate
597 // inverted known bits from the RHS to V.
598 KnownZero |= RHSKnownOne & MaskKnownOne;
599 KnownOne |= RHSKnownZero & MaskKnownOne;
600 // assume(v | b = a)
601 } else if (match(Arg,
602 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
603 Pred == ICmpInst::ICMP_EQ &&
604 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
605 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
606 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
607 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
608 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
609
610 // For those bits in B that are known to be zero, we can propagate known
611 // bits from the RHS to V.
612 KnownZero |= RHSKnownZero & BKnownZero;
613 KnownOne |= RHSKnownOne & BKnownZero;
614 // assume(~(v | b) = a)
615 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
616 m_Value(A))) &&
617 Pred == ICmpInst::ICMP_EQ &&
618 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
619 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
620 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
621 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
622 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
623
624 // For those bits in B that are known to be zero, we can propagate
625 // inverted known bits from the RHS to V.
626 KnownZero |= RHSKnownOne & BKnownZero;
627 KnownOne |= RHSKnownZero & BKnownZero;
628 // assume(v ^ b = a)
629 } else if (match(Arg,
630 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
631 Pred == ICmpInst::ICMP_EQ &&
632 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
633 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
634 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
635 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
636 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
637
638 // For those bits in B that are known to be zero, we can propagate known
639 // bits from the RHS to V. For those bits in B that are known to be one,
640 // we can propagate inverted known bits from the RHS to V.
641 KnownZero |= RHSKnownZero & BKnownZero;
642 KnownOne |= RHSKnownOne & BKnownZero;
643 KnownZero |= RHSKnownOne & BKnownOne;
644 KnownOne |= RHSKnownZero & BKnownOne;
645 // assume(~(v ^ b) = a)
646 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
647 m_Value(A))) &&
648 Pred == ICmpInst::ICMP_EQ &&
649 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
650 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
651 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
652 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
653 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
654
655 // For those bits in B that are known to be zero, we can propagate
656 // inverted known bits from the RHS to V. For those bits in B that are
657 // known to be one, we can propagate known bits from the RHS to V.
658 KnownZero |= RHSKnownOne & BKnownZero;
659 KnownOne |= RHSKnownZero & BKnownZero;
660 KnownZero |= RHSKnownZero & BKnownOne;
661 KnownOne |= RHSKnownOne & BKnownOne;
662 // assume(v << c = a)
663 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
664 m_Value(A))) &&
665 Pred == ICmpInst::ICMP_EQ &&
666 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
667 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
668 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
669 // For those bits in RHS that are known, we can propagate them to known
670 // bits in V shifted to the right by C.
671 KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
672 KnownOne |= RHSKnownOne.lshr(C->getZExtValue());
673 // assume(~(v << c) = a)
674 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
675 m_Value(A))) &&
676 Pred == ICmpInst::ICMP_EQ &&
677 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
678 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
679 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
680 // For those bits in RHS that are known, we can propagate them inverted
681 // to known bits in V shifted to the right by C.
682 KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
683 KnownOne |= RHSKnownZero.lshr(C->getZExtValue());
684 // assume(v >> c = a)
685 } else if (match(Arg,
686 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
687 m_AShr(m_V, m_ConstantInt(C))),
688 m_Value(A))) &&
689 Pred == ICmpInst::ICMP_EQ &&
690 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
691 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
692 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
693 // For those bits in RHS that are known, we can propagate them to known
694 // bits in V shifted to the right by C.
695 KnownZero |= RHSKnownZero << C->getZExtValue();
696 KnownOne |= RHSKnownOne << C->getZExtValue();
697 // assume(~(v >> c) = a)
698 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
699 m_LShr(m_V, m_ConstantInt(C)),
700 m_AShr(m_V, m_ConstantInt(C)))),
701 m_Value(A))) &&
702 Pred == ICmpInst::ICMP_EQ &&
703 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
704 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
705 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
706 // For those bits in RHS that are known, we can propagate them inverted
707 // to known bits in V shifted to the right by C.
708 KnownZero |= RHSKnownOne << C->getZExtValue();
709 KnownOne |= RHSKnownZero << C->getZExtValue();
710 // assume(v >=_s c) where c is non-negative
711 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
712 Pred == ICmpInst::ICMP_SGE &&
713 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
714 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
715 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
716
717 if (RHSKnownZero.isNegative()) {
718 // We know that the sign bit is zero.
719 KnownZero |= APInt::getSignBit(BitWidth);
720 }
721 // assume(v >_s c) where c is at least -1.
722 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
723 Pred == ICmpInst::ICMP_SGT &&
724 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
725 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
726 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
727
728 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
729 // We know that the sign bit is zero.
730 KnownZero |= APInt::getSignBit(BitWidth);
731 }
732 // assume(v <=_s c) where c is negative
733 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
734 Pred == ICmpInst::ICMP_SLE &&
735 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
736 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
737 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
738
739 if (RHSKnownOne.isNegative()) {
740 // We know that the sign bit is one.
741 KnownOne |= APInt::getSignBit(BitWidth);
742 }
743 // assume(v <_s c) where c is non-positive
744 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
745 Pred == ICmpInst::ICMP_SLT &&
746 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
747 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
748 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
749
750 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
751 // We know that the sign bit is one.
752 KnownOne |= APInt::getSignBit(BitWidth);
753 }
754 // assume(v <=_u c)
755 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
756 Pred == ICmpInst::ICMP_ULE &&
757 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
758 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
759 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
760
761 // Whatever high bits in c are zero are known to be zero.
762 KnownZero |=
763 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
764 // assume(v <_u c)
765 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
766 Pred == ICmpInst::ICMP_ULT &&
767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
768 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
769 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
770
771 // Whatever high bits in c are zero are known to be zero (if c is a power
772 // of 2, then one more).
773 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
774 KnownZero |=
775 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
776 else
777 KnownZero |=
778 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
779 }
780 }
781 }
782
783 // Compute known bits from a shift operator, including those with a
784 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
785 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
786 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
787 // functors that, given the known-zero or known-one bits respectively, and a
788 // shift amount, compute the implied known-zero or known-one bits of the shift
789 // operator's result respectively for that shift amount. The results from calling
790 // KZF and KOF are conservatively combined for all permitted shift amounts.
791 template <typename KZFunctor, typename KOFunctor>
computeKnownBitsFromShiftOperator(Operator * I,APInt & KnownZero,APInt & KnownOne,APInt & KnownZero2,APInt & KnownOne2,unsigned Depth,const Query & Q,KZFunctor KZF,KOFunctor KOF)792 static void computeKnownBitsFromShiftOperator(Operator *I,
793 APInt &KnownZero, APInt &KnownOne,
794 APInt &KnownZero2, APInt &KnownOne2,
795 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
796 unsigned BitWidth = KnownZero.getBitWidth();
797
798 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
799 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
800
801 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
802 KnownZero = KZF(KnownZero, ShiftAmt);
803 KnownOne = KOF(KnownOne, ShiftAmt);
804 return;
805 }
806
807 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
808
809 // Note: We cannot use KnownZero.getLimitedValue() here, because if
810 // BitWidth > 64 and any upper bits are known, we'll end up returning the
811 // limit value (which implies all bits are known).
812 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
813 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
814
815 // It would be more-clearly correct to use the two temporaries for this
816 // calculation. Reusing the APInts here to prevent unnecessary allocations.
817 KnownZero.clearAllBits();
818 KnownOne.clearAllBits();
819
820 // If we know the shifter operand is nonzero, we can sometimes infer more
821 // known bits. However this is expensive to compute, so be lazy about it and
822 // only compute it when absolutely necessary.
823 Optional<bool> ShifterOperandIsNonZero;
824
825 // Early exit if we can't constrain any well-defined shift amount.
826 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
827 ShifterOperandIsNonZero =
828 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
829 if (!*ShifterOperandIsNonZero)
830 return;
831 }
832
833 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
834
835 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
836 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
837 // Combine the shifted known input bits only for those shift amounts
838 // compatible with its known constraints.
839 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
840 continue;
841 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
842 continue;
843 // If we know the shifter is nonzero, we may be able to infer more known
844 // bits. This check is sunk down as far as possible to avoid the expensive
845 // call to isKnownNonZero if the cheaper checks above fail.
846 if (ShiftAmt == 0) {
847 if (!ShifterOperandIsNonZero.hasValue())
848 ShifterOperandIsNonZero =
849 isKnownNonZero(I->getOperand(1), Depth + 1, Q);
850 if (*ShifterOperandIsNonZero)
851 continue;
852 }
853
854 KnownZero &= KZF(KnownZero2, ShiftAmt);
855 KnownOne &= KOF(KnownOne2, ShiftAmt);
856 }
857
858 // If there are no compatible shift amounts, then we've proven that the shift
859 // amount must be >= the BitWidth, and the result is undefined. We could
860 // return anything we'd like, but we need to make sure the sets of known bits
861 // stay disjoint (it should be better for some other code to actually
862 // propagate the undef than to pick a value here using known bits).
863 if ((KnownZero & KnownOne) != 0) {
864 KnownZero.clearAllBits();
865 KnownOne.clearAllBits();
866 }
867 }
868
computeKnownBitsFromOperator(Operator * I,APInt & KnownZero,APInt & KnownOne,unsigned Depth,const Query & Q)869 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
870 APInt &KnownOne, unsigned Depth,
871 const Query &Q) {
872 unsigned BitWidth = KnownZero.getBitWidth();
873
874 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
875 switch (I->getOpcode()) {
876 default: break;
877 case Instruction::Load:
878 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
879 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
880 break;
881 case Instruction::And: {
882 // If either the LHS or the RHS are Zero, the result is zero.
883 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
884 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
885
886 // Output known-1 bits are only known if set in both the LHS & RHS.
887 KnownOne &= KnownOne2;
888 // Output known-0 are known to be clear if zero in either the LHS | RHS.
889 KnownZero |= KnownZero2;
890
891 // and(x, add (x, -1)) is a common idiom that always clears the low bit;
892 // here we handle the more general case of adding any odd number by
893 // matching the form add(x, add(x, y)) where y is odd.
894 // TODO: This could be generalized to clearing any bit set in y where the
895 // following bit is known to be unset in y.
896 Value *Y = nullptr;
897 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
898 m_Value(Y))) ||
899 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
900 m_Value(Y)))) {
901 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
902 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
903 if (KnownOne3.countTrailingOnes() > 0)
904 KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
905 }
906 break;
907 }
908 case Instruction::Or: {
909 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
910 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
911
912 // Output known-0 bits are only known if clear in both the LHS & RHS.
913 KnownZero &= KnownZero2;
914 // Output known-1 are known to be set if set in either the LHS | RHS.
915 KnownOne |= KnownOne2;
916 break;
917 }
918 case Instruction::Xor: {
919 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
920 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
921
922 // Output known-0 bits are known if clear or set in both the LHS & RHS.
923 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
924 // Output known-1 are known to be set if set in only one of the LHS, RHS.
925 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
926 KnownZero = KnownZeroOut;
927 break;
928 }
929 case Instruction::Mul: {
930 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
931 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
932 KnownOne, KnownZero2, KnownOne2, Depth, Q);
933 break;
934 }
935 case Instruction::UDiv: {
936 // For the purposes of computing leading zeros we can conservatively
937 // treat a udiv as a logical right shift by the power of 2 known to
938 // be less than the denominator.
939 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
940 unsigned LeadZ = KnownZero2.countLeadingOnes();
941
942 KnownOne2.clearAllBits();
943 KnownZero2.clearAllBits();
944 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
945 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
946 if (RHSUnknownLeadingOnes != BitWidth)
947 LeadZ = std::min(BitWidth,
948 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
949
950 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
951 break;
952 }
953 case Instruction::Select:
954 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
955 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
956
957 // Only known if known in both the LHS and RHS.
958 KnownOne &= KnownOne2;
959 KnownZero &= KnownZero2;
960 break;
961 case Instruction::FPTrunc:
962 case Instruction::FPExt:
963 case Instruction::FPToUI:
964 case Instruction::FPToSI:
965 case Instruction::SIToFP:
966 case Instruction::UIToFP:
967 break; // Can't work with floating point.
968 case Instruction::PtrToInt:
969 case Instruction::IntToPtr:
970 case Instruction::AddrSpaceCast: // Pointers could be different sizes.
971 // FALL THROUGH and handle them the same as zext/trunc.
972 case Instruction::ZExt:
973 case Instruction::Trunc: {
974 Type *SrcTy = I->getOperand(0)->getType();
975
976 unsigned SrcBitWidth;
977 // Note that we handle pointer operands here because of inttoptr/ptrtoint
978 // which fall through here.
979 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
980
981 assert(SrcBitWidth && "SrcBitWidth can't be zero");
982 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
983 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
984 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
985 KnownZero = KnownZero.zextOrTrunc(BitWidth);
986 KnownOne = KnownOne.zextOrTrunc(BitWidth);
987 // Any top bits are known to be zero.
988 if (BitWidth > SrcBitWidth)
989 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
990 break;
991 }
992 case Instruction::BitCast: {
993 Type *SrcTy = I->getOperand(0)->getType();
994 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
995 // TODO: For now, not handling conversions like:
996 // (bitcast i64 %x to <2 x i32>)
997 !I->getType()->isVectorTy()) {
998 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
999 break;
1000 }
1001 break;
1002 }
1003 case Instruction::SExt: {
1004 // Compute the bits in the result that are not present in the input.
1005 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1006
1007 KnownZero = KnownZero.trunc(SrcBitWidth);
1008 KnownOne = KnownOne.trunc(SrcBitWidth);
1009 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1010 KnownZero = KnownZero.zext(BitWidth);
1011 KnownOne = KnownOne.zext(BitWidth);
1012
1013 // If the sign bit of the input is known set or clear, then we know the
1014 // top bits of the result.
1015 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
1016 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1017 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
1018 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1019 break;
1020 }
1021 case Instruction::Shl: {
1022 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1023 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1024 return (KnownZero << ShiftAmt) |
1025 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1026 };
1027
1028 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1029 return KnownOne << ShiftAmt;
1030 };
1031
1032 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1033 KnownZero2, KnownOne2, Depth, Q, KZF,
1034 KOF);
1035 break;
1036 }
1037 case Instruction::LShr: {
1038 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1039 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1040 return APIntOps::lshr(KnownZero, ShiftAmt) |
1041 // High bits known zero.
1042 APInt::getHighBitsSet(BitWidth, ShiftAmt);
1043 };
1044
1045 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1046 return APIntOps::lshr(KnownOne, ShiftAmt);
1047 };
1048
1049 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1050 KnownZero2, KnownOne2, Depth, Q, KZF,
1051 KOF);
1052 break;
1053 }
1054 case Instruction::AShr: {
1055 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1056 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1057 return APIntOps::ashr(KnownZero, ShiftAmt);
1058 };
1059
1060 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1061 return APIntOps::ashr(KnownOne, ShiftAmt);
1062 };
1063
1064 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1065 KnownZero2, KnownOne2, Depth, Q, KZF,
1066 KOF);
1067 break;
1068 }
1069 case Instruction::Sub: {
1070 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1071 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1072 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1073 Q);
1074 break;
1075 }
1076 case Instruction::Add: {
1077 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1078 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1079 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1080 Q);
1081 break;
1082 }
1083 case Instruction::SRem:
1084 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1085 APInt RA = Rem->getValue().abs();
1086 if (RA.isPowerOf2()) {
1087 APInt LowBits = RA - 1;
1088 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1089 Q);
1090
1091 // The low bits of the first operand are unchanged by the srem.
