1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the RAGreedy function pass for register allocation in
11 // optimized builds.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "AllocationOrder.h"
16 #include "InterferenceCache.h"
17 #include "LiveDebugVariables.h"
18 #include "RegAllocBase.h"
19 #include "SpillPlacement.h"
20 #include "Spiller.h"
21 #include "SplitKit.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/CalcSpillWeights.h"
25 #include "llvm/CodeGen/EdgeBundles.h"
26 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
27 #include "llvm/CodeGen/LiveRangeEdit.h"
28 #include "llvm/CodeGen/LiveRegMatrix.h"
29 #include "llvm/CodeGen/LiveStackAnalysis.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineDominators.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegAllocRegistry.h"
37 #include "llvm/CodeGen/RegisterClassInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/IR/LLVMContext.h"
40 #include "llvm/PassAnalysisSupport.h"
41 #include "llvm/Support/BranchProbability.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Timer.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include "llvm/Target/TargetInstrInfo.h"
48 #include "llvm/Target/TargetSubtargetInfo.h"
49 #include <queue>
50
51 using namespace llvm;
52
53 #define DEBUG_TYPE "regalloc"
54
55 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
56 STATISTIC(NumLocalSplits, "Number of split local live ranges");
57 STATISTIC(NumEvicted, "Number of interferences evicted");
58
59 static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
60 "split-spill-mode", cl::Hidden,
61 cl::desc("Spill mode for splitting live ranges"),
62 cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
63 clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
64 clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
65 clEnumValEnd),
66 cl::init(SplitEditor::SM_Speed));
67
68 static cl::opt<unsigned>
69 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
70 cl::desc("Last chance recoloring max depth"),
71 cl::init(5));
72
73 static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
74 "lcr-max-interf", cl::Hidden,
75 cl::desc("Last chance recoloring maximum number of considered"
76 " interference at a time"),
77 cl::init(8));
78
79 static cl::opt<bool>
80 ExhaustiveSearch("exhaustive-register-search", cl::NotHidden,
81 cl::desc("Exhaustive Search for registers bypassing the depth "
82 "and interference cutoffs of last chance recoloring"));
83
84 static cl::opt<bool> EnableLocalReassignment(
85 "enable-local-reassign", cl::Hidden,
86 cl::desc("Local reassignment can yield better allocation decisions, but "
87 "may be compile time intensive"),
88 cl::init(false));
89
90 static cl::opt<bool> EnableDeferredSpilling(
91 "enable-deferred-spilling", cl::Hidden,
92 cl::desc("Instead of spilling a variable right away, defer the actual "
93 "code insertion to the end of the allocation. That way the "
94 "allocator might still find a suitable coloring for this "
95 "variable because of other evicted variables."),
96 cl::init(false));
97
98 // FIXME: Find a good default for this flag and remove the flag.
99 static cl::opt<unsigned>
100 CSRFirstTimeCost("regalloc-csr-first-time-cost",
101 cl::desc("Cost for first time use of callee-saved register."),
102 cl::init(0), cl::Hidden);
103
104 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
105 createGreedyRegisterAllocator);
106
107 namespace {
108 class RAGreedy : public MachineFunctionPass,
109 public RegAllocBase,
110 private LiveRangeEdit::Delegate {
111 // Convenient shortcuts.
112 typedef std::priority_queue<std::pair<unsigned, unsigned> > PQueue;
113 typedef SmallPtrSet<LiveInterval *, 4> SmallLISet;
114 typedef SmallSet<unsigned, 16> SmallVirtRegSet;
115
116 // context
117 MachineFunction *MF;
118
119 // Shortcuts to some useful interface.
120 const TargetInstrInfo *TII;
121 const TargetRegisterInfo *TRI;
122 RegisterClassInfo RCI;
123
124 // analyses
125 SlotIndexes *Indexes;
126 MachineBlockFrequencyInfo *MBFI;
127 MachineDominatorTree *DomTree;
128 MachineLoopInfo *Loops;
129 EdgeBundles *Bundles;
130 SpillPlacement *SpillPlacer;
131 LiveDebugVariables *DebugVars;
132 AliasAnalysis *AA;
133
134 // state
135 std::unique_ptr<Spiller> SpillerInstance;
136 PQueue Queue;
137 unsigned NextCascade;
138
139 // Live ranges pass through a number of stages as we try to allocate them.
140 // Some of the stages may also create new live ranges:
141 //
142 // - Region splitting.
143 // - Per-block splitting.
144 // - Local splitting.
145 // - Spilling.
146 //
147 // Ranges produced by one of the stages skip the previous stages when they are
148 // dequeued. This improves performance because we can skip interference checks
149 // that are unlikely to give any results. It also guarantees that the live
150 // range splitting algorithm terminates, something that is otherwise hard to
151 // ensure.
152 enum LiveRangeStage {
153 /// Newly created live range that has never been queued.
154 RS_New,
155
156 /// Only attempt assignment and eviction. Then requeue as RS_Split.
157 RS_Assign,
158
159 /// Attempt live range splitting if assignment is impossible.
160 RS_Split,
161
162 /// Attempt more aggressive live range splitting that is guaranteed to make
163 /// progress. This is used for split products that may not be making
164 /// progress.
165 RS_Split2,
166
167 /// Live range will be spilled. No more splitting will be attempted.
168 RS_Spill,
169
170
171 /// Live range is in memory. Because of other evictions, it might get moved
172 /// in a register in the end.
173 RS_Memory,
174
175 /// There is nothing more we can do to this live range. Abort compilation
176 /// if it can't be assigned.
177 RS_Done
178 };
179
180 // Enum CutOffStage to keep a track whether the register allocation failed
181 // because of the cutoffs encountered in last chance recoloring.
182 // Note: This is used as bitmask. New value should be next power of 2.
183 enum CutOffStage {
184 // No cutoffs encountered
185 CO_None = 0,
186
187 // lcr-max-depth cutoff encountered
188 CO_Depth = 1,
189
190 // lcr-max-interf cutoff encountered
191 CO_Interf = 2
192 };
193
194 uint8_t CutOffInfo;
195
196 #ifndef NDEBUG
197 static const char *const StageName[];
198 #endif
199
200 // RegInfo - Keep additional information about each live range.
201 struct RegInfo {
202 LiveRangeStage Stage;
203
204 // Cascade - Eviction loop prevention. See canEvictInterference().
205 unsigned Cascade;
206
RegInfo__anone3efcc7c0111::RAGreedy::RegInfo207 RegInfo() : Stage(RS_New), Cascade(0) {}
208 };
209
210 IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
211
getStage(const LiveInterval & VirtReg) const212 LiveRangeStage getStage(const LiveInterval &VirtReg) const {
213 return ExtraRegInfo[VirtReg.reg].Stage;
214 }
215
setStage(const LiveInterval & VirtReg,LiveRangeStage Stage)216 void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
217 ExtraRegInfo.resize(MRI->getNumVirtRegs());
218 ExtraRegInfo[VirtReg.reg].Stage = Stage;
219 }
220
221 template<typename Iterator>
setStage(Iterator Begin,Iterator End,LiveRangeStage NewStage)222 void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
223 ExtraRegInfo.resize(MRI->getNumVirtRegs());
224 for (;Begin != End; ++Begin) {
225 unsigned Reg = *Begin;
226 if (ExtraRegInfo[Reg].Stage == RS_New)
227 ExtraRegInfo[Reg].Stage = NewStage;
228 }
229 }
230
231 /// Cost of evicting interference.
232 struct EvictionCost {
233 unsigned BrokenHints; ///< Total number of broken hints.
234 float MaxWeight; ///< Maximum spill weight evicted.
235
EvictionCost__anone3efcc7c0111::RAGreedy::EvictionCost236 EvictionCost(): BrokenHints(0), MaxWeight(0) {}
237
isMax__anone3efcc7c0111::RAGreedy::EvictionCost238 bool isMax() const { return BrokenHints == ~0u; }
239
setMax__anone3efcc7c0111::RAGreedy::EvictionCost240 void setMax() { BrokenHints = ~0u; }
241
setBrokenHints__anone3efcc7c0111::RAGreedy::EvictionCost242 void setBrokenHints(unsigned NHints) { BrokenHints = NHints; }
243
operator <__anone3efcc7c0111::RAGreedy::EvictionCost244 bool operator<(const EvictionCost &O) const {
245 return std::tie(BrokenHints, MaxWeight) <
246 std::tie(O.BrokenHints, O.MaxWeight);
247 }
248 };
249
250 // splitting state.
251 std::unique_ptr<SplitAnalysis> SA;
252 std::unique_ptr<SplitEditor> SE;
253
254 /// Cached per-block interference maps
255 InterferenceCache IntfCache;
256
257 /// All basic blocks where the current register has uses.
258 SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
259
260 /// Global live range splitting candidate info.
261 struct GlobalSplitCandidate {
262 // Register intended for assignment, or 0.
263 unsigned PhysReg;
264
265 // SplitKit interval index for this candidate.
266 unsigned IntvIdx;
267
268 // Interference for PhysReg.
269 InterferenceCache::Cursor Intf;
270
271 // Bundles where this candidate should be live.
272 BitVector LiveBundles;
273 SmallVector<unsigned, 8> ActiveBlocks;
274
reset__anone3efcc7c0111::RAGreedy::GlobalSplitCandidate275 void reset(InterferenceCache &Cache, unsigned Reg) {
276 PhysReg = Reg;
277 IntvIdx = 0;
278 Intf.setPhysReg(Cache, Reg);
279 LiveBundles.clear();
280 ActiveBlocks.clear();
281 }
282
283 // Set B[i] = C for every live bundle where B[i] was NoCand.
getBundles__anone3efcc7c0111::RAGreedy::GlobalSplitCandidate284 unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
285 unsigned Count = 0;
286 for (int i = LiveBundles.find_first(); i >= 0;
287 i = LiveBundles.find_next(i))
288 if (B[i] == NoCand) {
289 B[i] = C;
290 Count++;
291 }
292 return Count;
293 }
294 };
295
296 /// Candidate info for each PhysReg in AllocationOrder.
297 /// This vector never shrinks, but grows to the size of the largest register
298 /// class.
299 SmallVector<GlobalSplitCandidate, 32> GlobalCand;
300
301 enum : unsigned { NoCand = ~0u };
302
303 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
304 /// NoCand which indicates the stack interval.
305 SmallVector<unsigned, 32> BundleCand;
306
307 /// Callee-save register cost, calculated once per machine function.
308 BlockFrequency CSRCost;
309
310 /// Run or not the local reassignment heuristic. This information is
311 /// obtained from the TargetSubtargetInfo.
312 bool EnableLocalReassign;
313
314 /// Set of broken hints that may be reconciled later because of eviction.
315 SmallSetVector<LiveInterval *, 8> SetOfBrokenHints;
316
317 public:
318 RAGreedy();
319
320 /// Return the pass name.
getPassName() const321 const char* getPassName() const override {
322 return "Greedy Register Allocator";
323 }
324
325 /// RAGreedy analysis usage.
326 void getAnalysisUsage(AnalysisUsage &AU) const override;
327 void releaseMemory() override;
spiller()328 Spiller &spiller() override { return *SpillerInstance; }
329 void enqueue(LiveInterval *LI) override;
330 LiveInterval *dequeue() override;
331 unsigned selectOrSplit(LiveInterval&, SmallVectorImpl<unsigned>&) override;
332 void aboutToRemoveInterval(LiveInterval &) override;
333
334 /// Perform register allocation.
