1 //===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the X86-specific support for the FastISel class. Much
11 // of the target-specific code is generated by tablegen in the file
12 // X86GenFastISel.inc, which is #included here.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "X86.h"
17 #include "X86CallingConv.h"
18 #include "X86InstrBuilder.h"
19 #include "X86InstrInfo.h"
20 #include "X86MachineFunctionInfo.h"
21 #include "X86RegisterInfo.h"
22 #include "X86Subtarget.h"
23 #include "X86TargetMachine.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/GlobalVariable.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/MC/MCAsmInfo.h"
41 #include "llvm/MC/MCSymbol.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Target/TargetOptions.h"
44 using namespace llvm;
45
46 namespace {
47
48 class X86FastISel final : public FastISel {
49 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
50 /// make the right decision when generating code for different targets.
51 const X86Subtarget *Subtarget;
52
53 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
54 /// floating point ops.
55 /// When SSE is available, use it for f32 operations.
56 /// When SSE2 is available, use it for f64 operations.
57 bool X86ScalarSSEf64;
58 bool X86ScalarSSEf32;
59
60 public:
X86FastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)61 explicit X86FastISel(FunctionLoweringInfo &funcInfo,
62 const TargetLibraryInfo *libInfo)
63 : FastISel(funcInfo, libInfo) {
64 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
65 X86ScalarSSEf64 = Subtarget->hasSSE2();
66 X86ScalarSSEf32 = Subtarget->hasSSE1();
67 }
68
69 bool fastSelectInstruction(const Instruction *I) override;
70
71 /// \brief The specified machine instr operand is a vreg, and that
72 /// vreg is being provided by the specified load instruction. If possible,
73 /// try to fold the load as an operand to the instruction, returning true if
74 /// possible.
75 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
76 const LoadInst *LI) override;
77
78 bool fastLowerArguments() override;
79 bool fastLowerCall(CallLoweringInfo &CLI) override;
80 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
81
82 #include "X86GenFastISel.inc"
83
84 private:
85 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT,
86 const DebugLoc &DL);
87
88 bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
89 unsigned &ResultReg, unsigned Alignment = 1);
90
91 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
92 MachineMemOperand *MMO = nullptr, bool Aligned = false);
93 bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
94 X86AddressMode &AM,
95 MachineMemOperand *MMO = nullptr, bool Aligned = false);
96
97 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
98 unsigned &ResultReg);
99
100 bool X86SelectAddress(const Value *V, X86AddressMode &AM);
101 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
102
103 bool X86SelectLoad(const Instruction *I);
104
105 bool X86SelectStore(const Instruction *I);
106
107 bool X86SelectRet(const Instruction *I);
108
109 bool X86SelectCmp(const Instruction *I);
110
111 bool X86SelectZExt(const Instruction *I);
112
113 bool X86SelectBranch(const Instruction *I);
114
115 bool X86SelectShift(const Instruction *I);
116
117 bool X86SelectDivRem(const Instruction *I);
118
119 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
120
121 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
122
123 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
124
125 bool X86SelectSelect(const Instruction *I);
126
127 bool X86SelectTrunc(const Instruction *I);
128
129 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
130 const TargetRegisterClass *RC);
131
132 bool X86SelectFPExt(const Instruction *I);
133 bool X86SelectFPTrunc(const Instruction *I);
134 bool X86SelectSIToFP(const Instruction *I);
135
getInstrInfo() const136 const X86InstrInfo *getInstrInfo() const {
137 return Subtarget->getInstrInfo();
138 }
getTargetMachine() const139 const X86TargetMachine *getTargetMachine() const {
140 return static_cast<const X86TargetMachine *>(&TM);
141 }
142
143 bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
144
145 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
146 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
147 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
148 unsigned fastMaterializeConstant(const Constant *C) override;
149
150 unsigned fastMaterializeAlloca(const AllocaInst *C) override;
151
152 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
153
154 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
155 /// computed in an SSE register, not on the X87 floating point stack.
isScalarFPTypeInSSEReg(EVT VT) const156 bool isScalarFPTypeInSSEReg(EVT VT) const {
157 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
158 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
159 }
160
161 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
162
163 bool IsMemcpySmall(uint64_t Len);
164
165 bool TryEmitSmallMemcpy(X86AddressMode DestAM,
166 X86AddressMode SrcAM, uint64_t Len);
167
168 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
169 const Value *Cond);
170
171 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
172 X86AddressMode &AM);
173 };
174
175 } // end anonymous namespace.
