• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements ELF object file writer information.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/MC/MCELFObjectWriter.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCAsmLayout.h"
22 #include "llvm/MC/MCAssembler.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCSectionELF.h"
28 #include "llvm/MC/MCSymbolELF.h"
29 #include "llvm/MC/MCValue.h"
30 #include "llvm/MC/StringTableBuilder.h"
31 #include "llvm/Support/Compression.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ELF.h"
34 #include "llvm/Support/Endian.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/StringSaver.h"
37 #include <vector>
38 
39 using namespace llvm;
40 
41 #undef  DEBUG_TYPE
42 #define DEBUG_TYPE "reloc-info"
43 
44 namespace {
45 typedef DenseMap<const MCSectionELF *, uint32_t> SectionIndexMapTy;
46 
47 class ELFObjectWriter;
48 
49 class SymbolTableWriter {
50   ELFObjectWriter &EWriter;
51   bool Is64Bit;
52 
53   // indexes we are going to write to .symtab_shndx.
54   std::vector<uint32_t> ShndxIndexes;
55 
56   // The numbel of symbols written so far.
57   unsigned NumWritten;
58 
59   void createSymtabShndx();
60 
61   template <typename T> void write(T Value);
62 
63 public:
64   SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit);
65 
66   void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
67                    uint8_t other, uint32_t shndx, bool Reserved);
68 
getShndxIndexes() const69   ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
70 };
71 
72 class ELFObjectWriter : public MCObjectWriter {
73   static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
74   static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
75                          bool Used, bool Renamed);
76 
77   /// Helper struct for containing some precomputed information on symbols.
78   struct ELFSymbolData {
79     const MCSymbolELF *Symbol;
80     uint32_t SectionIndex;
81     StringRef Name;
82 
83     // Support lexicographic sorting.
operator <__anon507b89990111::ELFObjectWriter::ELFSymbolData84     bool operator<(const ELFSymbolData &RHS) const {
85       unsigned LHSType = Symbol->getType();
86       unsigned RHSType = RHS.Symbol->getType();
87       if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
88         return false;
89       if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
90         return true;
91       if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
92         return SectionIndex < RHS.SectionIndex;
93       return Name < RHS.Name;
94     }
95   };
96 
97   /// The target specific ELF writer instance.
98   std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
99 
100   DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
101 
102   llvm::DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>>
103       Relocations;
104 
105   /// @}
106   /// @name Symbol Table Data
107   /// @{
108 
109   BumpPtrAllocator Alloc;
110   StringSaver VersionSymSaver{Alloc};
111   StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
112 
113   /// @}
114 
115   // This holds the symbol table index of the last local symbol.
116   unsigned LastLocalSymbolIndex;
117   // This holds the .strtab section index.
118   unsigned StringTableIndex;
119   // This holds the .symtab section index.
120   unsigned SymbolTableIndex;
121 
122   // Sections in the order they are to be output in the section table.
123   std::vector<const MCSectionELF *> SectionTable;
124   unsigned addToSectionTable(const MCSectionELF *Sec);
125 
126   // TargetObjectWriter wrappers.
is64Bit() const127   bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
hasRelocationAddend() const128   bool hasRelocationAddend() const {
129     return TargetObjectWriter->hasRelocationAddend();
130   }
getRelocType(MCContext & Ctx,const MCValue & Target,const MCFixup & Fixup,bool IsPCRel) const131   unsigned getRelocType(MCContext &Ctx, const MCValue &Target,
132                         const MCFixup &Fixup, bool IsPCRel) const {
133     return TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
134   }
135 
136   void align(unsigned Alignment);
137 
138   bool maybeWriteCompression(uint64_t Size,
139                              SmallVectorImpl<char> &CompressedContents,
140                              bool ZLibStyle, unsigned Alignment);
141 
142 public:
ELFObjectWriter(MCELFObjectTargetWriter * MOTW,raw_pwrite_stream & OS,bool IsLittleEndian)143   ELFObjectWriter(MCELFObjectTargetWriter *MOTW, raw_pwrite_stream &OS,
144                   bool IsLittleEndian)
145       : MCObjectWriter(OS, IsLittleEndian), TargetObjectWriter(MOTW) {}
146 
reset()147   void reset() override {
148     Renames.clear();
149     Relocations.clear();
150     StrTabBuilder.clear();
151     SectionTable.clear();
152     MCObjectWriter::reset();
153   }
154 
155   ~ELFObjectWriter() override;
156 
WriteWord(uint64_t W)157   void WriteWord(uint64_t W) {
158     if (is64Bit())
159       write64(W);
160     else
161       write32(W);
162   }
163 
write(T Val)164   template <typename T> void write(T Val) {
165     if (IsLittleEndian)
166       support::endian::Writer<support::little>(getStream()).write(Val);
167     else
168       support::endian::Writer<support::big>(getStream()).write(Val);
169   }
170 
171   void writeHeader(const MCAssembler &Asm);
172 
173   void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
174                    ELFSymbolData &MSD, const MCAsmLayout &Layout);
175 
176   // Start and end offset of each section
177   typedef std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>
178       SectionOffsetsTy;
179 
180   bool shouldRelocateWithSymbol(const MCAssembler &Asm,
181                                 const MCSymbolRefExpr *RefA,
182                                 const MCSymbol *Sym, uint64_t C,
183                                 unsigned Type) const;
184 
185   void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
186                         const MCFragment *Fragment, const MCFixup &Fixup,
187                         MCValue Target, bool &IsPCRel,
188                         uint64_t &FixedValue) override;
189 
190   // Map from a signature symbol to the group section index
191   typedef DenseMap<const MCSymbol *, unsigned> RevGroupMapTy;
192 
193   /// Compute the symbol table data
194   ///
195   /// \param Asm - The assembler.
196   /// \param SectionIndexMap - Maps a section to its index.
197   /// \param RevGroupMap - Maps a signature symbol to the group section.