335 bool runOnMachineFunction(MachineFunction &mf) override;
336
337 static char ID;
338
339 private:
340 unsigned selectOrSplitImpl(LiveInterval &, SmallVectorImpl<unsigned> &,
341 SmallVirtRegSet &, unsigned = 0);
342
343 bool LRE_CanEraseVirtReg(unsigned) override;
344 void LRE_WillShrinkVirtReg(unsigned) override;
345 void LRE_DidCloneVirtReg(unsigned, unsigned) override;
346 void enqueue(PQueue &CurQueue, LiveInterval *LI);
347 LiveInterval *dequeue(PQueue &CurQueue);
348
349 BlockFrequency calcSpillCost();
350 bool addSplitConstraints(InterferenceCache::Cursor, BlockFrequency&);
351 void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
352 void growRegion(GlobalSplitCandidate &Cand);
353 BlockFrequency calcGlobalSplitCost(GlobalSplitCandidate&);
354 bool calcCompactRegion(GlobalSplitCandidate&);
355 void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
356 void calcGapWeights(unsigned, SmallVectorImpl<float>&);
357 unsigned canReassign(LiveInterval &VirtReg, unsigned PhysReg);
358 bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
359 bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
360 void evictInterference(LiveInterval&, unsigned,
361 SmallVectorImpl<unsigned>&);
362 bool mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
363 SmallLISet &RecoloringCandidates,
364 const SmallVirtRegSet &FixedRegisters);
365
366 unsigned tryAssign(LiveInterval&, AllocationOrder&,
367 SmallVectorImpl<unsigned>&);
368 unsigned tryEvict(LiveInterval&, AllocationOrder&,
369 SmallVectorImpl<unsigned>&, unsigned = ~0u);
370 unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
371 SmallVectorImpl<unsigned>&);
372 /// Calculate cost of region splitting.
373 unsigned calculateRegionSplitCost(LiveInterval &VirtReg,
374 AllocationOrder &Order,
375 BlockFrequency &BestCost,
376 unsigned &NumCands, bool IgnoreCSR);
377 /// Perform region splitting.
378 unsigned doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
379 bool HasCompact,
380 SmallVectorImpl<unsigned> &NewVRegs);
381 /// Check other options before using a callee-saved register for the first
382 /// time.
383 unsigned tryAssignCSRFirstTime(LiveInterval &VirtReg, AllocationOrder &Order,
384 unsigned PhysReg, unsigned &CostPerUseLimit,
385 SmallVectorImpl<unsigned> &NewVRegs);
386 void initializeCSRCost();
387 unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
388 SmallVectorImpl<unsigned>&);
389 unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
390 SmallVectorImpl<unsigned>&);
391 unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
392 SmallVectorImpl<unsigned>&);
393 unsigned trySplit(LiveInterval&, AllocationOrder&,
394 SmallVectorImpl<unsigned>&);
395 unsigned tryLastChanceRecoloring(LiveInterval &, AllocationOrder &,
396 SmallVectorImpl<unsigned> &,
397 SmallVirtRegSet &, unsigned);
398 bool tryRecoloringCandidates(PQueue &, SmallVectorImpl<unsigned> &,
399 SmallVirtRegSet &, unsigned);
400 void tryHintRecoloring(LiveInterval &);
401 void tryHintsRecoloring();
402
403 /// Model the information carried by one end of a copy.
404 struct HintInfo {
405 /// The frequency of the copy.
406 BlockFrequency Freq;
407 /// The virtual register or physical register.
408 unsigned Reg;
409 /// Its currently assigned register.
410 /// In case of a physical register Reg == PhysReg.
411 unsigned PhysReg;
HintInfo__anone3efcc7c0111::RAGreedy::HintInfo412 HintInfo(BlockFrequency Freq, unsigned Reg, unsigned PhysReg)
413 : Freq(Freq), Reg(Reg), PhysReg(PhysReg) {}
414 };
415 typedef SmallVector<HintInfo, 4> HintsInfo;
416 BlockFrequency getBrokenHintFreq(const HintsInfo &, unsigned);
417 void collectHintInfo(unsigned, HintsInfo &);
418
419 bool isUnusedCalleeSavedReg(unsigned PhysReg) const;
420 };
421 } // end anonymous namespace
422
423 char RAGreedy::ID = 0;
424
425 #ifndef NDEBUG
426 const char *const RAGreedy::StageName[] = {
427 "RS_New",
428 "RS_Assign",
429 "RS_Split",
430 "RS_Split2",
431 "RS_Spill",
432 "RS_Memory",
433 "RS_Done"
434 };
435 #endif
436
437 // Hysteresis to use when comparing floats.
438 // This helps stabilize decisions based on float comparisons.
439 const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
440
441
createGreedyRegisterAllocator()442 FunctionPass* llvm::createGreedyRegisterAllocator() {
443 return new RAGreedy();
444 }
445
RAGreedy()446 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
447 initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
448 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
449 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
450 initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
451 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
452 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
453 initializeLiveStacksPass(*PassRegistry::getPassRegistry());
454 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
455 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
456 initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
457 initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
458 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
459 initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
460 }
461
getAnalysisUsage(AnalysisUsage & AU) const462 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
463 AU.setPreservesCFG();
464 AU.addRequired<MachineBlockFrequencyInfo>();
465 AU.addPreserved<MachineBlockFrequencyInfo>();
466 AU.addRequired<AAResultsWrapperPass>();
467 AU.addPreserved<AAResultsWrapperPass>();
468 AU.addRequired<LiveIntervals>();
469 AU.addPreserved<LiveIntervals>();
470 AU.addRequired<SlotIndexes>();
471 AU.addPreserved<SlotIndexes>();
472 AU.addRequired<LiveDebugVariables>();
473 AU.addPreserved<LiveDebugVariables>();
474 AU.addRequired<LiveStacks>();
475 AU.addPreserved<LiveStacks>();
476 AU.addRequired<MachineDominatorTree>();
477 AU.addPreserved<MachineDominatorTree>();
478 AU.addRequired<MachineLoopInfo>();
479 AU.addPreserved<MachineLoopInfo>();
480 AU.addRequired<VirtRegMap>();
481 AU.addPreserved<VirtRegMap>();
482 AU.addRequired<LiveRegMatrix>();
483 AU.addPreserved<LiveRegMatrix>();
484 AU.addRequired<EdgeBundles>();
485 AU.addRequired<SpillPlacement>();
486 MachineFunctionPass::getAnalysisUsage(AU);
487 }
488
489
490 //===----------------------------------------------------------------------===//
491 // LiveRangeEdit delegate methods
492 //===----------------------------------------------------------------------===//
493
LRE_CanEraseVirtReg(unsigned VirtReg)494 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
495 if (VRM->hasPhys(VirtReg)) {
496 LiveInterval &LI = LIS->getInterval(VirtReg);
497 Matrix->unassign(LI);
498 aboutToRemoveInterval(LI);
499 return true;
500 }
501 // Unassigned virtreg is probably in the priority queue.
502 // RegAllocBase will erase it after dequeueing.
503 return false;
504 }
505
LRE_WillShrinkVirtReg(unsigned VirtReg)506 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
507 if (!VRM->hasPhys(VirtReg))
508 return;
509
510 // Register is assigned, put it back on the queue for reassignment.
511 LiveInterval &LI = LIS->getInterval(VirtReg);
512 Matrix->unassign(LI);
513 enqueue(&LI);
514 }
515
LRE_DidCloneVirtReg(unsigned New,unsigned Old)516 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
517 // Cloning a register we haven't even heard about yet? Just ignore it.
518 if (!ExtraRegInfo.inBounds(Old))
519 return;
520
521 // LRE may clone a virtual register because dead code elimination causes it to
522 // be split into connected components. The new components are much smaller
523 // than the original, so they should get a new chance at being assigned.
524 // same stage as the parent.
525 ExtraRegInfo[Old].Stage = RS_Assign;
526 ExtraRegInfo.grow(New);
527 ExtraRegInfo[New] = ExtraRegInfo[Old];
528 }
529
releaseMemory()530 void RAGreedy::releaseMemory() {
531 SpillerInstance.reset();
532 ExtraRegInfo.clear();
533 GlobalCand.clear();
534 }
535
enqueue(LiveInterval * LI)536 void RAGreedy::enqueue(LiveInterval *LI) { enqueue(Queue, LI); }
537
enqueue(PQueue & CurQueue,LiveInterval * LI)538 void RAGreedy::enqueue(PQueue &CurQueue, LiveInterval *LI) {
539 // Prioritize live ranges by size, assigning larger ranges first.
540 // The queue holds (size, reg) pairs.
541 const unsigned Size = LI->getSize();
542 const unsigned Reg = LI->reg;
543 assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
544 "Can only enqueue virtual registers");
545 unsigned Prio;
546
547 ExtraRegInfo.grow(Reg);
548 if (ExtraRegInfo[Reg].Stage == RS_New)
549 ExtraRegInfo[Reg].Stage = RS_Assign;
550
551 if (ExtraRegInfo[Reg].Stage == RS_Split) {
552 // Unsplit ranges that couldn't be allocated immediately are deferred until
553 // everything else has been allocated.
554 Prio = Size;
555 } else if (ExtraRegInfo[Reg].Stage == RS_Memory) {
556 // Memory operand should be considered last.
557 // Change the priority such that Memory operand are assigned in
558 // the reverse order that they came in.
559 // TODO: Make this a member variable and probably do something about hints.
560 static unsigned MemOp = 0;
561 Prio = MemOp++;
562 } else {
563 // Giant live ranges fall back to the global assignment heuristic, which
564 // prevents excessive spilling in pathological cases.
565 bool ReverseLocal = TRI->reverseLocalAssignment();
566 const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
567 bool ForceGlobal = !ReverseLocal &&
568 (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
569
570 if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
571 LIS->intervalIsInOneMBB(*LI)) {
572 // Allocate original local ranges in linear instruction order. Since they
573 // are singly defined, this produces optimal coloring in the absence of
574 // global interference and other constraints.
575 if (!ReverseLocal)
576 Prio = LI->beginIndex().getInstrDistance(Indexes->getLastIndex());
577 else {
578 // Allocating bottom up may allow many short LRGs to be assigned first
579 // to one of the cheap registers. This could be much faster for very
580 // large blocks on targets with many physical registers.
581 Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
582 }
583 Prio |= RC.AllocationPriority << 24;
584 } else {
585 // Allocate global and split ranges in long->short order. Long ranges that
586 // don't fit should be spilled (or split) ASAP so they don't create
587 // interference. Mark a bit to prioritize global above local ranges.
588 Prio = (1u << 29) + Size;
589 }
590 // Mark a higher bit to prioritize global and local above RS_Split.
591 Prio |= (1u << 31);
592
593 // Boost ranges that have a physical register hint.
594 if (VRM->hasKnownPreference(Reg))
595 Prio |= (1u << 30);
596 }
597 // The virtual register number is a tie breaker for same-sized ranges.
598 // Give lower vreg numbers higher priority to assign them first.
599 CurQueue.push(std::make_pair(Prio, ~Reg));
600 }
601
dequeue()602 LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
603
dequeue(PQueue & CurQueue)604 LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
605 if (CurQueue.empty())
606 return nullptr;
607 LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
608 CurQueue.pop();
609 return LI;
610 }
611
612
613 //===----------------------------------------------------------------------===//
614 // Direct Assignment
615 //===----------------------------------------------------------------------===//
616
617 /// tryAssign - Try to assign VirtReg to an available register.
tryAssign(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<unsigned> & NewVRegs)618 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
619 AllocationOrder &Order,
620 SmallVectorImpl<unsigned> &NewVRegs) {
621 Order.rewind();
622 unsigned PhysReg;
623 while ((PhysReg = Order.next()))
624 if (!Matrix->checkInterference(VirtReg, PhysReg))
625 break;
626 if (!PhysReg || Order.isHint())
627 return PhysReg;
628
629 // PhysReg is available, but there may be a better choice.
630
631 // If we missed a simple hint, try to cheaply evict interference from the
632 // preferred register.
633 if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
634 if (Order.isHint(Hint)) {
635 DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
636 EvictionCost MaxCost;
637 MaxCost.setBrokenHints(1);
638 if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
639 evictInterference(VirtReg, Hint, NewVRegs);
640 return Hint;
641 }
642 }
643
644 // Try to evict interference from a cheaper alternative.
645 unsigned Cost = TRI->getCostPerUse(PhysReg);
646
647 // Most registers have 0 additional cost.
648 if (!Cost)
649 return PhysReg;
650
651 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
652 << '\n');
653 unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
654 return CheapReg ? CheapReg : PhysReg;
655 }
656
657
658 //===----------------------------------------------------------------------===//
659 // Interference eviction
660 //===----------------------------------------------------------------------===//
661
canReassign(LiveInterval & VirtReg,unsigned PrevReg)662 unsigned RAGreedy::canReassign(LiveInterval &VirtReg, unsigned PrevReg) {
663 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
664 unsigned PhysReg;
665 while ((PhysReg = Order.next())) {
666 if (PhysReg == PrevReg)
667 continue;
668
669 MCRegUnitIterator Units(PhysReg, TRI);
670 for (; Units.isValid(); ++Units) {
671 // Instantiate a "subquery", not to be confused with the Queries array.
