1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CriticalAntiDepBreaker class, which
11 // implements register anti-dependence breaking along a blocks
12 // critical path during post-RA scheduler.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "CriticalAntiDepBreaker.h"
17 #include "llvm/CodeGen/MachineBasicBlock.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24 #include "llvm/Target/TargetSubtargetInfo.h"
25
26 using namespace llvm;
27
28 #define DEBUG_TYPE "post-RA-sched"
29
CriticalAntiDepBreaker(MachineFunction & MFi,const RegisterClassInfo & RCI)30 CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi,
31 const RegisterClassInfo &RCI)
32 : AntiDepBreaker(), MF(MFi), MRI(MF.getRegInfo()),
33 TII(MF.getSubtarget().getInstrInfo()),
34 TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI),
35 Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0),
36 DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {}
37
~CriticalAntiDepBreaker()38 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
39 }
40
StartBlock(MachineBasicBlock * BB)41 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
42 const unsigned BBSize = BB->size();
43 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
44 // Clear out the register class data.
45 Classes[i] = nullptr;
46
47 // Initialize the indices to indicate that no registers are live.
48 KillIndices[i] = ~0u;
49 DefIndices[i] = BBSize;
50 }
51
52 // Clear "do not change" set.
53 KeepRegs.reset();
54
55 bool IsReturnBlock = BB->isReturnBlock();
56
57 // Examine the live-in regs of all successors.
58 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
59 SE = BB->succ_end(); SI != SE; ++SI)
60 for (const auto &LI : (*SI)->liveins()) {
61 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
62 unsigned Reg = *AI;
63 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
64 KillIndices[Reg] = BBSize;
65 DefIndices[Reg] = ~0u;
66 }
67 }
68
69 // Mark live-out callee-saved registers. In a return block this is
70 // all callee-saved registers. In non-return this is any
71 // callee-saved register that is not saved in the prolog.
72 const MachineFrameInfo *MFI = MF.getFrameInfo();
73 BitVector Pristine = MFI->getPristineRegs(MF);
74 for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
75 if (!IsReturnBlock && !Pristine.test(*I)) continue;
76 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
77 unsigned Reg = *AI;
78 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
79 KillIndices[Reg] = BBSize;
80 DefIndices[Reg] = ~0u;
81 }
82 }
83 }
84
FinishBlock()85 void CriticalAntiDepBreaker::FinishBlock() {
86 RegRefs.clear();
87 KeepRegs.reset();
88 }
89
Observe(MachineInstr & MI,unsigned Count,unsigned InsertPosIndex)90 void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
91 unsigned InsertPosIndex) {
92 // Kill instructions can define registers but are really nops, and there might
93 // be a real definition earlier that needs to be paired with uses dominated by
94 // this kill.
95
96 // FIXME: It may be possible to remove the isKill() restriction once PR18663
97 // has been properly fixed. There can be value in processing kills as seen in
98 // the AggressiveAntiDepBreaker class.
99 if (MI.isDebugValue() || MI.isKill())
100 return;
101 assert(Count < InsertPosIndex && "Instruction index out of expected range!");
102
103 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
104 if (KillIndices[Reg] != ~0u) {
105 // If Reg is currently live, then mark that it can't be renamed as
106 // we don't know the extent of its live-range anymore (now that it
107 // has been scheduled).
108 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
109 KillIndices[Reg] = Count;
110 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
111 // Any register which was defined within the previous scheduling region
112 // may have been rescheduled and its lifetime may overlap with registers
113 // in ways not reflected in our current liveness state. For each such
114 // register, adjust the liveness state to be conservatively correct.
115 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
116
117 // Move the def index to the end of the previous region, to reflect
118 // that the def could theoretically have been scheduled at the end.
119 DefIndices[Reg] = InsertPosIndex;
120 }
121 }
122
123 PrescanInstruction(MI);
124 ScanInstruction(MI, Count);
125 }
126
127 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
128 /// critical path.
CriticalPathStep(const SUnit * SU)129 static const SDep *CriticalPathStep(const SUnit *SU) {
130 const SDep *Next = nullptr;
131 unsigned NextDepth = 0;
132 // Find the predecessor edge with the greatest depth.