198   void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
199                           const SectionIndexMapTy &SectionIndexMap,
200                           const RevGroupMapTy &RevGroupMap,
201                           SectionOffsetsTy &SectionOffsets);
202 
203   MCSectionELF *createRelocationSection(MCContext &Ctx,
204                                         const MCSectionELF &Sec);
205 
206   const MCSectionELF *createStringTable(MCContext &Ctx);
207 
208   void executePostLayoutBinding(MCAssembler &Asm,
209                                 const MCAsmLayout &Layout) override;
210 
211   void writeSectionHeader(const MCAsmLayout &Layout,
212                           const SectionIndexMapTy &SectionIndexMap,
213                           const SectionOffsetsTy &SectionOffsets);
214 
215   void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
216                         const MCAsmLayout &Layout);
217 
218   void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
219                         uint64_t Address, uint64_t Offset, uint64_t Size,
220                         uint32_t Link, uint32_t Info, uint64_t Alignment,
221                         uint64_t EntrySize);
222 
223   void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
224 
225   bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
226                                               const MCSymbol &SymA,
227                                               const MCFragment &FB, bool InSet,
228                                               bool IsPCRel) const override;
229 
230   bool isWeak(const MCSymbol &Sym) const override;
231 
232   void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
233   void writeSection(const SectionIndexMapTy &SectionIndexMap,
234                     uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
235                     const MCSectionELF &Section);
236 };
237 } // end anonymous namespace
238 
align(unsigned Alignment)239 void ELFObjectWriter::align(unsigned Alignment) {
240   uint64_t Padding = OffsetToAlignment(getStream().tell(), Alignment);
241   WriteZeros(Padding);
242 }
243 
addToSectionTable(const MCSectionELF * Sec)244 unsigned ELFObjectWriter::addToSectionTable(const MCSectionELF *Sec) {
245   SectionTable.push_back(Sec);
246   StrTabBuilder.add(Sec->getSectionName());
247   return SectionTable.size();
248 }
249 
createSymtabShndx()250 void SymbolTableWriter::createSymtabShndx() {
251   if (!ShndxIndexes.empty())
252     return;
253 
254   ShndxIndexes.resize(NumWritten);
255 }
256 
write(T Value)257 template <typename T> void SymbolTableWriter::write(T Value) {
258   EWriter.write(Value);
259 }
260 
SymbolTableWriter(ELFObjectWriter & EWriter,bool Is64Bit)261 SymbolTableWriter::SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit)
262     : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
263 
writeSymbol(uint32_t name,uint8_t info,uint64_t value,uint64_t size,uint8_t other,uint32_t shndx,bool Reserved)264 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
265                                     uint64_t size, uint8_t other,
266                                     uint32_t shndx, bool Reserved) {
267   bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
268 
269   if (LargeIndex)
270     createSymtabShndx();
271 
272   if (!ShndxIndexes.empty()) {
273     if (LargeIndex)
274       ShndxIndexes.push_back(shndx);
275     else
276       ShndxIndexes.push_back(0);
277   }
278 
279   uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
280 
281   if (Is64Bit) {
282     write(name);  // st_name
283     write(info);  // st_info
284     write(other); // st_other
285     write(Index); // st_shndx
286     write(value); // st_value
287     write(size);  // st_size
288   } else {
289     write(name);            // st_name
290     write(uint32_t(value)); // st_value
291     write(uint32_t(size));  // st_size
292     write(info);            // st_info
293     write(other);           // st_other
294     write(Index);           // st_shndx
295   }
296 
297   ++NumWritten;
298 }
299 
~ELFObjectWriter()300 ELFObjectWriter::~ELFObjectWriter()
301 {}
302 
303 // Emit the ELF header.
writeHeader(const MCAssembler & Asm)304 void ELFObjectWriter::writeHeader(const MCAssembler &Asm) {
305   // ELF Header
306   // ----------
307   //
308   // Note
309   // ----
310   // emitWord method behaves differently for ELF32 and ELF64, writing
311   // 4 bytes in the former and 8 in the latter.
312 
313   writeBytes(ELF::ElfMagic); // e_ident[EI_MAG0] to e_ident[EI_MAG3]
314 
315   write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
316 
317   // e_ident[EI_DATA]
318   write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB);
319 
320   write8(ELF::EV_CURRENT);        // e_ident[EI_VERSION]
321   // e_ident[EI_OSABI]
322   write8(TargetObjectWriter->getOSABI());
323   write8(0);                  // e_ident[EI_ABIVERSION]
324 
325   WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD);
326 
327   write16(ELF::ET_REL);             // e_type
328 
329   write16(TargetObjectWriter->getEMachine()); // e_machine = target
330 
331   write32(ELF::EV_CURRENT);         // e_version
332   WriteWord(0);                    // e_entry, no entry point in .o file
333   WriteWord(0);                    // e_phoff, no program header for .o
334   WriteWord(0);                     // e_shoff = sec hdr table off in bytes
335 
336   // e_flags = whatever the target wants
337   write32(Asm.getELFHeaderEFlags());
338 
339   // e_ehsize = ELF header size
340   write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr));
341 
342   write16(0);                  // e_phentsize = prog header entry size
343   write16(0);                  // e_phnum = # prog header entries = 0
344 
345   // e_shentsize = Section header entry size
346   write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr));
347 
348   // e_shnum     = # of section header ents
349   write16(0);
350 
351   // e_shstrndx  = Section # of '.shstrtab'
352   assert(StringTableIndex < ELF::SHN_LORESERVE);
353   write16(StringTableIndex);
354 }
355 
SymbolValue(const MCSymbol & Sym,const MCAsmLayout & Layout)356 uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym,
357                                       const MCAsmLayout &Layout) {
358   if (Sym.isCommon() && Sym.isExternal())
359     return Sym.getCommonAlignment();
360 
361   uint64_t Res;
362   if (!Layout.getSymbolOffset(Sym, Res))
363     return 0;
364 
365   if (Layout.getAssembler().isThumbFunc(&Sym))
366     Res |= 1;
367 
368   return Res;
369 }
370 
executePostLayoutBinding(MCAssembler & Asm,const MCAsmLayout & Layout)371 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
372                                                const MCAsmLayout &Layout) {
373   // Section symbols are used as definitions for undefined symbols with matching
374   // names. If there are multiple sections with the same name, the first one is
375   // used.
376   for (const MCSection &Sec : Asm) {
377     const MCSymbol *Begin = Sec.getBeginSymbol();
378     if (!Begin)
379       continue;
380 
381     const MCSymbol *Alias = Asm.getContext().lookupSymbol(Begin->getName());
382     if (!Alias || !Alias->isUndefined())
383       continue;
384 
385     Renames.insert(
386         std::make_pair(cast<MCSymbolELF>(Alias), cast<MCSymbolELF>(Begin)));
387   }
388 
389   // The presence of symbol versions causes undefined symbols and
390   // versions declared with @@@ to be renamed.