672 LiveIntervalUnion::Query subQ(&VirtReg, &Matrix->getLiveUnions()[*Units]);
673 if (subQ.checkInterference())
674 break;
675 }
676 // If no units have interference, break out with the current PhysReg.
677 if (!Units.isValid())
678 break;
679 }
680 if (PhysReg)
681 DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
682 << PrintReg(PrevReg, TRI) << " to " << PrintReg(PhysReg, TRI)
683 << '\n');
684 return PhysReg;
685 }
686
687 /// shouldEvict - determine if A should evict the assigned live range B. The
688 /// eviction policy defined by this function together with the allocation order
689 /// defined by enqueue() decides which registers ultimately end up being split
690 /// and spilled.
691 ///
692 /// Cascade numbers are used to prevent infinite loops if this function is a
693 /// cyclic relation.
694 ///
695 /// @param A The live range to be assigned.
696 /// @param IsHint True when A is about to be assigned to its preferred
697 /// register.
698 /// @param B The live range to be evicted.
699 /// @param BreaksHint True when B is already assigned to its preferred register.
shouldEvict(LiveInterval & A,bool IsHint,LiveInterval & B,bool BreaksHint)700 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
701 LiveInterval &B, bool BreaksHint) {
702 bool CanSplit = getStage(B) < RS_Spill;
703
704 // Be fairly aggressive about following hints as long as the evictee can be
705 // split.
706 if (CanSplit && IsHint && !BreaksHint)
707 return true;
708
709 if (A.weight > B.weight) {
710 DEBUG(dbgs() << "should evict: " << B << " w= " << B.weight << '\n');
711 return true;
712 }
713 return false;
714 }
715
716 /// canEvictInterference - Return true if all interferences between VirtReg and
717 /// PhysReg can be evicted.
718 ///
719 /// @param VirtReg Live range that is about to be assigned.
720 /// @param PhysReg Desired register for assignment.
721 /// @param IsHint True when PhysReg is VirtReg's preferred register.
722 /// @param MaxCost Only look for cheaper candidates and update with new cost
723 /// when returning true.
724 /// @returns True when interference can be evicted cheaper than MaxCost.
canEvictInterference(LiveInterval & VirtReg,unsigned PhysReg,bool IsHint,EvictionCost & MaxCost)725 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
726 bool IsHint, EvictionCost &MaxCost) {
727 // It is only possible to evict virtual register interference.
728 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
729 return false;
730
731 bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
732
733 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
734 // involved in an eviction before. If a cascade number was assigned, deny
735 // evicting anything with the same or a newer cascade number. This prevents
736 // infinite eviction loops.
737 //
738 // This works out so a register without a cascade number is allowed to evict
739 // anything, and it can be evicted by anything.
740 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
741 if (!Cascade)
742 Cascade = NextCascade;
743
744 EvictionCost Cost;
745 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
746 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
747 // If there is 10 or more interferences, chances are one is heavier.
748 if (Q.collectInterferingVRegs(10) >= 10)
749 return false;
750
751 // Check if any interfering live range is heavier than MaxWeight.
752 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
753 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
754 assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
755 "Only expecting virtual register interference from query");
756 // Never evict spill products. They cannot split or spill.
757 if (getStage(*Intf) == RS_Done)
758 return false;
759 // Once a live range becomes small enough, it is urgent that we find a
760 // register for it. This is indicated by an infinite spill weight. These
761 // urgent live ranges get to evict almost anything.
762 //
763 // Also allow urgent evictions of unspillable ranges from a strictly
764 // larger allocation order.
765 bool Urgent = !VirtReg.isSpillable() &&
766 (Intf->isSpillable() ||
767 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
768 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
769 // Only evict older cascades or live ranges without a cascade.
770 unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
771 if (Cascade <= IntfCascade) {
772 if (!Urgent)
773 return false;
774 // We permit breaking cascades for urgent evictions. It should be the
775 // last resort, though, so make it really expensive.
776 Cost.BrokenHints += 10;
777 }
778 // Would this break a satisfied hint?
779 bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
780 // Update eviction cost.
781 Cost.BrokenHints += BreaksHint;
782 Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
783 // Abort if this would be too expensive.
784 if (!(Cost < MaxCost))
785 return false;
786 if (Urgent)
787 continue;
788 // Apply the eviction policy for non-urgent evictions.
789 if (!shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
790 return false;
791 // If !MaxCost.isMax(), then we're just looking for a cheap register.
792 // Evicting another local live range in this case could lead to suboptimal
793 // coloring.
794 if (!MaxCost.isMax() && IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
795 (!EnableLocalReassign || !canReassign(*Intf, PhysReg))) {
796 return false;
797 }
798 }
799 }
800 MaxCost = Cost;
801 return true;
802 }
803
804 /// evictInterference - Evict any interferring registers that prevent VirtReg
805 /// from being assigned to Physreg. This assumes that canEvictInterference
806 /// returned true.
evictInterference(LiveInterval & VirtReg,unsigned PhysReg,SmallVectorImpl<unsigned> & NewVRegs)807 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
808 SmallVectorImpl<unsigned> &NewVRegs) {
809 // Make sure that VirtReg has a cascade number, and assign that cascade
810 // number to every evicted register. These live ranges than then only be
811 // evicted by a newer cascade, preventing infinite loops.
812 unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
813 if (!Cascade)
814 Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
815
816 DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
817 << " interference: Cascade " << Cascade << '\n');
818
819 // Collect all interfering virtregs first.
820 SmallVector<LiveInterval*, 8> Intfs;
821 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
822 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
823 assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
824 ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
825 Intfs.append(IVR.begin(), IVR.end());
826 }
827
828 // Evict them second. This will invalidate the queries.
829 for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
830 LiveInterval *Intf = Intfs[i];
831 // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
832 if (!VRM->hasPhys(Intf->reg))
833 continue;
834 Matrix->unassign(*Intf);
835 assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
836 VirtReg.isSpillable() < Intf->isSpillable()) &&
837 "Cannot decrease cascade number, illegal eviction");
838 ExtraRegInfo[Intf->reg].Cascade = Cascade;
839 ++NumEvicted;
840 NewVRegs.push_back(Intf->reg);
841 }
842 }
843
844 /// Returns true if the given \p PhysReg is a callee saved register and has not
845 /// been used for allocation yet.
isUnusedCalleeSavedReg(unsigned PhysReg) const846 bool RAGreedy::isUnusedCalleeSavedReg(unsigned PhysReg) const {
847 unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
848 if (CSR == 0)
849 return false;
850
851 return !Matrix->isPhysRegUsed(PhysReg);
852 }
853
854 /// tryEvict - Try to evict all interferences for a physreg.
855 /// @param VirtReg Currently unassigned virtual register.
856 /// @param Order Physregs to try.
857 /// @return Physreg to assign VirtReg, or 0.
tryEvict(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<unsigned> & NewVRegs,unsigned CostPerUseLimit)858 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
859 AllocationOrder &Order,
860 SmallVectorImpl<unsigned> &NewVRegs,
861 unsigned CostPerUseLimit) {
862 NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
863
864 // Keep track of the cheapest interference seen so far.
865 EvictionCost BestCost;
866 BestCost.setMax();
867 unsigned BestPhys = 0;
868 unsigned OrderLimit = Order.getOrder().size();
869
870 // When we are just looking for a reduced cost per use, don't break any
871 // hints, and only evict smaller spill weights.
872 if (CostPerUseLimit < ~0u) {
873 BestCost.BrokenHints = 0;
874 BestCost.MaxWeight = VirtReg.weight;
875
876 // Check of any registers in RC are below CostPerUseLimit.
877 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
878 unsigned MinCost = RegClassInfo.getMinCost(RC);
879 if (MinCost >= CostPerUseLimit) {
880 DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = " << MinCost
881 << ", no cheaper registers to be found.\n");
882 return 0;
883 }
884
885 // It is normal for register classes to have a long tail of registers with
886 // the same cost. We don't need to look at them if they're too expensive.
887 if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
888 OrderLimit = RegClassInfo.getLastCostChange(RC);
889 DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
890 }
891 }
892
893 Order.rewind();
894 while (unsigned PhysReg = Order.next(OrderLimit)) {
895 if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
896 continue;
897 // The first use of a callee-saved register in a function has cost 1.
898 // Don't start using a CSR when the CostPerUseLimit is low.
899 if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
900 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
901 << PrintReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
902 << '\n');
903 continue;
904 }
905
906 if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
907 continue;
908
909 // Best so far.
910 BestPhys = PhysReg;
911
912 // Stop if the hint can be used.
913 if (Order.isHint())
914 break;
915 }
916
917 if (!BestPhys)
918 return 0;
919
920 evictInterference(VirtReg, BestPhys, NewVRegs);
921 return BestPhys;
922 }
923
924
925 //===----------------------------------------------------------------------===//
926 // Region Splitting
927 //===----------------------------------------------------------------------===//
928
929 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
930 /// interference pattern in Physreg and its aliases. Add the constraints to
931 /// SpillPlacement and return the static cost of this split in Cost, assuming
932 /// that all preferences in SplitConstraints are met.
933 /// Return false if there are no bundles with positive bias.
addSplitConstraints(InterferenceCache::Cursor Intf,BlockFrequency & Cost)934 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
935 BlockFrequency &Cost) {
936 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
937
938 // Reset interference dependent info.
939 SplitConstraints.resize(UseBlocks.size());
940 BlockFrequency StaticCost = 0;
941 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
942 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
943 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
944
945 BC.Number = BI.MBB->getNumber();
946 Intf.moveToBlock(BC.Number);
947 BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
948 BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
949 BC.ChangesValue = BI.FirstDef.isValid();
950
951 if (!Intf.hasInterference())
952 continue;
953
954 // Number of spill code instructions to insert.
955 unsigned Ins = 0;
956
957 // Interference for the live-in value.
958 if (BI.LiveIn) {
959 if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
960 BC.Entry = SpillPlacement::MustSpill;
961 ++Ins;
962 } else if (Intf.first() < BI.FirstInstr) {
963 BC.Entry = SpillPlacement::PrefSpill;
964 ++Ins;
965 } else if (Intf.first() < BI.LastInstr) {
966 ++Ins;
967 }
968 }
969
970 // Interference for the live-out value.
971 if (BI.LiveOut) {
972 if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
973 BC.Exit = SpillPlacement::MustSpill;
974 ++Ins;
975 } else if (Intf.last() > BI.LastInstr) {
976 BC.Exit = SpillPlacement::PrefSpill;
977 ++Ins;
978 } else if (Intf.last() > BI.FirstInstr) {
979 ++Ins;
980 }
981 }
982
983 // Accumulate the total frequency of inserted spill code.
984 while (Ins--)
985 StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
986 }
987 Cost = StaticCost;
988
989 // Add constraints for use-blocks. Note that these are the only constraints
990 // that may add a positive bias, it is downhill from here.
991 SpillPlacer->addConstraints(SplitConstraints);
992 return SpillPlacer->scanActiveBundles();
993 }
994
995
996 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
997 /// live-through blocks in Blocks.
addThroughConstraints(InterferenceCache::Cursor Intf,ArrayRef<unsigned> Blocks)998 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
999 ArrayRef<unsigned> Blocks) {
1000 const unsigned GroupSize = 8;
1001 SpillPlacement::BlockConstraint BCS[GroupSize];
1002 unsigned TBS[GroupSize];
1003 unsigned B = 0, T = 0;
1004
1005 for (unsigned i = 0; i != Blocks.size(); ++i) {
1006 unsigned Number = Blocks[i];
1007 Intf.moveToBlock(Number);
1008
1009 if (!Intf.hasInterference()) {
1010 assert(T < GroupSize && "Array overflow");
1011 TBS[T] = Number;
1012 if (++T == GroupSize) {
1013 SpillPlacer->addLinks(makeArrayRef(TBS, T));
1014 T = 0;
1015 }
1016 continue;
1017 }
1018
1019 assert(B < GroupSize && "Array overflow");
1020 BCS[B].Number = Number;
1021
1022 // Interference for the live-in value.
1023 if (Intf.first() <= Indexes->getMBBStartIdx(Number))
1024 BCS[B].Entry = SpillPlacement::MustSpill;
1025 else
1026 BCS[B].Entry = SpillPlacement::PrefSpill;
1027
1028 // Interference for the live-out value.
