1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements ELF object file writer information.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/MC/MCELFObjectWriter.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCAsmLayout.h"
22 #include "llvm/MC/MCAssembler.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCSectionELF.h"
28 #include "llvm/MC/MCSymbolELF.h"
29 #include "llvm/MC/MCValue.h"
30 #include "llvm/MC/StringTableBuilder.h"
31 #include "llvm/Support/Compression.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ELF.h"
34 #include "llvm/Support/Endian.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/StringSaver.h"
37 #include <vector>
38
39 using namespace llvm;
40
41 #undef DEBUG_TYPE
42 #define DEBUG_TYPE "reloc-info"
43
44 namespace {
45 typedef DenseMap<const MCSectionELF *, uint32_t> SectionIndexMapTy;
46
47 class ELFObjectWriter;
48
49 class SymbolTableWriter {
50 ELFObjectWriter &EWriter;
51 bool Is64Bit;
52
53 // indexes we are going to write to .symtab_shndx.
54 std::vector<uint32_t> ShndxIndexes;
55
56 // The numbel of symbols written so far.
57 unsigned NumWritten;
58
59 void createSymtabShndx();
60
61 template <typename T> void write(T Value);
62
63 public:
64 SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit);
65
66 void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
67 uint8_t other, uint32_t shndx, bool Reserved);
68
getShndxIndexes() const69 ArrayRef<uint32_t> getShndxIndexes() const { return ShndxIndexes; }
70 };
71
72 class ELFObjectWriter : public MCObjectWriter {
73 static uint64_t SymbolValue(const MCSymbol &Sym, const MCAsmLayout &Layout);
74 static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolELF &Symbol,
75 bool Used, bool Renamed);
76
77 /// Helper struct for containing some precomputed information on symbols.
78 struct ELFSymbolData {
79 const MCSymbolELF *Symbol;
80 uint32_t SectionIndex;
81 StringRef Name;
82
83 // Support lexicographic sorting.
operator <__anon507b89990111::ELFObjectWriter::ELFSymbolData84 bool operator<(const ELFSymbolData &RHS) const {
85 unsigned LHSType = Symbol->getType();
86 unsigned RHSType = RHS.Symbol->getType();
87 if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
88 return false;
89 if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
90 return true;
91 if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
92 return SectionIndex < RHS.SectionIndex;
93 return Name < RHS.Name;
94 }
95 };
96
97 /// The target specific ELF writer instance.
98 std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
99
100 DenseMap<const MCSymbolELF *, const MCSymbolELF *> Renames;
101
102 llvm::DenseMap<const MCSectionELF *, std::vector<ELFRelocationEntry>>
103 Relocations;
104
105 /// @}
106 /// @name Symbol Table Data
107 /// @{
108
109 BumpPtrAllocator Alloc;
110 StringSaver VersionSymSaver{Alloc};
111 StringTableBuilder StrTabBuilder{StringTableBuilder::ELF};
112
113 /// @}
114
115 // This holds the symbol table index of the last local symbol.
116 unsigned LastLocalSymbolIndex;
117 // This holds the .strtab section index.
118 unsigned StringTableIndex;
119 // This holds the .symtab section index.
120 unsigned SymbolTableIndex;
121
122 // Sections in the order they are to be output in the section table.
123 std::vector<const MCSectionELF *> SectionTable;
124 unsigned addToSectionTable(const MCSectionELF *Sec);
125
126 // TargetObjectWriter wrappers.
is64Bit() const127 bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
hasRelocationAddend() const128 bool hasRelocationAddend() const {
129 return TargetObjectWriter->hasRelocationAddend();
130 }
getRelocType(MCContext & Ctx,const MCValue & Target,const MCFixup & Fixup,bool IsPCRel) const131 unsigned getRelocType(MCContext &Ctx, const MCValue &Target,
132 const MCFixup &Fixup, bool IsPCRel) const {
133 return TargetObjectWriter->getRelocType(Ctx, Target, Fixup, IsPCRel);
134 }
135
136 void align(unsigned Alignment);
137
138 bool maybeWriteCompression(uint64_t Size,
139 SmallVectorImpl<char> &CompressedContents,
140 bool ZLibStyle, unsigned Alignment);
141
142 public:
ELFObjectWriter(MCELFObjectTargetWriter * MOTW,raw_pwrite_stream & OS,bool IsLittleEndian)143 ELFObjectWriter(MCELFObjectTargetWriter *MOTW, raw_pwrite_stream &OS,
144 bool IsLittleEndian)
145 : MCObjectWriter(OS, IsLittleEndian), TargetObjectWriter(MOTW) {}
146
reset()147 void reset() override {
148 Renames.clear();
149 Relocations.clear();
150 StrTabBuilder.clear();
151 SectionTable.clear();
152 MCObjectWriter::reset();
153 }
154
155 ~ELFObjectWriter() override;
156
WriteWord(uint64_t W)157 void WriteWord(uint64_t W) {
158 if (is64Bit())
159 write64(W);
160 else
161 write32(W);
162 }
163
write(T Val)164 template <typename T> void write(T Val) {
165 if (IsLittleEndian)
166 support::endian::Writer<support::little>(getStream()).write(Val);
167 else
168 support::endian::Writer<support::big>(getStream()).write(Val);
169 }
170
171 void writeHeader(const MCAssembler &Asm);
172
173 void writeSymbol(SymbolTableWriter &Writer, uint32_t StringIndex,
174 ELFSymbolData &MSD, const MCAsmLayout &Layout);
175
176 // Start and end offset of each section
177 typedef std::map<const MCSectionELF *, std::pair<uint64_t, uint64_t>>
178 SectionOffsetsTy;
179
180 bool shouldRelocateWithSymbol(const MCAssembler &Asm,
181 const MCSymbolRefExpr *RefA,
182 const MCSymbol *Sym, uint64_t C,
183 unsigned Type) const;
184
185 void recordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
186 const MCFragment *Fragment, const MCFixup &Fixup,
187 MCValue Target, bool &IsPCRel,
188 uint64_t &FixedValue) override;
189
190 // Map from a signature symbol to the group section index
191 typedef DenseMap<const MCSymbol *, unsigned> RevGroupMapTy;
192
193 /// Compute the symbol table data
194 ///
195 /// \param Asm - The assembler.
196 /// \param SectionIndexMap - Maps a section to its index.
197 /// \param RevGroupMap - Maps a signature symbol to the group section.