391   for (const MCSymbol &A : Asm.symbols()) {
392     const auto &Alias = cast<MCSymbolELF>(A);
393     // Not an alias.
394     if (!Alias.isVariable())
395       continue;
396     auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue());
397     if (!Ref)
398       continue;
399     const auto &Symbol = cast<MCSymbolELF>(Ref->getSymbol());
400 
401     StringRef AliasName = Alias.getName();
402     size_t Pos = AliasName.find('@');
403     if (Pos == StringRef::npos)
404       continue;
405 
406     // Aliases defined with .symvar copy the binding from the symbol they alias.
407     // This is the first place we are able to copy this information.
408     Alias.setExternal(Symbol.isExternal());
409     Alias.setBinding(Symbol.getBinding());
410 
411     StringRef Rest = AliasName.substr(Pos);
412     if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
413       continue;
414 
415     // FIXME: produce a better error message.
416     if (Symbol.isUndefined() && Rest.startswith("@@") &&
417         !Rest.startswith("@@@"))
418       report_fatal_error("A @@ version cannot be undefined");
419 
420     Renames.insert(std::make_pair(&Symbol, &Alias));
421   }
422 }
423 
mergeTypeForSet(uint8_t origType,uint8_t newType)424 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
425   uint8_t Type = newType;
426 
427   // Propagation rules:
428   // IFUNC > FUNC > OBJECT > NOTYPE
429   // TLS_OBJECT > OBJECT > NOTYPE
430   //
431   // dont let the new type degrade the old type
432   switch (origType) {
433   default:
434     break;
435   case ELF::STT_GNU_IFUNC:
436     if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
437         Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
438       Type = ELF::STT_GNU_IFUNC;
439     break;
440   case ELF::STT_FUNC:
441     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
442         Type == ELF::STT_TLS)
443       Type = ELF::STT_FUNC;
444     break;
445   case ELF::STT_OBJECT:
446     if (Type == ELF::STT_NOTYPE)
447       Type = ELF::STT_OBJECT;
448     break;
449   case ELF::STT_TLS:
450     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
451         Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
452       Type = ELF::STT_TLS;
453     break;
454   }
455 
456   return Type;
457 }
458 
writeSymbol(SymbolTableWriter & Writer,uint32_t StringIndex,ELFSymbolData & MSD,const MCAsmLayout & Layout)459 void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer,
460                                   uint32_t StringIndex, ELFSymbolData &MSD,
461                                   const MCAsmLayout &Layout) {
462   const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
463   const MCSymbolELF *Base =
464       cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
465 
466   // This has to be in sync with when computeSymbolTable uses SHN_ABS or
467   // SHN_COMMON.
468   bool IsReserved = !Base || Symbol.isCommon();
469 
470   // Binding and Type share the same byte as upper and lower nibbles
471   uint8_t Binding = Symbol.getBinding();
472   uint8_t Type = Symbol.getType();
473   if (Base) {
474     Type = mergeTypeForSet(Type, Base->getType());
475   }
476   uint8_t Info = (Binding << 4) | Type;
477 
478   // Other and Visibility share the same byte with Visibility using the lower
479   // 2 bits
480   uint8_t Visibility = Symbol.getVisibility();
481   uint8_t Other = Symbol.getOther() | Visibility;
482 
483   uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
484   uint64_t Size = 0;
485 
486   const MCExpr *ESize = MSD.Symbol->getSize();
487   if (!ESize && Base)
488     ESize = Base->getSize();
489 
490   if (ESize) {
491     int64_t Res;
492     if (!ESize->evaluateKnownAbsolute(Res, Layout))
493       report_fatal_error("Size expression must be absolute.");
494     Size = Res;
495   }
496 
497   // Write out the symbol table entry
498   Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
499                      IsReserved);
500 }
501 
502 // It is always valid to create a relocation with a symbol. It is preferable
503 // to use a relocation with a section if that is possible. Using the section
504 // allows us to omit some local symbols from the symbol table.
shouldRelocateWithSymbol(const MCAssembler & Asm,const MCSymbolRefExpr * RefA,const MCSymbol * S,uint64_t C,unsigned Type) const505 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
506                                                const MCSymbolRefExpr *RefA,
507                                                const MCSymbol *S, uint64_t C,
508                                                unsigned Type) const {
509   const auto *Sym = cast_or_null<MCSymbolELF>(S);
510   // A PCRel relocation to an absolute value has no symbol (or section). We
511   // represent that with a relocation to a null section.
512   if (!RefA)
513     return false;
514 
515   MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
516   switch (Kind) {
517   default:
518     break;
519   // The .odp creation emits a relocation against the symbol ".TOC." which
520   // create a R_PPC64_TOC relocation. However the relocation symbol name
521   // in final object creation should be NULL, since the symbol does not
522   // really exist, it is just the reference to TOC base for the current
523   // object file. Since the symbol is undefined, returning false results
524   // in a relocation with a null section which is the desired result.
525   case MCSymbolRefExpr::VK_PPC_TOCBASE:
526     return false;
527 
528   // These VariantKind cause the relocation to refer to something other than
529   // the symbol itself, like a linker generated table. Since the address of
530   // symbol is not relevant, we cannot replace the symbol with the
531   // section and patch the difference in the addend.
532   case MCSymbolRefExpr::VK_GOT:
533   case MCSymbolRefExpr::VK_PLT:
534   case MCSymbolRefExpr::VK_GOTPCREL:
535   case MCSymbolRefExpr::VK_PPC_GOT_LO:
536   case MCSymbolRefExpr::VK_PPC_GOT_HI:
537   case MCSymbolRefExpr::VK_PPC_GOT_HA:
538     return true;
539   }
540 
541   // An undefined symbol is not in any section, so the relocation has to point
542   // to the symbol itself.
543   assert(Sym && "Expected a symbol");
544   if (Sym->isUndefined())
545     return true;
546 
547   unsigned Binding = Sym->getBinding();
548   switch(Binding) {
549   default:
550     llvm_unreachable("Invalid Binding");
551   case ELF::STB_LOCAL:
552     break;
553   case ELF::STB_WEAK:
554     // If the symbol is weak, it might be overridden by a symbol in another
555     // file. The relocation has to point to the symbol so that the linker
556     // can update it.