133 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
134 P != PE; ++P) {
135 const SUnit *PredSU = P->getSUnit();
136 unsigned PredLatency = P->getLatency();
137 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
138 // In the case of a latency tie, prefer an anti-dependency edge over
139 // other types of edges.
140 if (NextDepth < PredTotalLatency ||
141 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
142 NextDepth = PredTotalLatency;
143 Next = &*P;
144 }
145 }
146 return Next;
147 }
148
PrescanInstruction(MachineInstr & MI)149 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) {
150 // It's not safe to change register allocation for source operands of
151 // instructions that have special allocation requirements. Also assume all
152 // registers used in a call must not be changed (ABI).
153 // FIXME: The issue with predicated instruction is more complex. We are being
154 // conservative here because the kill markers cannot be trusted after
155 // if-conversion:
156 // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
157 // ...
158 // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
159 // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
160 // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
161 //
162 // The first R6 kill is not really a kill since it's killed by a predicated
163 // instruction which may not be executed. The second R6 def may or may not
164 // re-define R6 so it's not safe to change it since the last R6 use cannot be
165 // changed.
166 bool Special =
167 MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI);
168
169 // Scan the register operands for this instruction and update
170 // Classes and RegRefs.
171 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
172 MachineOperand &MO = MI.getOperand(i);
173 if (!MO.isReg()) continue;
174 unsigned Reg = MO.getReg();
175 if (Reg == 0) continue;
176 const TargetRegisterClass *NewRC = nullptr;
177
178 if (i < MI.getDesc().getNumOperands())
179 NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
180
181 // For now, only allow the register to be changed if its register
182 // class is consistent across all uses.
183 if (!Classes[Reg] && NewRC)
184 Classes[Reg] = NewRC;
185 else if (!NewRC || Classes[Reg] != NewRC)
186 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
187
188 // Now check for aliases.
189 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
190 // If an alias of the reg is used during the live range, give up.
191 // Note that this allows us to skip checking if AntiDepReg
192 // overlaps with any of the aliases, among other things.
193 unsigned AliasReg = *AI;
194 if (Classes[AliasReg]) {
195 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
196 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
197 }
198 }
199
200 // If we're still willing to consider this register, note the reference.
201 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
202 RegRefs.insert(std::make_pair(Reg, &MO));
203
204 // If this reg is tied and live (Classes[Reg] is set to -1), we can't change
205 // it or any of its sub or super regs. We need to use KeepRegs to mark the
206 // reg because not all uses of the same reg within an instruction are
207 // necessarily tagged as tied.
208 // Example: an x86 "xor %eax, %eax" will have one source operand tied to the
209 // def register but not the second (see PR20020 for details).
210 // FIXME: can this check be relaxed to account for undef uses
211 // of a register? In the above 'xor' example, the uses of %eax are undef, so
212 // earlier instructions could still replace %eax even though the 'xor'
213 // itself can't be changed.
214 if (MI.isRegTiedToUseOperand(i) &&
215 Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) {
216 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
217 SubRegs.isValid(); ++SubRegs) {
218 KeepRegs.set(*SubRegs);
219 }
220 for (MCSuperRegIterator SuperRegs(Reg, TRI);
221 SuperRegs.isValid(); ++SuperRegs) {
222 KeepRegs.set(*SuperRegs);
223 }
224 }
225
226 if (MO.isUse() && Special) {
227 if (!KeepRegs.test(Reg)) {
228 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
229 SubRegs.isValid(); ++SubRegs)
230 KeepRegs.set(*SubRegs);
231 }
232 }
233 }
234 }
235
ScanInstruction(MachineInstr & MI,unsigned Count)236 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) {
237 // Update liveness.
238 // Proceeding upwards, registers that are defed but not used in this
239 // instruction are now dead.
240 assert(!MI.isKill() && "Attempting to scan a kill instruction");
241
242 if (!TII->isPredicated(MI)) {
243 // Predicated defs are modeled as read + write, i.e. similar to two
244 // address updates.