1029 if (Intf.last() >= SA->getLastSplitPoint(Number))
1030 BCS[B].Exit = SpillPlacement::MustSpill;
1031 else
1032 BCS[B].Exit = SpillPlacement::PrefSpill;
1033
1034 if (++B == GroupSize) {
1035 SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1036 B = 0;
1037 }
1038 }
1039
1040 SpillPlacer->addConstraints(makeArrayRef(BCS, B));
1041 SpillPlacer->addLinks(makeArrayRef(TBS, T));
1042 }
1043
growRegion(GlobalSplitCandidate & Cand)1044 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
1045 // Keep track of through blocks that have not been added to SpillPlacer.
1046 BitVector Todo = SA->getThroughBlocks();
1047 SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
1048 unsigned AddedTo = 0;
1049 #ifndef NDEBUG
1050 unsigned Visited = 0;
1051 #endif
1052
1053 for (;;) {
1054 ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
1055 // Find new through blocks in the periphery of PrefRegBundles.
1056 for (int i = 0, e = NewBundles.size(); i != e; ++i) {
1057 unsigned Bundle = NewBundles[i];
1058 // Look at all blocks connected to Bundle in the full graph.
1059 ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
1060 for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
1061 I != E; ++I) {
1062 unsigned Block = *I;
1063 if (!Todo.test(Block))
1064 continue;
1065 Todo.reset(Block);
1066 // This is a new through block. Add it to SpillPlacer later.
1067 ActiveBlocks.push_back(Block);
1068 #ifndef NDEBUG
1069 ++Visited;
1070 #endif
1071 }
1072 }
1073 // Any new blocks to add?
1074 if (ActiveBlocks.size() == AddedTo)
1075 break;
1076
1077 // Compute through constraints from the interference, or assume that all
1078 // through blocks prefer spilling when forming compact regions.
1079 auto NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
1080 if (Cand.PhysReg)
1081 addThroughConstraints(Cand.Intf, NewBlocks);
1082 else
1083 // Provide a strong negative bias on through blocks to prevent unwanted
1084 // liveness on loop backedges.
1085 SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
1086 AddedTo = ActiveBlocks.size();
1087
1088 // Perhaps iterating can enable more bundles?
1089 SpillPlacer->iterate();
1090 }
1091 DEBUG(dbgs() << ", v=" << Visited);
1092 }
1093
1094 /// calcCompactRegion - Compute the set of edge bundles that should be live
1095 /// when splitting the current live range into compact regions. Compact
1096 /// regions can be computed without looking at interference. They are the
1097 /// regions formed by removing all the live-through blocks from the live range.
1098 ///
1099 /// Returns false if the current live range is already compact, or if the
1100 /// compact regions would form single block regions anyway.
calcCompactRegion(GlobalSplitCandidate & Cand)1101 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
1102 // Without any through blocks, the live range is already compact.
1103 if (!SA->getNumThroughBlocks())
1104 return false;
1105
1106 // Compact regions don't correspond to any physreg.
1107 Cand.reset(IntfCache, 0);
1108
1109 DEBUG(dbgs() << "Compact region bundles");
1110
1111 // Use the spill placer to determine the live bundles. GrowRegion pretends
1112 // that all the through blocks have interference when PhysReg is unset.
1113 SpillPlacer->prepare(Cand.LiveBundles);
1114
1115 // The static split cost will be zero since Cand.Intf reports no interference.
1116 BlockFrequency Cost;
1117 if (!addSplitConstraints(Cand.Intf, Cost)) {
1118 DEBUG(dbgs() << ", none.\n");
1119 return false;
1120 }
1121
1122 growRegion(Cand);
1123 SpillPlacer->finish();
1124
1125 if (!Cand.LiveBundles.any()) {
1126 DEBUG(dbgs() << ", none.\n");
1127 return false;
1128 }
1129
1130 DEBUG({
1131 for (int i = Cand.LiveBundles.find_first(); i>=0;
1132 i = Cand.LiveBundles.find_next(i))
1133 dbgs() << " EB#" << i;
1134 dbgs() << ".\n";
1135 });
1136 return true;
1137 }
1138
1139 /// calcSpillCost - Compute how expensive it would be to split the live range in
1140 /// SA around all use blocks instead of forming bundle regions.
calcSpillCost()1141 BlockFrequency RAGreedy::calcSpillCost() {
1142 BlockFrequency Cost = 0;
1143 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1144 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1145 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1146 unsigned Number = BI.MBB->getNumber();
1147 // We normally only need one spill instruction - a load or a store.
1148 Cost += SpillPlacer->getBlockFrequency(Number);
1149
1150 // Unless the value is redefined in the block.
1151 if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
1152 Cost += SpillPlacer->getBlockFrequency(Number);
1153 }
1154 return Cost;
1155 }
1156
1157 /// calcGlobalSplitCost - Return the global split cost of following the split
1158 /// pattern in LiveBundles. This cost should be added to the local cost of the
1159 /// interference pattern in SplitConstraints.
1160 ///
calcGlobalSplitCost(GlobalSplitCandidate & Cand)1161 BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
1162 BlockFrequency GlobalCost = 0;
1163 const BitVector &LiveBundles = Cand.LiveBundles;
1164 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1165 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1166 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1167 SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
1168 bool RegIn = LiveBundles[Bundles->getBundle(BC.Number, 0)];
1169 bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
1170 unsigned Ins = 0;
1171
1172 if (BI.LiveIn)
1173 Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
1174 if (BI.LiveOut)
1175 Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
1176 while (Ins--)
1177 GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
1178 }
1179
1180 for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
1181 unsigned Number = Cand.ActiveBlocks[i];
1182 bool RegIn = LiveBundles[Bundles->getBundle(Number, 0)];
1183 bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
1184 if (!RegIn && !RegOut)
1185 continue;
1186 if (RegIn && RegOut) {
1187 // We need double spill code if this block has interference.
1188 Cand.Intf.moveToBlock(Number);
1189 if (Cand.Intf.hasInterference()) {
1190 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1191 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1192 }
1193 continue;
1194 }
1195 // live-in / stack-out or stack-in live-out.
1196 GlobalCost += SpillPlacer->getBlockFrequency(Number);
1197 }
1198 return GlobalCost;
1199 }
1200
1201 /// splitAroundRegion - Split the current live range around the regions
1202 /// determined by BundleCand and GlobalCand.
1203 ///
1204 /// Before calling this function, GlobalCand and BundleCand must be initialized
1205 /// so each bundle is assigned to a valid candidate, or NoCand for the
1206 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
1207 /// objects must be initialized for the current live range, and intervals
1208 /// created for the used candidates.
1209 ///
1210 /// @param LREdit The LiveRangeEdit object handling the current split.
1211 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1212 /// must appear in this list.
splitAroundRegion(LiveRangeEdit & LREdit,ArrayRef<unsigned> UsedCands)1213 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
1214 ArrayRef<unsigned> UsedCands) {
1215 // These are the intervals created for new global ranges. We may create more
1216 // intervals for local ranges.
1217 const unsigned NumGlobalIntvs = LREdit.size();
1218 DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
1219 assert(NumGlobalIntvs && "No global intervals configured");
1220
1221 // Isolate even single instructions when dealing with a proper sub-class.
1222 // That guarantees register class inflation for the stack interval because it
1223 // is all copies.
1224 unsigned Reg = SA->getParent().reg;
1225 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1226
1227 // First handle all the blocks with uses.
1228 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1229 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1230 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1231 unsigned Number = BI.MBB->getNumber();
1232 unsigned IntvIn = 0, IntvOut = 0;
1233 SlotIndex IntfIn, IntfOut;
1234 if (BI.LiveIn) {
1235 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1236 if (CandIn != NoCand) {
1237 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1238 IntvIn = Cand.IntvIdx;
1239 Cand.Intf.moveToBlock(Number);
1240 IntfIn = Cand.Intf.first();
1241 }
1242 }
1243 if (BI.LiveOut) {
1244 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1245 if (CandOut != NoCand) {
1246 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1247 IntvOut = Cand.IntvIdx;
1248 Cand.Intf.moveToBlock(Number);
1249 IntfOut = Cand.Intf.last();
1250 }
1251 }
1252
1253 // Create separate intervals for isolated blocks with multiple uses.
1254 if (!IntvIn && !IntvOut) {
1255 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
1256 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1257 SE->splitSingleBlock(BI);
1258 continue;
1259 }
1260
1261 if (IntvIn && IntvOut)
1262 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1263 else if (IntvIn)
1264 SE->splitRegInBlock(BI, IntvIn, IntfIn);
1265 else
1266 SE->splitRegOutBlock(BI, IntvOut, IntfOut);
1267 }
1268
1269 // Handle live-through blocks. The relevant live-through blocks are stored in
1270 // the ActiveBlocks list with each candidate. We need to filter out
1271 // duplicates.
1272 BitVector Todo = SA->getThroughBlocks();
1273 for (unsigned c = 0; c != UsedCands.size(); ++c) {
1274 ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
1275 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1276 unsigned Number = Blocks[i];
1277 if (!Todo.test(Number))
1278 continue;
1279 Todo.reset(Number);
1280
1281 unsigned IntvIn = 0, IntvOut = 0;
1282 SlotIndex IntfIn, IntfOut;
1283
1284 unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
1285 if (CandIn != NoCand) {
1286 GlobalSplitCandidate &Cand = GlobalCand[CandIn];
1287 IntvIn = Cand.IntvIdx;
1288 Cand.Intf.moveToBlock(Number);
1289 IntfIn = Cand.Intf.first();
1290 }
1291
1292 unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
1293 if (CandOut != NoCand) {
1294 GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1295 IntvOut = Cand.IntvIdx;
1296 Cand.Intf.moveToBlock(Number);
1297 IntfOut = Cand.Intf.last();
1298 }
1299 if (!IntvIn && !IntvOut)
1300 continue;
1301 SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1302 }
1303 }
1304
1305 ++NumGlobalSplits;
1306
1307 SmallVector<unsigned, 8> IntvMap;
1308 SE->finish(&IntvMap);
1309 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1310
1311 ExtraRegInfo.resize(MRI->getNumVirtRegs());
1312 unsigned OrigBlocks = SA->getNumLiveBlocks();
1313
1314 // Sort out the new intervals created by splitting. We get four kinds:
1315 // - Remainder intervals should not be split again.
1316 // - Candidate intervals can be assigned to Cand.PhysReg.
1317 // - Block-local splits are candidates for local splitting.
1318 // - DCE leftovers should go back on the queue.
1319 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1320 LiveInterval &Reg = LIS->getInterval(LREdit.get(i));
1321
1322 // Ignore old intervals from DCE.
1323 if (getStage(Reg) != RS_New)
1324 continue;
1325
1326 // Remainder interval. Don't try splitting again, spill if it doesn't
1327 // allocate.
1328 if (IntvMap[i] == 0) {
1329 setStage(Reg, RS_Spill);
1330 continue;
1331 }
1332
1333 // Global intervals. Allow repeated splitting as long as the number of live
1334 // blocks is strictly decreasing.
1335 if (IntvMap[i] < NumGlobalIntvs) {
1336 if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1337 DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1338 << " blocks as original.\n");
1339 // Don't allow repeated splitting as a safe guard against looping.
1340 setStage(Reg, RS_Split2);
1341 }
1342 continue;
1343 }
1344
1345 // Other intervals are treated as new. This includes local intervals created
1346 // for blocks with multiple uses, and anything created by DCE.
1347 }
1348
1349 if (VerifyEnabled)
1350 MF->verify(this, "After splitting live range around region");
1351 }
1352
tryRegionSplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<unsigned> & NewVRegs)1353 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1354 SmallVectorImpl<unsigned> &NewVRegs) {
1355 unsigned NumCands = 0;
1356 BlockFrequency BestCost;
1357
1358 // Check if we can split this live range around a compact region.
1359 bool HasCompact = calcCompactRegion(GlobalCand.front());
1360 if (HasCompact) {
1361 // Yes, keep GlobalCand[0] as the compact region candidate.
1362 NumCands = 1;
1363 BestCost = BlockFrequency::getMaxFrequency();
1364 } else {
1365 // No benefit from the compact region, our fallback will be per-block
1366 // splitting. Make sure we find a solution that is cheaper than spilling.