557     return true;
558   case ELF::STB_GLOBAL:
559     // Global ELF symbols can be preempted by the dynamic linker. The relocation
560     // has to point to the symbol for a reason analogous to the STB_WEAK case.
561     return true;
562   }
563 
564   // If a relocation points to a mergeable section, we have to be careful.
565   // If the offset is zero, a relocation with the section will encode the
566   // same information. With a non-zero offset, the situation is different.
567   // For example, a relocation can point 42 bytes past the end of a string.
568   // If we change such a relocation to use the section, the linker would think
569   // that it pointed to another string and subtracting 42 at runtime will
570   // produce the wrong value.
571   auto &Sec = cast<MCSectionELF>(Sym->getSection());
572   unsigned Flags = Sec.getFlags();
573   if (Flags & ELF::SHF_MERGE) {
574     if (C != 0)
575       return true;
576 
577     // It looks like gold has a bug (http://sourceware.org/PR16794) and can
578     // only handle section relocations to mergeable sections if using RELA.
579     if (!hasRelocationAddend())
580       return true;
581   }
582 
583   // Most TLS relocations use a got, so they need the symbol. Even those that
584   // are just an offset (@tpoff), require a symbol in gold versions before
585   // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
586   // http://sourceware.org/PR16773.
587   if (Flags & ELF::SHF_TLS)
588     return true;
589 
590   // If the symbol is a thumb function the final relocation must set the lowest
591   // bit. With a symbol that is done by just having the symbol have that bit
592   // set, so we would lose the bit if we relocated with the section.
593   // FIXME: We could use the section but add the bit to the relocation value.
594   if (Asm.isThumbFunc(Sym))
595     return true;
596 
597   if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
598     return true;
599   return false;
600 }
601 
602 // True if the assembler knows nothing about the final value of the symbol.
603 // This doesn't cover the comdat issues, since in those cases the assembler
604 // can at least know that all symbols in the section will move together.
isWeak(const MCSymbolELF & Sym)605 static bool isWeak(const MCSymbolELF &Sym) {
606   if (Sym.getType() == ELF::STT_GNU_IFUNC)
607     return true;
608 
609   switch (Sym.getBinding()) {
610   default:
611     llvm_unreachable("Unknown binding");
612   case ELF::STB_LOCAL:
613     return false;
614   case ELF::STB_GLOBAL:
615     return false;
616   case ELF::STB_WEAK:
617   case ELF::STB_GNU_UNIQUE:
618     return true;
619   }
620 }
621 
recordRelocation(MCAssembler & Asm,const MCAsmLayout & Layout,const MCFragment * Fragment,const MCFixup & Fixup,MCValue Target,bool & IsPCRel,uint64_t & FixedValue)622 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
623                                        const MCAsmLayout &Layout,
624                                        const MCFragment *Fragment,
625                                        const MCFixup &Fixup, MCValue Target,
626                                        bool &IsPCRel, uint64_t &FixedValue) {
627   const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
628   uint64_t C = Target.getConstant();
629   uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
630   MCContext &Ctx = Asm.getContext();
631 
632   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
633     assert(RefB->getKind() == MCSymbolRefExpr::VK_None &&
634            "Should not have constructed this");
635 
636     // Let A, B and C being the components of Target and R be the location of
637     // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
638     // If it is pcrel, we want to compute (A - B + C - R).
639 
640     // In general, ELF has no relocations for -B. It can only represent (A + C)
641     // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
642     // replace B to implement it: (A - R - K + C)
643     if (IsPCRel) {
644       Ctx.reportError(
645           Fixup.getLoc(),
646           "No relocation available to represent this relative expression");
647       return;
648     }
649 
650     const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
651 
652     if (SymB.isUndefined()) {
653       Ctx.reportError(Fixup.getLoc(),
654                       Twine("symbol '") + SymB.getName() +
655                           "' can not be undefined in a subtraction expression");
656       return;
657     }
658 
659     assert(!SymB.isAbsolute() && "Should have been folded");
660     const MCSection &SecB = SymB.getSection();
661     if (&SecB != &FixupSection) {
662       Ctx.reportError(Fixup.getLoc(),
663                       "Cannot represent a difference across sections");
664       return;
665     }
666 
667     uint64_t SymBOffset = Layout.getSymbolOffset(SymB);
668     uint64_t K = SymBOffset - FixupOffset;
669     IsPCRel = true;
670     C -= K;
671   }
672 
673   // We either rejected the fixup or folded B into C at this point.
674   const MCSymbolRefExpr *RefA = Target.getSymA();
675   const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
676 
677   bool ViaWeakRef = false;
678   if (SymA && SymA->isVariable()) {
679     const MCExpr *Expr = SymA->getVariableValue();
680     if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
681       if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
682         SymA = cast<MCSymbolELF>(&Inner->getSymbol());
683         ViaWeakRef = true;
684       }
685     }
686   }
687 
688   unsigned Type = getRelocType(Ctx, Target, Fixup, IsPCRel);
689   uint64_t OriginalC = C;
690   bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
691   if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
692     C += Layout.getSymbolOffset(*SymA);
693 
694   uint64_t Addend = 0;
695   if (hasRelocationAddend()) {
696     Addend = C;
697     C = 0;
698   }
699 
700   FixedValue = C;
701 
702   if (!RelocateWithSymbol) {
703     const MCSection *SecA =
704         (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
705     auto *ELFSec = cast_or_null<MCSectionELF>(SecA);
706     const auto *SectionSymbol =
707         ELFSec ? cast<MCSymbolELF>(ELFSec->getBeginSymbol()) : nullptr;
708     if (SectionSymbol)
709       SectionSymbol->setUsedInReloc();
710     ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA,
711                            OriginalC);
712     Relocations[&FixupSection].push_back(Rec);
713     return;
714   }
715 
716   const auto *RenamedSymA = SymA;
717   if (SymA) {
718     if (const MCSymbolELF *R = Renames.lookup(SymA))
719       RenamedSymA = R;
720 
721     if (ViaWeakRef)
722       RenamedSymA->setIsWeakrefUsedInReloc();
723     else
724       RenamedSymA->setUsedInReloc();
725   }
726   ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA,
727                          OriginalC);
728   Relocations[&FixupSection].push_back(Rec);
729 }
730 
isInSymtab(const MCAsmLayout & Layout,const MCSymbolELF & Symbol,bool Used,bool Renamed)731 bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout,
732                                  const MCSymbolELF &Symbol, bool Used,
733                                  bool Renamed) {
734   if (Symbol.isVariable()) {
735     const MCExpr *Expr = Symbol.getVariableValue();
736     if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
737       if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
738         return false;
739     }
740   }
741 
742   if (Used)
743     return true;
744 
745   if (Renamed)
746     return false;
747 
748   if (Symbol.isVariable() && Symbol.isUndefined()) {
749     // FIXME: this is here just to diagnose the case of a var = commmon_sym.