198 void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
199 const SectionIndexMapTy &SectionIndexMap,
200 const RevGroupMapTy &RevGroupMap,
201 SectionOffsetsTy &SectionOffsets);
202
203 MCSectionELF *createRelocationSection(MCContext &Ctx,
204 const MCSectionELF &Sec);
205
206 const MCSectionELF *createStringTable(MCContext &Ctx);
207
208 void executePostLayoutBinding(MCAssembler &Asm,
209 const MCAsmLayout &Layout) override;
210
211 void writeSectionHeader(const MCAsmLayout &Layout,
212 const SectionIndexMapTy &SectionIndexMap,
213 const SectionOffsetsTy &SectionOffsets);
214
215 void writeSectionData(const MCAssembler &Asm, MCSection &Sec,
216 const MCAsmLayout &Layout);
217
218 void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
219 uint64_t Address, uint64_t Offset, uint64_t Size,
220 uint32_t Link, uint32_t Info, uint64_t Alignment,
221 uint64_t EntrySize);
222
223 void writeRelocations(const MCAssembler &Asm, const MCSectionELF &Sec);
224
225 bool isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
226 const MCSymbol &SymA,
227 const MCFragment &FB, bool InSet,
228 bool IsPCRel) const override;
229
230 bool isWeak(const MCSymbol &Sym) const override;
231
232 void writeObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
233 void writeSection(const SectionIndexMapTy &SectionIndexMap,
234 uint32_t GroupSymbolIndex, uint64_t Offset, uint64_t Size,
235 const MCSectionELF &Section);
236 };
237 } // end anonymous namespace
238
align(unsigned Alignment)239 void ELFObjectWriter::align(unsigned Alignment) {
240 uint64_t Padding = OffsetToAlignment(getStream().tell(), Alignment);
241 WriteZeros(Padding);
242 }
243
addToSectionTable(const MCSectionELF * Sec)244 unsigned ELFObjectWriter::addToSectionTable(const MCSectionELF *Sec) {
245 SectionTable.push_back(Sec);
246 StrTabBuilder.add(Sec->getSectionName());
247 return SectionTable.size();
248 }
249
createSymtabShndx()250 void SymbolTableWriter::createSymtabShndx() {
251 if (!ShndxIndexes.empty())
252 return;
253
254 ShndxIndexes.resize(NumWritten);
255 }
256
write(T Value)257 template <typename T> void SymbolTableWriter::write(T Value) {
258 EWriter.write(Value);
259 }
260
SymbolTableWriter(ELFObjectWriter & EWriter,bool Is64Bit)261 SymbolTableWriter::SymbolTableWriter(ELFObjectWriter &EWriter, bool Is64Bit)
262 : EWriter(EWriter), Is64Bit(Is64Bit), NumWritten(0) {}
263
writeSymbol(uint32_t name,uint8_t info,uint64_t value,uint64_t size,uint8_t other,uint32_t shndx,bool Reserved)264 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
265 uint64_t size, uint8_t other,
266 uint32_t shndx, bool Reserved) {
267 bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
268
269 if (LargeIndex)
270 createSymtabShndx();
271
272 if (!ShndxIndexes.empty()) {
273 if (LargeIndex)
274 ShndxIndexes.push_back(shndx);
275 else
276 ShndxIndexes.push_back(0);
277 }
278
279 uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
280
281 if (Is64Bit) {
282 write(name); // st_name
283 write(info); // st_info
284 write(other); // st_other
285 write(Index); // st_shndx
286 write(value); // st_value
287 write(size); // st_size
288 } else {
289 write(name); // st_name
290 write(uint32_t(value)); // st_value
291 write(uint32_t(size)); // st_size
292 write(info); // st_info
293 write(other); // st_other
294 write(Index); // st_shndx
295 }
296
297 ++NumWritten;
298 }
299
~ELFObjectWriter()300 ELFObjectWriter::~ELFObjectWriter()
301 {}
302
303 // Emit the ELF header.
writeHeader(const MCAssembler & Asm)304 void ELFObjectWriter::writeHeader(const MCAssembler &Asm) {
305 // ELF Header
306 // ----------
307 //
308 // Note
309 // ----
310 // emitWord method behaves differently for ELF32 and ELF64, writing
311 // 4 bytes in the former and 8 in the latter.
312
313 writeBytes(ELF::ElfMagic); // e_ident[EI_MAG0] to e_ident[EI_MAG3]
314
315 write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
316
317 // e_ident[EI_DATA]
318 write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB);
319
320 write8(ELF::EV_CURRENT); // e_ident[EI_VERSION]
321 // e_ident[EI_OSABI]
322 write8(TargetObjectWriter->getOSABI());
323 write8(0); // e_ident[EI_ABIVERSION]
324
325 WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD);
326
327 write16(ELF::ET_REL); // e_type
328
329 write16(TargetObjectWriter->getEMachine()); // e_machine = target
330
331 write32(ELF::EV_CURRENT); // e_version
332 WriteWord(0); // e_entry, no entry point in .o file
333 WriteWord(0); // e_phoff, no program header for .o
334 WriteWord(0); // e_shoff = sec hdr table off in bytes
335
336 // e_flags = whatever the target wants
337 write32(Asm.getELFHeaderEFlags());
338
339 // e_ehsize = ELF header size
340 write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr));
341
342 write16(0); // e_phentsize = prog header entry size
343 write16(0); // e_phnum = # prog header entries = 0
344
345 // e_shentsize = Section header entry size
346 write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr));
347
348 // e_shnum = # of section header ents
349 write16(0);
350
351 // e_shstrndx = Section # of '.shstrtab'
352 assert(StringTableIndex < ELF::SHN_LORESERVE);
353 write16(StringTableIndex);
354 }
355
SymbolValue(const MCSymbol & Sym,const MCAsmLayout & Layout)356 uint64_t ELFObjectWriter::SymbolValue(const MCSymbol &Sym,
357 const MCAsmLayout &Layout) {
358 if (Sym.isCommon() && Sym.isExternal())
359 return Sym.getCommonAlignment();
360
361 uint64_t Res;
362 if (!Layout.getSymbolOffset(Sym, Res))
363 return 0;
364
365 if (Layout.getAssembler().isThumbFunc(&Sym))
366 Res |= 1;
367
368 return Res;
369 }
370
executePostLayoutBinding(MCAssembler & Asm,const MCAsmLayout & Layout)371 void ELFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
372 const MCAsmLayout &Layout) {
373 // Section symbols are used as definitions for undefined symbols with matching
374 // names. If there are multiple sections with the same name, the first one is
375 // used.
376 for (const MCSection &Sec : Asm) {
377 const MCSymbol *Begin = Sec.getBeginSymbol();
378 if (!Begin)
379 continue;
380
381 const MCSymbol *Alias = Asm.getContext().lookupSymbol(Begin->getName());
382 if (!Alias || !Alias->isUndefined())
383 continue;
384
385 Renames.insert(
386 std::make_pair(cast<MCSymbolELF>(Alias), cast<MCSymbolELF>(Begin)));
387 }
388
389 // The presence of symbol versions causes undefined symbols and
390 // versions declared with @@@ to be renamed.
391 for (const MCSymbol &A : Asm.symbols()) {
392 const auto &Alias = cast<MCSymbolELF>(A);
393 // Not an alias.