1092 KnownZero = KnownZero2 & LowBits;
1093 KnownOne = KnownOne2 & LowBits;
1094
1095 // If the first operand is non-negative or has all low bits zero, then
1096 // the upper bits are all zero.
1097 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1098 KnownZero |= ~LowBits;
1099
1100 // If the first operand is negative and not all low bits are zero, then
1101 // the upper bits are all one.
1102 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1103 KnownOne |= ~LowBits;
1104
1105 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1106 }
1107 }
1108
1109 // The sign bit is the LHS's sign bit, except when the result of the
1110 // remainder is zero.
1111 if (KnownZero.isNonNegative()) {
1112 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1113 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1114 Q);
1115 // If it's known zero, our sign bit is also zero.
1116 if (LHSKnownZero.isNegative())
1117 KnownZero.setBit(BitWidth - 1);
1118 }
1119
1120 break;
1121 case Instruction::URem: {
1122 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1123 const APInt &RA = Rem->getValue();
1124 if (RA.isPowerOf2()) {
1125 APInt LowBits = (RA - 1);
1126 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1127 KnownZero |= ~LowBits;
1128 KnownOne &= LowBits;
1129 break;
1130 }
1131 }
1132
1133 // Since the result is less than or equal to either operand, any leading
1134 // zero bits in either operand must also exist in the result.
1135 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1136 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1137
1138 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1139 KnownZero2.countLeadingOnes());
1140 KnownOne.clearAllBits();
1141 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1142 break;
1143 }
1144
1145 case Instruction::Alloca: {
1146 AllocaInst *AI = cast<AllocaInst>(I);
1147 unsigned Align = AI->getAlignment();
1148 if (Align == 0)
1149 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1150
1151 if (Align > 0)
1152 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1153 break;
1154 }
1155 case Instruction::GetElementPtr: {
1156 // Analyze all of the subscripts of this getelementptr instruction
1157 // to determine if we can prove known low zero bits.
1158 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1159 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1160 Q);
1161 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1162
1163 gep_type_iterator GTI = gep_type_begin(I);
1164 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1165 Value *Index = I->getOperand(i);
1166 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1167 // Handle struct member offset arithmetic.
1168
1169 // Handle case when index is vector zeroinitializer
1170 Constant *CIndex = cast<Constant>(Index);
1171 if (CIndex->isZeroValue())
1172 continue;
1173
1174 if (CIndex->getType()->isVectorTy())
1175 Index = CIndex->getSplatValue();
1176
1177 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1178 const StructLayout *SL = Q.DL.getStructLayout(STy);
1179 uint64_t Offset = SL->getElementOffset(Idx);
1180 TrailZ = std::min<unsigned>(TrailZ,
1181 countTrailingZeros(Offset));
1182 } else {
1183 // Handle array index arithmetic.
1184 Type *IndexedTy = GTI.getIndexedType();
1185 if (!IndexedTy->isSized()) {
1186 TrailZ = 0;
1187 break;
1188 }
1189 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1190 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1191 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1192 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1193 TrailZ = std::min(TrailZ,
1194 unsigned(countTrailingZeros(TypeSize) +
1195 LocalKnownZero.countTrailingOnes()));
1196 }
1197 }
1198
1199 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1200 break;
1201 }
1202 case Instruction::PHI: {
1203 PHINode *P = cast<PHINode>(I);
1204 // Handle the case of a simple two-predecessor recurrence PHI.
1205 // There's a lot more that could theoretically be done here, but
1206 // this is sufficient to catch some interesting cases.
1207 if (P->getNumIncomingValues() == 2) {
1208 for (unsigned i = 0; i != 2; ++i) {
1209 Value *L = P->getIncomingValue(i);
1210 Value *R = P->getIncomingValue(!i);
1211 Operator *LU = dyn_cast<Operator>(L);
1212 if (!LU)
1213 continue;
1214 unsigned Opcode = LU->getOpcode();
1215 // Check for operations that have the property that if
1216 // both their operands have low zero bits, the result
1217 // will have low zero bits.
1218 if (Opcode == Instruction::Add ||
1219 Opcode == Instruction::Sub ||
1220 Opcode == Instruction::And ||
1221 Opcode == Instruction::Or ||
1222 Opcode == Instruction::Mul) {
1223 Value *LL = LU->getOperand(0);
1224 Value *LR = LU->getOperand(1);
1225 // Find a recurrence.
1226 if (LL == I)
1227 L = LR;
1228 else if (LR == I)
1229 L = LL;
1230 else
1231 break;
1232 // Ok, we have a PHI of the form L op= R. Check for low
1233 // zero bits.
1234 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1235
1236 // We need to take the minimum number of known bits
1237 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1238 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1239
1240 KnownZero = APInt::getLowBitsSet(BitWidth,
1241 std::min(KnownZero2.countTrailingOnes(),
1242 KnownZero3.countTrailingOnes()));
1243 break;
1244 }
1245 }
1246 }
1247
1248 // Unreachable blocks may have zero-operand PHI nodes.
1249 if (P->getNumIncomingValues() == 0)
1250 break;
1251
1252 // Otherwise take the unions of the known bit sets of the operands,
1253 // taking conservative care to avoid excessive recursion.
1254 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1255 // Skip if every incoming value references to ourself.
1256 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1257 break;
1258
1259 KnownZero = APInt::getAllOnesValue(BitWidth);
1260 KnownOne = APInt::getAllOnesValue(BitWidth);
1261 for (Value *IncValue : P->incoming_values()) {
1262 // Skip direct self references.
1263 if (IncValue == P) continue;
1264
1265 KnownZero2 = APInt(BitWidth, 0);
1266 KnownOne2 = APInt(BitWidth, 0);
1267 // Recurse, but cap the recursion to one level, because we don't
1268 // want to waste time spinning around in loops.
1269 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1270 KnownZero &= KnownZero2;
1271 KnownOne &= KnownOne2;
1272 // If all bits have been ruled out, there's no need to check
1273 // more operands.
1274 if (!KnownZero && !KnownOne)
1275 break;
1276 }
1277 }
1278 break;
1279 }
1280 case Instruction::Call:
1281 case Instruction::Invoke:
1282 // If range metadata is attached to this call, set known bits from that,
1283 // and then intersect with known bits based on other properties of the
1284 // function.
1285 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1286 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1287 if (Value *RV = CallSite(I).getReturnedArgOperand()) {
1288 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1289 KnownZero |= KnownZero2;
1290 KnownOne |= KnownOne2;
1291 }
1292 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1293 switch (II->getIntrinsicID()) {
1294 default: break;
1295 case Intrinsic::bswap:
1296 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1297 KnownZero |= KnownZero2.byteSwap();
1298 KnownOne |= KnownOne2.byteSwap();
1299 break;
1300 case Intrinsic::ctlz:
1301 case Intrinsic::cttz: {
1302 unsigned LowBits = Log2_32(BitWidth)+1;
1303 // If this call is undefined for 0, the result will be less than 2^n.
1304 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1305 LowBits -= 1;
1306 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1307 break;
1308 }
1309 case Intrinsic::ctpop: {
1310 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1311 // We can bound the space the count needs. Also, bits known to be zero
1312 // can't contribute to the population.
1313 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1314 unsigned LeadingZeros =
1315 APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1316 assert(LeadingZeros <= BitWidth);
1317 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1318 KnownOne &= ~KnownZero;
1319 // TODO: we could bound KnownOne using the lower bound on the number
1320 // of bits which might be set provided by popcnt KnownOne2.
1321 break;
1322 }
1323 case Intrinsic::x86_sse42_crc32_64_64:
1324 KnownZero |= APInt::getHighBitsSet(64, 32);
1325 break;
1326 }
1327 }
1328 break;
1329 case Instruction::ExtractValue:
1330 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1331 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1332 if (EVI->getNumIndices() != 1) break;
1333 if (EVI->getIndices()[0] == 0) {
1334 switch (II->getIntrinsicID()) {
1335 default: break;
1336 case Intrinsic::uadd_with_overflow:
1337 case Intrinsic::sadd_with_overflow:
1338 computeKnownBitsAddSub(true, II->getArgOperand(0),
1339 II->getArgOperand(1), false, KnownZero,
1340 KnownOne, KnownZero2, KnownOne2, Depth, Q);
1341 break;
1342 case Intrinsic::usub_with_overflow:
1343 case Intrinsic::ssub_with_overflow:
1344 computeKnownBitsAddSub(false, II->getArgOperand(0),
1345 II->getArgOperand(1), false, KnownZero,
1346 KnownOne, KnownZero2, KnownOne2, Depth, Q);
1347 break;
1348 case Intrinsic::umul_with_overflow:
1349 case Intrinsic::smul_with_overflow:
1350 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1351 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1352 Q);
1353 break;
1354 }
1355 }
1356 }
1357 }
1358 }
1359
1360 /// Determine which bits of V are known to be either zero or one and return
1361 /// them in the KnownZero/KnownOne bit sets.
1362 ///
1363 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
1364 /// we cannot optimize based on the assumption that it is zero without changing
1365 /// it to be an explicit zero. If we don't change it to zero, other code could
1366 /// optimized based on the contradictory assumption that it is non-zero.
1367 /// Because instcombine aggressively folds operations with undef args anyway,
1368 /// this won't lose us code quality.
1369 ///
1370 /// This function is defined on values with integer type, values with pointer
1371 /// type, and vectors of integers. In the case
1372 /// where V is a vector, known zero, and known one values are the
1373 /// same width as the vector element, and the bit is set only if it is true
1374 /// for all of the elements in the vector.
computeKnownBits(Value * V,APInt & KnownZero,APInt & KnownOne,unsigned Depth,const Query & Q)1375 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1376 unsigned Depth, const Query &Q) {
1377 assert(V && "No Value?");
1378 assert(Depth <= MaxDepth && "Limit Search Depth");
1379 unsigned BitWidth = KnownZero.getBitWidth();
1380
1381 assert((V->getType()->isIntOrIntVectorTy() ||
1382 V->getType()->getScalarType()->isPointerTy()) &&
1383 "Not integer or pointer type!");
1384 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1385 (!V->getType()->isIntOrIntVectorTy() ||
1386 V->getType()->getScalarSizeInBits() == BitWidth) &&
1387 KnownZero.getBitWidth() == BitWidth &&
1388 KnownOne.getBitWidth() == BitWidth &&
1389 "V, KnownOne and KnownZero should have same BitWidth");
1390
1391 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1392 // We know all of the bits for a constant!
1393 KnownOne = CI->getValue();
1394 KnownZero = ~KnownOne;
1395 return;
1396 }
1397 // Null and aggregate-zero are all-zeros.
1398 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1399 KnownOne.clearAllBits();
1400 KnownZero = APInt::getAllOnesValue(BitWidth);
1401 return;
1402 }
1403 // Handle a constant vector by taking the intersection of the known bits of
1404 // each element.
1405 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1406 // We know that CDS must be a vector of integers. Take the intersection of
1407 // each element.
1408 KnownZero.setAllBits(); KnownOne.setAllBits();
1409 APInt Elt(KnownZero.getBitWidth(), 0);
1410 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1411 Elt = CDS->getElementAsInteger(i);
1412 KnownZero &= ~Elt;
1413 KnownOne &= Elt;
1414 }
1415 return;
1416 }
1417
1418 if (auto *CV = dyn_cast<ConstantVector>(V)) {
1419 // We know that CV must be a vector of integers. Take the intersection of
1420 // each element.
1421 KnownZero.setAllBits(); KnownOne.setAllBits();
1422 APInt Elt(KnownZero.getBitWidth(), 0);
1423 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1424 Constant *Element = CV->getAggregateElement(i);
1425 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1426 if (!ElementCI) {
1427 KnownZero.clearAllBits();
1428 KnownOne.clearAllBits();
1429 return;
1430 }
1431 Elt = ElementCI->getValue();
1432 KnownZero &= ~Elt;
1433 KnownOne &= Elt;
1434 }
1435 return;
1436 }
1437
1438 // Start out not knowing anything.
1439 KnownZero.clearAllBits(); KnownOne.clearAllBits();
1440
1441 // Limit search depth.
1442 // All recursive calls that increase depth must come after this.
1443 if (Depth == MaxDepth)
1444 return;
1445
1446 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1447 // the bits of its aliasee.
1448 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1449 if (!GA->isInterposable())
1450 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1451 return;
1452 }
1453
1454 if (Operator *I = dyn_cast<Operator>(V))
1455 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1456
1457 // Aligned pointers have trailing zeros - refine KnownZero set
1458 if (V->getType()->isPointerTy()) {
1459 unsigned Align = V->getPointerAlignment(Q.DL);
1460 if (Align)
1461 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1462 }
1463
1464 // computeKnownBitsFromAssume strictly refines KnownZero and
1465 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
1466
1467 // Check whether a nearby assume intrinsic can determine some known bits.
1468 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1469
1470 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1471 }
1472
1473 /// Determine whether the sign bit is known to be zero or one.
1474 /// Convenience wrapper around computeKnownBits.
ComputeSignBit(Value * V,bool & KnownZero,bool & KnownOne,unsigned Depth,const Query & Q)1475 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1476 unsigned Depth, const Query &Q) {
1477 unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1478 if (!BitWidth) {
1479 KnownZero = false;
1480 KnownOne = false;
1481 return;
1482 }
1483 APInt ZeroBits(BitWidth, 0);
1484 APInt OneBits(BitWidth, 0);
1485 computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1486 KnownOne = OneBits[BitWidth - 1];
1487 KnownZero = ZeroBits[BitWidth - 1];
1488 }
1489
1490 /// Return true if the given value is known to have exactly one
1491 /// bit set when defined. For vectors return true if every element is known to
1492 /// be a power of two when defined. Supports values with integer or pointer
1493 /// types and vectors of integers.
isKnownToBeAPowerOfTwo(Value * V,bool OrZero,unsigned Depth,const Query & Q)1494 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1495 const Query &Q) {
1496 if (Constant *C = dyn_cast<Constant>(V)) {
1497 if (C->isNullValue())
1498 return OrZero;
1499
1500 const APInt *ConstIntOrConstSplatInt;
1501 if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1502 return ConstIntOrConstSplatInt->isPowerOf2();
1503 }
1504
1505 // 1 << X is clearly a power of two if the one is not shifted off the end. If
1506 // it is shifted off the end then the result is undefined.