750     Layout.getBaseSymbol(Symbol);
751     return false;
752   }
753 
754   if (Symbol.isUndefined() && !Symbol.isBindingSet())
755     return false;
756 
757   if (Symbol.isTemporary())
758     return false;
759 
760   if (Symbol.getType() == ELF::STT_SECTION)
761     return false;
762 
763   return true;
764 }
765 
computeSymbolTable(MCAssembler & Asm,const MCAsmLayout & Layout,const SectionIndexMapTy & SectionIndexMap,const RevGroupMapTy & RevGroupMap,SectionOffsetsTy & SectionOffsets)766 void ELFObjectWriter::computeSymbolTable(
767     MCAssembler &Asm, const MCAsmLayout &Layout,
768     const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
769     SectionOffsetsTy &SectionOffsets) {
770   MCContext &Ctx = Asm.getContext();
771   SymbolTableWriter Writer(*this, is64Bit());
772 
773   // Symbol table
774   unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
775   MCSectionELF *SymtabSection =
776       Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, "");
777   SymtabSection->setAlignment(is64Bit() ? 8 : 4);
778   SymbolTableIndex = addToSectionTable(SymtabSection);
779 
780   align(SymtabSection->getAlignment());
781   uint64_t SecStart = getStream().tell();
782 
783   // The first entry is the undefined symbol entry.
784   Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
785 
786   std::vector<ELFSymbolData> LocalSymbolData;
787   std::vector<ELFSymbolData> ExternalSymbolData;
788 
789   // Add the data for the symbols.
790   bool HasLargeSectionIndex = false;
791   for (const MCSymbol &S : Asm.symbols()) {
792     const auto &Symbol = cast<MCSymbolELF>(S);
793     bool Used = Symbol.isUsedInReloc();
794     bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
795     bool isSignature = Symbol.isSignature();
796 
797     if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
798                     Renames.count(&Symbol)))
799       continue;
800 
801     if (Symbol.isTemporary() && Symbol.isUndefined()) {
802       Ctx.reportError(SMLoc(), "Undefined temporary symbol");
803       continue;
804     }
805 
806     ELFSymbolData MSD;
807     MSD.Symbol = cast<MCSymbolELF>(&Symbol);
808 
809     bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
810     assert(Local || !Symbol.isTemporary());
811 
812     if (Symbol.isAbsolute()) {
813       MSD.SectionIndex = ELF::SHN_ABS;
814     } else if (Symbol.isCommon()) {
815       assert(!Local);
816       MSD.SectionIndex = ELF::SHN_COMMON;
817     } else if (Symbol.isUndefined()) {
818       if (isSignature && !Used) {
819         MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
820         if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
821           HasLargeSectionIndex = true;
822       } else {
823         MSD.SectionIndex = ELF::SHN_UNDEF;
824       }
825     } else {
826       const MCSectionELF &Section =
827           static_cast<const MCSectionELF &>(Symbol.getSection());
828       MSD.SectionIndex = SectionIndexMap.lookup(&Section);
829       assert(MSD.SectionIndex && "Invalid section index!");
830       if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
831         HasLargeSectionIndex = true;
832     }
833 
834     // The @@@ in symbol version is replaced with @ in undefined symbols and @@
835     // in defined ones.
836     //
837     // FIXME: All name handling should be done before we get to the writer,
838     // including dealing with GNU-style version suffixes.  Fixing this isn't
839     // trivial.
840     //
841     // We thus have to be careful to not perform the symbol version replacement
842     // blindly:
843     //
844     // The ELF format is used on Windows by the MCJIT engine.  Thus, on
845     // Windows, the ELFObjectWriter can encounter symbols mangled using the MS
846     // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC
847     // C++ name mangling can legally have "@@@" as a sub-string. In that case,
848     // the EFLObjectWriter should not interpret the "@@@" sub-string as
849     // specifying GNU-style symbol versioning. The ELFObjectWriter therefore
850     // checks for the MSVC C++ name mangling prefix which is either "?", "@?",
851     // "__imp_?" or "__imp_@?".
852     //
853     // It would have been interesting to perform the MS mangling prefix check
854     // only when the target triple is of the form *-pc-windows-elf. But, it
855     // seems that this information is not easily accessible from the
856     // ELFObjectWriter.
857     StringRef Name = Symbol.getName();
858     SmallString<32> Buf;
859     if (!Name.startswith("?") && !Name.startswith("@?") &&
860         !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) {
861       // This symbol isn't following the MSVC C++ name mangling convention. We
862       // can thus safely interpret the @@@ in symbol names as specifying symbol
863       // versioning.
864       size_t Pos = Name.find("@@@");
865       if (Pos != StringRef::npos) {
866         Buf += Name.substr(0, Pos);
867         unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1;
868         Buf += Name.substr(Pos + Skip);
869         Name = VersionSymSaver.save(Buf.c_str());
870       }
871     }
872 
873     // Sections have their own string table
874     if (Symbol.getType() != ELF::STT_SECTION) {
875       MSD.Name = Name;
876       StrTabBuilder.add(Name);
877     }
878 
879     if (Local)
880       LocalSymbolData.push_back(MSD);
881     else
882       ExternalSymbolData.push_back(MSD);
883   }
884 
885   // This holds the .symtab_shndx section index.
886   unsigned SymtabShndxSectionIndex = 0;
887 
888   if (HasLargeSectionIndex) {
889     MCSectionELF *SymtabShndxSection =
890         Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
891     SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
892     SymtabShndxSection->setAlignment(4);
893   }
894 
895   ArrayRef<std::string> FileNames = Asm.getFileNames();
896   for (const std::string &Name : FileNames)
897     StrTabBuilder.add(Name);
898 
899   StrTabBuilder.finalize();
900 
901   for (const std::string &Name : FileNames)
902     Writer.writeSymbol(StrTabBuilder.getOffset(Name),
903                        ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
904                        ELF::SHN_ABS, true);
905 
906   // Symbols are required to be in lexicographic order.