394 if (!Alias.isVariable())
395 continue;
396 auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue());
397 if (!Ref)
398 continue;
399 const auto &Symbol = cast<MCSymbolELF>(Ref->getSymbol());
400
401 StringRef AliasName = Alias.getName();
402 size_t Pos = AliasName.find('@');
403 if (Pos == StringRef::npos)
404 continue;
405
406 // Aliases defined with .symvar copy the binding from the symbol they alias.
407 // This is the first place we are able to copy this information.
408 Alias.setExternal(Symbol.isExternal());
409 Alias.setBinding(Symbol.getBinding());
410
411 StringRef Rest = AliasName.substr(Pos);
412 if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
413 continue;
414
415 // FIXME: produce a better error message.
416 if (Symbol.isUndefined() && Rest.startswith("@@") &&
417 !Rest.startswith("@@@"))
418 report_fatal_error("A @@ version cannot be undefined");
419
420 Renames.insert(std::make_pair(&Symbol, &Alias));
421 }
422 }
423
mergeTypeForSet(uint8_t origType,uint8_t newType)424 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
425 uint8_t Type = newType;
426
427 // Propagation rules:
428 // IFUNC > FUNC > OBJECT > NOTYPE
429 // TLS_OBJECT > OBJECT > NOTYPE
430 //
431 // dont let the new type degrade the old type
432 switch (origType) {
433 default:
434 break;
435 case ELF::STT_GNU_IFUNC:
436 if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
437 Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
438 Type = ELF::STT_GNU_IFUNC;
439 break;
440 case ELF::STT_FUNC:
441 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
442 Type == ELF::STT_TLS)
443 Type = ELF::STT_FUNC;
444 break;
445 case ELF::STT_OBJECT:
446 if (Type == ELF::STT_NOTYPE)
447 Type = ELF::STT_OBJECT;
448 break;
449 case ELF::STT_TLS:
450 if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
451 Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
452 Type = ELF::STT_TLS;
453 break;
454 }
455
456 return Type;
457 }
458
writeSymbol(SymbolTableWriter & Writer,uint32_t StringIndex,ELFSymbolData & MSD,const MCAsmLayout & Layout)459 void ELFObjectWriter::writeSymbol(SymbolTableWriter &Writer,
460 uint32_t StringIndex, ELFSymbolData &MSD,
461 const MCAsmLayout &Layout) {
462 const auto &Symbol = cast<MCSymbolELF>(*MSD.Symbol);
463 const MCSymbolELF *Base =
464 cast_or_null<MCSymbolELF>(Layout.getBaseSymbol(Symbol));
465
466 // This has to be in sync with when computeSymbolTable uses SHN_ABS or
467 // SHN_COMMON.
468 bool IsReserved = !Base || Symbol.isCommon();
469
470 // Binding and Type share the same byte as upper and lower nibbles
471 uint8_t Binding = Symbol.getBinding();
472 uint8_t Type = Symbol.getType();
473 if (Base) {
474 Type = mergeTypeForSet(Type, Base->getType());
475 }
476 uint8_t Info = (Binding << 4) | Type;
477
478 // Other and Visibility share the same byte with Visibility using the lower
479 // 2 bits
480 uint8_t Visibility = Symbol.getVisibility();
481 uint8_t Other = Symbol.getOther() | Visibility;
482
483 uint64_t Value = SymbolValue(*MSD.Symbol, Layout);
484 uint64_t Size = 0;
485
486 const MCExpr *ESize = MSD.Symbol->getSize();
487 if (!ESize && Base)
488 ESize = Base->getSize();
489
490 if (ESize) {
491 int64_t Res;
492 if (!ESize->evaluateKnownAbsolute(Res, Layout))
493 report_fatal_error("Size expression must be absolute.");
494 Size = Res;
495 }
496
497 // Write out the symbol table entry
498 Writer.writeSymbol(StringIndex, Info, Value, Size, Other, MSD.SectionIndex,
499 IsReserved);
500 }
501
502 // It is always valid to create a relocation with a symbol. It is preferable
503 // to use a relocation with a section if that is possible. Using the section
504 // allows us to omit some local symbols from the symbol table.
shouldRelocateWithSymbol(const MCAssembler & Asm,const MCSymbolRefExpr * RefA,const MCSymbol * S,uint64_t C,unsigned Type) const505 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
506 const MCSymbolRefExpr *RefA,
507 const MCSymbol *S, uint64_t C,
508 unsigned Type) const {
509 const auto *Sym = cast_or_null<MCSymbolELF>(S);
510 // A PCRel relocation to an absolute value has no symbol (or section). We
511 // represent that with a relocation to a null section.
512 if (!RefA)
513 return false;
514
515 MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
516 switch (Kind) {
517 default:
518 break;
519 // The .odp creation emits a relocation against the symbol ".TOC." which
520 // create a R_PPC64_TOC relocation. However the relocation symbol name
521 // in final object creation should be NULL, since the symbol does not
522 // really exist, it is just the reference to TOC base for the current
523 // object file. Since the symbol is undefined, returning false results
524 // in a relocation with a null section which is the desired result.
525 case MCSymbolRefExpr::VK_PPC_TOCBASE:
526 return false;
527
528 // These VariantKind cause the relocation to refer to something other than
529 // the symbol itself, like a linker generated table. Since the address of
530 // symbol is not relevant, we cannot replace the symbol with the
531 // section and patch the difference in the addend.
532 case MCSymbolRefExpr::VK_GOT:
533 case MCSymbolRefExpr::VK_PLT:
534 case MCSymbolRefExpr::VK_GOTPCREL:
535 case MCSymbolRefExpr::VK_PPC_GOT_LO:
536 case MCSymbolRefExpr::VK_PPC_GOT_HI:
537 case MCSymbolRefExpr::VK_PPC_GOT_HA:
538 return true;
539 }
540
541 // An undefined symbol is not in any section, so the relocation has to point
542 // to the symbol itself.
543 assert(Sym && "Expected a symbol");
544 if (Sym->isUndefined())
545 return true;
546
547 unsigned Binding = Sym->getBinding();
548 switch(Binding) {
549 default:
550 llvm_unreachable("Invalid Binding");
551 case ELF::STB_LOCAL:
552 break;
553 case ELF::STB_WEAK:
554 // If the symbol is weak, it might be overridden by a symbol in another
555 // file. The relocation has to point to the symbol so that the linker
556 // can update it.
557 return true;
558 case ELF::STB_GLOBAL:
559 // Global ELF symbols can be preempted by the dynamic linker. The relocation
560 // has to point to the symbol for a reason analogous to the STB_WEAK case.
561 return true;
562 }
563
564 // If a relocation points to a mergeable section, we have to be careful.
565 // If the offset is zero, a relocation with the section will encode the
566 // same information. With a non-zero offset, the situation is different.
567 // For example, a relocation can point 42 bytes past the end of a string.
568 // If we change such a relocation to use the section, the linker would think
569 // that it pointed to another string and subtracting 42 at runtime will
570 // produce the wrong value.