1507 if (match(V, m_Shl(m_One(), m_Value())))
1508 return true;
1509
1510 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1511 // bottom. If it is shifted off the bottom then the result is undefined.
1512 if (match(V, m_LShr(m_SignBit(), m_Value())))
1513 return true;
1514
1515 // The remaining tests are all recursive, so bail out if we hit the limit.
1516 if (Depth++ == MaxDepth)
1517 return false;
1518
1519 Value *X = nullptr, *Y = nullptr;
1520 // A shift left or a logical shift right of a power of two is a power of two
1521 // or zero.
1522 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1523 match(V, m_LShr(m_Value(X), m_Value()))))
1524 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1525
1526 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1527 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1528
1529 if (SelectInst *SI = dyn_cast<SelectInst>(V))
1530 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1531 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1532
1533 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1534 // A power of two and'd with anything is a power of two or zero.
1535 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1536 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1537 return true;
1538 // X & (-X) is always a power of two or zero.
1539 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1540 return true;
1541 return false;
1542 }
1543
1544 // Adding a power-of-two or zero to the same power-of-two or zero yields
1545 // either the original power-of-two, a larger power-of-two or zero.
1546 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1547 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1548 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1549 if (match(X, m_And(m_Specific(Y), m_Value())) ||
1550 match(X, m_And(m_Value(), m_Specific(Y))))
1551 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1552 return true;
1553 if (match(Y, m_And(m_Specific(X), m_Value())) ||
1554 match(Y, m_And(m_Value(), m_Specific(X))))
1555 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1556 return true;
1557
1558 unsigned BitWidth = V->getType()->getScalarSizeInBits();
1559 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1560 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1561
1562 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1563 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1564 // If i8 V is a power of two or zero:
1565 // ZeroBits: 1 1 1 0 1 1 1 1
1566 // ~ZeroBits: 0 0 0 1 0 0 0 0
1567 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1568 // If OrZero isn't set, we cannot give back a zero result.
1569 // Make sure either the LHS or RHS has a bit set.
1570 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1571 return true;
1572 }
1573 }
1574
1575 // An exact divide or right shift can only shift off zero bits, so the result
1576 // is a power of two only if the first operand is a power of two and not
1577 // copying a sign bit (sdiv int_min, 2).
1578 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1579 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1580 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1581 Depth, Q);
1582 }
1583
1584 return false;
1585 }
1586
1587 /// \brief Test whether a GEP's result is known to be non-null.
1588 ///
1589 /// Uses properties inherent in a GEP to try to determine whether it is known
1590 /// to be non-null.
1591 ///
1592 /// Currently this routine does not support vector GEPs.
isGEPKnownNonNull(GEPOperator * GEP,unsigned Depth,const Query & Q)1593 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1594 const Query &Q) {
1595 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1596 return false;
1597
1598 // FIXME: Support vector-GEPs.
1599 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1600
1601 // If the base pointer is non-null, we cannot walk to a null address with an
1602 // inbounds GEP in address space zero.
1603 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1604 return true;
1605
1606 // Walk the GEP operands and see if any operand introduces a non-zero offset.
1607 // If so, then the GEP cannot produce a null pointer, as doing so would
1608 // inherently violate the inbounds contract within address space zero.
1609 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1610 GTI != GTE; ++GTI) {
1611 // Struct types are easy -- they must always be indexed by a constant.
1612 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1613 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1614 unsigned ElementIdx = OpC->getZExtValue();
1615 const StructLayout *SL = Q.DL.getStructLayout(STy);
1616 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1617 if (ElementOffset > 0)
1618 return true;
1619 continue;
1620 }
1621
1622 // If we have a zero-sized type, the index doesn't matter. Keep looping.
1623 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1624 continue;
1625
1626 // Fast path the constant operand case both for efficiency and so we don't
1627 // increment Depth when just zipping down an all-constant GEP.
1628 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1629 if (!OpC->isZero())
1630 return true;
1631 continue;
1632 }
1633
1634 // We post-increment Depth here because while isKnownNonZero increments it
1635 // as well, when we pop back up that increment won't persist. We don't want
1636 // to recurse 10k times just because we have 10k GEP operands. We don't
1637 // bail completely out because we want to handle constant GEPs regardless
1638 // of depth.
1639 if (Depth++ >= MaxDepth)
1640 continue;
1641
1642 if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1643 return true;
1644 }
1645
1646 return false;
1647 }
1648
1649 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1650 /// ensure that the value it's attached to is never Value? 'RangeType' is
1651 /// is the type of the value described by the range.
rangeMetadataExcludesValue(MDNode * Ranges,const APInt & Value)1652 static bool rangeMetadataExcludesValue(MDNode* Ranges, const APInt& Value) {
1653 const unsigned NumRanges = Ranges->getNumOperands() / 2;
1654 assert(NumRanges >= 1);
1655 for (unsigned i = 0; i < NumRanges; ++i) {
1656 ConstantInt *Lower =
1657 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1658 ConstantInt *Upper =
1659 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1660 ConstantRange Range(Lower->getValue(), Upper->getValue());
1661 if (Range.contains(Value))
1662 return false;
1663 }
1664 return true;
1665 }
1666
1667 /// Return true if the given value is known to be non-zero when defined.
1668 /// For vectors return true if every element is known to be non-zero when
1669 /// defined. Supports values with integer or pointer type and vectors of
1670 /// integers.
isKnownNonZero(Value * V,unsigned Depth,const Query & Q)1671 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
1672 if (auto *C = dyn_cast<Constant>(V)) {
1673 if (C->isNullValue())
1674 return false;
1675 if (isa<ConstantInt>(C))
1676 // Must be non-zero due to null test above.
1677 return true;
1678
1679 // For constant vectors, check that all elements are undefined or known
1680 // non-zero to determine that the whole vector is known non-zero.
1681 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1682 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1683 Constant *Elt = C->getAggregateElement(i);
1684 if (!Elt || Elt->isNullValue())
1685 return false;
1686 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1687 return false;
1688 }
1689 return true;
1690 }
1691
1692 return false;
1693 }
1694
1695 if (auto *I = dyn_cast<Instruction>(V)) {
1696 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1697 // If the possible ranges don't contain zero, then the value is
1698 // definitely non-zero.
1699 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1700 const APInt ZeroValue(Ty->getBitWidth(), 0);
1701 if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1702 return true;
1703 }
1704 }
1705 }
1706
1707 // The remaining tests are all recursive, so bail out if we hit the limit.
1708 if (Depth++ >= MaxDepth)
1709 return false;
1710
1711 // Check for pointer simplifications.
1712 if (V->getType()->isPointerTy()) {
1713 if (isKnownNonNull(V))
1714 return true;
1715 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1716 if (isGEPKnownNonNull(GEP, Depth, Q))
1717 return true;
1718 }
1719
1720 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1721
1722 // X | Y != 0 if X != 0 or Y != 0.
1723 Value *X = nullptr, *Y = nullptr;
1724 if (match(V, m_Or(m_Value(X), m_Value(Y))))
1725 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1726
1727 // ext X != 0 if X != 0.
1728 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1729 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1730
1731 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
1732 // if the lowest bit is shifted off the end.
1733 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1734 // shl nuw can't remove any non-zero bits.
1735 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1736 if (BO->hasNoUnsignedWrap())
1737 return isKnownNonZero(X, Depth, Q);
1738
1739 APInt KnownZero(BitWidth, 0);
1740 APInt KnownOne(BitWidth, 0);
1741 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1742 if (KnownOne[0])
1743 return true;
1744 }
1745 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
1746 // defined if the sign bit is shifted off the end.
1747 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1748 // shr exact can only shift out zero bits.
1749 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1750 if (BO->isExact())
1751 return isKnownNonZero(X, Depth, Q);
1752
1753 bool XKnownNonNegative, XKnownNegative;
1754 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1755 if (XKnownNegative)
1756 return true;
1757
1758 // If the shifter operand is a constant, and all of the bits shifted
1759 // out are known to be zero, and X is known non-zero then at least one
1760 // non-zero bit must remain.
1761 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1762 APInt KnownZero(BitWidth, 0);
1763 APInt KnownOne(BitWidth, 0);
1764 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1765
1766 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1767 // Is there a known one in the portion not shifted out?
1768 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1769 return true;
1770 // Are all the bits to be shifted out known zero?
1771 if (KnownZero.countTrailingOnes() >= ShiftVal)
1772 return isKnownNonZero(X, Depth, Q);
1773 }
1774 }
1775 // div exact can only produce a zero if the dividend is zero.
1776 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1777 return isKnownNonZero(X, Depth, Q);
1778 }
1779 // X + Y.
1780 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1781 bool XKnownNonNegative, XKnownNegative;
1782 bool YKnownNonNegative, YKnownNegative;
1783 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1784 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
1785
1786 // If X and Y are both non-negative (as signed values) then their sum is not
1787 // zero unless both X and Y are zero.
1788 if (XKnownNonNegative && YKnownNonNegative)
1789 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
1790 return true;
1791
1792 // If X and Y are both negative (as signed values) then their sum is not
1793 // zero unless both X and Y equal INT_MIN.
1794 if (BitWidth && XKnownNegative && YKnownNegative) {
1795 APInt KnownZero(BitWidth, 0);
1796 APInt KnownOne(BitWidth, 0);
1797 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1798 // The sign bit of X is set. If some other bit is set then X is not equal
1799 // to INT_MIN.
1800 computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1801 if ((KnownOne & Mask) != 0)
1802 return true;
1803 // The sign bit of Y is set. If some other bit is set then Y is not equal
1804 // to INT_MIN.
1805 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
1806 if ((KnownOne & Mask) != 0)
1807 return true;
1808 }
1809
1810 // The sum of a non-negative number and a power of two is not zero.
1811 if (XKnownNonNegative &&
1812 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
1813 return true;
1814 if (YKnownNonNegative &&
1815 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
1816 return true;
1817 }
1818 // X * Y.
1819 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1820 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1821 // If X and Y are non-zero then so is X * Y as long as the multiplication
1822 // does not overflow.
1823 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1824 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
1825 return true;
1826 }
1827 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1828 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1829 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1830 isKnownNonZero(SI->getFalseValue(), Depth, Q))
1831 return true;
1832 }
1833 // PHI
1834 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1835 // Try and detect a recurrence that monotonically increases from a
1836 // starting value, as these are common as induction variables.
1837 if (PN->getNumIncomingValues() == 2) {
1838 Value *Start = PN->getIncomingValue(0);
1839 Value *Induction = PN->getIncomingValue(1);
1840 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1841 std::swap(Start, Induction);
1842 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1843 if (!C->isZero() && !C->isNegative()) {
1844 ConstantInt *X;
1845 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1846 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1847 !X->isNegative())
1848 return true;
1849 }
1850 }
1851 }
1852 // Check if all incoming values are non-zero constant.
1853 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1854 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1855 });
1856 if (AllNonZeroConstants)
1857 return true;
1858 }
1859
1860 if (!BitWidth) return false;
1861 APInt KnownZero(BitWidth, 0);
1862 APInt KnownOne(BitWidth, 0);
1863 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1864 return KnownOne != 0;
1865 }
1866
1867 /// Return true if V2 == V1 + X, where X is known non-zero.
isAddOfNonZero(Value * V1,Value * V2,const Query & Q)1868 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
1869 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1870 if (!BO || BO->getOpcode() != Instruction::Add)
1871 return false;
1872 Value *Op = nullptr;
1873 if (V2 == BO->getOperand(0))
1874 Op = BO->getOperand(1);
1875 else if (V2 == BO->getOperand(1))
1876 Op = BO->getOperand(0);
1877 else
1878 return false;
1879 return isKnownNonZero(Op, 0, Q);
1880 }
1881
1882 /// Return true if it is known that V1 != V2.
isKnownNonEqual(Value * V1,Value * V2,const Query & Q)1883 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
1884 if (V1->getType()->isVectorTy() || V1 == V2)
1885 return false;
1886 if (V1->getType() != V2->getType())
1887 // We can't look through casts yet.
1888 return false;
1889 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
1890 return true;
1891
1892 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1893 // Are any known bits in V1 contradictory to known bits in V2? If V1
1894 // has a known zero where V2 has a known one, they must not be equal.
1895 auto BitWidth = Ty->getBitWidth();
1896 APInt KnownZero1(BitWidth, 0);
1897 APInt KnownOne1(BitWidth, 0);
1898 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
1899 APInt KnownZero2(BitWidth, 0);
1900 APInt KnownOne2(BitWidth, 0);
1901 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
1902
1903 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1904 if (OppositeBits.getBoolValue())
1905 return true;
1906 }
1907 return false;
1908 }
1909
1910 /// Return true if 'V & Mask' is known to be zero. We use this predicate to
1911 /// simplify operations downstream. Mask is known to be zero for bits that V
1912 /// cannot have.
1913 ///
1914 /// This function is defined on values with integer type, values with pointer
1915 /// type, and vectors of integers. In the case
1916 /// where V is a vector, the mask, known zero, and known one values are the
1917 /// same width as the vector element, and the bit is set only if it is true
1918 /// for all of the elements in the vector.
MaskedValueIsZero(Value * V,const APInt & Mask,unsigned Depth,const Query & Q)1919 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
1920 const Query &Q) {
1921 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1922 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1923 return (KnownZero & Mask) == Mask;
1924 }
1925
1926 /// For vector constants, loop over the elements and find the constant with the
1927 /// minimum number of sign bits. Return 0 if the value is not a vector constant
1928 /// or if any element was not analyzed; otherwise, return the count for the
1929 /// element with the minimum number of sign bits.
computeNumSignBitsVectorConstant(Value * V,unsigned TyBits)1930 static unsigned computeNumSignBitsVectorConstant(Value *V, unsigned TyBits) {
1931 auto *CV = dyn_cast<Constant>(V);
1932 if (!CV || !CV->getType()->isVectorTy())
1933 return 0;
1934
1935 unsigned MinSignBits = TyBits;
1936 unsigned NumElts = CV->getType()->getVectorNumElements();
1937 for (unsigned i = 0; i != NumElts; ++i) {
1938 // If we find a non-ConstantInt, bail out.
1939 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
1940 if (!Elt)
1941 return 0;
1942
1943 // If the sign bit is 1, flip the bits, so we always count leading zeros.
1944 APInt EltVal = Elt->getValue();
1945 if (EltVal.isNegative())
1946 EltVal = ~EltVal;
1947 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
1948 }
1949
1950 return MinSignBits;
1951 }
1952
1953 /// Return the number of times the sign bit of the register is replicated into
1954 /// the other bits. We know that at least 1 bit is always equal to the sign bit
1955 /// (itself), but other cases can give us information. For example, immediately
1956 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1957 /// other, so we return 3. For vectors, return the number of sign bits for the
1958 /// vector element with the mininum number of known sign bits.
ComputeNumSignBits(Value * V,unsigned Depth,const Query & Q)1959 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
1960 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
1961 unsigned Tmp, Tmp2;
1962 unsigned FirstAnswer = 1;
1963
1964 // Note that ConstantInt is handled by the general computeKnownBits case
1965 // below.