176
177 static std::pair<X86::CondCode, bool>
getX86ConditionCode(CmpInst::Predicate Predicate)178 getX86ConditionCode(CmpInst::Predicate Predicate) {
179 X86::CondCode CC = X86::COND_INVALID;
180 bool NeedSwap = false;
181 switch (Predicate) {
182 default: break;
183 // Floating-point Predicates
184 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
185 case CmpInst::FCMP_OLT: NeedSwap = true; // fall-through
186 case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
187 case CmpInst::FCMP_OLE: NeedSwap = true; // fall-through
188 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
189 case CmpInst::FCMP_UGT: NeedSwap = true; // fall-through
190 case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
191 case CmpInst::FCMP_UGE: NeedSwap = true; // fall-through
192 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
193 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
194 case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
195 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
196 case CmpInst::FCMP_OEQ: // fall-through
197 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
198
199 // Integer Predicates
200 case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
201 case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
202 case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
203 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
204 case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
205 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
206 case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
207 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
208 case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
209 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
210 }
211
212 return std::make_pair(CC, NeedSwap);
213 }
214
215 static std::pair<unsigned, bool>
getX86SSEConditionCode(CmpInst::Predicate Predicate)216 getX86SSEConditionCode(CmpInst::Predicate Predicate) {
217 unsigned CC;
218 bool NeedSwap = false;
219
220 // SSE Condition code mapping:
221 // 0 - EQ
222 // 1 - LT
223 // 2 - LE
224 // 3 - UNORD
225 // 4 - NEQ
226 // 5 - NLT
227 // 6 - NLE
228 // 7 - ORD
229 switch (Predicate) {
230 default: llvm_unreachable("Unexpected predicate");
231 case CmpInst::FCMP_OEQ: CC = 0; break;
232 case CmpInst::FCMP_OGT: NeedSwap = true; // fall-through
233 case CmpInst::FCMP_OLT: CC = 1; break;
234 case CmpInst::FCMP_OGE: NeedSwap = true; // fall-through
235 case CmpInst::FCMP_OLE: CC = 2; break;
236 case CmpInst::FCMP_UNO: CC = 3; break;
237 case CmpInst::FCMP_UNE: CC = 4; break;
238 case CmpInst::FCMP_ULE: NeedSwap = true; // fall-through
239 case CmpInst::FCMP_UGE: CC = 5; break;
240 case CmpInst::FCMP_ULT: NeedSwap = true; // fall-through
241 case CmpInst::FCMP_UGT: CC = 6; break;
242 case CmpInst::FCMP_ORD: CC = 7; break;
243 case CmpInst::FCMP_UEQ:
244 case CmpInst::FCMP_ONE: CC = 8; break;
245 }
246
247 return std::make_pair(CC, NeedSwap);
248 }
249
250 /// \brief Adds a complex addressing mode to the given machine instr builder.
251 /// Note, this will constrain the index register. If its not possible to
252 /// constrain the given index register, then a new one will be created. The
253 /// IndexReg field of the addressing mode will be updated to match in this case.
254 const MachineInstrBuilder &
addFullAddress(const MachineInstrBuilder & MIB,X86AddressMode & AM)255 X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
256 X86AddressMode &AM) {
257 // First constrain the index register. It needs to be a GR64_NOSP.