571 auto &Sec = cast<MCSectionELF>(Sym->getSection());
572 unsigned Flags = Sec.getFlags();
573 if (Flags & ELF::SHF_MERGE) {
574 if (C != 0)
575 return true;
576
577 // It looks like gold has a bug (http://sourceware.org/PR16794) and can
578 // only handle section relocations to mergeable sections if using RELA.
579 if (!hasRelocationAddend())
580 return true;
581 }
582
583 // Most TLS relocations use a got, so they need the symbol. Even those that
584 // are just an offset (@tpoff), require a symbol in gold versions before
585 // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
586 // http://sourceware.org/PR16773.
587 if (Flags & ELF::SHF_TLS)
588 return true;
589
590 // If the symbol is a thumb function the final relocation must set the lowest
591 // bit. With a symbol that is done by just having the symbol have that bit
592 // set, so we would lose the bit if we relocated with the section.
593 // FIXME: We could use the section but add the bit to the relocation value.
594 if (Asm.isThumbFunc(Sym))
595 return true;
596
597 if (TargetObjectWriter->needsRelocateWithSymbol(*Sym, Type))
598 return true;
599 return false;
600 }
601
602 // True if the assembler knows nothing about the final value of the symbol.
603 // This doesn't cover the comdat issues, since in those cases the assembler
604 // can at least know that all symbols in the section will move together.
isWeak(const MCSymbolELF & Sym)605 static bool isWeak(const MCSymbolELF &Sym) {
606 if (Sym.getType() == ELF::STT_GNU_IFUNC)
607 return true;
608
609 switch (Sym.getBinding()) {
610 default:
611 llvm_unreachable("Unknown binding");
612 case ELF::STB_LOCAL:
613 return false;
614 case ELF::STB_GLOBAL:
615 return false;
616 case ELF::STB_WEAK:
617 case ELF::STB_GNU_UNIQUE:
618 return true;
619 }
620 }
621
recordRelocation(MCAssembler & Asm,const MCAsmLayout & Layout,const MCFragment * Fragment,const MCFixup & Fixup,MCValue Target,bool & IsPCRel,uint64_t & FixedValue)622 void ELFObjectWriter::recordRelocation(MCAssembler &Asm,
623 const MCAsmLayout &Layout,
624 const MCFragment *Fragment,
625 const MCFixup &Fixup, MCValue Target,
626 bool &IsPCRel, uint64_t &FixedValue) {
627 const MCSectionELF &FixupSection = cast<MCSectionELF>(*Fragment->getParent());
628 uint64_t C = Target.getConstant();
629 uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
630 MCContext &Ctx = Asm.getContext();
631
632 if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
633 assert(RefB->getKind() == MCSymbolRefExpr::VK_None &&
634 "Should not have constructed this");
635
636 // Let A, B and C being the components of Target and R be the location of
637 // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
638 // If it is pcrel, we want to compute (A - B + C - R).
639
640 // In general, ELF has no relocations for -B. It can only represent (A + C)
641 // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
642 // replace B to implement it: (A - R - K + C)
643 if (IsPCRel) {
644 Ctx.reportError(
645 Fixup.getLoc(),
646 "No relocation available to represent this relative expression");
647 return;
648 }
649
650 const auto &SymB = cast<MCSymbolELF>(RefB->getSymbol());
651
652 if (SymB.isUndefined()) {
653 Ctx.reportError(Fixup.getLoc(),
654 Twine("symbol '") + SymB.getName() +
655 "' can not be undefined in a subtraction expression");
656 return;
657 }
658
659 assert(!SymB.isAbsolute() && "Should have been folded");
660 const MCSection &SecB = SymB.getSection();
661 if (&SecB != &FixupSection) {
662 Ctx.reportError(Fixup.getLoc(),
663 "Cannot represent a difference across sections");
664 return;
665 }
666
667 uint64_t SymBOffset = Layout.getSymbolOffset(SymB);
668 uint64_t K = SymBOffset - FixupOffset;
669 IsPCRel = true;
670 C -= K;
671 }
672
673 // We either rejected the fixup or folded B into C at this point.
674 const MCSymbolRefExpr *RefA = Target.getSymA();
675 const auto *SymA = RefA ? cast<MCSymbolELF>(&RefA->getSymbol()) : nullptr;
676
677 bool ViaWeakRef = false;
678 if (SymA && SymA->isVariable()) {
679 const MCExpr *Expr = SymA->getVariableValue();
680 if (const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr)) {
681 if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF) {
682 SymA = cast<MCSymbolELF>(&Inner->getSymbol());
683 ViaWeakRef = true;
684 }
685 }
686 }
687
688 unsigned Type = getRelocType(Ctx, Target, Fixup, IsPCRel);
689 uint64_t OriginalC = C;
690 bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymA, C, Type);
691 if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
692 C += Layout.getSymbolOffset(*SymA);
693
694 uint64_t Addend = 0;
695 if (hasRelocationAddend()) {
696 Addend = C;
697 C = 0;
698 }
699
700 FixedValue = C;
701
702 if (!RelocateWithSymbol) {
703 const MCSection *SecA =
704 (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
705 auto *ELFSec = cast_or_null<MCSectionELF>(SecA);
706 const auto *SectionSymbol =
707 ELFSec ? cast<MCSymbolELF>(ELFSec->getBeginSymbol()) : nullptr;
708 if (SectionSymbol)
709 SectionSymbol->setUsedInReloc();
710 ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend, SymA,
711 OriginalC);
712 Relocations[&FixupSection].push_back(Rec);
713 return;
714 }
715
716 const auto *RenamedSymA = SymA;
717 if (SymA) {
718 if (const MCSymbolELF *R = Renames.lookup(SymA))
719 RenamedSymA = R;
720
721 if (ViaWeakRef)
722 RenamedSymA->setIsWeakrefUsedInReloc();
723 else
724 RenamedSymA->setUsedInReloc();
725 }
726 ELFRelocationEntry Rec(FixupOffset, RenamedSymA, Type, Addend, SymA,
727 OriginalC);
728 Relocations[&FixupSection].push_back(Rec);
729 }
730
isInSymtab(const MCAsmLayout & Layout,const MCSymbolELF & Symbol,bool Used,bool Renamed)731 bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout,
732 const MCSymbolELF &Symbol, bool Used,
733 bool Renamed) {
734 if (Symbol.isVariable()) {
735 const MCExpr *Expr = Symbol.getVariableValue();
736 if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
737 if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
738 return false;
739 }
740 }
741
742 if (Used)
743 return true;
744
745 if (Renamed)
746 return false;
747
748 if (Symbol.isVariable() && Symbol.isUndefined()) {
749 // FIXME: this is here just to diagnose the case of a var = commmon_sym.