1966
1967 if (Depth == 6)
1968 return 1; // Limit search depth.
1969
1970 Operator *U = dyn_cast<Operator>(V);
1971 switch (Operator::getOpcode(V)) {
1972 default: break;
1973 case Instruction::SExt:
1974 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1975 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
1976
1977 case Instruction::SDiv: {
1978 const APInt *Denominator;
1979 // sdiv X, C -> adds log(C) sign bits.
1980 if (match(U->getOperand(1), m_APInt(Denominator))) {
1981
1982 // Ignore non-positive denominator.
1983 if (!Denominator->isStrictlyPositive())
1984 break;
1985
1986 // Calculate the incoming numerator bits.
1987 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
1988
1989 // Add floor(log(C)) bits to the numerator bits.
1990 return std::min(TyBits, NumBits + Denominator->logBase2());
1991 }
1992 break;
1993 }
1994
1995 case Instruction::SRem: {
1996 const APInt *Denominator;
1997 // srem X, C -> we know that the result is within [-C+1,C) when C is a
1998 // positive constant. This let us put a lower bound on the number of sign
1999 // bits.
2000 if (match(U->getOperand(1), m_APInt(Denominator))) {
2001
2002 // Ignore non-positive denominator.
2003 if (!Denominator->isStrictlyPositive())
2004 break;
2005
2006 // Calculate the incoming numerator bits. SRem by a positive constant
2007 // can't lower the number of sign bits.
2008 unsigned NumrBits =
2009 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2010
2011 // Calculate the leading sign bit constraints by examining the
2012 // denominator. Given that the denominator is positive, there are two
2013 // cases:
2014 //
2015 // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
2016 // (1 << ceilLogBase2(C)).
2017 //
2018 // 2. the numerator is negative. Then the result range is (-C,0] and
2019 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2020 //
2021 // Thus a lower bound on the number of sign bits is `TyBits -
2022 // ceilLogBase2(C)`.
2023
2024 unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2025 return std::max(NumrBits, ResBits);
2026 }
2027 break;
2028 }
2029
2030 case Instruction::AShr: {
2031 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2032 // ashr X, C -> adds C sign bits. Vectors too.
2033 const APInt *ShAmt;
2034 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2035 Tmp += ShAmt->getZExtValue();
2036 if (Tmp > TyBits) Tmp = TyBits;
2037 }
2038 return Tmp;
2039 }
2040 case Instruction::Shl: {
2041 const APInt *ShAmt;
2042 if (match(U->getOperand(1), m_APInt(ShAmt))) {
2043 // shl destroys sign bits.
2044 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2045 Tmp2 = ShAmt->getZExtValue();
2046 if (Tmp2 >= TyBits || // Bad shift.
2047 Tmp2 >= Tmp) break; // Shifted all sign bits out.
2048 return Tmp - Tmp2;
2049 }
2050 break;
2051 }
2052 case Instruction::And:
2053 case Instruction::Or:
2054 case Instruction::Xor: // NOT is handled here.
2055 // Logical binary ops preserve the number of sign bits at the worst.
2056 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2057 if (Tmp != 1) {
2058 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2059 FirstAnswer = std::min(Tmp, Tmp2);
2060 // We computed what we know about the sign bits as our first
2061 // answer. Now proceed to the generic code that uses
2062 // computeKnownBits, and pick whichever answer is better.
2063 }
2064 break;
2065
2066 case Instruction::Select:
2067 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2068 if (Tmp == 1) return 1; // Early out.
2069 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2070 return std::min(Tmp, Tmp2);
2071
2072 case Instruction::Add:
2073 // Add can have at most one carry bit. Thus we know that the output
2074 // is, at worst, one more bit than the inputs.
2075 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2076 if (Tmp == 1) return 1; // Early out.
2077
2078 // Special case decrementing a value (ADD X, -1):
2079 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2080 if (CRHS->isAllOnesValue()) {
2081 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2082 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2083
2084 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2085 // sign bits set.
2086 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2087 return TyBits;
2088
2089 // If we are subtracting one from a positive number, there is no carry
2090 // out of the result.
2091 if (KnownZero.isNegative())
2092 return Tmp;
2093 }
2094
2095 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2096 if (Tmp2 == 1) return 1;
2097 return std::min(Tmp, Tmp2)-1;
2098
2099 case Instruction::Sub:
2100 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2101 if (Tmp2 == 1) return 1;
2102
2103 // Handle NEG.
2104 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2105 if (CLHS->isNullValue()) {
2106 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2107 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2108 // If the input is known to be 0 or 1, the output is 0/-1, which is all
2109 // sign bits set.
2110 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2111 return TyBits;
2112
2113 // If the input is known to be positive (the sign bit is known clear),
2114 // the output of the NEG has the same number of sign bits as the input.
2115 if (KnownZero.isNegative())
2116 return Tmp2;
2117
2118 // Otherwise, we treat this like a SUB.
2119 }
2120
2121 // Sub can have at most one carry bit. Thus we know that the output
2122 // is, at worst, one more bit than the inputs.
2123 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2124 if (Tmp == 1) return 1; // Early out.
2125 return std::min(Tmp, Tmp2)-1;
2126
2127 case Instruction::PHI: {
2128 PHINode *PN = cast<PHINode>(U);
2129 unsigned NumIncomingValues = PN->getNumIncomingValues();
2130 // Don't analyze large in-degree PHIs.
2131 if (NumIncomingValues > 4) break;
2132 // Unreachable blocks may have zero-operand PHI nodes.
2133 if (NumIncomingValues == 0) break;
2134
2135 // Take the minimum of all incoming values. This can't infinitely loop
2136 // because of our depth threshold.
2137 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2138 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2139 if (Tmp == 1) return Tmp;
2140 Tmp = std::min(
2141 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2142 }
2143 return Tmp;
2144 }
2145
2146 case Instruction::Trunc:
2147 // FIXME: it's tricky to do anything useful for this, but it is an important
2148 // case for targets like X86.
2149 break;
2150 }
2151
2152 // Finally, if we can prove that the top bits of the result are 0's or 1's,
2153 // use this information.
2154
2155 // If we can examine all elements of a vector constant successfully, we're
2156 // done (we can't do any better than that). If not, keep trying.
2157 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2158 return VecSignBits;
2159
2160 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2161 computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2162
2163 // If we know that the sign bit is either zero or one, determine the number of
2164 // identical bits in the top of the input value.
2165 if (KnownZero.isNegative())
2166 return std::max(FirstAnswer, KnownZero.countLeadingOnes());
2167
2168 if (KnownOne.isNegative())
2169 return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2170
2171 // computeKnownBits gave us no extra information about the top bits.
2172 return FirstAnswer;
2173 }
2174
2175 /// This function computes the integer multiple of Base that equals V.
2176 /// If successful, it returns true and returns the multiple in
2177 /// Multiple. If unsuccessful, it returns false. It looks
2178 /// through SExt instructions only if LookThroughSExt is true.
ComputeMultiple(Value * V,unsigned Base,Value * & Multiple,bool LookThroughSExt,unsigned Depth)2179 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2180 bool LookThroughSExt, unsigned Depth) {
2181 const unsigned MaxDepth = 6;
2182
2183 assert(V && "No Value?");
2184 assert(Depth <= MaxDepth && "Limit Search Depth");
2185 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2186
2187 Type *T = V->getType();
2188
2189 ConstantInt *CI = dyn_cast<ConstantInt>(V);
2190
2191 if (Base == 0)
2192 return false;
2193
2194 if (Base == 1) {
2195 Multiple = V;
2196 return true;
2197 }
2198
2199 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2200 Constant *BaseVal = ConstantInt::get(T, Base);
2201 if (CO && CO == BaseVal) {
2202 // Multiple is 1.
2203 Multiple = ConstantInt::get(T, 1);
2204 return true;
2205 }
2206
2207 if (CI && CI->getZExtValue() % Base == 0) {
2208 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2209 return true;
2210 }
2211
2212 if (Depth == MaxDepth) return false; // Limit search depth.
2213
2214 Operator *I = dyn_cast<Operator>(V);
2215 if (!I) return false;
2216
2217 switch (I->getOpcode()) {
2218 default: break;
2219 case Instruction::SExt:
2220 if (!LookThroughSExt) return false;
2221 // otherwise fall through to ZExt
2222 case Instruction::ZExt:
2223 return ComputeMultiple(I->getOperand(0), Base, Multiple,
2224 LookThroughSExt, Depth+1);
2225 case Instruction::Shl:
2226 case Instruction::Mul: {
2227 Value *Op0 = I->getOperand(0);
2228 Value *Op1 = I->getOperand(1);
2229
2230 if (I->getOpcode() == Instruction::Shl) {
2231 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2232 if (!Op1CI) return false;
2233 // Turn Op0 << Op1 into Op0 * 2^Op1
2234 APInt Op1Int = Op1CI->getValue();
2235 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2236 APInt API(Op1Int.getBitWidth(), 0);
2237 API.setBit(BitToSet);
2238 Op1 = ConstantInt::get(V->getContext(), API);
2239 }
2240
2241 Value *Mul0 = nullptr;
2242 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2243 if (Constant *Op1C = dyn_cast<Constant>(Op1))
2244 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2245 if (Op1C->getType()->getPrimitiveSizeInBits() <
2246 MulC->getType()->getPrimitiveSizeInBits())
2247 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2248 if (Op1C->getType()->getPrimitiveSizeInBits() >
2249 MulC->getType()->getPrimitiveSizeInBits())
2250 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2251
2252 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2253 Multiple = ConstantExpr::getMul(MulC, Op1C);
2254 return true;
2255 }
2256
2257 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2258 if (Mul0CI->getValue() == 1) {
2259 // V == Base * Op1, so return Op1
2260 Multiple = Op1;
2261 return true;
2262 }
2263 }
2264
2265 Value *Mul1 = nullptr;
2266 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2267 if (Constant *Op0C = dyn_cast<Constant>(Op0))
2268 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2269 if (Op0C->getType()->getPrimitiveSizeInBits() <
2270 MulC->getType()->getPrimitiveSizeInBits())
2271 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2272 if (Op0C->getType()->getPrimitiveSizeInBits() >
2273 MulC->getType()->getPrimitiveSizeInBits())
2274 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2275
2276 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2277 Multiple = ConstantExpr::getMul(MulC, Op0C);
2278 return true;
2279 }
2280
2281 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2282 if (Mul1CI->getValue() == 1) {
2283 // V == Base * Op0, so return Op0
2284 Multiple = Op0;
2285 return true;
2286 }
2287 }
2288 }
2289 }
2290
2291 // We could not determine if V is a multiple of Base.
2292 return false;
2293 }
2294
getIntrinsicForCallSite(ImmutableCallSite ICS,const TargetLibraryInfo * TLI)2295 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2296 const TargetLibraryInfo *TLI) {
2297 const Function *F = ICS.getCalledFunction();
2298 if (!F)
2299 return Intrinsic::not_intrinsic;
2300
2301 if (F->isIntrinsic())
2302 return F->getIntrinsicID();
2303
2304 if (!TLI)
2305 return Intrinsic::not_intrinsic;
2306
2307 LibFunc::Func Func;
2308 // We're going to make assumptions on the semantics of the functions, check
2309 // that the target knows that it's available in this environment and it does
2310 // not have local linkage.
2311 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2312 return Intrinsic::not_intrinsic;
2313
2314 if (!ICS.onlyReadsMemory())
2315 return Intrinsic::not_intrinsic;
2316
2317 // Otherwise check if we have a call to a function that can be turned into a
2318 // vector intrinsic.
2319 switch (Func) {
2320 default:
2321 break;
2322 case LibFunc::sin:
2323 case LibFunc::sinf:
2324 case LibFunc::sinl:
2325 return Intrinsic::sin;
2326 case LibFunc::cos:
2327 case LibFunc::cosf:
2328 case LibFunc::cosl:
2329 return Intrinsic::cos;
2330 case LibFunc::exp:
2331 case LibFunc::expf:
2332 case LibFunc::expl:
2333 return Intrinsic::exp;
2334 case LibFunc::exp2:
2335 case LibFunc::exp2f:
2336 case LibFunc::exp2l:
2337 return Intrinsic::exp2;
2338 case LibFunc::log:
2339 case LibFunc::logf:
2340 case LibFunc::logl:
2341 return Intrinsic::log;
2342 case LibFunc::log10:
2343 case LibFunc::log10f:
2344 case LibFunc::log10l:
2345 return Intrinsic::log10;
2346 case LibFunc::log2:
2347 case LibFunc::log2f:
2348 case LibFunc::log2l:
2349 return Intrinsic::log2;
2350 case LibFunc::fabs:
2351 case LibFunc::fabsf:
2352 case LibFunc::fabsl:
2353 return Intrinsic::fabs;
2354 case LibFunc::fmin:
2355 case LibFunc::fminf:
2356 case LibFunc::fminl:
2357 return Intrinsic::minnum;
2358 case LibFunc::fmax:
2359 case LibFunc::fmaxf:
2360 case LibFunc::fmaxl:
2361 return Intrinsic::maxnum;
2362 case LibFunc::copysign:
2363 case LibFunc::copysignf:
2364 case LibFunc::copysignl:
2365 return Intrinsic::copysign;
2366 case LibFunc::floor:
2367 case LibFunc::floorf:
2368 case LibFunc::floorl:
2369 return Intrinsic::floor;
2370 case LibFunc::ceil:
2371 case LibFunc::ceilf:
2372 case LibFunc::ceill:
2373 return Intrinsic::ceil;
2374 case LibFunc::trunc:
2375 case LibFunc::truncf:
2376 case LibFunc::truncl:
2377 return Intrinsic::trunc;
2378 case LibFunc::rint:
2379 case LibFunc::rintf:
2380 case LibFunc::rintl:
2381 return Intrinsic::rint;
2382 case LibFunc::nearbyint:
2383 case LibFunc::nearbyintf:
2384 case LibFunc::nearbyintl:
2385 return Intrinsic::nearbyint;
2386 case LibFunc::round:
2387 case LibFunc::roundf:
2388 case LibFunc::roundl:
2389 return Intrinsic::round;
2390 case LibFunc::pow:
2391 case LibFunc::powf:
2392 case LibFunc::powl:
2393 return Intrinsic::pow;
2394 case LibFunc::sqrt:
2395 case LibFunc::sqrtf:
2396 case LibFunc::sqrtl:
2397 if (ICS->hasNoNaNs())
2398 return Intrinsic::sqrt;
2399 return Intrinsic::not_intrinsic;
2400 }
2401
2402 return Intrinsic::not_intrinsic;
2403 }
2404
2405 /// Return true if we can prove that the specified FP value is never equal to
2406 /// -0.0.
2407 ///
2408 /// NOTE: this function will need to be revisited when we support non-default
2409 /// rounding modes!