258 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
259 MIB->getNumOperands() +
260 X86::AddrIndexReg);
261 return ::addFullAddress(MIB, AM);
262 }
263
264 /// \brief Check if it is possible to fold the condition from the XALU intrinsic
265 /// into the user. The condition code will only be updated on success.
foldX86XALUIntrinsic(X86::CondCode & CC,const Instruction * I,const Value * Cond)266 bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
267 const Value *Cond) {
268 if (!isa<ExtractValueInst>(Cond))
269 return false;
270
271 const auto *EV = cast<ExtractValueInst>(Cond);
272 if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
273 return false;
274
275 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
276 MVT RetVT;
277 const Function *Callee = II->getCalledFunction();
278 Type *RetTy =
279 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
280 if (!isTypeLegal(RetTy, RetVT))
281 return false;
282
283 if (RetVT != MVT::i32 && RetVT != MVT::i64)
284 return false;
285
286 X86::CondCode TmpCC;
287 switch (II->getIntrinsicID()) {
288 default: return false;
289 case Intrinsic::sadd_with_overflow:
290 case Intrinsic::ssub_with_overflow:
291 case Intrinsic::smul_with_overflow:
292 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
293 case Intrinsic::uadd_with_overflow:
294 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
295 }
296
297 // Check if both instructions are in the same basic block.
298 if (II->getParent() != I->getParent())
299 return false;
300
301 // Make sure nothing is in the way
302 BasicBlock::const_iterator Start(I);
303 BasicBlock::const_iterator End(II);
304 for (auto Itr = std::prev(Start); Itr != End; --Itr) {
305 // We only expect extractvalue instructions between the intrinsic and the
306 // instruction to be selected.
307 if (!isa<ExtractValueInst>(Itr))
308 return false;
309
310 // Check that the extractvalue operand comes from the intrinsic.
311 const auto *EVI = cast<ExtractValueInst>(Itr);
312 if (EVI->getAggregateOperand() != II)
313 return false;
314 }
315
316 CC = TmpCC;
317 return true;
318 }
319
isTypeLegal(Type * Ty,MVT & VT,bool AllowI1)320 bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
321 EVT evt = TLI.getValueType(DL, Ty, /*HandleUnknown=*/true);
322 if (evt == MVT::Other || !evt.isSimple())
323 // Unhandled type. Halt "fast" selection and bail.
324 return false;
325
326 VT = evt.getSimpleVT();
327 // For now, require SSE/SSE2 for performing floating-point operations,
328 // since x87 requires additional work.
329 if (VT == MVT::f64 && !X86ScalarSSEf64)
330 return false;
331 if (VT == MVT::f32 && !X86ScalarSSEf32)
332 return false;
333 // Similarly, no f80 support yet.
334 if (VT == MVT::f80)
335 return false;
336 // We only handle legal types. For example, on x86-32 the instruction
337 // selector contains all of the 64-bit instructions from x86-64,
338 // under the assumption that i64 won't be used if the target doesn't
339 // support it.
340 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
341 }
342
343 #include "X86GenCallingConv.inc"
344
345 /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
346 /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
347 /// Return true and the result register by reference if it is possible.
X86FastEmitLoad(EVT VT,X86AddressMode & AM,MachineMemOperand * MMO,unsigned & ResultReg,unsigned Alignment)348 bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM,
349 MachineMemOperand *MMO, unsigned &ResultReg,
350 unsigned Alignment) {
351 bool HasSSE41 = Subtarget->hasSSE41();
352 bool HasAVX = Subtarget->hasAVX();
353 bool HasAVX2 = Subtarget->hasAVX2();
354 bool IsNonTemporal = MMO && MMO->isNonTemporal();
355
356 // Get opcode and regclass of the output for the given load instruction.
357 unsigned Opc = 0;
358 const TargetRegisterClass *RC = nullptr;
359 switch (VT.getSimpleVT().SimpleTy) {
360 default: return false;
361 case MVT::i1:
362 case MVT::i8:
363 Opc = X86::MOV8rm;
364 RC = &X86::GR8RegClass;
365 break;
366 case MVT::i16:
367 Opc = X86::MOV16rm;
368 RC = &X86::GR16RegClass;
369 break;
370 case MVT::i32:
371 Opc = X86::MOV32rm;
372 RC = &X86::GR32RegClass;
373 break;
374 case MVT::i64:
375 // Must be in x86-64 mode.