245 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
246 MachineOperand &MO = MI.getOperand(i);
247
248 if (MO.isRegMask())
249 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
250 if (MO.clobbersPhysReg(i)) {
251 DefIndices[i] = Count;
252 KillIndices[i] = ~0u;
253 KeepRegs.reset(i);
254 Classes[i] = nullptr;
255 RegRefs.erase(i);
256 }
257
258 if (!MO.isReg()) continue;
259 unsigned Reg = MO.getReg();
260 if (Reg == 0) continue;
261 if (!MO.isDef()) continue;
262
263 // Ignore two-addr defs.
264 if (MI.isRegTiedToUseOperand(i))
265 continue;
266
267 // If we've already marked this reg as unchangeable, don't remove
268 // it or any of its subregs from KeepRegs.
269 bool Keep = KeepRegs.test(Reg);
270
271 // For the reg itself and all subregs: update the def to current;
272 // reset the kill state, any restrictions, and references.
273 for (MCSubRegIterator SRI(Reg, TRI, true); SRI.isValid(); ++SRI) {
274 unsigned SubregReg = *SRI;
275 DefIndices[SubregReg] = Count;
276 KillIndices[SubregReg] = ~0u;
277 Classes[SubregReg] = nullptr;
278 RegRefs.erase(SubregReg);
279 if (!Keep)
280 KeepRegs.reset(SubregReg);
281 }
282 // Conservatively mark super-registers as unusable.
283 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
284 Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
285 }
286 }
287 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
288 MachineOperand &MO = MI.getOperand(i);
289 if (!MO.isReg()) continue;
290 unsigned Reg = MO.getReg();
291 if (Reg == 0) continue;
292 if (!MO.isUse()) continue;
293
294 const TargetRegisterClass *NewRC = nullptr;
295 if (i < MI.getDesc().getNumOperands())
296 NewRC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
297
298 // For now, only allow the register to be changed if its register
299 // class is consistent across all uses.
300 if (!Classes[Reg] && NewRC)
301 Classes[Reg] = NewRC;
302 else if (!NewRC || Classes[Reg] != NewRC)
303 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
304
305 RegRefs.insert(std::make_pair(Reg, &MO));
306
307 // It wasn't previously live but now it is, this is a kill.
308 // Repeat for all aliases.
309 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
310 unsigned AliasReg = *AI;
311 if (KillIndices[AliasReg] == ~0u) {
312 KillIndices[AliasReg] = Count;
313 DefIndices[AliasReg] = ~0u;
314 }
315 }
316 }
317 }
318
319 // Check all machine operands that reference the antidependent register and must
320 // be replaced by NewReg. Return true if any of their parent instructions may
321 // clobber the new register.
322 //
323 // Note: AntiDepReg may be referenced by a two-address instruction such that
324 // it's use operand is tied to a def operand. We guard against the case in which
325 // the two-address instruction also defines NewReg, as may happen with
326 // pre/postincrement loads. In this case, both the use and def operands are in
327 // RegRefs because the def is inserted by PrescanInstruction and not erased
328 // during ScanInstruction. So checking for an instruction with definitions of
329 // both NewReg and AntiDepReg covers it.
330 bool
isNewRegClobberedByRefs(RegRefIter RegRefBegin,RegRefIter RegRefEnd,unsigned NewReg)331 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
332 RegRefIter RegRefEnd,
333 unsigned NewReg)
334 {
335 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
336 MachineOperand *RefOper = I->second;
337
338 // Don't allow the instruction defining AntiDepReg to earlyclobber its
339 // operands, in case they may be assigned to NewReg. In this case antidep
340 // breaking must fail, but it's too rare to bother optimizing.
341 if (RefOper->isDef() && RefOper->isEarlyClobber())
342 return true;
343
344 // Handle cases in which this instruction defines NewReg.
345 MachineInstr *MI = RefOper->getParent();
346 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
347 const MachineOperand &CheckOper = MI->getOperand(i);
348
349 if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
350 return true;
351
352 if (!CheckOper.isReg() || !CheckOper.isDef() ||
353 CheckOper.getReg() != NewReg)
354 continue;
355
356 // Don't allow the instruction to define NewReg and AntiDepReg.