2410 ///
CannotBeNegativeZero(const Value * V,const TargetLibraryInfo * TLI,unsigned Depth)2411 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2412 unsigned Depth) {
2413 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2414 return !CFP->getValueAPF().isNegZero();
2415
2416 // FIXME: Magic number! At the least, this should be given a name because it's
2417 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2418 // expose it as a parameter, so it can be used for testing / experimenting.
2419 if (Depth == 6)
2420 return false; // Limit search depth.
2421
2422 const Operator *I = dyn_cast<Operator>(V);
2423 if (!I) return false;
2424
2425 // Check if the nsz fast-math flag is set
2426 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2427 if (FPO->hasNoSignedZeros())
2428 return true;
2429
2430 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2431 if (I->getOpcode() == Instruction::FAdd)
2432 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2433 if (CFP->isNullValue())
2434 return true;
2435
2436 // sitofp and uitofp turn into +0.0 for zero.
2437 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2438 return true;
2439
2440 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2441 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2442 switch (IID) {
2443 default:
2444 break;
2445 // sqrt(-0.0) = -0.0, no other negative results are possible.
2446 case Intrinsic::sqrt:
2447 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2448 // fabs(x) != -0.0
2449 case Intrinsic::fabs:
2450 return true;
2451 }
2452 }
2453
2454 return false;
2455 }
2456
CannotBeOrderedLessThanZero(const Value * V,const TargetLibraryInfo * TLI,unsigned Depth)2457 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2458 const TargetLibraryInfo *TLI,
2459 unsigned Depth) {
2460 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2461 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2462
2463 // FIXME: Magic number! At the least, this should be given a name because it's
2464 // used similarly in CannotBeNegativeZero(). A better fix may be to
2465 // expose it as a parameter, so it can be used for testing / experimenting.
2466 if (Depth == 6)
2467 return false; // Limit search depth.
2468
2469 const Operator *I = dyn_cast<Operator>(V);
2470 if (!I) return false;
2471
2472 switch (I->getOpcode()) {
2473 default: break;
2474 // Unsigned integers are always nonnegative.
2475 case Instruction::UIToFP:
2476 return true;
2477 case Instruction::FMul:
2478 // x*x is always non-negative or a NaN.
2479 if (I->getOperand(0) == I->getOperand(1))
2480 return true;
2481 // Fall through
2482 case Instruction::FAdd:
2483 case Instruction::FDiv:
2484 case Instruction::FRem:
2485 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2486 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2487 case Instruction::Select:
2488 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2489 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2490 case Instruction::FPExt:
2491 case Instruction::FPTrunc:
2492 // Widening/narrowing never change sign.
2493 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2494 case Instruction::Call:
2495 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
2496 switch (IID) {
2497 default:
2498 break;
2499 case Intrinsic::maxnum:
2500 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2501 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2502 case Intrinsic::minnum:
2503 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2504 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2505 case Intrinsic::exp:
2506 case Intrinsic::exp2:
2507 case Intrinsic::fabs:
2508 case Intrinsic::sqrt:
2509 return true;
2510 case Intrinsic::powi:
2511 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2512 // powi(x,n) is non-negative if n is even.
2513 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2514 return true;
2515 }
2516 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2517 case Intrinsic::fma:
2518 case Intrinsic::fmuladd:
2519 // x*x+y is non-negative if y is non-negative.
2520 return I->getOperand(0) == I->getOperand(1) &&
2521 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2522 }
2523 break;
2524 }
2525 return false;
2526 }
2527
2528 /// If the specified value can be set by repeating the same byte in memory,
2529 /// return the i8 value that it is represented with. This is
2530 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2531 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
2532 /// byte store (e.g. i16 0x1234), return null.
isBytewiseValue(Value * V)2533 Value *llvm::isBytewiseValue(Value *V) {
2534 // All byte-wide stores are splatable, even of arbitrary variables.
2535 if (V->getType()->isIntegerTy(8)) return V;
2536
2537 // Handle 'null' ConstantArrayZero etc.
2538 if (Constant *C = dyn_cast<Constant>(V))
2539 if (C->isNullValue())
2540 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2541
2542 // Constant float and double values can be handled as integer values if the
2543 // corresponding integer value is "byteable". An important case is 0.0.
2544 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2545 if (CFP->getType()->isFloatTy())
2546 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2547 if (CFP->getType()->isDoubleTy())
2548 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2549 // Don't handle long double formats, which have strange constraints.
2550 }
2551
2552 // We can handle constant integers that are multiple of 8 bits.
2553 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2554 if (CI->getBitWidth() % 8 == 0) {
2555 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2556
2557 if (!CI->getValue().isSplat(8))
2558 return nullptr;
2559 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2560 }
2561 }
2562
2563 // A ConstantDataArray/Vector is splatable if all its members are equal and
2564 // also splatable.
2565 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2566 Value *Elt = CA->getElementAsConstant(0);
2567 Value *Val = isBytewiseValue(Elt);
2568 if (!Val)
2569 return nullptr;
2570
2571 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2572 if (CA->getElementAsConstant(I) != Elt)
2573 return nullptr;
2574
2575 return Val;
2576 }
2577
2578 // Conceptually, we could handle things like:
2579 // %a = zext i8 %X to i16
2580 // %b = shl i16 %a, 8
2581 // %c = or i16 %a, %b
2582 // but until there is an example that actually needs this, it doesn't seem
2583 // worth worrying about.
2584 return nullptr;
2585 }
2586
2587
2588 // This is the recursive version of BuildSubAggregate. It takes a few different
2589 // arguments. Idxs is the index within the nested struct From that we are
2590 // looking at now (which is of type IndexedType). IdxSkip is the number of
2591 // indices from Idxs that should be left out when inserting into the resulting
2592 // struct. To is the result struct built so far, new insertvalue instructions
2593 // build on that.
BuildSubAggregate(Value * From,Value * To,Type * IndexedType,SmallVectorImpl<unsigned> & Idxs,unsigned IdxSkip,Instruction * InsertBefore)2594 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2595 SmallVectorImpl<unsigned> &Idxs,
2596 unsigned IdxSkip,
2597 Instruction *InsertBefore) {
2598 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2599 if (STy) {
2600 // Save the original To argument so we can modify it
2601 Value *OrigTo = To;
2602 // General case, the type indexed by Idxs is a struct
2603 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2604 // Process each struct element recursively
2605 Idxs.push_back(i);
2606 Value *PrevTo = To;
2607 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2608 InsertBefore);
2609 Idxs.pop_back();
2610 if (!To) {
2611 // Couldn't find any inserted value for this index? Cleanup
2612 while (PrevTo != OrigTo) {
2613 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2614 PrevTo = Del->getAggregateOperand();
2615 Del->eraseFromParent();
2616 }
2617 // Stop processing elements
2618 break;
2619 }
2620 }
2621 // If we successfully found a value for each of our subaggregates
2622 if (To)
2623 return To;
2624 }
2625 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2626 // the struct's elements had a value that was inserted directly. In the latter
2627 // case, perhaps we can't determine each of the subelements individually, but
2628 // we might be able to find the complete struct somewhere.
2629
2630 // Find the value that is at that particular spot
2631 Value *V = FindInsertedValue(From, Idxs);
2632
2633 if (!V)
2634 return nullptr;
2635
2636 // Insert the value in the new (sub) aggregrate
2637 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2638 "tmp", InsertBefore);
2639 }
2640
2641 // This helper takes a nested struct and extracts a part of it (which is again a
2642 // struct) into a new value. For example, given the struct:
2643 // { a, { b, { c, d }, e } }
2644 // and the indices "1, 1" this returns
2645 // { c, d }.
2646 //
2647 // It does this by inserting an insertvalue for each element in the resulting
2648 // struct, as opposed to just inserting a single struct. This will only work if
2649 // each of the elements of the substruct are known (ie, inserted into From by an
2650 // insertvalue instruction somewhere).
2651 //
2652 // All inserted insertvalue instructions are inserted before InsertBefore
BuildSubAggregate(Value * From,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)2653 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2654 Instruction *InsertBefore) {
2655 assert(InsertBefore && "Must have someplace to insert!");
2656 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2657 idx_range);
2658 Value *To = UndefValue::get(IndexedType);
2659 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2660 unsigned IdxSkip = Idxs.size();
2661
2662 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2663 }
2664
2665 /// Given an aggregrate and an sequence of indices, see if
2666 /// the scalar value indexed is already around as a register, for example if it
2667 /// were inserted directly into the aggregrate.
2668 ///
2669 /// If InsertBefore is not null, this function will duplicate (modified)
2670 /// insertvalues when a part of a nested struct is extracted.
FindInsertedValue(Value * V,ArrayRef<unsigned> idx_range,Instruction * InsertBefore)2671 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2672 Instruction *InsertBefore) {
2673 // Nothing to index? Just return V then (this is useful at the end of our
2674 // recursion).
2675 if (idx_range.empty())
2676 return V;
2677 // We have indices, so V should have an indexable type.
2678 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2679 "Not looking at a struct or array?");
2680 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2681 "Invalid indices for type?");
2682
2683 if (Constant *C = dyn_cast<Constant>(V)) {
2684 C = C->getAggregateElement(idx_range[0]);
2685 if (!C) return nullptr;
2686 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2687 }
2688
2689 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2690 // Loop the indices for the insertvalue instruction in parallel with the
2691 // requested indices
2692 const unsigned *req_idx = idx_range.begin();
2693 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2694 i != e; ++i, ++req_idx) {
2695 if (req_idx == idx_range.end()) {
2696 // We can't handle this without inserting insertvalues
2697 if (!InsertBefore)
2698 return nullptr;
2699
2700 // The requested index identifies a part of a nested aggregate. Handle
2701 // this specially. For example,
2702 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2703 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2704 // %C = extractvalue {i32, { i32, i32 } } %B, 1
2705 // This can be changed into
2706 // %A = insertvalue {i32, i32 } undef, i32 10, 0
2707 // %C = insertvalue {i32, i32 } %A, i32 11, 1
2708 // which allows the unused 0,0 element from the nested struct to be
2709 // removed.
2710 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2711 InsertBefore);
2712 }
2713
2714 // This insert value inserts something else than what we are looking for.
2715 // See if the (aggregate) value inserted into has the value we are
2716 // looking for, then.
2717 if (*req_idx != *i)
2718 return FindInsertedValue(I->getAggregateOperand(), idx_range,
2719 InsertBefore);
2720 }
2721 // If we end up here, the indices of the insertvalue match with those
2722 // requested (though possibly only partially). Now we recursively look at
2723 // the inserted value, passing any remaining indices.
2724 return FindInsertedValue(I->getInsertedValueOperand(),
2725 makeArrayRef(req_idx, idx_range.end()),
2726 InsertBefore);
2727 }
2728
2729 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2730 // If we're extracting a value from an aggregate that was extracted from
2731 // something else, we can extract from that something else directly instead.
2732 // However, we will need to chain I's indices with the requested indices.
2733
2734 // Calculate the number of indices required
2735 unsigned size = I->getNumIndices() + idx_range.size();
2736 // Allocate some space to put the new indices in
2737 SmallVector<unsigned, 5> Idxs;
2738 Idxs.reserve(size);
2739 // Add indices from the extract value instruction
2740 Idxs.append(I->idx_begin(), I->idx_end());
2741
2742 // Add requested indices
2743 Idxs.append(idx_range.begin(), idx_range.end());
2744
2745 assert(Idxs.size() == size
2746 && "Number of indices added not correct?");
2747
2748 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2749 }
2750 // Otherwise, we don't know (such as, extracting from a function return value
2751 // or load instruction)
2752 return nullptr;
2753 }
2754
2755 /// Analyze the specified pointer to see if it can be expressed as a base
2756 /// pointer plus a constant offset. Return the base and offset to the caller.
GetPointerBaseWithConstantOffset(Value * Ptr,int64_t & Offset,const DataLayout & DL)2757 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2758 const DataLayout &DL) {
2759 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2760 APInt ByteOffset(BitWidth, 0);
2761
2762 // We walk up the defs but use a visited set to handle unreachable code. In
2763 // that case, we stop after accumulating the cycle once (not that it
2764 // matters).
2765 SmallPtrSet<Value *, 16> Visited;
2766 while (Visited.insert(Ptr).second) {
2767 if (Ptr->getType()->isVectorTy())
2768 break;
2769
2770 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2771 APInt GEPOffset(BitWidth, 0);
2772 if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2773 break;
2774
2775 ByteOffset += GEPOffset;
2776
2777 Ptr = GEP->getPointerOperand();
2778 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2779 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
2780 Ptr = cast<Operator>(Ptr)->getOperand(0);
2781 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2782 if (GA->isInterposable())
2783 break;
2784 Ptr = GA->getAliasee();
2785 } else {
2786 break;
2787 }
2788 }
2789 Offset = ByteOffset.getSExtValue();
2790 return Ptr;
2791 }
2792
isGEPBasedOnPointerToString(const GEPOperator * GEP)2793 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2794 // Make sure the GEP has exactly three arguments.
2795 if (GEP->getNumOperands() != 3)
2796 return false;
2797
2798 // Make sure the index-ee is a pointer to array of i8.
2799 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2800 if (!AT || !AT->getElementType()->isIntegerTy(8))
2801 return false;
2802
2803 // Check to make sure that the first operand of the GEP is an integer and
2804 // has value 0 so that we are sure we're indexing into the initializer.
2805 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2806 if (!FirstIdx || !FirstIdx->isZero())
2807 return false;
2808
2809 return true;
2810 }
2811
2812 /// This function computes the length of a null-terminated C string pointed to
2813 /// by V. If successful, it returns true and returns the string in Str.
2814 /// If unsuccessful, it returns false.
getConstantStringInfo(const Value * V,StringRef & Str,uint64_t Offset,bool TrimAtNul)2815 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2816 uint64_t Offset, bool TrimAtNul) {
2817 assert(V);
2818
2819 // Look through bitcast instructions and geps.
2820 V = V->stripPointerCasts();
2821
2822 // If the value is a GEP instruction or constant expression, treat it as an
2823 // offset.
2824 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2825 // The GEP operator should be based on a pointer to string constant, and is
2826 // indexing into the string constant.
2827 if (!isGEPBasedOnPointerToString(GEP))
2828 return false;
2829
2830 // If the second index isn't a ConstantInt, then this is a variable index
2831 // into the array. If this occurs, we can't say anything meaningful about
2832 // the string.
2833 uint64_t StartIdx = 0;
2834 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
2835 StartIdx = CI->getZExtValue();
2836 else
2837 return false;
2838 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2839 TrimAtNul);
2840 }
2841
2842 // The GEP instruction, constant or instruction, must reference a global
2843 // variable that is a constant and is initialized. The referenced constant
2844 // initializer is the array that we'll use for optimization.
2845 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2846 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
2847 return false;
2848
2849 // Handle the all-zeros case.
2850 if (GV->getInitializer()->isNullValue()) {
2851 // This is a degenerate case. The initializer is constant zero so the
2852 // length of the string must be zero.
2853 Str = "";
2854 return true;
2855 }
2856
2857 // This must be a ConstantDataArray.