376 Opc = X86::MOV64rm;
377 RC = &X86::GR64RegClass;
378 break;
379 case MVT::f32:
380 if (X86ScalarSSEf32) {
381 Opc = HasAVX ? X86::VMOVSSrm : X86::MOVSSrm;
382 RC = &X86::FR32RegClass;
383 } else {
384 Opc = X86::LD_Fp32m;
385 RC = &X86::RFP32RegClass;
386 }
387 break;
388 case MVT::f64:
389 if (X86ScalarSSEf64) {
390 Opc = HasAVX ? X86::VMOVSDrm : X86::MOVSDrm;
391 RC = &X86::FR64RegClass;
392 } else {
393 Opc = X86::LD_Fp64m;
394 RC = &X86::RFP64RegClass;
395 }
396 break;
397 case MVT::f80:
398 // No f80 support yet.
399 return false;
400 case MVT::v4f32:
401 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
402 Opc = HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
403 else if (Alignment >= 16)
404 Opc = HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm;
405 else
406 Opc = HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm;
407 RC = &X86::VR128RegClass;
408 break;
409 case MVT::v2f64:
410 if (IsNonTemporal && Alignment >= 16 && HasSSE41)
411 Opc = HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
412 else if (Alignment >= 16)
413 Opc = HasAVX ? X86::VMOVAPDrm : X86::MOVAPDrm;
414 else
415 Opc = HasAVX ? X86::VMOVUPDrm : X86::MOVUPDrm;
416 RC = &X86::VR128RegClass;
417 break;
418 case MVT::v4i32:
419 case MVT::v2i64:
420 case MVT::v8i16:
421 case MVT::v16i8:
422 if (IsNonTemporal && Alignment >= 16)
423 Opc = HasAVX ? X86::VMOVNTDQArm : X86::MOVNTDQArm;
424 else if (Alignment >= 16)
425 Opc = HasAVX ? X86::VMOVDQArm : X86::MOVDQArm;
426 else
427 Opc = HasAVX ? X86::VMOVDQUrm : X86::MOVDQUrm;
428 RC = &X86::VR128RegClass;
429 break;
430 case MVT::v8f32:
431 assert(HasAVX);
432 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
433 Opc = X86::VMOVNTDQAYrm;
434 else
435 Opc = (Alignment >= 32) ? X86::VMOVAPSYrm : X86::VMOVUPSYrm;
436 RC = &X86::VR256RegClass;
437 break;
438 case MVT::v4f64:
439 assert(HasAVX);
440 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
441 Opc = X86::VMOVNTDQAYrm;
442 else
443 Opc = (Alignment >= 32) ? X86::VMOVAPDYrm : X86::VMOVUPDYrm;
444 RC = &X86::VR256RegClass;
445 break;
446 case MVT::v8i32:
447 case MVT::v4i64:
448 case MVT::v16i16:
449 case MVT::v32i8:
450 assert(HasAVX);
451 if (IsNonTemporal && Alignment >= 32 && HasAVX2)
452 Opc = X86::VMOVNTDQAYrm;
453 else
454 Opc = (Alignment >= 32) ? X86::VMOVDQAYrm : X86::VMOVDQUYrm;
455 RC = &X86::VR256RegClass;
456 break;
457 case MVT::v16f32:
458 assert(Subtarget->hasAVX512());
459 if (IsNonTemporal && Alignment >= 64)
460 Opc = X86::VMOVNTDQAZrm;
461 else
462 Opc = (Alignment >= 64) ? X86::VMOVAPSZrm : X86::VMOVUPSZrm;
463 RC = &X86::VR512RegClass;
464 break;
465 case MVT::v8f64:
466 assert(Subtarget->hasAVX512());
467 if (IsNonTemporal && Alignment >= 64)
468 Opc = X86::VMOVNTDQAZrm;
469 else
470 Opc = (Alignment >= 64) ? X86::VMOVAPDZrm : X86::VMOVUPDZrm;
471 RC = &X86::VR512RegClass;
472 break;
473 case MVT::v8i64:
474 case MVT::v16i32:
475 case MVT::v32i16:
476 case MVT::v64i8:
477 assert(Subtarget->hasAVX512());
478 // Note: There are a lot more choices based on type with AVX-512, but
479 // there's really no advantage when the load isn't masked.