1367 BestCost = calcSpillCost();
1368 DEBUG(dbgs() << "Cost of isolating all blocks = ";
1369 MBFI->printBlockFreq(dbgs(), BestCost) << '\n');
1370 }
1371
1372 unsigned BestCand =
1373 calculateRegionSplitCost(VirtReg, Order, BestCost, NumCands,
1374 false/*IgnoreCSR*/);
1375
1376 // No solutions found, fall back to single block splitting.
1377 if (!HasCompact && BestCand == NoCand)
1378 return 0;
1379
1380 return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1381 }
1382
calculateRegionSplitCost(LiveInterval & VirtReg,AllocationOrder & Order,BlockFrequency & BestCost,unsigned & NumCands,bool IgnoreCSR)1383 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval &VirtReg,
1384 AllocationOrder &Order,
1385 BlockFrequency &BestCost,
1386 unsigned &NumCands,
1387 bool IgnoreCSR) {
1388 unsigned BestCand = NoCand;
1389 Order.rewind();
1390 while (unsigned PhysReg = Order.next()) {
1391 if (IgnoreCSR && isUnusedCalleeSavedReg(PhysReg))
1392 continue;
1393
1394 // Discard bad candidates before we run out of interference cache cursors.
1395 // This will only affect register classes with a lot of registers (>32).
1396 if (NumCands == IntfCache.getMaxCursors()) {
1397 unsigned WorstCount = ~0u;
1398 unsigned Worst = 0;
1399 for (unsigned i = 0; i != NumCands; ++i) {
1400 if (i == BestCand || !GlobalCand[i].PhysReg)
1401 continue;
1402 unsigned Count = GlobalCand[i].LiveBundles.count();
1403 if (Count < WorstCount) {
1404 Worst = i;
1405 WorstCount = Count;
1406 }
1407 }
1408 --NumCands;
1409 GlobalCand[Worst] = GlobalCand[NumCands];
1410 if (BestCand == NumCands)
1411 BestCand = Worst;
1412 }
1413
1414 if (GlobalCand.size() <= NumCands)
1415 GlobalCand.resize(NumCands+1);
1416 GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1417 Cand.reset(IntfCache, PhysReg);
1418
1419 SpillPlacer->prepare(Cand.LiveBundles);
1420 BlockFrequency Cost;
1421 if (!addSplitConstraints(Cand.Intf, Cost)) {
1422 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
1423 continue;
1424 }
1425 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = ";
1426 MBFI->printBlockFreq(dbgs(), Cost));
1427 if (Cost >= BestCost) {
1428 DEBUG({
1429 if (BestCand == NoCand)
1430 dbgs() << " worse than no bundles\n";
1431 else
1432 dbgs() << " worse than "
1433 << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1434 });
1435 continue;
1436 }
1437 growRegion(Cand);
1438
1439 SpillPlacer->finish();
1440
1441 // No live bundles, defer to splitSingleBlocks().
1442 if (!Cand.LiveBundles.any()) {
1443 DEBUG(dbgs() << " no bundles.\n");
1444 continue;
1445 }
1446
1447 Cost += calcGlobalSplitCost(Cand);
1448 DEBUG({
1449 dbgs() << ", total = "; MBFI->printBlockFreq(dbgs(), Cost)
1450 << " with bundles";
1451 for (int i = Cand.LiveBundles.find_first(); i>=0;
1452 i = Cand.LiveBundles.find_next(i))
1453 dbgs() << " EB#" << i;
1454 dbgs() << ".\n";
1455 });
1456 if (Cost < BestCost) {
1457 BestCand = NumCands;
1458 BestCost = Cost;
1459 }
1460 ++NumCands;
1461 }
1462 return BestCand;
1463 }
1464
doRegionSplit(LiveInterval & VirtReg,unsigned BestCand,bool HasCompact,SmallVectorImpl<unsigned> & NewVRegs)1465 unsigned RAGreedy::doRegionSplit(LiveInterval &VirtReg, unsigned BestCand,
1466 bool HasCompact,
1467 SmallVectorImpl<unsigned> &NewVRegs) {
1468 SmallVector<unsigned, 8> UsedCands;
1469 // Prepare split editor.
1470 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1471 SE->reset(LREdit, SplitSpillMode);
1472
1473 // Assign all edge bundles to the preferred candidate, or NoCand.
1474 BundleCand.assign(Bundles->getNumBundles(), NoCand);
1475
1476 // Assign bundles for the best candidate region.
1477 if (BestCand != NoCand) {
1478 GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1479 if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1480 UsedCands.push_back(BestCand);
1481 Cand.IntvIdx = SE->openIntv();
1482 DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
1483 << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1484 (void)B;
1485 }
1486 }
1487
1488 // Assign bundles for the compact region.
1489 if (HasCompact) {
1490 GlobalSplitCandidate &Cand = GlobalCand.front();
1491 assert(!Cand.PhysReg && "Compact region has no physreg");
1492 if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1493 UsedCands.push_back(0);
1494 Cand.IntvIdx = SE->openIntv();
1495 DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
1496 << Cand.IntvIdx << ".\n");
1497 (void)B;
1498 }
1499 }
1500
1501 splitAroundRegion(LREdit, UsedCands);
1502 return 0;
1503 }
1504
1505
1506 //===----------------------------------------------------------------------===//
1507 // Per-Block Splitting
1508 //===----------------------------------------------------------------------===//
1509
1510 /// tryBlockSplit - Split a global live range around every block with uses. This
1511 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
1512 /// they don't allocate.
tryBlockSplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<unsigned> & NewVRegs)1513 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1514 SmallVectorImpl<unsigned> &NewVRegs) {
1515 assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1516 unsigned Reg = VirtReg.reg;
1517 bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1518 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1519 SE->reset(LREdit, SplitSpillMode);
1520 ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1521 for (unsigned i = 0; i != UseBlocks.size(); ++i) {
1522 const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
1523 if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1524 SE->splitSingleBlock(BI);
1525 }
1526 // No blocks were split.
1527 if (LREdit.empty())
1528 return 0;
1529
1530 // We did split for some blocks.
1531 SmallVector<unsigned, 8> IntvMap;
1532 SE->finish(&IntvMap);
1533
1534 // Tell LiveDebugVariables about the new ranges.
1535 DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1536
1537 ExtraRegInfo.resize(MRI->getNumVirtRegs());
1538
1539 // Sort out the new intervals created by splitting. The remainder interval
1540 // goes straight to spilling, the new local ranges get to stay RS_New.
1541 for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
1542 LiveInterval &LI = LIS->getInterval(LREdit.get(i));
1543 if (getStage(LI) == RS_New && IntvMap[i] == 0)
1544 setStage(LI, RS_Spill);
1545 }
1546
1547 if (VerifyEnabled)
1548 MF->verify(this, "After splitting live range around basic blocks");
1549 return 0;
1550 }
1551
1552
1553 //===----------------------------------------------------------------------===//
1554 // Per-Instruction Splitting
1555 //===----------------------------------------------------------------------===//
1556
1557 /// Get the number of allocatable registers that match the constraints of \p Reg
1558 /// on \p MI and that are also in \p SuperRC.
getNumAllocatableRegsForConstraints(const MachineInstr * MI,unsigned Reg,const TargetRegisterClass * SuperRC,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI,const RegisterClassInfo & RCI)1559 static unsigned getNumAllocatableRegsForConstraints(
1560 const MachineInstr *MI, unsigned Reg, const TargetRegisterClass *SuperRC,
1561 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1562 const RegisterClassInfo &RCI) {
1563 assert(SuperRC && "Invalid register class");
1564
1565 const TargetRegisterClass *ConstrainedRC =
1566 MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1567 /* ExploreBundle */ true);
1568 if (!ConstrainedRC)
1569 return 0;
1570 return RCI.getNumAllocatableRegs(ConstrainedRC);
1571 }
1572
1573 /// tryInstructionSplit - Split a live range around individual instructions.
1574 /// This is normally not worthwhile since the spiller is doing essentially the
1575 /// same thing. However, when the live range is in a constrained register
1576 /// class, it may help to insert copies such that parts of the live range can
1577 /// be moved to a larger register class.
1578 ///
1579 /// This is similar to spilling to a larger register class.
1580 unsigned
tryInstructionSplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<unsigned> & NewVRegs)1581 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1582 SmallVectorImpl<unsigned> &NewVRegs) {
1583 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
1584 // There is no point to this if there are no larger sub-classes.
1585 if (!RegClassInfo.isProperSubClass(CurRC))
1586 return 0;
1587
1588 // Always enable split spill mode, since we're effectively spilling to a
1589 // register.
1590 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1591 SE->reset(LREdit, SplitEditor::SM_Size);
1592
1593 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1594 if (Uses.size() <= 1)
1595 return 0;
1596
1597 DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
1598
1599 const TargetRegisterClass *SuperRC =
1600 TRI->getLargestLegalSuperClass(CurRC, *MF);
1601 unsigned SuperRCNumAllocatableRegs = RCI.getNumAllocatableRegs(SuperRC);
1602 // Split around every non-copy instruction if this split will relax
1603 // the constraints on the virtual register.
1604 // Otherwise, splitting just inserts uncoalescable copies that do not help
1605 // the allocation.
1606 for (unsigned i = 0; i != Uses.size(); ++i) {
1607 if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
1608 if (MI->isFullCopy() ||
1609 SuperRCNumAllocatableRegs ==
1610 getNumAllocatableRegsForConstraints(MI, VirtReg.reg, SuperRC, TII,
1611 TRI, RCI)) {
1612 DEBUG(dbgs() << " skip:\t" << Uses[i] << '\t' << *MI);
1613 continue;
1614 }
1615 SE->openIntv();
1616 SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
1617 SlotIndex SegStop = SE->leaveIntvAfter(Uses[i]);
1618 SE->useIntv(SegStart, SegStop);
1619 }
1620
1621 if (LREdit.empty()) {
1622 DEBUG(dbgs() << "All uses were copies.\n");
1623 return 0;
1624 }
1625
1626 SmallVector<unsigned, 8> IntvMap;
1627 SE->finish(&IntvMap);
1628 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1629 ExtraRegInfo.resize(MRI->getNumVirtRegs());
1630
1631 // Assign all new registers to RS_Spill. This was the last chance.
1632 setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1633 return 0;
1634 }
1635
1636
1637 //===----------------------------------------------------------------------===//
1638 // Local Splitting
1639 //===----------------------------------------------------------------------===//
1640
1641
1642 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1643 /// in order to use PhysReg between two entries in SA->UseSlots.
1644 ///
1645 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
1646 ///
calcGapWeights(unsigned PhysReg,SmallVectorImpl<float> & GapWeight)1647 void RAGreedy::calcGapWeights(unsigned PhysReg,
1648 SmallVectorImpl<float> &GapWeight) {
1649 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1650 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1651 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1652 const unsigned NumGaps = Uses.size()-1;
1653
1654 // Start and end points for the interference check.
1655 SlotIndex StartIdx =
1656 BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1657 SlotIndex StopIdx =
1658 BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1659
1660 GapWeight.assign(NumGaps, 0.0f);
1661
1662 // Add interference from each overlapping register.
1663 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1664 if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
1665 .checkInterference())
1666 continue;
1667
1668 // We know that VirtReg is a continuous interval from FirstInstr to
1669 // LastInstr, so we don't need InterferenceQuery.
1670 //
1671 // Interference that overlaps an instruction is counted in both gaps
1672 // surrounding the instruction. The exception is interference before
1673 // StartIdx and after StopIdx.
1674 //
1675 LiveIntervalUnion::SegmentIter IntI =
1676 Matrix->getLiveUnions()[*Units] .find(StartIdx);
1677 for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1678 // Skip the gaps before IntI.
1679 while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1680 if (++Gap == NumGaps)
1681 break;
1682 if (Gap == NumGaps)
1683 break;
1684
1685 // Update the gaps covered by IntI.
1686 const float weight = IntI.value()->weight;
1687 for (; Gap != NumGaps; ++Gap) {
1688 GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1689 if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1690 break;
1691 }
1692 if (Gap == NumGaps)
1693 break;
1694 }
1695 }
1696
1697 // Add fixed interference.