750 Layout.getBaseSymbol(Symbol);
751 return false;
752 }
753
754 if (Symbol.isUndefined() && !Symbol.isBindingSet())
755 return false;
756
757 if (Symbol.isTemporary())
758 return false;
759
760 if (Symbol.getType() == ELF::STT_SECTION)
761 return false;
762
763 return true;
764 }
765
computeSymbolTable(MCAssembler & Asm,const MCAsmLayout & Layout,const SectionIndexMapTy & SectionIndexMap,const RevGroupMapTy & RevGroupMap,SectionOffsetsTy & SectionOffsets)766 void ELFObjectWriter::computeSymbolTable(
767 MCAssembler &Asm, const MCAsmLayout &Layout,
768 const SectionIndexMapTy &SectionIndexMap, const RevGroupMapTy &RevGroupMap,
769 SectionOffsetsTy &SectionOffsets) {
770 MCContext &Ctx = Asm.getContext();
771 SymbolTableWriter Writer(*this, is64Bit());
772
773 // Symbol table
774 unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
775 MCSectionELF *SymtabSection =
776 Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0, EntrySize, "");
777 SymtabSection->setAlignment(is64Bit() ? 8 : 4);
778 SymbolTableIndex = addToSectionTable(SymtabSection);
779
780 align(SymtabSection->getAlignment());
781 uint64_t SecStart = getStream().tell();
782
783 // The first entry is the undefined symbol entry.
784 Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
785
786 std::vector<ELFSymbolData> LocalSymbolData;
787 std::vector<ELFSymbolData> ExternalSymbolData;
788
789 // Add the data for the symbols.
790 bool HasLargeSectionIndex = false;
791 for (const MCSymbol &S : Asm.symbols()) {
792 const auto &Symbol = cast<MCSymbolELF>(S);
793 bool Used = Symbol.isUsedInReloc();
794 bool WeakrefUsed = Symbol.isWeakrefUsedInReloc();
795 bool isSignature = Symbol.isSignature();
796
797 if (!isInSymtab(Layout, Symbol, Used || WeakrefUsed || isSignature,
798 Renames.count(&Symbol)))
799 continue;
800
801 if (Symbol.isTemporary() && Symbol.isUndefined()) {
802 Ctx.reportError(SMLoc(), "Undefined temporary symbol");
803 continue;
804 }
805
806 ELFSymbolData MSD;
807 MSD.Symbol = cast<MCSymbolELF>(&Symbol);
808
809 bool Local = Symbol.getBinding() == ELF::STB_LOCAL;
810 assert(Local || !Symbol.isTemporary());
811
812 if (Symbol.isAbsolute()) {
813 MSD.SectionIndex = ELF::SHN_ABS;
814 } else if (Symbol.isCommon()) {
815 assert(!Local);
816 MSD.SectionIndex = ELF::SHN_COMMON;
817 } else if (Symbol.isUndefined()) {
818 if (isSignature && !Used) {
819 MSD.SectionIndex = RevGroupMap.lookup(&Symbol);
820 if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
821 HasLargeSectionIndex = true;
822 } else {
823 MSD.SectionIndex = ELF::SHN_UNDEF;
824 }
825 } else {
826 const MCSectionELF &Section =
827 static_cast<const MCSectionELF &>(Symbol.getSection());
828 MSD.SectionIndex = SectionIndexMap.lookup(&Section);
829 assert(MSD.SectionIndex && "Invalid section index!");
830 if (MSD.SectionIndex >= ELF::SHN_LORESERVE)
831 HasLargeSectionIndex = true;
832 }
833
834 // The @@@ in symbol version is replaced with @ in undefined symbols and @@
835 // in defined ones.
836 //
837 // FIXME: All name handling should be done before we get to the writer,
838 // including dealing with GNU-style version suffixes. Fixing this isn't
839 // trivial.
840 //
841 // We thus have to be careful to not perform the symbol version replacement
842 // blindly:
843 //
844 // The ELF format is used on Windows by the MCJIT engine. Thus, on
845 // Windows, the ELFObjectWriter can encounter symbols mangled using the MS
846 // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC
847 // C++ name mangling can legally have "@@@" as a sub-string. In that case,
848 // the EFLObjectWriter should not interpret the "@@@" sub-string as
849 // specifying GNU-style symbol versioning. The ELFObjectWriter therefore
850 // checks for the MSVC C++ name mangling prefix which is either "?", "@?",
851 // "__imp_?" or "__imp_@?".
852 //
853 // It would have been interesting to perform the MS mangling prefix check
854 // only when the target triple is of the form *-pc-windows-elf. But, it
855 // seems that this information is not easily accessible from the
856 // ELFObjectWriter.
857 StringRef Name = Symbol.getName();
858 SmallString<32> Buf;
859 if (!Name.startswith("?") && !Name.startswith("@?") &&
860 !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) {
861 // This symbol isn't following the MSVC C++ name mangling convention. We
862 // can thus safely interpret the @@@ in symbol names as specifying symbol
863 // versioning.
864 size_t Pos = Name.find("@@@");
865 if (Pos != StringRef::npos) {
866 Buf += Name.substr(0, Pos);
867 unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1;
868 Buf += Name.substr(Pos + Skip);
869 Name = VersionSymSaver.save(Buf.c_str());
870 }
871 }
872
873 // Sections have their own string table
874 if (Symbol.getType() != ELF::STT_SECTION) {
875 MSD.Name = Name;
876 StrTabBuilder.add(Name);
877 }
878
879 if (Local)
880 LocalSymbolData.push_back(MSD);
881 else
882 ExternalSymbolData.push_back(MSD);
883 }
884
885 // This holds the .symtab_shndx section index.
886 unsigned SymtabShndxSectionIndex = 0;
887
888 if (HasLargeSectionIndex) {
889 MCSectionELF *SymtabShndxSection =
890 Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
891 SymtabShndxSectionIndex = addToSectionTable(SymtabShndxSection);
892 SymtabShndxSection->setAlignment(4);
893 }
894
895 ArrayRef<std::string> FileNames = Asm.getFileNames();
896 for (const std::string &Name : FileNames)
897 StrTabBuilder.add(Name);
898
899 StrTabBuilder.finalize();
900
901 for (const std::string &Name : FileNames)
902 Writer.writeSymbol(StrTabBuilder.getOffset(Name),
903 ELF::STT_FILE | ELF::STB_LOCAL, 0, 0, ELF::STV_DEFAULT,
904 ELF::SHN_ABS, true);
905
906 // Symbols are required to be in lexicographic order.
907 array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
908 array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
909
910 // Set the symbol indices. Local symbols must come before all other
911 // symbols with non-local bindings.
912 unsigned Index = FileNames.size() + 1;
913
914 for (ELFSymbolData &MSD : LocalSymbolData) {
915 unsigned StringIndex = MSD.Symbol->getType() == ELF::STT_SECTION
916 ? 0
917 : StrTabBuilder.getOffset(MSD.Name);
918 MSD.Symbol->setIndex(Index++);
919 writeSymbol(Writer, StringIndex, MSD, Layout);
920 }
921
922 // Write the symbol table entries.