480 if (IsNonTemporal && Alignment >= 64)
481 Opc = X86::VMOVNTDQAZrm;
482 else
483 Opc = (Alignment >= 64) ? X86::VMOVDQA64Zrm : X86::VMOVDQU64Zrm;
484 RC = &X86::VR512RegClass;
485 break;
486 }
487
488 ResultReg = createResultReg(RC);
489 MachineInstrBuilder MIB =
490 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
491 addFullAddress(MIB, AM);
492 if (MMO)
493 MIB->addMemOperand(*FuncInfo.MF, MMO);
494 return true;
495 }
496
497 /// X86FastEmitStore - Emit a machine instruction to store a value Val of
498 /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
499 /// and a displacement offset, or a GlobalAddress,
500 /// i.e. V. Return true if it is possible.
X86FastEmitStore(EVT VT,unsigned ValReg,bool ValIsKill,X86AddressMode & AM,MachineMemOperand * MMO,bool Aligned)501 bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
502 X86AddressMode &AM,
503 MachineMemOperand *MMO, bool Aligned) {
504 bool HasSSE2 = Subtarget->hasSSE2();
505 bool HasSSE4A = Subtarget->hasSSE4A();
506 bool HasAVX = Subtarget->hasAVX();
507 bool IsNonTemporal = MMO && MMO->isNonTemporal();
508
509 // Get opcode and regclass of the output for the given store instruction.
510 unsigned Opc = 0;
511 switch (VT.getSimpleVT().SimpleTy) {
512 case MVT::f80: // No f80 support yet.
513 default: return false;
514 case MVT::i1: {
515 // Mask out all but lowest bit.
516 unsigned AndResult = createResultReg(&X86::GR8RegClass);
517 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
518 TII.get(X86::AND8ri), AndResult)
519 .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
520 ValReg = AndResult;
521 }
522 // FALLTHROUGH, handling i1 as i8.
523 case MVT::i8: Opc = X86::MOV8mr; break;
524 case MVT::i16: Opc = X86::MOV16mr; break;
525 case MVT::i32:
526 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTImr : X86::MOV32mr;
527 break;
528 case MVT::i64:
529 // Must be in x86-64 mode.
530 Opc = (IsNonTemporal && HasSSE2) ? X86::MOVNTI_64mr : X86::MOV64mr;
531 break;
532 case MVT::f32:
533 if (X86ScalarSSEf32) {
534 if (IsNonTemporal && HasSSE4A)
535 Opc = X86::MOVNTSS;
536 else
537 Opc = HasAVX ? X86::VMOVSSmr : X86::MOVSSmr;
538 } else
539 Opc = X86::ST_Fp32m;
540 break;
541 case MVT::f64:
542 if (X86ScalarSSEf32) {
543 if (IsNonTemporal && HasSSE4A)
544 Opc = X86::MOVNTSD;
545 else
546 Opc = HasAVX ? X86::VMOVSDmr : X86::MOVSDmr;
547 } else
548 Opc = X86::ST_Fp64m;
549 break;
550 case MVT::v4f32:
551 if (Aligned) {
552 if (IsNonTemporal)
553 Opc = HasAVX ? X86::VMOVNTPSmr : X86::MOVNTPSmr;
554 else
555 Opc = HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr;
556 } else
557 Opc = HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr;
558 break;
559 case MVT::v2f64:
560 if (Aligned) {
561 if (IsNonTemporal)
562 Opc = HasAVX ? X86::VMOVNTPDmr : X86::MOVNTPDmr;
563 else
564 Opc = HasAVX ? X86::VMOVAPDmr : X86::MOVAPDmr;
565 } else
566 Opc = HasAVX ? X86::VMOVUPDmr : X86::MOVUPDmr;
567 break;
568 case MVT::v4i32:
569 case MVT::v2i64:
570 case MVT::v8i16:
571 case MVT::v16i8:
572 if (Aligned) {
573 if (IsNonTemporal)
574 Opc = HasAVX ? X86::VMOVNTDQmr : X86::MOVNTDQmr;
575 else
576 Opc = HasAVX ? X86::VMOVDQAmr : X86::MOVDQAmr;
577 } else
578 Opc = HasAVX ? X86::VMOVDQUmr : X86::MOVDQUmr;
579 break;
580 case MVT::v8f32:
581 assert(HasAVX);
582 if (Aligned)
583 Opc = IsNonTemporal ? X86::VMOVNTPSYmr : X86::VMOVAPSYmr;
584 else
585 Opc = X86::VMOVUPSYmr;
586 break;
587 case MVT::v4f64:
588 assert(HasAVX);
589 if (Aligned) {
590 Opc = IsNonTemporal ? X86::VMOVNTPDYmr : X86::VMOVAPDYmr;
591 } else
592 Opc = X86::VMOVUPDYmr;
593 break;
594 case MVT::v8i32:
595 case MVT::v4i64:
596 case MVT::v16i16:
597 case MVT::v32i8:
598 assert(HasAVX);
599 if (Aligned)
600 Opc = IsNonTemporal ? X86::VMOVNTDQYmr : X86::VMOVDQAYmr;
601 else
602 Opc = X86::VMOVDQUYmr;
603 break;
604 case MVT::v16f32:
605 assert(Subtarget->hasAVX512());
606 if (Aligned)
607 Opc = IsNonTemporal ? X86::VMOVNTPSZmr : X86::VMOVAPSZmr;
608 else
609 Opc = X86::VMOVUPSZmr;
610 break;
611 case MVT::v8f64:
612 assert(Subtarget->hasAVX512());
613 if (Aligned) {
614 Opc = IsNonTemporal ? X86::VMOVNTPDZmr : X86::VMOVAPDZmr;
615 } else
616 Opc = X86::VMOVUPDZmr;
617 break;
618 case MVT::v8i64:
619 case MVT::v16i32:
620 case MVT::v32i16:
621 case MVT::v64i8:
622 assert(Subtarget->hasAVX512());
623 // Note: There are a lot more choices based on type with AVX-512, but
624 // there's really no advantage when the store isn't masked.
625 if (Aligned)
626 Opc = IsNonTemporal ? X86::VMOVNTDQZmr : X86::VMOVDQA64Zmr;
627 else
628 Opc = X86::VMOVDQU64Zmr;
629 break;
630 }
631
632 const MCInstrDesc &Desc = TII.get(Opc);
633 // Some of the instructions in the previous switch use FR128 instead
634 // of FR32 for ValReg. Make sure the register we feed the instruction
635 // matches its register class constraints.
636 // Note: This is fine to do a copy from FR32 to FR128, this is the
637 // same registers behind the scene and actually why it did not trigger
638 // any bugs before.
639 ValReg = constrainOperandRegClass(Desc, ValReg, Desc.getNumOperands() - 1);
640 MachineInstrBuilder MIB =
641 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, Desc);
642 addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
643 if (MMO)
644 MIB->addMemOperand(*FuncInfo.MF, MMO);
645
646 return true;
647 }
648
X86FastEmitStore(EVT VT,const Value * Val,X86AddressMode & AM,MachineMemOperand * MMO,bool Aligned)649 bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
650 X86AddressMode &AM,
651 MachineMemOperand *MMO, bool Aligned) {
652 // Handle 'null' like i32/i64 0.
653 if (isa<ConstantPointerNull>(Val))
654 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
655
656 // If this is a store of a simple constant, fold the constant into the store.
657 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
658 unsigned Opc = 0;
659 bool Signed = true;
660 switch (VT.getSimpleVT().SimpleTy) {
661 default: break;
662 case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8.