1698 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
1699 const LiveRange &LR = LIS->getRegUnit(*Units);
1700 LiveRange::const_iterator I = LR.find(StartIdx);
1701 LiveRange::const_iterator E = LR.end();
1702
1703 // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1704 for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1705 while (Uses[Gap+1].getBoundaryIndex() < I->start)
1706 if (++Gap == NumGaps)
1707 break;
1708 if (Gap == NumGaps)
1709 break;
1710
1711 for (; Gap != NumGaps; ++Gap) {
1712 GapWeight[Gap] = llvm::huge_valf;
1713 if (Uses[Gap+1].getBaseIndex() >= I->end)
1714 break;
1715 }
1716 if (Gap == NumGaps)
1717 break;
1718 }
1719 }
1720 }
1721
1722 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1723 /// basic block.
1724 ///
tryLocalSplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<unsigned> & NewVRegs)1725 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
1726 SmallVectorImpl<unsigned> &NewVRegs) {
1727 assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1728 const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1729
1730 // Note that it is possible to have an interval that is live-in or live-out
1731 // while only covering a single block - A phi-def can use undef values from
1732 // predecessors, and the block could be a single-block loop.
1733 // We don't bother doing anything clever about such a case, we simply assume
1734 // that the interval is continuous from FirstInstr to LastInstr. We should
1735 // make sure that we don't do anything illegal to such an interval, though.
1736
1737 ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1738 if (Uses.size() <= 2)
1739 return 0;
1740 const unsigned NumGaps = Uses.size()-1;
1741
1742 DEBUG({
1743 dbgs() << "tryLocalSplit: ";
1744 for (unsigned i = 0, e = Uses.size(); i != e; ++i)
1745 dbgs() << ' ' << Uses[i];
1746 dbgs() << '\n';
1747 });
1748
1749 // If VirtReg is live across any register mask operands, compute a list of
1750 // gaps with register masks.
1751 SmallVector<unsigned, 8> RegMaskGaps;
1752 if (Matrix->checkRegMaskInterference(VirtReg)) {
1753 // Get regmask slots for the whole block.
1754 ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1755 DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1756 // Constrain to VirtReg's live range.
1757 unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
1758 Uses.front().getRegSlot()) - RMS.begin();
1759 unsigned re = RMS.size();
1760 for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
1761 // Look for Uses[i] <= RMS <= Uses[i+1].
1762 assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
1763 if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
1764 continue;
1765 // Skip a regmask on the same instruction as the last use. It doesn't
1766 // overlap the live range.
1767 if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
1768 break;
1769 DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
1770 RegMaskGaps.push_back(i);
1771 // Advance ri to the next gap. A regmask on one of the uses counts in
1772 // both gaps.
1773 while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
1774 ++ri;
1775 }
1776 DEBUG(dbgs() << '\n');
1777 }
1778
1779 // Since we allow local split results to be split again, there is a risk of
1780 // creating infinite loops. It is tempting to require that the new live
1781 // ranges have less instructions than the original. That would guarantee
1782 // convergence, but it is too strict. A live range with 3 instructions can be
1783 // split 2+3 (including the COPY), and we want to allow that.
1784 //
1785 // Instead we use these rules:
1786 //
1787 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1788 // noop split, of course).
1789 // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1790 // the new ranges must have fewer instructions than before the split.
1791 // 3. New ranges with the same number of instructions are marked RS_Split2,
1792 // smaller ranges are marked RS_New.
1793 //
1794 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1795 // excessive splitting and infinite loops.
1796 //
1797 bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
1798
1799 // Best split candidate.
1800 unsigned BestBefore = NumGaps;
1801 unsigned BestAfter = 0;
1802 float BestDiff = 0;
1803
1804 const float blockFreq =
1805 SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1806 (1.0f / MBFI->getEntryFreq());
1807 SmallVector<float, 8> GapWeight;
1808
1809 Order.rewind();
1810 while (unsigned PhysReg = Order.next()) {
1811 // Keep track of the largest spill weight that would need to be evicted in
1812 // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
1813 calcGapWeights(PhysReg, GapWeight);
1814
1815 // Remove any gaps with regmask clobbers.
1816 if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1817 for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
1818 GapWeight[RegMaskGaps[i]] = llvm::huge_valf;
1819
1820 // Try to find the best sequence of gaps to close.
1821 // The new spill weight must be larger than any gap interference.
1822
1823 // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1824 unsigned SplitBefore = 0, SplitAfter = 1;
1825
1826 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1827 // It is the spill weight that needs to be evicted.
1828 float MaxGap = GapWeight[0];
1829
1830 for (;;) {
1831 // Live before/after split?
1832 const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1833 const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1834
1835 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
1836 << Uses[SplitBefore] << '-' << Uses[SplitAfter]
1837 << " i=" << MaxGap);
1838
1839 // Stop before the interval gets so big we wouldn't be making progress.
1840 if (!LiveBefore && !LiveAfter) {
1841 DEBUG(dbgs() << " all\n");
1842 break;
1843 }
1844 // Should the interval be extended or shrunk?
1845 bool Shrink = true;
1846
1847 // How many gaps would the new range have?
1848 unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1849
1850 // Legally, without causing looping?
1851 bool Legal = !ProgressRequired || NewGaps < NumGaps;
1852
1853 if (Legal && MaxGap < llvm::huge_valf) {
1854 // Estimate the new spill weight. Each instruction reads or writes the
1855 // register. Conservatively assume there are no read-modify-write
1856 // instructions.
1857 //
1858 // Try to guess the size of the new interval.
1859 const float EstWeight = normalizeSpillWeight(
1860 blockFreq * (NewGaps + 1),
1861 Uses[SplitBefore].distance(Uses[SplitAfter]) +
1862 (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1863 1);
1864 // Would this split be possible to allocate?
1865 // Never allocate all gaps, we wouldn't be making progress.
1866 DEBUG(dbgs() << " w=" << EstWeight);
1867 if (EstWeight * Hysteresis >= MaxGap) {
1868 Shrink = false;
1869 float Diff = EstWeight - MaxGap;
1870 if (Diff > BestDiff) {
1871 DEBUG(dbgs() << " (best)");
1872 BestDiff = Hysteresis * Diff;
1873 BestBefore = SplitBefore;
1874 BestAfter = SplitAfter;
1875 }
1876 }
1877 }
1878
1879 // Try to shrink.
1880 if (Shrink) {
1881 if (++SplitBefore < SplitAfter) {
1882 DEBUG(dbgs() << " shrink\n");
1883 // Recompute the max when necessary.
1884 if (GapWeight[SplitBefore - 1] >= MaxGap) {
1885 MaxGap = GapWeight[SplitBefore];
1886 for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
1887 MaxGap = std::max(MaxGap, GapWeight[i]);
1888 }
1889 continue;
1890 }
1891 MaxGap = 0;
1892 }
1893
1894 // Try to extend the interval.
1895 if (SplitAfter >= NumGaps) {
1896 DEBUG(dbgs() << " end\n");
1897 break;
1898 }
1899
1900 DEBUG(dbgs() << " extend\n");
1901 MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1902 }
1903 }
1904
1905 // Didn't find any candidates?
1906 if (BestBefore == NumGaps)
1907 return 0;
1908
1909 DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
1910 << '-' << Uses[BestAfter] << ", " << BestDiff
1911 << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
1912
1913 LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1914 SE->reset(LREdit);
1915
1916 SE->openIntv();
1917 SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1918 SlotIndex SegStop = SE->leaveIntvAfter(Uses[BestAfter]);
1919 SE->useIntv(SegStart, SegStop);
1920 SmallVector<unsigned, 8> IntvMap;
1921 SE->finish(&IntvMap);
1922 DebugVars->splitRegister(VirtReg.reg, LREdit.regs(), *LIS);
1923
1924 // If the new range has the same number of instructions as before, mark it as
1925 // RS_Split2 so the next split will be forced to make progress. Otherwise,
1926 // leave the new intervals as RS_New so they can compete.
1927 bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1928 bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1929 unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1930 if (NewGaps >= NumGaps) {
1931 DEBUG(dbgs() << "Tagging non-progress ranges: ");
1932 assert(!ProgressRequired && "Didn't make progress when it was required.");
1933 for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
1934 if (IntvMap[i] == 1) {
1935 setStage(LIS->getInterval(LREdit.get(i)), RS_Split2);
1936 DEBUG(dbgs() << PrintReg(LREdit.get(i)));
1937 }
1938 DEBUG(dbgs() << '\n');
1939 }
1940 ++NumLocalSplits;
1941
1942 return 0;
1943 }
1944
1945 //===----------------------------------------------------------------------===//
1946 // Live Range Splitting
1947 //===----------------------------------------------------------------------===//
1948
1949 /// trySplit - Try to split VirtReg or one of its interferences, making it
1950 /// assignable.
1951 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
trySplit(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<unsigned> & NewVRegs)1952 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
1953 SmallVectorImpl<unsigned>&NewVRegs) {
1954 // Ranges must be Split2 or less.
1955 if (getStage(VirtReg) >= RS_Spill)
1956 return 0;
1957
1958 // Local intervals are handled separately.
1959 if (LIS->intervalIsInOneMBB(VirtReg)) {
1960 NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
1961 SA->analyze(&VirtReg);
1962 unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1963 if (PhysReg || !NewVRegs.empty())
1964 return PhysReg;
1965 return tryInstructionSplit(VirtReg, Order, NewVRegs);
1966 }
1967
1968 NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
1969
1970 SA->analyze(&VirtReg);
1971
1972 // FIXME: SplitAnalysis may repair broken live ranges coming from the
1973 // coalescer. That may cause the range to become allocatable which means that
1974 // tryRegionSplit won't be making progress. This check should be replaced with
1975 // an assertion when the coalescer is fixed.
1976 if (SA->didRepairRange()) {
1977 // VirtReg has changed, so all cached queries are invalid.
1978 Matrix->invalidateVirtRegs();
1979 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
1980 return PhysReg;
1981 }
1982
1983 // First try to split around a region spanning multiple blocks. RS_Split2
1984 // ranges already made dubious progress with region splitting, so they go
1985 // straight to single block splitting.
1986 if (getStage(VirtReg) < RS_Split2) {
1987 unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1988 if (PhysReg || !NewVRegs.empty())
1989 return PhysReg;
1990 }
1991
1992 // Then isolate blocks.
1993 return tryBlockSplit(VirtReg, Order, NewVRegs);
1994 }
1995
1996 //===----------------------------------------------------------------------===//
1997 // Last Chance Recoloring
1998 //===----------------------------------------------------------------------===//
1999
2000 /// mayRecolorAllInterferences - Check if the virtual registers that
2001 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2002 /// recolored to free \p PhysReg.
2003 /// When true is returned, \p RecoloringCandidates has been augmented with all
2004 /// the live intervals that need to be recolored in order to free \p PhysReg
2005 /// for \p VirtReg.
2006 /// \p FixedRegisters contains all the virtual registers that cannot be
2007 /// recolored.
2008 bool
mayRecolorAllInterferences(unsigned PhysReg,LiveInterval & VirtReg,SmallLISet & RecoloringCandidates,const SmallVirtRegSet & FixedRegisters)2009 RAGreedy::mayRecolorAllInterferences(unsigned PhysReg, LiveInterval &VirtReg,
2010 SmallLISet &RecoloringCandidates,
2011 const SmallVirtRegSet &FixedRegisters) {
2012 const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg);
2013
2014 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
2015 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
2016 // If there is LastChanceRecoloringMaxInterference or more interferences,
2017 // chances are one would not be recolorable.
2018 if (Q.collectInterferingVRegs(LastChanceRecoloringMaxInterference) >=
2019 LastChanceRecoloringMaxInterference && !ExhaustiveSearch) {
2020 DEBUG(dbgs() << "Early abort: too many interferences.\n");
2021 CutOffInfo |= CO_Interf;
2022 return false;
2023 }
2024 for (unsigned i = Q.interferingVRegs().size(); i; --i) {
2025 LiveInterval *Intf = Q.interferingVRegs()[i - 1];
2026 // If Intf is done and sit on the same register class as VirtReg,
2027 // it would not be recolorable as it is in the same state as VirtReg.
2028 if ((getStage(*Intf) == RS_Done &&
2029 MRI->getRegClass(Intf->reg) == CurRC) ||
2030 FixedRegisters.count(Intf->reg)) {
2031 DEBUG(dbgs() << "Early abort: the inteference is not recolorable.\n");
2032 return false;
2033 }
2034 RecoloringCandidates.insert(Intf);
2035 }
2036 }
2037 return true;
2038 }
2039
2040 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2041 /// its interferences.