2858 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
2859 if (!Array || !Array->isString())
2860 return false;
2861
2862 // Get the number of elements in the array.
2863 uint64_t NumElts = Array->getType()->getArrayNumElements();
2864
2865 // Start out with the entire array in the StringRef.
2866 Str = Array->getAsString();
2867
2868 if (Offset > NumElts)
2869 return false;
2870
2871 // Skip over 'offset' bytes.
2872 Str = Str.substr(Offset);
2873
2874 if (TrimAtNul) {
2875 // Trim off the \0 and anything after it. If the array is not nul
2876 // terminated, we just return the whole end of string. The client may know
2877 // some other way that the string is length-bound.
2878 Str = Str.substr(0, Str.find('\0'));
2879 }
2880 return true;
2881 }
2882
2883 // These next two are very similar to the above, but also look through PHI
2884 // nodes.
2885 // TODO: See if we can integrate these two together.
2886
2887 /// If we can compute the length of the string pointed to by
2888 /// the specified pointer, return 'len+1'. If we can't, return 0.
GetStringLengthH(Value * V,SmallPtrSetImpl<PHINode * > & PHIs)2889 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
2890 // Look through noop bitcast instructions.
2891 V = V->stripPointerCasts();
2892
2893 // If this is a PHI node, there are two cases: either we have already seen it
2894 // or we haven't.
2895 if (PHINode *PN = dyn_cast<PHINode>(V)) {
2896 if (!PHIs.insert(PN).second)
2897 return ~0ULL; // already in the set.
2898
2899 // If it was new, see if all the input strings are the same length.
2900 uint64_t LenSoFar = ~0ULL;
2901 for (Value *IncValue : PN->incoming_values()) {
2902 uint64_t Len = GetStringLengthH(IncValue, PHIs);
2903 if (Len == 0) return 0; // Unknown length -> unknown.
2904
2905 if (Len == ~0ULL) continue;
2906
2907 if (Len != LenSoFar && LenSoFar != ~0ULL)
2908 return 0; // Disagree -> unknown.
2909 LenSoFar = Len;
2910 }
2911
2912 // Success, all agree.
2913 return LenSoFar;
2914 }
2915
2916 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2917 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2918 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2919 if (Len1 == 0) return 0;
2920 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2921 if (Len2 == 0) return 0;
2922 if (Len1 == ~0ULL) return Len2;
2923 if (Len2 == ~0ULL) return Len1;
2924 if (Len1 != Len2) return 0;
2925 return Len1;
2926 }
2927
2928 // Otherwise, see if we can read the string.
2929 StringRef StrData;
2930 if (!getConstantStringInfo(V, StrData))
2931 return 0;
2932
2933 return StrData.size()+1;
2934 }
2935
2936 /// If we can compute the length of the string pointed to by
2937 /// the specified pointer, return 'len+1'. If we can't, return 0.
GetStringLength(Value * V)2938 uint64_t llvm::GetStringLength(Value *V) {
2939 if (!V->getType()->isPointerTy()) return 0;
2940
2941 SmallPtrSet<PHINode*, 32> PHIs;
2942 uint64_t Len = GetStringLengthH(V, PHIs);
2943 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2944 // an empty string as a length.
2945 return Len == ~0ULL ? 1 : Len;
2946 }
2947
2948 /// \brief \p PN defines a loop-variant pointer to an object. Check if the
2949 /// previous iteration of the loop was referring to the same object as \p PN.
isSameUnderlyingObjectInLoop(PHINode * PN,LoopInfo * LI)2950 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2951 // Find the loop-defined value.
2952 Loop *L = LI->getLoopFor(PN->getParent());
2953 if (PN->getNumIncomingValues() != 2)
2954 return true;
2955
2956 // Find the value from previous iteration.
2957 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2958 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2959 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2960 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2961 return true;
2962
2963 // If a new pointer is loaded in the loop, the pointer references a different
2964 // object in every iteration. E.g.:
2965 // for (i)
2966 // int *p = a[i];
2967 // ...
2968 if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2969 if (!L->isLoopInvariant(Load->getPointerOperand()))
2970 return false;
2971 return true;
2972 }
2973
GetUnderlyingObject(Value * V,const DataLayout & DL,unsigned MaxLookup)2974 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2975 unsigned MaxLookup) {
2976 if (!V->getType()->isPointerTy())
2977 return V;
2978 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2979 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2980 V = GEP->getPointerOperand();
2981 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2982 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
2983 V = cast<Operator>(V)->getOperand(0);
2984 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2985 if (GA->isInterposable())
2986 return V;
2987 V = GA->getAliasee();
2988 } else {
2989 if (auto CS = CallSite(V))
2990 if (Value *RV = CS.getReturnedArgOperand()) {
2991 V = RV;
2992 continue;
2993 }
2994
2995 // See if InstructionSimplify knows any relevant tricks.
2996 if (Instruction *I = dyn_cast<Instruction>(V))
2997 // TODO: Acquire a DominatorTree and AssumptionCache and use them.
2998 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
2999 V = Simplified;
3000 continue;
3001 }
3002
3003 return V;
3004 }
3005 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3006 }
3007 return V;
3008 }
3009
GetUnderlyingObjects(Value * V,SmallVectorImpl<Value * > & Objects,const DataLayout & DL,LoopInfo * LI,unsigned MaxLookup)3010 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3011 const DataLayout &DL, LoopInfo *LI,
3012 unsigned MaxLookup) {
3013 SmallPtrSet<Value *, 4> Visited;
3014 SmallVector<Value *, 4> Worklist;
3015 Worklist.push_back(V);
3016 do {
3017 Value *P = Worklist.pop_back_val();
3018 P = GetUnderlyingObject(P, DL, MaxLookup);
3019
3020 if (!Visited.insert(P).second)
3021 continue;
3022
3023 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3024 Worklist.push_back(SI->getTrueValue());
3025 Worklist.push_back(SI->getFalseValue());
3026 continue;
3027 }
3028
3029 if (PHINode *PN = dyn_cast<PHINode>(P)) {
3030 // If this PHI changes the underlying object in every iteration of the
3031 // loop, don't look through it. Consider:
3032 // int **A;
3033 // for (i) {
3034 // Prev = Curr; // Prev = PHI (Prev_0, Curr)
3035 // Curr = A[i];
3036 // *Prev, *Curr;
3037 //
3038 // Prev is tracking Curr one iteration behind so they refer to different
3039 // underlying objects.
3040 if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3041 isSameUnderlyingObjectInLoop(PN, LI))
3042 for (Value *IncValue : PN->incoming_values())
3043 Worklist.push_back(IncValue);
3044 continue;
3045 }
3046
3047 Objects.push_back(P);
3048 } while (!Worklist.empty());
3049 }
3050
3051 /// Return true if the only users of this pointer are lifetime markers.
onlyUsedByLifetimeMarkers(const Value * V)3052 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3053 for (const User *U : V->users()) {
3054 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3055 if (!II) return false;
3056
3057 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3058 II->getIntrinsicID() != Intrinsic::lifetime_end)
3059 return false;
3060 }
3061 return true;
3062 }
3063
isSafeToSpeculativelyExecute(const Value * V,const Instruction * CtxI,const DominatorTree * DT)3064 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3065 const Instruction *CtxI,
3066 const DominatorTree *DT) {
3067 const Operator *Inst = dyn_cast<Operator>(V);
3068 if (!Inst)
3069 return false;
3070
3071 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3072 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3073 if (C->canTrap())
3074 return false;
3075
3076 switch (Inst->getOpcode()) {
3077 default:
3078 return true;
3079 case Instruction::UDiv:
3080 case Instruction::URem: {
3081 // x / y is undefined if y == 0.
3082 const APInt *V;
3083 if (match(Inst->getOperand(1), m_APInt(V)))
3084 return *V != 0;
3085 return false;
3086 }
3087 case Instruction::SDiv:
3088 case Instruction::SRem: {
3089 // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3090 const APInt *Numerator, *Denominator;
3091 if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3092 return false;
3093 // We cannot hoist this division if the denominator is 0.
3094 if (*Denominator == 0)
3095 return false;
3096 // It's safe to hoist if the denominator is not 0 or -1.
3097 if (*Denominator != -1)
3098 return true;
3099 // At this point we know that the denominator is -1. It is safe to hoist as
3100 // long we know that the numerator is not INT_MIN.
3101 if (match(Inst->getOperand(0), m_APInt(Numerator)))
3102 return !Numerator->isMinSignedValue();
3103 // The numerator *might* be MinSignedValue.
3104 return false;
3105 }
3106 case Instruction::Load: {
3107 const LoadInst *LI = cast<LoadInst>(Inst);
3108 if (!LI->isUnordered() ||
3109 // Speculative load may create a race that did not exist in the source.
3110 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3111 // Speculative load may load data from dirty regions.
3112 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
3113 return false;
3114 const DataLayout &DL = LI->getModule()->getDataLayout();
3115 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3116 LI->getAlignment(), DL, CtxI, DT);
3117 }
3118 case Instruction::Call: {
3119 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3120 switch (II->getIntrinsicID()) {
3121 // These synthetic intrinsics have no side-effects and just mark
3122 // information about their operands.
3123 // FIXME: There are other no-op synthetic instructions that potentially
3124 // should be considered at least *safe* to speculate...
3125 case Intrinsic::dbg_declare:
3126 case Intrinsic::dbg_value:
3127 return true;
3128
3129 case Intrinsic::bswap:
3130 case Intrinsic::ctlz:
3131 case Intrinsic::ctpop:
3132 case Intrinsic::cttz:
3133 case Intrinsic::objectsize:
3134 case Intrinsic::sadd_with_overflow:
3135 case Intrinsic::smul_with_overflow:
3136 case Intrinsic::ssub_with_overflow:
3137 case Intrinsic::uadd_with_overflow:
3138 case Intrinsic::umul_with_overflow:
3139 case Intrinsic::usub_with_overflow:
3140 return true;
3141 // These intrinsics are defined to have the same behavior as libm
3142 // functions except for setting errno.
3143 case Intrinsic::sqrt:
3144 case Intrinsic::fma:
3145 case Intrinsic::fmuladd:
3146 return true;
3147 // These intrinsics are defined to have the same behavior as libm
3148 // functions, and the corresponding libm functions never set errno.
3149 case Intrinsic::trunc:
3150 case Intrinsic::copysign:
3151 case Intrinsic::fabs:
3152 case Intrinsic::minnum:
3153 case Intrinsic::maxnum:
3154 return true;
3155 // These intrinsics are defined to have the same behavior as libm
3156 // functions, which never overflow when operating on the IEEE754 types
3157 // that we support, and never set errno otherwise.
3158 case Intrinsic::ceil:
3159 case Intrinsic::floor:
3160 case Intrinsic::nearbyint:
3161 case Intrinsic::rint:
3162 case Intrinsic::round:
3163 return true;
3164 // TODO: are convert_{from,to}_fp16 safe?
3165 // TODO: can we list target-specific intrinsics here?
3166 default: break;
3167 }
3168 }
3169 return false; // The called function could have undefined behavior or
3170 // side-effects, even if marked readnone nounwind.
3171 }
3172 case Instruction::VAArg:
3173 case Instruction::Alloca:
3174 case Instruction::Invoke:
3175 case Instruction::PHI:
3176 case Instruction::Store:
3177 case Instruction::Ret:
3178 case Instruction::Br:
3179 case Instruction::IndirectBr:
3180 case Instruction::Switch:
3181 case Instruction::Unreachable:
3182 case Instruction::Fence:
3183 case Instruction::AtomicRMW:
3184 case Instruction::AtomicCmpXchg:
3185 case Instruction::LandingPad:
3186 case Instruction::Resume:
3187 case Instruction::CatchSwitch:
3188 case Instruction::CatchPad:
3189 case Instruction::CatchRet:
3190 case Instruction::CleanupPad:
3191 case Instruction::CleanupRet:
3192 return false; // Misc instructions which have effects
3193 }
3194 }
3195
mayBeMemoryDependent(const Instruction & I)3196 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3197 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3198 }
3199
3200 /// Return true if we know that the specified value is never null.
isKnownNonNull(const Value * V)3201 bool llvm::isKnownNonNull(const Value *V) {
3202 assert(V->getType()->isPointerTy() && "V must be pointer type");
3203
3204 // Alloca never returns null, malloc might.
3205 if (isa<AllocaInst>(V)) return true;
3206
3207 // A byval, inalloca, or nonnull argument is never null.
3208 if (const Argument *A = dyn_cast<Argument>(V))
3209 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3210
3211 // A global variable in address space 0 is non null unless extern weak.
3212 // Other address spaces may have null as a valid address for a global,
3213 // so we can't assume anything.
3214 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3215 return !GV->hasExternalWeakLinkage() &&
3216 GV->getType()->getAddressSpace() == 0;
3217
3218 // A Load tagged with nonnull metadata is never null.
3219 if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3220 return LI->getMetadata(LLVMContext::MD_nonnull);
3221
3222 if (auto CS = ImmutableCallSite(V))
3223 if (CS.isReturnNonNull())
3224 return true;
3225
3226 return false;
3227 }
3228
isKnownNonNullFromDominatingCondition(const Value * V,const Instruction * CtxI,const DominatorTree * DT)3229 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3230 const Instruction *CtxI,
3231 const DominatorTree *DT) {
3232 assert(V->getType()->isPointerTy() && "V must be pointer type");
3233
3234 unsigned NumUsesExplored = 0;
3235 for (auto *U : V->users()) {
3236 // Avoid massive lists
3237 if (NumUsesExplored >= DomConditionsMaxUses)
3238 break;
3239 NumUsesExplored++;
3240 // Consider only compare instructions uniquely controlling a branch
3241 CmpInst::Predicate Pred;
3242 if (!match(const_cast<User *>(U),
3243 m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3244 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
3245 continue;
3246
3247 for (auto *CmpU : U->users()) {
3248 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3249 assert(BI->isConditional() && "uses a comparison!");
3250
3251 BasicBlock *NonNullSuccessor =
3252 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3253 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3254 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3255 return true;
3256 } else if (Pred == ICmpInst::ICMP_NE &&
3257 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3258 DT->dominates(cast<Instruction>(CmpU), CtxI)) {
3259 return true;
3260 }
3261 }
3262 }
3263
3264 return false;
3265 }
3266
isKnownNonNullAt(const Value * V,const Instruction * CtxI,const DominatorTree * DT)3267 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3268 const DominatorTree *DT) {
3269 if (isKnownNonNull(V))
3270 return true;
3271
3272 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3273 }
3274
computeOverflowForUnsignedMul(Value * LHS,Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)3275 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
3276 const DataLayout &DL,
3277 AssumptionCache *AC,
3278 const Instruction *CxtI,
3279 const DominatorTree *DT) {
3280 // Multiplying n * m significant bits yields a result of n + m significant
3281 // bits. If the total number of significant bits does not exceed the
3282 // result bit width (minus 1), there is no overflow.
3283 // This means if we have enough leading zero bits in the operands
3284 // we can guarantee that the result does not overflow.