663 case MVT::i8: Opc = X86::MOV8mi; break;
664 case MVT::i16: Opc = X86::MOV16mi; break;
665 case MVT::i32: Opc = X86::MOV32mi; break;
666 case MVT::i64:
667 // Must be a 32-bit sign extended value.
668 if (isInt<32>(CI->getSExtValue()))
669 Opc = X86::MOV64mi32;
670 break;
671 }
672
673 if (Opc) {
674 MachineInstrBuilder MIB =
675 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
676 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
677 : CI->getZExtValue());
678 if (MMO)
679 MIB->addMemOperand(*FuncInfo.MF, MMO);
680 return true;
681 }
682 }
683
684 unsigned ValReg = getRegForValue(Val);
685 if (ValReg == 0)
686 return false;
687
688 bool ValKill = hasTrivialKill(Val);
689 return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
690 }
691
692 /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
693 /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
694 /// ISD::SIGN_EXTEND).
X86FastEmitExtend(ISD::NodeType Opc,EVT DstVT,unsigned Src,EVT SrcVT,unsigned & ResultReg)695 bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
696 unsigned Src, EVT SrcVT,
697 unsigned &ResultReg) {
698 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
699 Src, /*TODO: Kill=*/false);
700 if (RR == 0)
701 return false;
702
703 ResultReg = RR;
704 return true;
705 }
706
handleConstantAddresses(const Value * V,X86AddressMode & AM)707 bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
708 // Handle constant address.
709 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
710 // Can't handle alternate code models yet.
711 if (TM.getCodeModel() != CodeModel::Small)
712 return false;
713
714 // Can't handle TLS yet.
715 if (GV->isThreadLocal())
716 return false;
717
718 // RIP-relative addresses can't have additional register operands, so if
719 // we've already folded stuff into the addressing mode, just force the
720 // global value into its own register, which we can use as the basereg.
721 if (!Subtarget->isPICStyleRIPRel() ||
722 (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
723 // Okay, we've committed to selecting this global. Set up the address.
724 AM.GV = GV;
725
726 // Allow the subtarget to classify the global.
727 unsigned char GVFlags = Subtarget->classifyGlobalReference(GV);
728
729 // If this reference is relative to the pic base, set it now.
730 if (isGlobalRelativeToPICBase(GVFlags)) {
731 // FIXME: How do we know Base.Reg is free??
732 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
733 }
734
735 // Unless the ABI requires an extra load, return a direct reference to
736 // the global.
737 if (!isGlobalStubReference(GVFlags)) {
738 if (Subtarget->isPICStyleRIPRel()) {
739 // Use rip-relative addressing if we can. Above we verified that the
740 // base and index registers are unused.
741 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
742 AM.Base.Reg = X86::RIP;
743 }
744 AM.GVOpFlags = GVFlags;
745 return true;
746 }
747
748 // Ok, we need to do a load from a stub. If we've already loaded from
749 // this stub, reuse the loaded pointer, otherwise emit the load now.
750 DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
751 unsigned LoadReg;
752 if (I != LocalValueMap.end() && I->second != 0) {
753 LoadReg = I->second;
754 } else {
755 // Issue load from stub.
756 unsigned Opc = 0;
757 const TargetRegisterClass *RC = nullptr;
758 X86AddressMode StubAM;
759 StubAM.Base.Reg = AM.Base.Reg;
760 StubAM.GV = GV;
761 StubAM.GVOpFlags = GVFlags;
762
763 // Prepare for inserting code in the local-value area.
764 SavePoint SaveInsertPt = enterLocalValueArea();
765
766 if (TLI.getPointerTy(DL) == MVT::i64) {
767 Opc = X86::MOV64rm;
768 RC = &X86::GR64RegClass;
769
770 if (Subtarget->isPICStyleRIPRel())
771 StubAM.Base.Reg = X86::RIP;
772 } else {
773 Opc = X86::MOV32rm;
774 RC = &X86::GR32RegClass;
775 }
776
777 LoadReg = createResultReg(RC);
778 MachineInstrBuilder LoadMI =
779 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
780 addFullAddress(LoadMI, StubAM);
781
782 // Ok, back to normal mode.