2042 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2043 /// virtual register that was using it. The recoloring process may recursively
2044 /// use the last chance recoloring. Therefore, when a virtual register has been
2045 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2046 /// be last-chance-recolored again during this recoloring "session".
2047 /// E.g.,
2048 /// Let
2049 /// vA can use {R1, R2 }
2050 /// vB can use { R2, R3}
2051 /// vC can use {R1 }
2052 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2053 /// instance) and they all interfere.
2054 ///
2055 /// vA is assigned R1
2056 /// vB is assigned R2
2057 /// vC tries to evict vA but vA is already done.
2058 /// Regular register allocation fails.
2059 ///
2060 /// Last chance recoloring kicks in:
2061 /// vC does as if vA was evicted => vC uses R1.
2062 /// vC is marked as fixed.
2063 /// vA needs to find a color.
2064 /// None are available.
2065 /// vA cannot evict vC: vC is a fixed virtual register now.
2066 /// vA does as if vB was evicted => vA uses R2.
2067 /// vB needs to find a color.
2068 /// R3 is available.
2069 /// Recoloring => vC = R1, vA = R2, vB = R3
2070 ///
2071 /// \p Order defines the preferred allocation order for \p VirtReg.
2072 /// \p NewRegs will contain any new virtual register that have been created
2073 /// (split, spill) during the process and that must be assigned.
2074 /// \p FixedRegisters contains all the virtual registers that cannot be
2075 /// recolored.
2076 /// \p Depth gives the current depth of the last chance recoloring.
2077 /// \return a physical register that can be used for VirtReg or ~0u if none
2078 /// exists.
tryLastChanceRecoloring(LiveInterval & VirtReg,AllocationOrder & Order,SmallVectorImpl<unsigned> & NewVRegs,SmallVirtRegSet & FixedRegisters,unsigned Depth)2079 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval &VirtReg,
2080 AllocationOrder &Order,
2081 SmallVectorImpl<unsigned> &NewVRegs,
2082 SmallVirtRegSet &FixedRegisters,
2083 unsigned Depth) {
2084 DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
2085 // Ranges must be Done.
2086 assert((getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
2087 "Last chance recoloring should really be last chance");
2088 // Set the max depth to LastChanceRecoloringMaxDepth.
2089 // We may want to reconsider that if we end up with a too large search space
2090 // for target with hundreds of registers.
2091 // Indeed, in that case we may want to cut the search space earlier.
2092 if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
2093 DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2094 CutOffInfo |= CO_Depth;
2095 return ~0u;
2096 }
2097
2098 // Set of Live intervals that will need to be recolored.
2099 SmallLISet RecoloringCandidates;
2100 // Record the original mapping virtual register to physical register in case
2101 // the recoloring fails.
2102 DenseMap<unsigned, unsigned> VirtRegToPhysReg;
2103 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2104 // this recoloring "session".
2105 FixedRegisters.insert(VirtReg.reg);
2106
2107 Order.rewind();
2108 while (unsigned PhysReg = Order.next()) {
2109 DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
2110 << PrintReg(PhysReg, TRI) << '\n');
2111 RecoloringCandidates.clear();
2112 VirtRegToPhysReg.clear();
2113
2114 // It is only possible to recolor virtual register interference.
2115 if (Matrix->checkInterference(VirtReg, PhysReg) >
2116 LiveRegMatrix::IK_VirtReg) {
2117 DEBUG(dbgs() << "Some inteferences are not with virtual registers.\n");
2118
2119 continue;
2120 }
2121
2122 // Early give up on this PhysReg if it is obvious we cannot recolor all
2123 // the interferences.
2124 if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2125 FixedRegisters)) {
2126 DEBUG(dbgs() << "Some inteferences cannot be recolored.\n");
2127 continue;
2128 }
2129
2130 // RecoloringCandidates contains all the virtual registers that interfer
2131 // with VirtReg on PhysReg (or one of its aliases).
2132 // Enqueue them for recoloring and perform the actual recoloring.
2133 PQueue RecoloringQueue;
2134 for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2135 EndIt = RecoloringCandidates.end();
2136 It != EndIt; ++It) {
2137 unsigned ItVirtReg = (*It)->reg;
2138 enqueue(RecoloringQueue, *It);
2139 assert(VRM->hasPhys(ItVirtReg) &&
2140 "Interferences are supposed to be with allocated vairables");
2141
2142 // Record the current allocation.
2143 VirtRegToPhysReg[ItVirtReg] = VRM->getPhys(ItVirtReg);
2144 // unset the related struct.
2145 Matrix->unassign(**It);
2146 }
2147
2148 // Do as if VirtReg was assigned to PhysReg so that the underlying
2149 // recoloring has the right information about the interferes and
2150 // available colors.
2151 Matrix->assign(VirtReg, PhysReg);
2152
2153 // Save the current recoloring state.
2154 // If we cannot recolor all the interferences, we will have to start again
2155 // at this point for the next physical register.
2156 SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2157 if (tryRecoloringCandidates(RecoloringQueue, NewVRegs, FixedRegisters,
2158 Depth)) {
2159 // Do not mess up with the global assignment process.
2160 // I.e., VirtReg must be unassigned.
2161 Matrix->unassign(VirtReg);
2162 return PhysReg;
2163 }
2164
2165 DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2166 << PrintReg(PhysReg, TRI) << '\n');
2167
2168 // The recoloring attempt failed, undo the changes.
2169 FixedRegisters = SaveFixedRegisters;
2170 Matrix->unassign(VirtReg);
2171
2172 for (SmallLISet::iterator It = RecoloringCandidates.begin(),
2173 EndIt = RecoloringCandidates.end();
2174 It != EndIt; ++It) {
2175 unsigned ItVirtReg = (*It)->reg;
2176 if (VRM->hasPhys(ItVirtReg))
2177 Matrix->unassign(**It);
2178 unsigned ItPhysReg = VirtRegToPhysReg[ItVirtReg];
2179 Matrix->assign(**It, ItPhysReg);
2180 }
2181 }
2182
2183 // Last chance recoloring did not worked either, give up.
2184 return ~0u;
2185 }
2186
2187 /// tryRecoloringCandidates - Try to assign a new color to every register
2188 /// in \RecoloringQueue.
2189 /// \p NewRegs will contain any new virtual register created during the
2190 /// recoloring process.
2191 /// \p FixedRegisters[in/out] contains all the registers that have been
2192 /// recolored.
2193 /// \return true if all virtual registers in RecoloringQueue were successfully
2194 /// recolored, false otherwise.
tryRecoloringCandidates(PQueue & RecoloringQueue,SmallVectorImpl<unsigned> & NewVRegs,SmallVirtRegSet & FixedRegisters,unsigned Depth)2195 bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2196 SmallVectorImpl<unsigned> &NewVRegs,
2197 SmallVirtRegSet &FixedRegisters,
2198 unsigned Depth) {
2199 while (!RecoloringQueue.empty()) {
2200 LiveInterval *LI = dequeue(RecoloringQueue);
2201 DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2202 unsigned PhysReg;
2203 PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters, Depth + 1);
2204 if (PhysReg == ~0u || !PhysReg)
2205 return false;
2206 DEBUG(dbgs() << "Recoloring of " << *LI
2207 << " succeeded with: " << PrintReg(PhysReg, TRI) << '\n');
2208 Matrix->assign(*LI, PhysReg);
2209 FixedRegisters.insert(LI->reg);
2210 }
2211 return true;
2212 }
2213
2214 //===----------------------------------------------------------------------===//
2215 // Main Entry Point
2216 //===----------------------------------------------------------------------===//
2217
selectOrSplit(LiveInterval & VirtReg,SmallVectorImpl<unsigned> & NewVRegs)2218 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
2219 SmallVectorImpl<unsigned> &NewVRegs) {
2220 CutOffInfo = CO_None;
2221 LLVMContext &Ctx = MF->getFunction()->getContext();
2222 SmallVirtRegSet FixedRegisters;
2223 unsigned Reg = selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters);
2224 if (Reg == ~0U && (CutOffInfo != CO_None)) {
2225 uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2226 if (CutOffEncountered == CO_Depth)
2227 Ctx.emitError("register allocation failed: maximum depth for recoloring "
2228 "reached. Use -fexhaustive-register-search to skip "
2229 "cutoffs");
2230 else if (CutOffEncountered == CO_Interf)
2231 Ctx.emitError("register allocation failed: maximum interference for "
2232 "recoloring reached. Use -fexhaustive-register-search "
2233 "to skip cutoffs");
2234 else if (CutOffEncountered == (CO_Depth | CO_Interf))
2235 Ctx.emitError("register allocation failed: maximum interference and "
2236 "depth for recoloring reached. Use "
2237 "-fexhaustive-register-search to skip cutoffs");
2238 }
2239 return Reg;
2240 }
2241
2242 /// Using a CSR for the first time has a cost because it causes push|pop
2243 /// to be added to prologue|epilogue. Splitting a cold section of the live
2244 /// range can have lower cost than using the CSR for the first time;
2245 /// Spilling a live range in the cold path can have lower cost than using
2246 /// the CSR for the first time. Returns the physical register if we decide
2247 /// to use the CSR; otherwise return 0.
tryAssignCSRFirstTime(LiveInterval & VirtReg,AllocationOrder & Order,unsigned PhysReg,unsigned & CostPerUseLimit,SmallVectorImpl<unsigned> & NewVRegs)2248 unsigned RAGreedy::tryAssignCSRFirstTime(LiveInterval &VirtReg,
2249 AllocationOrder &Order,
2250 unsigned PhysReg,
2251 unsigned &CostPerUseLimit,
2252 SmallVectorImpl<unsigned> &NewVRegs) {
2253 if (getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2254 // We choose spill over using the CSR for the first time if the spill cost
2255 // is lower than CSRCost.
2256 SA->analyze(&VirtReg);
2257 if (calcSpillCost() >= CSRCost)
2258 return PhysReg;
2259
2260 // We are going to spill, set CostPerUseLimit to 1 to make sure that
2261 // we will not use a callee-saved register in tryEvict.
2262 CostPerUseLimit = 1;
2263 return 0;
2264 }
2265 if (getStage(VirtReg) < RS_Split) {
2266 // We choose pre-splitting over using the CSR for the first time if
2267 // the cost of splitting is lower than CSRCost.
2268 SA->analyze(&VirtReg);
2269 unsigned NumCands = 0;
2270 BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2271 unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2272 NumCands, true /*IgnoreCSR*/);
2273 if (BestCand == NoCand)
2274 // Use the CSR if we can't find a region split below CSRCost.
2275 return PhysReg;
2276
2277 // Perform the actual pre-splitting.
2278 doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2279 return 0;
2280 }
2281 return PhysReg;
2282 }
2283
aboutToRemoveInterval(LiveInterval & LI)2284 void RAGreedy::aboutToRemoveInterval(LiveInterval &LI) {
2285 // Do not keep invalid information around.
2286 SetOfBrokenHints.remove(&LI);
2287 }
2288
initializeCSRCost()2289 void RAGreedy::initializeCSRCost() {
2290 // We use the larger one out of the command-line option and the value report
2291 // by TRI.
2292 CSRCost = BlockFrequency(
2293 std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2294 if (!CSRCost.getFrequency())
2295 return;
2296
2297 // Raw cost is relative to Entry == 2^14; scale it appropriately.
2298 uint64_t ActualEntry = MBFI->getEntryFreq();
2299 if (!ActualEntry) {
2300 CSRCost = 0;
2301 return;
2302 }
2303 uint64_t FixedEntry = 1 << 14;
2304 if (ActualEntry < FixedEntry)
2305 CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2306 else if (ActualEntry <= UINT32_MAX)
2307 // Invert the fraction and divide.
2308 CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2309 else
2310 // Can't use BranchProbability in general, since it takes 32-bit numbers.
2311 CSRCost = CSRCost.getFrequency() * (ActualEntry / FixedEntry);
2312 }
2313
2314 /// \brief Collect the hint info for \p Reg.
2315 /// The results are stored into \p Out.
2316 /// \p Out is not cleared before being populated.
collectHintInfo(unsigned Reg,HintsInfo & Out)2317 void RAGreedy::collectHintInfo(unsigned Reg, HintsInfo &Out) {
2318 for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2319 if (!Instr.isFullCopy())
2320 continue;
2321 // Look for the other end of the copy.