357 // When AntiDepReg is renamed it will be an illegal op.
358 if (RefOper->isDef())
359 return true;
360
361 // Don't allow an instruction using AntiDepReg to be earlyclobbered by
362 // NewReg.
363 if (CheckOper.isEarlyClobber())
364 return true;
365
366 // Don't allow inline asm to define NewReg at all. Who knows what it's
367 // doing with it.
368 if (MI->isInlineAsm())
369 return true;
370 }
371 }
372 return false;
373 }
374
375 unsigned CriticalAntiDepBreaker::
findSuitableFreeRegister(RegRefIter RegRefBegin,RegRefIter RegRefEnd,unsigned AntiDepReg,unsigned LastNewReg,const TargetRegisterClass * RC,SmallVectorImpl<unsigned> & Forbid)376 findSuitableFreeRegister(RegRefIter RegRefBegin,
377 RegRefIter RegRefEnd,
378 unsigned AntiDepReg,
379 unsigned LastNewReg,
380 const TargetRegisterClass *RC,
381 SmallVectorImpl<unsigned> &Forbid)
382 {
383 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
384 for (unsigned i = 0; i != Order.size(); ++i) {
385 unsigned NewReg = Order[i];
386 // Don't replace a register with itself.
387 if (NewReg == AntiDepReg) continue;
388 // Don't replace a register with one that was recently used to repair
389 // an anti-dependence with this AntiDepReg, because that would
390 // re-introduce that anti-dependence.
391 if (NewReg == LastNewReg) continue;
392 // If any instructions that define AntiDepReg also define the NewReg, it's
393 // not suitable. For example, Instruction with multiple definitions can
394 // result in this condition.
395 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
396 // If NewReg is dead and NewReg's most recent def is not before
397 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
398 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
399 && "Kill and Def maps aren't consistent for AntiDepReg!");
400 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
401 && "Kill and Def maps aren't consistent for NewReg!");
402 if (KillIndices[NewReg] != ~0u ||
403 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
404 KillIndices[AntiDepReg] > DefIndices[NewReg])
405 continue;
406 // If NewReg overlaps any of the forbidden registers, we can't use it.
407 bool Forbidden = false;
408 for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
409 ite = Forbid.end(); it != ite; ++it)
410 if (TRI->regsOverlap(NewReg, *it)) {
411 Forbidden = true;
412 break;
413 }
414 if (Forbidden) continue;
415 return NewReg;
416 }
417
418 // No registers are free and available!
419 return 0;
420 }
421
422 unsigned CriticalAntiDepBreaker::
BreakAntiDependencies(const std::vector<SUnit> & SUnits,MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,unsigned InsertPosIndex,DbgValueVector & DbgValues)423 BreakAntiDependencies(const std::vector<SUnit>& SUnits,
424 MachineBasicBlock::iterator Begin,
425 MachineBasicBlock::iterator End,
426 unsigned InsertPosIndex,
427 DbgValueVector &DbgValues) {
428 // The code below assumes that there is at least one instruction,
429 // so just duck out immediately if the block is empty.
430 if (SUnits.empty()) return 0;
431
432 // Keep a map of the MachineInstr*'s back to the SUnit representing them.
433 // This is used for updating debug information.
434 //
435 // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
436 DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
437
438 // Find the node at the bottom of the critical path.
439 const SUnit *Max = nullptr;
440 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
441 const SUnit *SU = &SUnits[i];
442 MISUnitMap[SU->getInstr()] = SU;
443 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
444 Max = SU;
445 }
446
447 #ifndef NDEBUG
448 {
449 DEBUG(dbgs() << "Critical path has total latency "
450 << (Max->getDepth() + Max->Latency) << "\n");
451 DEBUG(dbgs() << "Available regs:");
452 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
453 if (KillIndices[Reg] == ~0u)
454 DEBUG(dbgs() << " " << TRI->getName(Reg));
455 }
456 DEBUG(dbgs() << '\n');
457 }
458 #endif
459
460 // Track progress along the critical path through the SUnit graph as we walk
461 // the instructions.