923 LastLocalSymbolIndex = Index;
924
925 for (ELFSymbolData &MSD : ExternalSymbolData) {
926 unsigned StringIndex = StrTabBuilder.getOffset(MSD.Name);
927 MSD.Symbol->setIndex(Index++);
928 writeSymbol(Writer, StringIndex, MSD, Layout);
929 assert(MSD.Symbol->getBinding() != ELF::STB_LOCAL);
930 }
931
932 uint64_t SecEnd = getStream().tell();
933 SectionOffsets[SymtabSection] = std::make_pair(SecStart, SecEnd);
934
935 ArrayRef<uint32_t> ShndxIndexes = Writer.getShndxIndexes();
936 if (ShndxIndexes.empty()) {
937 assert(SymtabShndxSectionIndex == 0);
938 return;
939 }
940 assert(SymtabShndxSectionIndex != 0);
941
942 SecStart = getStream().tell();
943 const MCSectionELF *SymtabShndxSection =
944 SectionTable[SymtabShndxSectionIndex - 1];
945 for (uint32_t Index : ShndxIndexes)
946 write(Index);
947 SecEnd = getStream().tell();
948 SectionOffsets[SymtabShndxSection] = std::make_pair(SecStart, SecEnd);
949 }
950
951 MCSectionELF *
createRelocationSection(MCContext & Ctx,const MCSectionELF & Sec)952 ELFObjectWriter::createRelocationSection(MCContext &Ctx,
953 const MCSectionELF &Sec) {
954 if (Relocations[&Sec].empty())
955 return nullptr;
956
957 const StringRef SectionName = Sec.getSectionName();
958 std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
959 RelaSectionName += SectionName;
960
961 unsigned EntrySize;
962 if (hasRelocationAddend())
963 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
964 else
965 EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
966
967 unsigned Flags = 0;
968 if (Sec.getFlags() & ELF::SHF_GROUP)
969 Flags = ELF::SHF_GROUP;
970
971 MCSectionELF *RelaSection = Ctx.createELFRelSection(
972 RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
973 Flags, EntrySize, Sec.getGroup(), &Sec);
974 RelaSection->setAlignment(is64Bit() ? 8 : 4);
975 return RelaSection;
976 }
977
978 // Include the debug info compression header.
maybeWriteCompression(uint64_t Size,SmallVectorImpl<char> & CompressedContents,bool ZLibStyle,unsigned Alignment)979 bool ELFObjectWriter::maybeWriteCompression(
980 uint64_t Size, SmallVectorImpl<char> &CompressedContents, bool ZLibStyle,
981 unsigned Alignment) {
982 if (ZLibStyle) {
983 uint64_t HdrSize =
984 is64Bit() ? sizeof(ELF::Elf32_Chdr) : sizeof(ELF::Elf64_Chdr);
985 if (Size <= HdrSize + CompressedContents.size())
986 return false;
987 // Platform specific header is followed by compressed data.
988 if (is64Bit()) {
989 // Write Elf64_Chdr header.
990 write(static_cast<ELF::Elf64_Word>(ELF::ELFCOMPRESS_ZLIB));
991 write(static_cast<ELF::Elf64_Word>(0)); // ch_reserved field.
992 write(static_cast<ELF::Elf64_Xword>(Size));
993 write(static_cast<ELF::Elf64_Xword>(Alignment));
994 } else {
995 // Write Elf32_Chdr header otherwise.
996 write(static_cast<ELF::Elf32_Word>(ELF::ELFCOMPRESS_ZLIB));
997 write(static_cast<ELF::Elf32_Word>(Size));
998 write(static_cast<ELF::Elf32_Word>(Alignment));
999 }
1000 return true;
1001 }
1002
1003 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
1004 // useful for consumers to preallocate a buffer to decompress into.
1005 const StringRef Magic = "ZLIB";
1006 if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
1007 return false;
1008 write(ArrayRef<char>(Magic.begin(), Magic.size()));
1009 writeBE64(Size);
1010 return true;
1011 }
1012
writeSectionData(const MCAssembler & Asm,MCSection & Sec,const MCAsmLayout & Layout)1013 void ELFObjectWriter::writeSectionData(const MCAssembler &Asm, MCSection &Sec,
1014 const MCAsmLayout &Layout) {
1015 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1016 StringRef SectionName = Section.getSectionName();
1017
1018 // Compressing debug_frame requires handling alignment fragments which is
1019 // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
1020 // for writing to arbitrary buffers) for little benefit.
1021 bool CompressionEnabled =
1022 Asm.getContext().getAsmInfo()->compressDebugSections() !=
1023 DebugCompressionType::DCT_None;
1024 if (!CompressionEnabled || !SectionName.startswith(".debug_") ||
1025 SectionName == ".debug_frame") {
1026 Asm.writeSectionData(&Section, Layout);
1027 return;
1028 }
1029
1030 SmallVector<char, 128> UncompressedData;
1031 raw_svector_ostream VecOS(UncompressedData);
1032 raw_pwrite_stream &OldStream = getStream();
1033 setStream(VecOS);
1034 Asm.writeSectionData(&Section, Layout);
1035 setStream(OldStream);
1036
1037 SmallVector<char, 128> CompressedContents;
1038 zlib::Status Success = zlib::compress(
1039 StringRef(UncompressedData.data(), UncompressedData.size()),
1040 CompressedContents);
1041 if (Success != zlib::StatusOK) {
1042 getStream() << UncompressedData;
1043 return;
1044 }
1045
1046 bool ZlibStyle = Asm.getContext().getAsmInfo()->compressDebugSections() ==
1047 DebugCompressionType::DCT_Zlib;
1048 if (!maybeWriteCompression(UncompressedData.size(), CompressedContents,
1049 ZlibStyle, Sec.getAlignment())) {
1050 getStream() << UncompressedData;
1051 return;
1052 }
1053
1054 if (ZlibStyle)
1055 // Set the compressed flag. That is zlib style.
1056 Section.setFlags(Section.getFlags() | ELF::SHF_COMPRESSED);
1057 else
1058 // Add "z" prefix to section name. This is zlib-gnu style.
1059 Asm.getContext().renameELFSection(&Section,
1060 (".z" + SectionName.drop_front(1)).str());
1061 getStream() << CompressedContents;
1062 }
1063
WriteSecHdrEntry(uint32_t Name,uint32_t Type,uint64_t Flags,uint64_t Address,uint64_t Offset,uint64_t Size,uint32_t Link,uint32_t Info,uint64_t Alignment,uint64_t EntrySize)1064 void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type,
1065 uint64_t Flags, uint64_t Address,
1066 uint64_t Offset, uint64_t Size,
1067 uint32_t Link, uint32_t Info,
1068 uint64_t Alignment,
1069 uint64_t EntrySize) {
1070 write32(Name); // sh_name: index into string table
1071 write32(Type); // sh_type
1072 WriteWord(Flags); // sh_flags
1073 WriteWord(Address); // sh_addr
1074 WriteWord(Offset); // sh_offset
1075 WriteWord(Size); // sh_size
1076 write32(Link); // sh_link
1077 write32(Info); // sh_info
1078 WriteWord(Alignment); // sh_addralign
1079 WriteWord(EntrySize); // sh_entsize
1080 }
1081
writeRelocations(const MCAssembler & Asm,const MCSectionELF & Sec)1082 void ELFObjectWriter::writeRelocations(const MCAssembler &Asm,
1083 const MCSectionELF &Sec) {
1084 std::vector<ELFRelocationEntry> &Relocs = Relocations[&Sec];
1085
1086 // We record relocations by pushing to the end of a vector. Reverse the vector
1087 // to get the relocations in the order they were created.