2322 unsigned OtherReg = Instr.getOperand(0).getReg();
2323 if (OtherReg == Reg) {
2324 OtherReg = Instr.getOperand(1).getReg();
2325 if (OtherReg == Reg)
2326 continue;
2327 }
2328 // Get the current assignment.
2329 unsigned OtherPhysReg = TargetRegisterInfo::isPhysicalRegister(OtherReg)
2330 ? OtherReg
2331 : VRM->getPhys(OtherReg);
2332 // Push the collected information.
2333 Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2334 OtherPhysReg));
2335 }
2336 }
2337
2338 /// \brief Using the given \p List, compute the cost of the broken hints if
2339 /// \p PhysReg was used.
2340 /// \return The cost of \p List for \p PhysReg.
getBrokenHintFreq(const HintsInfo & List,unsigned PhysReg)2341 BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2342 unsigned PhysReg) {
2343 BlockFrequency Cost = 0;
2344 for (const HintInfo &Info : List) {
2345 if (Info.PhysReg != PhysReg)
2346 Cost += Info.Freq;
2347 }
2348 return Cost;
2349 }
2350
2351 /// \brief Using the register assigned to \p VirtReg, try to recolor
2352 /// all the live ranges that are copy-related with \p VirtReg.
2353 /// The recoloring is then propagated to all the live-ranges that have
2354 /// been recolored and so on, until no more copies can be coalesced or
2355 /// it is not profitable.
2356 /// For a given live range, profitability is determined by the sum of the
2357 /// frequencies of the non-identity copies it would introduce with the old
2358 /// and new register.
tryHintRecoloring(LiveInterval & VirtReg)2359 void RAGreedy::tryHintRecoloring(LiveInterval &VirtReg) {
2360 // We have a broken hint, check if it is possible to fix it by
2361 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2362 // some register and PhysReg may be available for the other live-ranges.
2363 SmallSet<unsigned, 4> Visited;
2364 SmallVector<unsigned, 2> RecoloringCandidates;
2365 HintsInfo Info;
2366 unsigned Reg = VirtReg.reg;
2367 unsigned PhysReg = VRM->getPhys(Reg);
2368 // Start the recoloring algorithm from the input live-interval, then
2369 // it will propagate to the ones that are copy-related with it.
2370 Visited.insert(Reg);
2371 RecoloringCandidates.push_back(Reg);
2372
2373 DEBUG(dbgs() << "Trying to reconcile hints for: " << PrintReg(Reg, TRI) << '('
2374 << PrintReg(PhysReg, TRI) << ")\n");
2375
2376 do {
2377 Reg = RecoloringCandidates.pop_back_val();
2378
2379 // We cannot recolor physcal register.
2380 if (TargetRegisterInfo::isPhysicalRegister(Reg))
2381 continue;
2382
2383 assert(VRM->hasPhys(Reg) && "We have unallocated variable!!");
2384
2385 // Get the live interval mapped with this virtual register to be able
2386 // to check for the interference with the new color.
2387 LiveInterval &LI = LIS->getInterval(Reg);
2388 unsigned CurrPhys = VRM->getPhys(Reg);
2389 // Check that the new color matches the register class constraints and
2390 // that it is free for this live range.
2391 if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2392 Matrix->checkInterference(LI, PhysReg)))
2393 continue;
2394
2395 DEBUG(dbgs() << PrintReg(Reg, TRI) << '(' << PrintReg(CurrPhys, TRI)
2396 << ") is recolorable.\n");
2397
2398 // Gather the hint info.
2399 Info.clear();
2400 collectHintInfo(Reg, Info);
2401 // Check if recoloring the live-range will increase the cost of the
2402 // non-identity copies.
2403 if (CurrPhys != PhysReg) {
2404 DEBUG(dbgs() << "Checking profitability:\n");
2405 BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2406 BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2407 DEBUG(dbgs() << "Old Cost: " << OldCopiesCost.getFrequency()
2408 << "\nNew Cost: " << NewCopiesCost.getFrequency() << '\n');
2409 if (OldCopiesCost < NewCopiesCost) {
2410 DEBUG(dbgs() << "=> Not profitable.\n");
2411 continue;
2412 }
2413 // At this point, the cost is either cheaper or equal. If it is
2414 // equal, we consider this is profitable because it may expose
2415 // more recoloring opportunities.
2416 DEBUG(dbgs() << "=> Profitable.\n");
2417 // Recolor the live-range.
2418 Matrix->unassign(LI);
2419 Matrix->assign(LI, PhysReg);
2420 }
2421 // Push all copy-related live-ranges to keep reconciling the broken
2422 // hints.
2423 for (const HintInfo &HI : Info) {
2424 if (Visited.insert(HI.Reg).second)
2425 RecoloringCandidates.push_back(HI.Reg);
2426 }
2427 } while (!RecoloringCandidates.empty());
2428 }
2429
2430 /// \brief Try to recolor broken hints.
2431 /// Broken hints may be repaired by recoloring when an evicted variable
2432 /// freed up a register for a larger live-range.
2433 /// Consider the following example:
2434 /// BB1:
2435 /// a =
2436 /// b =
2437 /// BB2:
2438 /// ...
2439 /// = b
2440 /// = a
2441 /// Let us assume b gets split:
2442 /// BB1:
2443 /// a =
2444 /// b =
2445 /// BB2:
2446 /// c = b
2447 /// ...
2448 /// d = c
2449 /// = d
2450 /// = a
2451 /// Because of how the allocation work, b, c, and d may be assigned different
2452 /// colors. Now, if a gets evicted later:
2453 /// BB1:
2454 /// a =
2455 /// st a, SpillSlot
2456 /// b =
2457 /// BB2:
2458 /// c = b
2459 /// ...
2460 /// d = c
2461 /// = d
2462 /// e = ld SpillSlot
2463 /// = e
2464 /// This is likely that we can assign the same register for b, c, and d,
2465 /// getting rid of 2 copies.
tryHintsRecoloring()2466 void RAGreedy::tryHintsRecoloring() {
2467 for (LiveInterval *LI : SetOfBrokenHints) {
2468 assert(TargetRegisterInfo::isVirtualRegister(LI->reg) &&
2469 "Recoloring is possible only for virtual registers");
2470 // Some dead defs may be around (e.g., because of debug uses).
2471 // Ignore those.
2472 if (!VRM->hasPhys(LI->reg))
2473 continue;
2474 tryHintRecoloring(*LI);
2475 }
2476 }
2477
selectOrSplitImpl(LiveInterval & VirtReg,SmallVectorImpl<unsigned> & NewVRegs,SmallVirtRegSet & FixedRegisters,unsigned Depth)2478 unsigned RAGreedy::selectOrSplitImpl(LiveInterval &VirtReg,
2479 SmallVectorImpl<unsigned> &NewVRegs,
2480 SmallVirtRegSet &FixedRegisters,
2481 unsigned Depth) {
2482 unsigned CostPerUseLimit = ~0u;
2483 // First try assigning a free register.
2484 AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
2485 if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs)) {
2486 // When NewVRegs is not empty, we may have made decisions such as evicting
2487 // a virtual register, go with the earlier decisions and use the physical
2488 // register.
2489 if (CSRCost.getFrequency() && isUnusedCalleeSavedReg(PhysReg) &&
2490 NewVRegs.empty()) {
2491 unsigned CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2492 CostPerUseLimit, NewVRegs);
2493 if (CSRReg || !NewVRegs.empty())
2494 // Return now if we decide to use a CSR or create new vregs due to
2495 // pre-splitting.
2496 return CSRReg;
2497 } else
2498 return PhysReg;
2499 }
2500
2501 LiveRangeStage Stage = getStage(VirtReg);
2502 DEBUG(dbgs() << StageName[Stage]
2503 << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
2504
2505 // Try to evict a less worthy live range, but only for ranges from the primary
2506 // queue. The RS_Split ranges already failed to do this, and they should not
2507 // get a second chance until they have been split.
2508 if (Stage != RS_Split)
2509 if (unsigned PhysReg =
2510 tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit)) {
2511 unsigned Hint = MRI->getSimpleHint(VirtReg.reg);
2512 // If VirtReg has a hint and that hint is broken record this
2513 // virtual register as a recoloring candidate for broken hint.
2514 // Indeed, since we evicted a variable in its neighborhood it is
2515 // likely we can at least partially recolor some of the
2516 // copy-related live-ranges.
2517 if (Hint && Hint != PhysReg)
2518 SetOfBrokenHints.insert(&VirtReg);
2519 return PhysReg;
2520 }
2521
2522 assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
2523
2524 // The first time we see a live range, don't try to split or spill.
2525 // Wait until the second time, when all smaller ranges have been allocated.
2526 // This gives a better picture of the interference to split around.
2527 if (Stage < RS_Split) {
2528 setStage(VirtReg, RS_Split);
2529 DEBUG(dbgs() << "wait for second round\n");
2530 NewVRegs.push_back(VirtReg.reg);
2531 return 0;
2532 }
2533
2534 // If we couldn't allocate a register from spilling, there is probably some
2535 // invalid inline assembly. The base class wil report it.
2536 if (Stage >= RS_Done || !VirtReg.isSpillable())
2537 return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2538 Depth);
2539
2540 // Try splitting VirtReg or interferences.
2541 unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
2542 if (PhysReg || !NewVRegs.empty())
2543 return PhysReg;
2544
2545 // Finally spill VirtReg itself.
2546 if (EnableDeferredSpilling && getStage(VirtReg) < RS_Memory) {
2547 // TODO: This is experimental and in particular, we do not model
2548 // the live range splitting done by spilling correctly.
2549 // We would need a deep integration with the spiller to do the
2550 // right thing here. Anyway, that is still good for early testing.
2551 setStage(VirtReg, RS_Memory);
2552 DEBUG(dbgs() << "Do as if this register is in memory\n");
2553 NewVRegs.push_back(VirtReg.reg);
2554 } else {
2555 NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
2556 LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2557 spiller().spill(LRE);
2558 setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2559
2560 if (VerifyEnabled)
2561 MF->verify(this, "After spilling");
2562 }
2563
2564 // The live virtual register requesting allocation was spilled, so tell
2565 // the caller not to allocate anything during this round.
2566 return 0;
2567 }
2568
runOnMachineFunction(MachineFunction & mf)2569 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2570 DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2571 << "********** Function: " << mf.getName() << '\n');
2572
2573 MF = &mf;
2574 TRI = MF->getSubtarget().getRegisterInfo();
2575 TII = MF->getSubtarget().getInstrInfo();
2576 RCI.runOnMachineFunction(mf);
2577
2578 EnableLocalReassign = EnableLocalReassignment ||
2579 MF->getSubtarget().enableRALocalReassignment(
2580 MF->getTarget().getOptLevel());
2581
2582 if (VerifyEnabled)
2583 MF->verify(this, "Before greedy register allocator");
2584
2585 RegAllocBase::init(getAnalysis<VirtRegMap>(),
2586 getAnalysis<LiveIntervals>(),
2587 getAnalysis<LiveRegMatrix>());
2588 Indexes = &getAnalysis<SlotIndexes>();
2589 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2590 DomTree = &getAnalysis<MachineDominatorTree>();
2591 SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
2592 Loops = &getAnalysis<MachineLoopInfo>();
2593 Bundles = &getAnalysis<EdgeBundles>();
2594 SpillPlacer = &getAnalysis<SpillPlacement>();
2595 DebugVars = &getAnalysis<LiveDebugVariables>();
2596 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2597
2598 initializeCSRCost();
2599
2600 calculateSpillWeightsAndHints(*LIS, mf, VRM, *Loops, *MBFI);
2601
2602 DEBUG(LIS->dump());
2603
2604 SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2605 SE.reset(new SplitEditor(*SA, *AA, *LIS, *VRM, *DomTree, *MBFI));
2606 ExtraRegInfo.clear();
2607 ExtraRegInfo.resize(MRI->getNumVirtRegs());
2608 NextCascade = 1;
2609 IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2610 GlobalCand.resize(32); // This will grow as needed.
2611 SetOfBrokenHints.clear();
2612
2613 allocatePhysRegs();
2614 tryHintsRecoloring();
2615 postOptimization();
2616
2617 releaseMemory();
2618 return true;
2619 }
2620