462 const SUnit *CriticalPathSU = Max;
463 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
464
465 // Consider this pattern:
466 // A = ...
467 // ... = A
468 // A = ...
469 // ... = A
470 // A = ...
471 // ... = A
472 // A = ...
473 // ... = A
474 // There are three anti-dependencies here, and without special care,
475 // we'd break all of them using the same register:
476 // A = ...
477 // ... = A
478 // B = ...
479 // ... = B
480 // B = ...
481 // ... = B
482 // B = ...
483 // ... = B
484 // because at each anti-dependence, B is the first register that
485 // isn't A which is free. This re-introduces anti-dependencies
486 // at all but one of the original anti-dependencies that we were
487 // trying to break. To avoid this, keep track of the most recent
488 // register that each register was replaced with, avoid
489 // using it to repair an anti-dependence on the same register.
490 // This lets us produce this:
491 // A = ...
492 // ... = A
493 // B = ...
494 // ... = B
495 // C = ...
496 // ... = C
497 // B = ...
498 // ... = B
499 // This still has an anti-dependence on B, but at least it isn't on the
500 // original critical path.
501 //
502 // TODO: If we tracked more than one register here, we could potentially
503 // fix that remaining critical edge too. This is a little more involved,
504 // because unlike the most recent register, less recent registers should
505 // still be considered, though only if no other registers are available.
506 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
507
508 // Attempt to break anti-dependence edges on the critical path. Walk the
509 // instructions from the bottom up, tracking information about liveness
510 // as we go to help determine which registers are available.
511 unsigned Broken = 0;
512 unsigned Count = InsertPosIndex - 1;
513 for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) {
514 MachineInstr &MI = *--I;
515 // Kill instructions can define registers but are really nops, and there
516 // might be a real definition earlier that needs to be paired with uses
517 // dominated by this kill.
518
519 // FIXME: It may be possible to remove the isKill() restriction once PR18663
520 // has been properly fixed. There can be value in processing kills as seen
521 // in the AggressiveAntiDepBreaker class.
522 if (MI.isDebugValue() || MI.isKill())
523 continue;
524
525 // Check if this instruction has a dependence on the critical path that
526 // is an anti-dependence that we may be able to break. If it is, set
527 // AntiDepReg to the non-zero register associated with the anti-dependence.
528 //
529 // We limit our attention to the critical path as a heuristic to avoid
530 // breaking anti-dependence edges that aren't going to significantly
531 // impact the overall schedule. There are a limited number of registers
532 // and we want to save them for the important edges.
533 //
534 // TODO: Instructions with multiple defs could have multiple
535 // anti-dependencies. The current code here only knows how to break one
536 // edge per instruction. Note that we'd have to be able to break all of
537 // the anti-dependencies in an instruction in order to be effective.
538 unsigned AntiDepReg = 0;
539 if (&MI == CriticalPathMI) {
540 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
541 const SUnit *NextSU = Edge->getSUnit();
542
543 // Only consider anti-dependence edges.
544 if (Edge->getKind() == SDep::Anti) {
545 AntiDepReg = Edge->getReg();
546 assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
547 if (!MRI.isAllocatable(AntiDepReg))
548 // Don't break anti-dependencies on non-allocatable registers.
549 AntiDepReg = 0;
550 else if (KeepRegs.test(AntiDepReg))
551 // Don't break anti-dependencies if a use down below requires
552 // this exact register.
553 AntiDepReg = 0;
554 else {
555 // If the SUnit has other dependencies on the SUnit that it
556 // anti-depends on, don't bother breaking the anti-dependency
557 // since those edges would prevent such units from being
558 // scheduled past each other regardless.
559 //
560 // Also, if there are dependencies on other SUnits with the
561 // same register as the anti-dependency, don't attempt to
562 // break it.
563 for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
564 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
565 if (P->getSUnit() == NextSU ?
566 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
567 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
568 AntiDepReg = 0;
569 break;
570 }
571 }
572 }
573 CriticalPathSU = NextSU;
574 CriticalPathMI = CriticalPathSU->getInstr();
575 } else {
576 // We've reached the end of the critical path.