907   array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
908   array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
909 
910   // Set the symbol indices. Local symbols must come before all other
911   // symbols with non-local bindings.
912   unsigned Index = FileNames.size() + 1;
913 
914   for (ELFSymbolData &MSD : LocalSymbolData) {
915     unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
916                                ? 0
917                                : StrTabBuilder.getOffset(MSD.Name);
918     MSD.Symbol->setIndex(Index++);
919     writeSymbol(Writer, StringIndex, MSD, Layout);
920   }
921 
922   // Write the symbol table entries.
923   LastLocalSymbolIndex = Index;
924 
925   for (ELFSymbolData &MSD : ExternalSymbolData) {
926     unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
927     MSD.Symbol->setIndex(Index++);
928     writeSymbol(Writer, StringIndex, MSD, Layout);
929     assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
930   }
931 
932   uint64_t SecEnd = getStream().tell();
933   SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
934 
935   ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
936   if (ShndxIndexes.empty()) {
937     assert(SymtabShndxSectionIndex == 0);
938     return;
939   }
940   assert(SymtabShndxSectionIndex != 0);
941 
942   SecStart = getStream().tell();
943   const MCSectionELF *SymtabShndxSection =
944       SectionTable[SymtabShndxSectionIndex - 1];
945   for (uint32_t Index : ShndxIndexes)
946     write(Index);
947   SecEnd = getStream().tell();
948   SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
949 }
950 
951 MCSectionELF *
createRelocationSection(MCContext & Ctx,const MCSectionELF & Sec)952 ELFObjectWriter::createRelocationSection(MCContext &Ctx,
953                                          const MCSectionELF &Sec) {
954   if (Relocations[&Sec].empty())
955     return nullptr;
956 
957   const StringRef SectionName = Sec.getSectionName();
958   std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
959   RelaSectionName += SectionName;
960 
961   unsigned EntrySize;
962   if (hasRelocationAddend())
963     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
964   else
965     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
966 
967   unsigned Flags = 0;
968   if (Sec.getFlags() & ELF::SHF_GROUP)
969     Flags = ELF::SHF_GROUP;
970 
971   MCSectionELF *RelaSection = Ctx.createELFRelSection(
972       RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
973       Flags, EntrySize, Sec.getGroup(), &Sec);
974   RelaSection->setAlignment(is64Bit() ? 8 : 4);
975   return RelaSection;
976 }
977 
978 // Include the debug info compression header.
maybeWriteCompression(uint64_t Size,SmallVectorImpl<char> & CompressedContents,bool ZLibStyle,unsigned Alignment)979 bool ELFObjectWriter::maybeWriteCompression(
980     uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle,
981     unsigned Alignment) {
982   if (ZLibStyle) {
983     uint64_t HdrSize =
984         is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr);
985     if (Size <= HdrSize + CompressedContents.size())
986       return false;
987     // Platform specific header is followed by compressed data.
988     if (is64Bit()) {
989       // Write Elf64_Chdr header.
990       write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB));
991       write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field.
992       write(static_cast<ELF::Elf64_Xword>(Size));
993       write(static_cast<ELF::Elf64_Xword>(Alignment));
994     } else {
995       // Write Elf32_Chdr header otherwise.
996       write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB));
997       write(static_cast<ELF::Elf32_Word>(Size));
998       write(static_cast<ELF::Elf32_Word>(Alignment));
999     }
1000     return true;
1001   }
1002 
1003   // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
1004   // useful for consumers to preallocate a buffer to decompress into.
1005   const StringRef Magic = "ZLIB";
1006   if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
1007     return false;
1008   write(ArrayRef<char>(Magic.begin(), Magic.size()));
1009   writeBE64(Size);
1010   return true;
1011 }
1012 
writeSectionData(const MCAssembler & Asm,MCSection & Sec,const MCAsmLayout & Layout)1013 void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
1014                                        const MCAsmLayout &Layout) {
1015   MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1016   StringRef SectionName = Section.getSectionName();
1017 
1018   // Compressing debug_frame requires handling alignment fragments which is
1019   // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
1020   // for writing to arbitrary buffers) for little benefit.
1021   bool CompressionEnabled =
1022       Asm.getContext().getAsmInfo()->compressDebugSections() !=
1023       DebugCompressionType::DCT_None;
1024   if (!CompressionEnabled || !SectionName.startswith(".debug_") ||
1025       SectionName == ".debug_frame") {
1026     Asm.writeSectionData(&Section, Layout);
1027     return;
1028   }
1029 
1030   SmallVector<char, 128> UncompressedData;
1031   raw_svector_ostream VecOS(UncompressedData);
1032   raw_pwrite_stream &OldStream = getStream();
1033   setStream(VecOS);
1034   Asm.writeSectionData(&Section, Layout);
1035   setStream(OldStream);
1036 
1037   SmallVector<char, 128> CompressedContents;
1038   zlib::Status Success = zlib::compress(
1039       StringRef(UncompressedData.data(), UncompressedData.size()),
1040       CompressedContents);
1041   if (Success != zlib::StatusOK) {
1042     getStream() << UncompressedData;
1043     return;
1044   }
1045 
1046   bool ZlibStyle = Asm.getContext().getAsmInfo()->compressDebugSections() ==
1047                    DebugCompressionType::DCT_Zlib;
1048   if (!maybeWriteCompression(UncompressedData.size(), CompressedContents,
1049                              ZlibStyle, Sec.getAlignment())) {
1050     getStream() << UncompressedData;
1051     return;
1052   }
1053 
1054   if (ZlibStyle)
1055     // Set the compressed flag. That is zlib style.
1056     Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED);
1057   else
1058     // Add "z" prefix to section name. This is zlib-gnu style.