3285 // Ref: "Hacker's Delight" by Henry Warren
3286 unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3287 APInt LHSKnownZero(BitWidth, 0);
3288 APInt LHSKnownOne(BitWidth, 0);
3289 APInt RHSKnownZero(BitWidth, 0);
3290 APInt RHSKnownOne(BitWidth, 0);
3291 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3292 DT);
3293 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3294 DT);
3295 // Note that underestimating the number of zero bits gives a more
3296 // conservative answer.
3297 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3298 RHSKnownZero.countLeadingOnes();
3299 // First handle the easy case: if we have enough zero bits there's
3300 // definitely no overflow.
3301 if (ZeroBits >= BitWidth)
3302 return OverflowResult::NeverOverflows;
3303
3304 // Get the largest possible values for each operand.
3305 APInt LHSMax = ~LHSKnownZero;
3306 APInt RHSMax = ~RHSKnownZero;
3307
3308 // We know the multiply operation doesn't overflow if the maximum values for
3309 // each operand will not overflow after we multiply them together.
3310 bool MaxOverflow;
3311 LHSMax.umul_ov(RHSMax, MaxOverflow);
3312 if (!MaxOverflow)
3313 return OverflowResult::NeverOverflows;
3314
3315 // We know it always overflows if multiplying the smallest possible values for
3316 // the operands also results in overflow.
3317 bool MinOverflow;
3318 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3319 if (MinOverflow)
3320 return OverflowResult::AlwaysOverflows;
3321
3322 return OverflowResult::MayOverflow;
3323 }
3324
computeOverflowForUnsignedAdd(Value * LHS,Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)3325 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
3326 const DataLayout &DL,
3327 AssumptionCache *AC,
3328 const Instruction *CxtI,
3329 const DominatorTree *DT) {
3330 bool LHSKnownNonNegative, LHSKnownNegative;
3331 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3332 AC, CxtI, DT);
3333 if (LHSKnownNonNegative || LHSKnownNegative) {
3334 bool RHSKnownNonNegative, RHSKnownNegative;
3335 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3336 AC, CxtI, DT);
3337
3338 if (LHSKnownNegative && RHSKnownNegative) {
3339 // The sign bit is set in both cases: this MUST overflow.
3340 // Create a simple add instruction, and insert it into the struct.
3341 return OverflowResult::AlwaysOverflows;
3342 }
3343
3344 if (LHSKnownNonNegative && RHSKnownNonNegative) {
3345 // The sign bit is clear in both cases: this CANNOT overflow.
3346 // Create a simple add instruction, and insert it into the struct.
3347 return OverflowResult::NeverOverflows;
3348 }
3349 }
3350
3351 return OverflowResult::MayOverflow;
3352 }
3353
computeOverflowForSignedAdd(Value * LHS,Value * RHS,AddOperator * Add,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)3354 static OverflowResult computeOverflowForSignedAdd(
3355 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3356 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3357 if (Add && Add->hasNoSignedWrap()) {
3358 return OverflowResult::NeverOverflows;
3359 }
3360
3361 bool LHSKnownNonNegative, LHSKnownNegative;
3362 bool RHSKnownNonNegative, RHSKnownNegative;
3363 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3364 AC, CxtI, DT);
3365 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3366 AC, CxtI, DT);
3367
3368 if ((LHSKnownNonNegative && RHSKnownNegative) ||
3369 (LHSKnownNegative && RHSKnownNonNegative)) {
3370 // The sign bits are opposite: this CANNOT overflow.
3371 return OverflowResult::NeverOverflows;
3372 }
3373
3374 // The remaining code needs Add to be available. Early returns if not so.
3375 if (!Add)
3376 return OverflowResult::MayOverflow;
3377
3378 // If the sign of Add is the same as at least one of the operands, this add
3379 // CANNOT overflow. This is particularly useful when the sum is
3380 // @llvm.assume'ed non-negative rather than proved so from analyzing its
3381 // operands.
3382 bool LHSOrRHSKnownNonNegative =
3383 (LHSKnownNonNegative || RHSKnownNonNegative);
3384 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3385 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3386 bool AddKnownNonNegative, AddKnownNegative;
3387 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3388 /*Depth=*/0, AC, CxtI, DT);
3389 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3390 (AddKnownNegative && LHSOrRHSKnownNegative)) {
3391 return OverflowResult::NeverOverflows;
3392 }
3393 }
3394
3395 return OverflowResult::MayOverflow;
3396 }
3397
isOverflowIntrinsicNoWrap(IntrinsicInst * II,DominatorTree & DT)3398 bool llvm::isOverflowIntrinsicNoWrap(IntrinsicInst *II, DominatorTree &DT) {
3399 #ifndef NDEBUG
3400 auto IID = II->getIntrinsicID();
3401 assert((IID == Intrinsic::sadd_with_overflow ||
3402 IID == Intrinsic::uadd_with_overflow ||
3403 IID == Intrinsic::ssub_with_overflow ||
3404 IID == Intrinsic::usub_with_overflow ||
3405 IID == Intrinsic::smul_with_overflow ||
3406 IID == Intrinsic::umul_with_overflow) &&
3407 "Not an overflow intrinsic!");
3408 #endif
3409
3410 SmallVector<BranchInst *, 2> GuardingBranches;
3411 SmallVector<ExtractValueInst *, 2> Results;
3412
3413 for (User *U : II->users()) {
3414 if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
3415 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3416
3417 if (EVI->getIndices()[0] == 0)
3418 Results.push_back(EVI);
3419 else {
3420 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3421
3422 for (auto *U : EVI->users())
3423 if (auto *B = dyn_cast<BranchInst>(U)) {
3424 assert(B->isConditional() && "How else is it using an i1?");
3425 GuardingBranches.push_back(B);
3426 }
3427 }
3428 } else {
3429 // We are using the aggregate directly in a way we don't want to analyze
3430 // here (storing it to a global, say).
3431 return false;
3432 }
3433 }
3434
3435 auto AllUsesGuardedByBranch = [&](BranchInst *BI) {
3436 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3437 if (!NoWrapEdge.isSingleEdge())
3438 return false;
3439
3440 // Check if all users of the add are provably no-wrap.
3441 for (auto *Result : Results) {
3442 // If the extractvalue itself is not executed on overflow, the we don't
3443 // need to check each use separately, since domination is transitive.
3444 if (DT.dominates(NoWrapEdge, Result->getParent()))
3445 continue;
3446
3447 for (auto &RU : Result->uses())
3448 if (!DT.dominates(NoWrapEdge, RU))
3449 return false;
3450 }
3451
3452 return true;
3453 };
3454
3455 return any_of(GuardingBranches, AllUsesGuardedByBranch);
3456 }
3457
3458
computeOverflowForSignedAdd(AddOperator * Add,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)3459 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3460 const DataLayout &DL,
3461 AssumptionCache *AC,
3462 const Instruction *CxtI,
3463 const DominatorTree *DT) {
3464 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3465 Add, DL, AC, CxtI, DT);
3466 }
3467
computeOverflowForSignedAdd(Value * LHS,Value * RHS,const DataLayout & DL,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)3468 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3469 const DataLayout &DL,
3470 AssumptionCache *AC,
3471 const Instruction *CxtI,
3472 const DominatorTree *DT) {
3473 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3474 }
3475
isGuaranteedToTransferExecutionToSuccessor(const Instruction * I)3476 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3477 // A memory operation returns normally if it isn't volatile. A volatile
3478 // operation is allowed to trap.
3479 //
3480 // An atomic operation isn't guaranteed to return in a reasonable amount of
3481 // time because it's possible for another thread to interfere with it for an
3482 // arbitrary length of time, but programs aren't allowed to rely on that.
3483 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3484 return !LI->isVolatile();
3485 if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3486 return !SI->isVolatile();
3487 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3488 return !CXI->isVolatile();
3489 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3490 return !RMWI->isVolatile();
3491 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3492 return !MII->isVolatile();
3493
3494 // If there is no successor, then execution can't transfer to it.
3495 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3496 return !CRI->unwindsToCaller();
3497 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3498 return !CatchSwitch->unwindsToCaller();
3499 if (isa<ResumeInst>(I))
3500 return false;
3501 if (isa<ReturnInst>(I))
3502 return false;
3503
3504 // Calls can throw, or contain an infinite loop, or kill the process.
3505 if (CallSite CS = CallSite(const_cast<Instruction*>(I))) {
3506 // Calls which don't write to arbitrary memory are safe.
3507 // FIXME: Ignoring infinite loops without any side-effects is too aggressive,
3508 // but it's consistent with other passes. See http://llvm.org/PR965 .
3509 // FIXME: This isn't aggressive enough; a call which only writes to a
3510 // global is guaranteed to return.
3511 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3512 match(I, m_Intrinsic<Intrinsic::assume>());
3513 }
3514
3515 // Other instructions return normally.
3516 return true;
3517 }
3518
isGuaranteedToExecuteForEveryIteration(const Instruction * I,const Loop * L)3519 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3520 const Loop *L) {
3521 // The loop header is guaranteed to be executed for every iteration.
3522 //
3523 // FIXME: Relax this constraint to cover all basic blocks that are
3524 // guaranteed to be executed at every iteration.
3525 if (I->getParent() != L->getHeader()) return false;
3526
3527 for (const Instruction &LI : *L->getHeader()) {
3528 if (&LI == I) return true;
3529 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3530 }
3531 llvm_unreachable("Instruction not contained in its own parent basic block.");
3532 }
3533
propagatesFullPoison(const Instruction * I)3534 bool llvm::propagatesFullPoison(const Instruction *I) {
3535 switch (I->getOpcode()) {
3536 case Instruction::Add:
3537 case Instruction::Sub:
3538 case Instruction::Xor:
3539 case Instruction::Trunc:
3540 case Instruction::BitCast:
3541 case Instruction::AddrSpaceCast:
3542 // These operations all propagate poison unconditionally. Note that poison
3543 // is not any particular value, so xor or subtraction of poison with
3544 // itself still yields poison, not zero.
3545 return true;
3546
3547 case Instruction::AShr:
3548 case Instruction::SExt:
3549 // For these operations, one bit of the input is replicated across
3550 // multiple output bits. A replicated poison bit is still poison.
3551 return true;
3552
3553 case Instruction::Shl: {
3554 // Left shift *by* a poison value is poison. The number of
3555 // positions to shift is unsigned, so no negative values are
3556 // possible there. Left shift by zero places preserves poison. So
3557 // it only remains to consider left shift of poison by a positive
3558 // number of places.
3559 //
3560 // A left shift by a positive number of places leaves the lowest order bit
3561 // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3562 // make the poison operand violate that flag, yielding a fresh full-poison
3563 // value.
3564 auto *OBO = cast<OverflowingBinaryOperator>(I);
3565 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3566 }
3567
3568 case Instruction::Mul: {
3569 // A multiplication by zero yields a non-poison zero result, so we need to
3570 // rule out zero as an operand. Conservatively, multiplication by a
3571 // non-zero constant is not multiplication by zero.
3572 //
3573 // Multiplication by a non-zero constant can leave some bits
3574 // non-poisoned. For example, a multiplication by 2 leaves the lowest
3575 // order bit unpoisoned. So we need to consider that.
3576 //
3577 // Multiplication by 1 preserves poison. If the multiplication has a
3578 // no-wrap flag, then we can make the poison operand violate that flag
3579 // when multiplied by any integer other than 0 and 1.
3580 auto *OBO = cast<OverflowingBinaryOperator>(I);
3581 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3582 for (Value *V : OBO->operands()) {
3583 if (auto *CI = dyn_cast<ConstantInt>(V)) {
3584 // A ConstantInt cannot yield poison, so we can assume that it is
3585 // the other operand that is poison.
3586 return !CI->isZero();
3587 }
3588 }
3589 }
3590 return false;
3591 }
3592
3593 case Instruction::ICmp:
3594 // Comparing poison with any value yields poison. This is why, for
3595 // instance, x s< (x +nsw 1) can be folded to true.
3596 return true;
3597
3598 case Instruction::GetElementPtr:
3599 // A GEP implicitly represents a sequence of additions, subtractions,
3600 // truncations, sign extensions and multiplications. The multiplications
3601 // are by the non-zero sizes of some set of types, so we do not have to be
3602 // concerned with multiplication by zero. If the GEP is in-bounds, then
3603 // these operations are implicitly no-signed-wrap so poison is propagated
3604 // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3605 return cast<GEPOperator>(I)->isInBounds();
3606
3607 default:
3608 return false;
3609 }
3610 }
3611
getGuaranteedNonFullPoisonOp(const Instruction * I)3612 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3613 switch (I->getOpcode()) {
3614 case Instruction::Store:
3615 return cast<StoreInst>(I)->getPointerOperand();
3616
3617 case Instruction::Load:
3618 return cast<LoadInst>(I)->getPointerOperand();
3619
3620 case Instruction::AtomicCmpXchg:
3621 return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3622
3623 case Instruction::AtomicRMW:
3624 return cast<AtomicRMWInst>(I)->getPointerOperand();
3625
3626 case Instruction::UDiv:
3627 case Instruction::SDiv:
3628 case Instruction::URem:
3629 case Instruction::SRem:
3630 return I->getOperand(1);
3631
3632 default:
3633 return nullptr;
3634 }
3635 }
3636
isKnownNotFullPoison(const Instruction * PoisonI)3637 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3638 // We currently only look for uses of poison values within the same basic
3639 // block, as that makes it easier to guarantee that the uses will be
3640 // executed given that PoisonI is executed.
3641 //
3642 // FIXME: Expand this to consider uses beyond the same basic block. To do
3643 // this, look out for the distinction between post-dominance and strong
3644 // post-dominance.
3645 const BasicBlock *BB = PoisonI->getParent();
3646
3647 // Set of instructions that we have proved will yield poison if PoisonI
3648 // does.
3649 SmallSet<const Value *, 16> YieldsPoison;
3650 SmallSet<const BasicBlock *, 4> Visited;
3651 YieldsPoison.insert(PoisonI);
3652 Visited.insert(PoisonI->getParent());
3653
3654 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
3655
3656 unsigned Iter = 0;
3657 while (Iter++ < MaxDepth) {
3658 for (auto &I : make_range(Begin, End)) {
3659 if (&I != PoisonI) {
3660 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3661 if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3662 return true;
3663 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3664 return false;
3665 }
3666
3667 // Mark poison that propagates from I through uses of I.