577 CriticalPathSU = nullptr;
578 CriticalPathMI = nullptr;
579 }
580 }
581
582 PrescanInstruction(MI);
583
584 SmallVector<unsigned, 2> ForbidRegs;
585
586 // If MI's defs have a special allocation requirement, don't allow
587 // any def registers to be changed. Also assume all registers
588 // defined in a call must not be changed (ABI).
589 if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI))
590 // If this instruction's defs have special allocation requirement, don't
591 // break this anti-dependency.
592 AntiDepReg = 0;
593 else if (AntiDepReg) {
594 // If this instruction has a use of AntiDepReg, breaking it
595 // is invalid. If the instruction defines other registers,
596 // save a list of them so that we don't pick a new register
597 // that overlaps any of them.
598 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
599 MachineOperand &MO = MI.getOperand(i);
600 if (!MO.isReg()) continue;
601 unsigned Reg = MO.getReg();
602 if (Reg == 0) continue;
603 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
604 AntiDepReg = 0;
605 break;
606 }
607 if (MO.isDef() && Reg != AntiDepReg)
608 ForbidRegs.push_back(Reg);
609 }
610 }
611
612 // Determine AntiDepReg's register class, if it is live and is
613 // consistently used within a single class.
614 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
615 : nullptr;
616 assert((AntiDepReg == 0 || RC != nullptr) &&
617 "Register should be live if it's causing an anti-dependence!");
618 if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
619 AntiDepReg = 0;
620
621 // Look for a suitable register to use to break the anti-dependence.
622 //
623 // TODO: Instead of picking the first free register, consider which might
624 // be the best.
625 if (AntiDepReg != 0) {
626 std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
627 std::multimap<unsigned, MachineOperand *>::iterator>
628 Range = RegRefs.equal_range(AntiDepReg);
629 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
630 AntiDepReg,
631 LastNewReg[AntiDepReg],
632 RC, ForbidRegs)) {
633 DEBUG(dbgs() << "Breaking anti-dependence edge on "
634 << TRI->getName(AntiDepReg)
635 << " with " << RegRefs.count(AntiDepReg) << " references"
636 << " using " << TRI->getName(NewReg) << "!\n");
637
638 // Update the references to the old register to refer to the new
639 // register.
640 for (std::multimap<unsigned, MachineOperand *>::iterator
641 Q = Range.first, QE = Range.second; Q != QE; ++Q) {
642 Q->second->setReg(NewReg);
643 // If the SU for the instruction being updated has debug information
644 // related to the anti-dependency register, make sure to update that
645 // as well.
646 const SUnit *SU = MISUnitMap[Q->second->getParent()];
647 if (!SU) continue;
648 for (DbgValueVector::iterator DVI = DbgValues.begin(),
649 DVE = DbgValues.end(); DVI != DVE; ++DVI)
650 if (DVI->second == Q->second->getParent())
651 UpdateDbgValue(*DVI->first, AntiDepReg, NewReg);
652 }
653
654 // We just went back in time and modified history; the
655 // liveness information for the anti-dependence reg is now
656 // inconsistent. Set the state as if it were dead.
657 Classes[NewReg] = Classes[AntiDepReg];
658 DefIndices[NewReg] = DefIndices[AntiDepReg];
659 KillIndices[NewReg] = KillIndices[AntiDepReg];
660 assert(((KillIndices[NewReg] == ~0u) !=
661 (DefIndices[NewReg] == ~0u)) &&
662 "Kill and Def maps aren't consistent for NewReg!");
663
664 Classes[AntiDepReg] = nullptr;
665 DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
666 KillIndices[AntiDepReg] = ~0u;
667 assert(((KillIndices[AntiDepReg] == ~0u) !=
668 (DefIndices[AntiDepReg] == ~0u)) &&
669 "Kill and Def maps aren't consistent for AntiDepReg!");
670
671 RegRefs.erase(AntiDepReg);
672 LastNewReg[AntiDepReg] = NewReg;
673 ++Broken;
674 }
675 }
676
677 ScanInstruction(MI, Count);
678 }
679
680 return Broken;
681 }
682