1059     Asm.getContext().renameELFSection(&Section,
1060                                       (".z" + SectionName.drop_front(1)).str());
1061   getStream() << CompressedContents;
1062 }
1063 
WriteSecHdrEntry(uint32_t Name,uint32_t Type,uint64_t Flags,uint64_t Address,uint64_t Offset,uint64_t Size,uint32_t Link,uint32_t Info,uint64_t Alignment,uint64_t EntrySize)1064 void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type,
1065                                        uint64_t Flags, uint64_t Address,
1066                                        uint64_t Offset, uint64_t Size,
1067                                        uint32_t Link, uint32_t Info,
1068                                        uint64_t Alignment,
1069                                        uint64_t EntrySize) {
1070   write32(Name);        // sh_name: index into string table
1071   write32(Type);        // sh_type
1072   WriteWord(Flags);     // sh_flags
1073   WriteWord(Address);   // sh_addr
1074   WriteWord(Offset);    // sh_offset
1075   WriteWord(Size);      // sh_size
1076   write32(Link);        // sh_link
1077   write32(Info);        // sh_info
1078   WriteWord(Alignment); // sh_addralign
1079   WriteWord(EntrySize); // sh_entsize
1080 }
1081 
writeRelocations(const MCAssembler & Asm,const MCSectionELF & Sec)1082 void ELFObjectWriter::writeRelocations(const MCAssembler &Asm,
1083                                        const MCSectionELF &Sec) {
1084   std::vector<ELFRelocationEntry> &Relocs = Relocations[&Sec];
1085 
1086   // We record relocations by pushing to the end of a vector. Reverse the vector
1087   // to get the relocations in the order they were created.
1088   // In most cases that is not important, but it can be for special sections
1089   // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
1090   std::reverse(Relocs.begin(), Relocs.end());
1091 
1092   // Sort the relocation entries. MIPS needs this.
1093   TargetObjectWriter->sortRelocs(Asm, Relocs);
1094 
1095   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1096     const ELFRelocationEntry &Entry = Relocs[e - i - 1];
1097     unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
1098 
1099     if (is64Bit()) {
1100       write(Entry.Offset);
1101       if (TargetObjectWriter->isN64()) {
1102         write(uint32_t(Index));
1103 
1104         write(TargetObjectWriter->getRSsym(Entry.Type));
1105         write(TargetObjectWriter->getRType3(Entry.Type));
1106         write(TargetObjectWriter->getRType2(Entry.Type));
1107         write(TargetObjectWriter->getRType(Entry.Type));
1108       } else {
1109         struct ELF::Elf64_Rela ERE64;
1110         ERE64.setSymbolAndType(Index, Entry.Type);
1111         write(ERE64.r_info);
1112       }
1113       if (hasRelocationAddend())
1114         write(Entry.Addend);
1115     } else {
1116       write(uint32_t(Entry.Offset));
1117 
1118       struct ELF::Elf32_Rela ERE32;
1119       ERE32.setSymbolAndType(Index, Entry.Type);
1120       write(ERE32.r_info);
1121 
1122       if (hasRelocationAddend())
1123         write(uint32_t(Entry.Addend));
1124     }
1125   }
1126 }
1127 
createStringTable(MCContext & Ctx)1128 const MCSectionELF *ELFObjectWriter::createStringTable(MCContext &Ctx) {
1129   const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1];
1130   getStream() << StrTabBuilder.data();
1131   return StrtabSection;
1132 }
1133 
writeSection(const SectionIndexMapTy & SectionIndexMap,uint32_t GroupSymbolIndex,uint64_t Offset,uint64_t Size,const MCSectionELF & Section)1134 void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
1135                                    uint32_t GroupSymbolIndex, uint64_t Offset,
1136                                    uint64_t Size, const MCSectionELF &Section) {
1137   uint64_t sh_link = 0;
1138   uint64_t sh_info = 0;
1139 
1140   switch(Section.getType()) {
1141   default:
1142     // Nothing to do.
1143     break;
1144 
1145   case ELF::SHT_DYNAMIC:
1146     llvm_unreachable("SHT_DYNAMIC in a relocatable object");
1147 
1148   case ELF::SHT_REL:
1149   case ELF::SHT_RELA: {
1150     sh_link = SymbolTableIndex;
1151     assert(sh_link && ".symtab not found");
1152     const MCSectionELF *InfoSection = Section.getAssociatedSection();
1153     sh_info = SectionIndexMap.lookup(InfoSection);
1154     break;
1155   }
1156 
1157   case ELF::SHT_SYMTAB:
1158   case ELF::SHT_DYNSYM:
1159     sh_link = StringTableIndex;
1160     sh_info = LastLocalSymbolIndex;
1161     break;
1162 
1163   case ELF::SHT_SYMTAB_SHNDX:
1164     sh_link = SymbolTableIndex;
1165     break;
1166 
1167   case ELF::SHT_GROUP:
1168     sh_link = SymbolTableIndex;
1169     sh_info = GroupSymbolIndex;
1170     break;
1171   }
1172 
1173   if (TargetObjectWriter->getEMachine() == ELF::EM_ARM &&
1174       Section.getType() == ELF::SHT_ARM_EXIDX)
1175     sh_link = SectionIndexMap.lookup(Section.getAssociatedSection());
1176 
1177   WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()),
1178                    Section.getType(), Section.getFlags(), 0, Offset, Size,
1179                    sh_link, sh_info, Section.getAlignment(),
1180                    Section.getEntrySize());
1181 }
1182 
writeSectionHeader(const MCAsmLayout & Layout,const SectionIndexMapTy & SectionIndexMap,const SectionOffsetsTy & SectionOffsets)1183 void ELFObjectWriter::writeSectionHeader(
1184     const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1185     const SectionOffsetsTy &SectionOffsets) {
1186   const unsigned NumSections = SectionTable.size();
1187 
1188   // Null section first.
1189   uint64_t FirstSectionSize =
1190       (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1191   WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
1192 
1193   for (const MCSectionELF *Section : SectionTable) {
1194     uint32_t GroupSymbolIndex;
1195     unsigned Type = Section->getType();
1196     if (Type != ELF::SHT_GROUP)
1197       GroupSymbolIndex = 0;
1198     else
1199       GroupSymbolIndex = Section->getGroup()->getIndex();
1200 
1201     const std::pair<uint64_t, uint64_t> &Offsets =
1202         SectionOffsets.find(Section)->second;
1203     uint64_t Size;
1204     if (Type == ELF::SHT_NOBITS)
1205       Size = Layout.getSectionAddressSize(Section);
1206     else
1207       Size = Offsets.second - Offsets.first;
1208 
1209     writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1210                  *Section);
1211   }
1212 }
1213 
writeObject(MCAssembler & Asm,const MCAsmLayout & Layout)1214 void ELFObjectWriter::writeObject(MCAssembler &Asm,
1215                                   const MCAsmLayout &Layout) {
1216   MCContext &Ctx = Asm.getContext();
1217   MCSectionELF *StrtabSection =
1218       Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1219   StringTableIndex = addToSectionTable(StrtabSection);
1220 
1221   RevGroupMapTy RevGroupMap;
1222   SectionIndexMapTy SectionIndexMap;
1223 
1224   std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1225 
1226   // Write out the ELF header ...