3668 if (YieldsPoison.count(&I)) {
3669 for (const User *User : I.users()) {
3670 const Instruction *UserI = cast<Instruction>(User);
3671 if (propagatesFullPoison(UserI))
3672 YieldsPoison.insert(User);
3673 }
3674 }
3675 }
3676
3677 if (auto *NextBB = BB->getSingleSuccessor()) {
3678 if (Visited.insert(NextBB).second) {
3679 BB = NextBB;
3680 Begin = BB->getFirstNonPHI()->getIterator();
3681 End = BB->end();
3682 continue;
3683 }
3684 }
3685
3686 break;
3687 };
3688 return false;
3689 }
3690
isKnownNonNaN(Value * V,FastMathFlags FMF)3691 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3692 if (FMF.noNaNs())
3693 return true;
3694
3695 if (auto *C = dyn_cast<ConstantFP>(V))
3696 return !C->isNaN();
3697 return false;
3698 }
3699
isKnownNonZero(Value * V)3700 static bool isKnownNonZero(Value *V) {
3701 if (auto *C = dyn_cast<ConstantFP>(V))
3702 return !C->isZero();
3703 return false;
3704 }
3705
matchSelectPattern(CmpInst::Predicate Pred,FastMathFlags FMF,Value * CmpLHS,Value * CmpRHS,Value * TrueVal,Value * FalseVal,Value * & LHS,Value * & RHS)3706 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3707 FastMathFlags FMF,
3708 Value *CmpLHS, Value *CmpRHS,
3709 Value *TrueVal, Value *FalseVal,
3710 Value *&LHS, Value *&RHS) {
3711 LHS = CmpLHS;
3712 RHS = CmpRHS;
3713
3714 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may
3715 // return inconsistent results between implementations.
3716 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3717 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3718 // Therefore we behave conservatively and only proceed if at least one of the
3719 // operands is known to not be zero, or if we don't care about signed zeroes.
3720 switch (Pred) {
3721 default: break;
3722 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3723 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3724 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3725 !isKnownNonZero(CmpRHS))
3726 return {SPF_UNKNOWN, SPNB_NA, false};
3727 }
3728
3729 SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3730 bool Ordered = false;
3731
3732 // When given one NaN and one non-NaN input:
3733 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3734 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3735 // ordered comparison fails), which could be NaN or non-NaN.
3736 // so here we discover exactly what NaN behavior is required/accepted.
3737 if (CmpInst::isFPPredicate(Pred)) {
3738 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3739 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3740
3741 if (LHSSafe && RHSSafe) {
3742 // Both operands are known non-NaN.
3743 NaNBehavior = SPNB_RETURNS_ANY;
3744 } else if (CmpInst::isOrdered(Pred)) {
3745 // An ordered comparison will return false when given a NaN, so it
3746 // returns the RHS.
3747 Ordered = true;
3748 if (LHSSafe)
3749 // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
3750 NaNBehavior = SPNB_RETURNS_NAN;
3751 else if (RHSSafe)
3752 NaNBehavior = SPNB_RETURNS_OTHER;
3753 else
3754 // Completely unsafe.
3755 return {SPF_UNKNOWN, SPNB_NA, false};
3756 } else {
3757 Ordered = false;
3758 // An unordered comparison will return true when given a NaN, so it
3759 // returns the LHS.
3760 if (LHSSafe)
3761 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
3762 NaNBehavior = SPNB_RETURNS_OTHER;
3763 else if (RHSSafe)
3764 NaNBehavior = SPNB_RETURNS_NAN;
3765 else
3766 // Completely unsafe.
3767 return {SPF_UNKNOWN, SPNB_NA, false};
3768 }
3769 }
3770
3771 if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
3772 std::swap(CmpLHS, CmpRHS);
3773 Pred = CmpInst::getSwappedPredicate(Pred);
3774 if (NaNBehavior == SPNB_RETURNS_NAN)
3775 NaNBehavior = SPNB_RETURNS_OTHER;
3776 else if (NaNBehavior == SPNB_RETURNS_OTHER)
3777 NaNBehavior = SPNB_RETURNS_NAN;
3778 Ordered = !Ordered;
3779 }
3780
3781 // ([if]cmp X, Y) ? X : Y
3782 if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
3783 switch (Pred) {
3784 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
3785 case ICmpInst::ICMP_UGT:
3786 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
3787 case ICmpInst::ICMP_SGT:
3788 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
3789 case ICmpInst::ICMP_ULT:
3790 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
3791 case ICmpInst::ICMP_SLT:
3792 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3793 case FCmpInst::FCMP_UGT:
3794 case FCmpInst::FCMP_UGE:
3795 case FCmpInst::FCMP_OGT:
3796 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3797 case FCmpInst::FCMP_ULT:
3798 case FCmpInst::FCMP_ULE:
3799 case FCmpInst::FCMP_OLT:
3800 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
3801 }
3802 }
3803
3804 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3805 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3806 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3807
3808 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3809 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3810 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
3811 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3812 }
3813
3814 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3815 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3816 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
3817 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3818 }
3819 }
3820
3821 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3822 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3823 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3824 ~C1->getValue() == C2->getValue() &&
3825 (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3826 match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3827 LHS = TrueVal;
3828 RHS = FalseVal;
3829 return {SPF_SMIN, SPNB_NA, false};
3830 }
3831 }
3832 }
3833
3834 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
3835
3836 return {SPF_UNKNOWN, SPNB_NA, false};
3837 }
3838
lookThroughCast(CmpInst * CmpI,Value * V1,Value * V2,Instruction::CastOps * CastOp)3839 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3840 Instruction::CastOps *CastOp) {
3841 CastInst *CI = dyn_cast<CastInst>(V1);
3842 Constant *C = dyn_cast<Constant>(V2);
3843 if (!CI)
3844 return nullptr;
3845 *CastOp = CI->getOpcode();
3846
3847 if (auto *CI2 = dyn_cast<CastInst>(V2)) {
3848 // If V1 and V2 are both the same cast from the same type, we can look
3849 // through V1.
3850 if (CI2->getOpcode() == CI->getOpcode() &&
3851 CI2->getSrcTy() == CI->getSrcTy())
3852 return CI2->getOperand(0);
3853 return nullptr;
3854 } else if (!C) {
3855 return nullptr;
3856 }
3857
3858 Constant *CastedTo = nullptr;
3859
3860 if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3861 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
3862
3863 if (isa<SExtInst>(CI) && CmpI->isSigned())
3864 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3865
3866 if (isa<TruncInst>(CI))
3867 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3868
3869 if (isa<FPTruncInst>(CI))
3870 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3871
3872 if (isa<FPExtInst>(CI))
3873 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3874
3875 if (isa<FPToUIInst>(CI))
3876 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3877
3878 if (isa<FPToSIInst>(CI))
3879 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3880
3881 if (isa<UIToFPInst>(CI))
3882 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3883
3884 if (isa<SIToFPInst>(CI))
3885 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3886
3887 if (!CastedTo)
3888 return nullptr;
3889
3890 Constant *CastedBack =
3891 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3892 // Make sure the cast doesn't lose any information.
3893 if (CastedBack != C)
3894 return nullptr;
3895
3896 return CastedTo;
3897 }
3898
matchSelectPattern(Value * V,Value * & LHS,Value * & RHS,Instruction::CastOps * CastOp)3899 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
3900 Instruction::CastOps *CastOp) {
3901 SelectInst *SI = dyn_cast<SelectInst>(V);
3902 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
3903
3904 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3905 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
3906
3907 CmpInst::Predicate Pred = CmpI->getPredicate();
3908 Value *CmpLHS = CmpI->getOperand(0);
3909 Value *CmpRHS = CmpI->getOperand(1);
3910 Value *TrueVal = SI->getTrueValue();
3911 Value *FalseVal = SI->getFalseValue();
3912 FastMathFlags FMF;
3913 if (isa<FPMathOperator>(CmpI))
3914 FMF = CmpI->getFastMathFlags();
3915
3916 // Bail out early.
3917 if (CmpI->isEquality())
3918 return {SPF_UNKNOWN, SPNB_NA, false};
3919
3920 // Deal with type mismatches.
3921 if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
3922 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
3923 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
3924 cast<CastInst>(TrueVal)->getOperand(0), C,
3925 LHS, RHS);
3926 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
3927 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
3928 C, cast<CastInst>(FalseVal)->getOperand(0),
3929 LHS, RHS);
3930 }
3931 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
3932 LHS, RHS);
3933 }
3934
getConstantRangeFromMetadata(MDNode & Ranges)3935 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
3936 const unsigned NumRanges = Ranges.getNumOperands() / 2;
3937 assert(NumRanges >= 1 && "Must have at least one range!");
3938 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
3939
3940 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
3941 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
3942
3943 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
3944
3945 for (unsigned i = 1; i < NumRanges; ++i) {
3946 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
3947 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
3948
3949 // Note: unionWith will potentially create a range that contains values not
3950 // contained in any of the original N ranges.
3951 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
3952 }
3953
3954 return CR;
3955 }
3956
3957 /// Return true if "icmp Pred LHS RHS" is always true.
isTruePredicate(CmpInst::Predicate Pred,Value * LHS,Value * RHS,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)3958 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
3959 const DataLayout &DL, unsigned Depth,
3960 AssumptionCache *AC, const Instruction *CxtI,
3961 const DominatorTree *DT) {
3962 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
3963 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
3964 return true;
3965
3966 switch (Pred) {
3967 default:
3968 return false;
3969
3970 case CmpInst::ICMP_SLE: {
3971 const APInt *C;
3972
3973 // LHS s<= LHS +_{nsw} C if C >= 0
3974 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
3975 return !C->isNegative();
3976 return false;
3977 }
3978
3979 case CmpInst::ICMP_ULE: {
3980 const APInt *C;
3981
3982 // LHS u<= LHS +_{nuw} C for any C
3983 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
3984 return true;
3985
3986 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
3987 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
3988 const APInt *&CA, const APInt *&CB) {
3989 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
3990 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
3991 return true;
3992
3993 // If X & C == 0 then (X | C) == X +_{nuw} C
3994 if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
3995 match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
3996 unsigned BitWidth = CA->getBitWidth();
3997 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3998 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
3999
4000 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4001 return true;
4002 }
4003
4004 return false;
4005 };
4006
4007 Value *X;
4008 const APInt *CLHS, *CRHS;
4009 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4010 return CLHS->ule(*CRHS);
4011
4012 return false;
4013 }
4014 }
4015 }
4016
4017 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4018 /// ALHS ARHS" is true. Otherwise, return None.
4019 static Optional<bool>
isImpliedCondOperands(CmpInst::Predicate Pred,Value * ALHS,Value * ARHS,Value * BLHS,Value * BRHS,const DataLayout & DL,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)4020 isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, Value *ARHS,
4021 Value *BLHS, Value *BRHS, const DataLayout &DL,
4022 unsigned Depth, AssumptionCache *AC,
4023 const Instruction *CxtI, const DominatorTree *DT) {
4024 switch (Pred) {
4025 default:
4026 return None;
4027
4028 case CmpInst::ICMP_SLT:
4029 case CmpInst::ICMP_SLE:
4030 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4031 DT) &&
4032 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4033 return true;
4034 return None;
4035
4036 case CmpInst::ICMP_ULT:
4037 case CmpInst::ICMP_ULE:
4038 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4039 DT) &&
4040 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4041 return true;
4042 return None;
4043 }
4044 }
4045
4046 /// Return true if the operands of the two compares match. IsSwappedOps is true
4047 /// when the operands match, but are swapped.
isMatchingOps(Value * ALHS,Value * ARHS,Value * BLHS,Value * BRHS,bool & IsSwappedOps)4048 static bool isMatchingOps(Value *ALHS, Value *ARHS, Value *BLHS, Value *BRHS,
4049 bool &IsSwappedOps) {
4050
4051 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4052 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4053 return IsMatchingOps || IsSwappedOps;
4054 }
4055
4056 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4057 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4058 /// BRHS" is false. Otherwise, return None if we can't infer anything.
isImpliedCondMatchingOperands(CmpInst::Predicate APred,Value * ALHS,Value * ARHS,CmpInst::Predicate BPred,Value * BLHS,Value * BRHS,bool IsSwappedOps)4059 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
4060 Value *ALHS, Value *ARHS,
4061 CmpInst::Predicate BPred,
4062 Value *BLHS, Value *BRHS,
4063 bool IsSwappedOps) {
4064 // Canonicalize the operands so they're matching.
4065 if (IsSwappedOps) {
4066 std::swap(BLHS, BRHS);
4067 BPred = ICmpInst::getSwappedPredicate(BPred);
4068 }
4069 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
4070 return true;
4071 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
4072 return false;
4073
4074 return None;
4075 }
4076
4077 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4078 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4079 /// C2" is false. Otherwise, return None if we can't infer anything.
4080 static Optional<bool>
isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,Value * ALHS,ConstantInt * C1,CmpInst::Predicate BPred,Value * BLHS,ConstantInt * C2)4081 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, Value *ALHS,
4082 ConstantInt *C1, CmpInst::Predicate BPred,
4083 Value *BLHS, ConstantInt *C2) {
4084 assert(ALHS == BLHS && "LHS operands must match.");
4085 ConstantRange DomCR =
4086 ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4087 ConstantRange CR =
4088 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4089 ConstantRange Intersection = DomCR.intersectWith(CR);
4090 ConstantRange Difference = DomCR.difference(CR);
4091 if (Intersection.isEmptySet())
4092 return false;
4093 if (Difference.isEmptySet())
4094 return true;
4095 return None;
4096 }
4097
isImpliedCondition(Value * LHS,Value * RHS,const DataLayout & DL,bool InvertAPred,unsigned Depth,AssumptionCache * AC,const Instruction * CxtI,const DominatorTree * DT)4098 Optional<bool> llvm::isImpliedCondition(Value *LHS, Value *RHS,
4099 const DataLayout &DL, bool InvertAPred,
4100 unsigned Depth, AssumptionCache *AC,
4101 const Instruction *CxtI,
4102 const DominatorTree *DT) {
4103 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4104 if (LHS->getType() != RHS->getType())
4105 return None;
4106
4107 Type *OpTy = LHS->getType();
4108 assert(OpTy->getScalarType()->isIntegerTy(1));
4109
4110 // LHS ==> RHS by definition
4111 if (!InvertAPred && LHS == RHS)
4112 return true;
4113
4114 if (OpTy->isVectorTy())
4115 // TODO: extending the code below to handle vectors
4116 return None;
4117 assert(OpTy->isIntegerTy(1) && "implied by above");
4118
4119 ICmpInst::Predicate APred, BPred;
4120 Value *ALHS, *ARHS;
4121 Value *BLHS, *BRHS;
4122
4123 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4124 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4125 return None;
4126
4127 if (InvertAPred)
4128 APred = CmpInst::getInversePredicate(APred);
4129
4130 // Can we infer anything when the two compares have matching operands?
4131 bool IsSwappedOps;
4132 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4133 if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4134 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
4135 return Implication;
4136 // No amount of additional analysis will infer the second condition, so
4137 // early exit.
4138 return None;
4139 }
4140
4141 // Can we infer anything when the LHS operands match and the RHS operands are
4142 // constants (not necessarily matching)?
4143 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4144 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4145 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4146 cast<ConstantInt>(BRHS)))
4147 return Implication;
4148 // No amount of additional analysis will infer the second condition, so
4149 // early exit.
4150 return None;
4151 }
4152
4153 if (APred == BPred)
4154 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4155 CxtI, DT);
4156
4157 return None;
4158 }
4159