1088 // In most cases that is not important, but it can be for special sections
1089 // (.eh_frame) or specific relocations (TLS optimizations on SystemZ).
1090 std::reverse(Relocs.begin(), Relocs.end());
1091
1092 // Sort the relocation entries. MIPS needs this.
1093 TargetObjectWriter->sortRelocs(Asm, Relocs);
1094
1095 for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1096 const ELFRelocationEntry &Entry = Relocs[e - i - 1];
1097 unsigned Index = Entry.Symbol ? Entry.Symbol->getIndex() : 0;
1098
1099 if (is64Bit()) {
1100 write(Entry.Offset);
1101 if (TargetObjectWriter->isN64()) {
1102 write(uint32_t(Index));
1103
1104 write(TargetObjectWriter->getRSsym(Entry.Type));
1105 write(TargetObjectWriter->getRType3(Entry.Type));
1106 write(TargetObjectWriter->getRType2(Entry.Type));
1107 write(TargetObjectWriter->getRType(Entry.Type));
1108 } else {
1109 struct ELF::Elf64_Rela ERE64;
1110 ERE64.setSymbolAndType(Index, Entry.Type);
1111 write(ERE64.r_info);
1112 }
1113 if (hasRelocationAddend())
1114 write(Entry.Addend);
1115 } else {
1116 write(uint32_t(Entry.Offset));
1117
1118 struct ELF::Elf32_Rela ERE32;
1119 ERE32.setSymbolAndType(Index, Entry.Type);
1120 write(ERE32.r_info);
1121
1122 if (hasRelocationAddend())
1123 write(uint32_t(Entry.Addend));
1124 }
1125 }
1126 }
1127
createStringTable(MCContext & Ctx)1128 const MCSectionELF *ELFObjectWriter::createStringTable(MCContext &Ctx) {
1129 const MCSectionELF *StrtabSection = SectionTable[StringTableIndex - 1];
1130 getStream() << StrTabBuilder.data();
1131 return StrtabSection;
1132 }
1133
writeSection(const SectionIndexMapTy & SectionIndexMap,uint32_t GroupSymbolIndex,uint64_t Offset,uint64_t Size,const MCSectionELF & Section)1134 void ELFObjectWriter::writeSection(const SectionIndexMapTy &SectionIndexMap,
1135 uint32_t GroupSymbolIndex, uint64_t Offset,
1136 uint64_t Size, const MCSectionELF &Section) {
1137 uint64_t sh_link = 0;
1138 uint64_t sh_info = 0;
1139
1140 switch(Section.getType()) {
1141 default:
1142 // Nothing to do.
1143 break;
1144
1145 case ELF::SHT_DYNAMIC:
1146 llvm_unreachable("SHT_DYNAMIC in a relocatable object");
1147
1148 case ELF::SHT_REL:
1149 case ELF::SHT_RELA: {
1150 sh_link = SymbolTableIndex;
1151 assert(sh_link && ".symtab not found");
1152 const MCSectionELF *InfoSection = Section.getAssociatedSection();
1153 sh_info = SectionIndexMap.lookup(InfoSection);
1154 break;
1155 }
1156
1157 case ELF::SHT_SYMTAB:
1158 case ELF::SHT_DYNSYM:
1159 sh_link = StringTableIndex;
1160 sh_info = LastLocalSymbolIndex;
1161 break;
1162
1163 case ELF::SHT_SYMTAB_SHNDX:
1164 sh_link = SymbolTableIndex;
1165 break;
1166
1167 case ELF::SHT_GROUP:
1168 sh_link = SymbolTableIndex;
1169 sh_info = GroupSymbolIndex;
1170 break;
1171 }
1172
1173 if (TargetObjectWriter->getEMachine() == ELF::EM_ARM &&
1174 Section.getType() == ELF::SHT_ARM_EXIDX)
1175 sh_link = SectionIndexMap.lookup(Section.getAssociatedSection());
1176
1177 WriteSecHdrEntry(StrTabBuilder.getOffset(Section.getSectionName()),
1178 Section.getType(), Section.getFlags(), 0, Offset, Size,
1179 sh_link, sh_info, Section.getAlignment(),
1180 Section.getEntrySize());
1181 }
1182
writeSectionHeader(const MCAsmLayout & Layout,const SectionIndexMapTy & SectionIndexMap,const SectionOffsetsTy & SectionOffsets)1183 void ELFObjectWriter::writeSectionHeader(
1184 const MCAsmLayout &Layout, const SectionIndexMapTy &SectionIndexMap,
1185 const SectionOffsetsTy &SectionOffsets) {
1186 const unsigned NumSections = SectionTable.size();
1187
1188 // Null section first.
1189 uint64_t FirstSectionSize =
1190 (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1191 WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, 0, 0, 0, 0);
1192
1193 for (const MCSectionELF *Section : SectionTable) {
1194 uint32_t GroupSymbolIndex;
1195 unsigned Type = Section->getType();
1196 if (Type != ELF::SHT_GROUP)
1197 GroupSymbolIndex = 0;
1198 else
1199 GroupSymbolIndex = Section->getGroup()->getIndex();
1200
1201 const std::pair<uint64_t, uint64_t> &Offsets =
1202 SectionOffsets.find(Section)->second;
1203 uint64_t Size;
1204 if (Type == ELF::SHT_NOBITS)
1205 Size = Layout.getSectionAddressSize(Section);
1206 else
1207 Size = Offsets.second - Offsets.first;
1208
1209 writeSection(SectionIndexMap, GroupSymbolIndex, Offsets.first, Size,
1210 *Section);
1211 }
1212 }
1213
writeObject(MCAssembler & Asm,const MCAsmLayout & Layout)1214 void ELFObjectWriter::writeObject(MCAssembler &Asm,
1215 const MCAsmLayout &Layout) {
1216 MCContext &Ctx = Asm.getContext();
1217 MCSectionELF *StrtabSection =
1218 Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1219 StringTableIndex = addToSectionTable(StrtabSection);
1220
1221 RevGroupMapTy RevGroupMap;
1222 SectionIndexMapTy SectionIndexMap;
1223
1224 std::map<const MCSymbol *, std::vector<const MCSectionELF *>> GroupMembers;
1225
1226 // Write out the ELF header ...
1227 writeHeader(Asm);
1228
1229 // ... then the sections ...