1227   writeHeader(Asm);
1228 
1229   // ... then the sections ...
1230   SectionOffsetsTy SectionOffsets;
1231   std::vector<MCSectionELF *> Groups;
1232   std::vector<MCSectionELF *> Relocations;
1233   for (MCSection &Sec : Asm) {
1234     MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1235 
1236     align(Section.getAlignment());
1237 
1238     // Remember the offset into the file for this section.
1239     uint64_t SecStart = getStream().tell();
1240 
1241     const MCSymbolELF *SignatureSymbol = Section.getGroup();
1242     writeSectionData(Asm, Section, Layout);
1243 
1244     uint64_t SecEnd = getStream().tell();
1245     SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1246 
1247     MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1248 
1249     if (SignatureSymbol) {
1250       Asm.registerSymbol(*SignatureSymbol);
1251       unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1252       if (!GroupIdx) {
1253         MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol);
1254         GroupIdx = addToSectionTable(Group);
1255         Group->setAlignment(4);
1256         Groups.push_back(Group);
1257       }
1258       std::vector<const MCSectionELF *> &Members =
1259           GroupMembers[SignatureSymbol];
1260       Members.push_back(&Section);
1261       if (RelSection)
1262         Members.push_back(RelSection);
1263     }
1264 
1265     SectionIndexMap[&Section] = addToSectionTable(&Section);
1266     if (RelSection) {
1267       SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1268       Relocations.push_back(RelSection);
1269     }
1270   }
1271 
1272   for (MCSectionELF *Group : Groups) {
1273     align(Group->getAlignment());
1274 
1275     // Remember the offset into the file for this section.
1276     uint64_t SecStart = getStream().tell();
1277 
1278     const MCSymbol *SignatureSymbol = Group->getGroup();
1279     assert(SignatureSymbol);
1280     write(uint32_t(ELF::GRP_COMDAT));
1281     for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1282       uint32_t SecIndex = SectionIndexMap.lookup(Member);
1283       write(SecIndex);
1284     }
1285 
1286     uint64_t SecEnd = getStream().tell();
1287     SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1288   }
1289 
1290   // Compute symbol table information.
1291   computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, SectionOffsets);
1292 
1293   for (MCSectionELF *RelSection : Relocations) {
1294     align(RelSection->getAlignment());
1295 
1296     // Remember the offset into the file for this section.
1297     uint64_t SecStart = getStream().tell();
1298 
1299     writeRelocations(Asm, *RelSection->getAssociatedSection());
1300 
1301     uint64_t SecEnd = getStream().tell();
1302     SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1303   }
1304 
1305   {
1306     uint64_t SecStart = getStream().tell();
1307     const MCSectionELF *Sec = createStringTable(Ctx);
1308     uint64_t SecEnd = getStream().tell();
1309     SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd);
1310   }
1311 
1312   uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
1313   align(NaturalAlignment);
1314 
1315   const uint64_t SectionHeaderOffset = getStream().tell();
1316 
1317   // ... then the section header table ...
1318   writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1319 
1320   uint16_t NumSections = (SectionTable.size() + 1 >= ELF::SHN_LORESERVE)
1321                              ? (uint16_t)ELF::SHN_UNDEF
1322                              : SectionTable.size() + 1;
1323   if (sys::IsLittleEndianHost != IsLittleEndian)
1324     sys::swapByteOrder(NumSections);
1325   unsigned NumSectionsOffset;
1326 
1327   if (is64Bit()) {
1328     uint64_t Val = SectionHeaderOffset;
1329     if (sys::IsLittleEndianHost != IsLittleEndian)
1330       sys::swapByteOrder(Val);
1331     getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1332                        offsetof(ELF::Elf64_Ehdr, e_shoff));
1333     NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1334   } else {
1335     uint32_t Val = SectionHeaderOffset;
1336     if (sys::IsLittleEndianHost != IsLittleEndian)
1337       sys::swapByteOrder(Val);
1338     getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1339                        offsetof(ELF::Elf32_Ehdr, e_shoff));
1340     NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1341   }
1342   getStream().pwrite(reinterpret_cast<char *>(&NumSections),
1343                      sizeof(NumSections), NumSectionsOffset);
1344 }
1345 
isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler & Asm,const MCSymbol & SA,const MCFragment & FB,bool InSet,bool IsPCRel) const1346 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1347     const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1348     bool InSet, bool IsPCRel) const {
1349   const auto &SymA = cast<MCSymbolELF>(SA);
1350   if (IsPCRel) {
1351     assert(!InSet);
1352     if (::isWeak(SymA))
1353       return false;
1354   }
1355   return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1356                                                                 InSet, IsPCRel);
1357 }
1358 
isWeak(const MCSymbol & S) const1359 bool ELFObjectWriter::isWeak(const MCSymbol &S) const {
1360   const auto &Sym = cast<MCSymbolELF>(S);
1361   if (::isWeak(Sym))
1362     return true;
1363 
1364   // It is invalid to replace a reference to a global in a comdat
1365   // with a reference to a local since out of comdat references
1366   // to a local are forbidden.
1367   // We could try to return false for more cases, like the reference
1368   // being in the same comdat or Sym being an alias to another global,
1369   // but it is not clear if it is worth the effort.
1370   if (Sym.getBinding() != ELF::STB_GLOBAL)
1371     return false;
1372 
1373   if (!Sym.isInSection())
1374     return false;
1375 
1376   const auto &Sec = cast<MCSectionELF>(Sym.getSection());
1377   return Sec.getGroup();
1378 }
1379 
createELFObjectWriter(MCELFObjectTargetWriter * MOTW,raw_pwrite_stream & OS,bool IsLittleEndian)1380 MCObjectWriter *llvm::createELFObjectWriter(MCELFObjectTargetWriter *MOTW,
1381                                             raw_pwrite_stream &OS,
1382                                             bool IsLittleEndian) {
1383   return new ELFObjectWriter(MOTW, OS, IsLittleEndian);
1384 }
1385