1230 SectionOffsetsTy SectionOffsets;
1231 std::vector<MCSectionELF *> Groups;
1232 std::vector<MCSectionELF *> Relocations;
1233 for (MCSection &Sec : Asm) {
1234 MCSectionELF &Section = static_cast<MCSectionELF &>(Sec);
1235
1236 align(Section.getAlignment());
1237
1238 // Remember the offset into the file for this section.
1239 uint64_t SecStart = getStream().tell();
1240
1241 const MCSymbolELF *SignatureSymbol = Section.getGroup();
1242 writeSectionData(Asm, Section, Layout);
1243
1244 uint64_t SecEnd = getStream().tell();
1245 SectionOffsets[&Section] = std::make_pair(SecStart, SecEnd);
1246
1247 MCSectionELF *RelSection = createRelocationSection(Ctx, Section);
1248
1249 if (SignatureSymbol) {
1250 Asm.registerSymbol(*SignatureSymbol);
1251 unsigned &GroupIdx = RevGroupMap[SignatureSymbol];
1252 if (!GroupIdx) {
1253 MCSectionELF *Group = Ctx.createELFGroupSection(SignatureSymbol);
1254 GroupIdx = addToSectionTable(Group);
1255 Group->setAlignment(4);
1256 Groups.push_back(Group);
1257 }
1258 std::vector<const MCSectionELF *> &Members =
1259 GroupMembers[SignatureSymbol];
1260 Members.push_back(&Section);
1261 if (RelSection)
1262 Members.push_back(RelSection);
1263 }
1264
1265 SectionIndexMap[&Section] = addToSectionTable(&Section);
1266 if (RelSection) {
1267 SectionIndexMap[RelSection] = addToSectionTable(RelSection);
1268 Relocations.push_back(RelSection);
1269 }
1270 }
1271
1272 for (MCSectionELF *Group : Groups) {
1273 align(Group->getAlignment());
1274
1275 // Remember the offset into the file for this section.
1276 uint64_t SecStart = getStream().tell();
1277
1278 const MCSymbol *SignatureSymbol = Group->getGroup();
1279 assert(SignatureSymbol);
1280 write(uint32_t(ELF::GRP_COMDAT));
1281 for (const MCSectionELF *Member : GroupMembers[SignatureSymbol]) {
1282 uint32_t SecIndex = SectionIndexMap.lookup(Member);
1283 write(SecIndex);
1284 }
1285
1286 uint64_t SecEnd = getStream().tell();
1287 SectionOffsets[Group] = std::make_pair(SecStart, SecEnd);
1288 }
1289
1290 // Compute symbol table information.
1291 computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap, SectionOffsets);
1292
1293 for (MCSectionELF *RelSection : Relocations) {
1294 align(RelSection->getAlignment());
1295
1296 // Remember the offset into the file for this section.
1297 uint64_t SecStart = getStream().tell();
1298
1299 writeRelocations(Asm, *RelSection->getAssociatedSection());
1300
1301 uint64_t SecEnd = getStream().tell();
1302 SectionOffsets[RelSection] = std::make_pair(SecStart, SecEnd);
1303 }
1304
1305 {
1306 uint64_t SecStart = getStream().tell();
1307 const MCSectionELF *Sec = createStringTable(Ctx);
1308 uint64_t SecEnd = getStream().tell();
1309 SectionOffsets[Sec] = std::make_pair(SecStart, SecEnd);
1310 }
1311
1312 uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
1313 align(NaturalAlignment);
1314
1315 const uint64_t SectionHeaderOffset = getStream().tell();
1316
1317 // ... then the section header table ...
1318 writeSectionHeader(Layout, SectionIndexMap, SectionOffsets);
1319
1320 uint16_t NumSections = (SectionTable.size() + 1 >= ELF::SHN_LORESERVE)
1321 ? (uint16_t)ELF::SHN_UNDEF
1322 : SectionTable.size() + 1;
1323 if (sys::IsLittleEndianHost != IsLittleEndian)
1324 sys::swapByteOrder(NumSections);
1325 unsigned NumSectionsOffset;
1326
1327 if (is64Bit()) {
1328 uint64_t Val = SectionHeaderOffset;
1329 if (sys::IsLittleEndianHost != IsLittleEndian)
1330 sys::swapByteOrder(Val);
1331 getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1332 offsetof(ELF::Elf64_Ehdr, e_shoff));
1333 NumSectionsOffset = offsetof(ELF::Elf64_Ehdr, e_shnum);
1334 } else {
1335 uint32_t Val = SectionHeaderOffset;
1336 if (sys::IsLittleEndianHost != IsLittleEndian)
1337 sys::swapByteOrder(Val);
1338 getStream().pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1339 offsetof(ELF::Elf32_Ehdr, e_shoff));
1340 NumSectionsOffset = offsetof(ELF::Elf32_Ehdr, e_shnum);
1341 }
1342 getStream().pwrite(reinterpret_cast<char *>(&NumSections),
1343 sizeof(NumSections), NumSectionsOffset);
1344 }
1345
isSymbolRefDifferenceFullyResolvedImpl(const MCAssembler & Asm,const MCSymbol & SA,const MCFragment & FB,bool InSet,bool IsPCRel) const1346 bool ELFObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(
1347 const MCAssembler &Asm, const MCSymbol &SA, const MCFragment &FB,
1348 bool InSet, bool IsPCRel) const {
1349 const auto &SymA = cast<MCSymbolELF>(SA);
1350 if (IsPCRel) {
1351 assert(!InSet);
1352 if (::isWeak(SymA))
1353 return false;
1354 }
1355 return MCObjectWriter::isSymbolRefDifferenceFullyResolvedImpl(Asm, SymA, FB,
1356 InSet, IsPCRel);
1357 }
1358
isWeak(const MCSymbol & S) const1359 bool ELFObjectWriter::isWeak(const MCSymbol &S) const {
1360 const auto &Sym = cast<MCSymbolELF>(S);
1361 if (::isWeak(Sym))
1362 return true;
1363
1364 // It is invalid to replace a reference to a global in a comdat
1365 // with a reference to a local since out of comdat references
1366 // to a local are forbidden.
1367 // We could try to return false for more cases, like the reference
1368 // being in the same comdat or Sym being an alias to another global,
1369 // but it is not clear if it is worth the effort.
1370 if (Sym.getBinding() != ELF::STB_GLOBAL)
1371 return false;
1372
1373 if (!Sym.isInSection())
1374 return false;
1375
1376 const auto &Sec = cast<MCSectionELF>(Sym.getSection());
1377 return Sec.getGroup();
1378 }
1379
createELFObjectWriter(MCELFObjectTargetWriter * MOTW,raw_pwrite_stream & OS,bool IsLittleEndian)1380 MCObjectWriter *llvm::createELFObjectWriter(MCELFObjectTargetWriter *MOTW,
1381 raw_pwrite_stream &OS,
1382 bool IsLittleEndian) {
1383 return new ELFObjectWriter(MOTW, OS, IsLittleEndian);
1384 }
1385