783 leaveLocalValueArea(SaveInsertPt);
784
785 // Prevent loading GV stub multiple times in same MBB.
786 LocalValueMap[V] = LoadReg;
787 }
788
789 // Now construct the final address. Note that the Disp, Scale,
790 // and Index values may already be set here.
791 AM.Base.Reg = LoadReg;
792 AM.GV = nullptr;
793 return true;
794 }
795 }
796
797 // If all else fails, try to materialize the value in a register.
798 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
799 if (AM.Base.Reg == 0) {
800 AM.Base.Reg = getRegForValue(V);
801 return AM.Base.Reg != 0;
802 }
803 if (AM.IndexReg == 0) {
804 assert(AM.Scale == 1 && "Scale with no index!");
805 AM.IndexReg = getRegForValue(V);
806 return AM.IndexReg != 0;
807 }
808 }
809
810 return false;
811 }
812
813 /// X86SelectAddress - Attempt to fill in an address from the given value.
814 ///
X86SelectAddress(const Value * V,X86AddressMode & AM)815 bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
816 SmallVector<const Value *, 32> GEPs;
817 redo_gep:
818 const User *U = nullptr;
819 unsigned Opcode = Instruction::UserOp1;
820 if (const Instruction *I = dyn_cast<Instruction>(V)) {
821 // Don't walk into other basic blocks; it's possible we haven't
822 // visited them yet, so the instructions may not yet be assigned
823 // virtual registers.
824 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
825 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
826 Opcode = I->getOpcode();
827 U = I;
828 }
829 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
830 Opcode = C->getOpcode();
831 U = C;
832 }
833
834 if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
835 if (Ty->getAddressSpace() > 255)
836 // Fast instruction selection doesn't support the special
837 // address spaces.
838 return false;
839
840 switch (Opcode) {
841 default: break;
842 case Instruction::BitCast:
843 // Look past bitcasts.
844 return X86SelectAddress(U->getOperand(0), AM);
845
846 case Instruction::IntToPtr:
847 // Look past no-op inttoptrs.
848 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
849 TLI.getPointerTy(DL))
850 return X86SelectAddress(U->getOperand(0), AM);
851 break;
852
853 case Instruction::PtrToInt:
854 // Look past no-op ptrtoints.
855 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
856 return X86SelectAddress(U->getOperand(0), AM);
857 break;
858
859 case Instruction::Alloca: {
860 // Do static allocas.
861 const AllocaInst *A = cast<AllocaInst>(V);
862 DenseMap<const AllocaInst *, int>::iterator SI =
863 FuncInfo.StaticAllocaMap.find(A);
864 if (SI != FuncInfo.StaticAllocaMap.end()) {
865 AM.BaseType = X86AddressMode::FrameIndexBase;
866 AM.Base.FrameIndex = SI->second;
867 return true;
868 }
869 break;
870 }
871
872 case Instruction::Add: {
873 // Adds of constants are common and easy enough.
874 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
875 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
876 // They have to fit in the 32-bit signed displacement field though.
877 if (isInt<32>(Disp)) {
878 AM.Disp = (uint32_t)Disp;
879 return X86SelectAddress(U->getOperand(0), AM);
880 }
881 }
882 break;
883 }
884
885 case Instruction::GetElementPtr: {
886 X86AddressMode SavedAM = AM;
887
888 // Pattern-match simple GEPs.
889 uint64_t Disp = (int32_t)AM.Disp;
890 unsigned IndexReg = AM.IndexReg;
891 unsigned Scale = AM.Scale;
892 gep_type_iterator GTI = gep_type_begin(U);
893 // Iterate through the indices, folding what we can. Constants can be
894 // folded, and one dynamic index can be handled, if the scale is supported.
895 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
896 i != e; ++i, ++GTI) {
897 const Value *Op = *i;
898 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
899 const StructLayout *SL = DL.getStructLayout(STy);
900 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
901 continue;
902 }
903
904 // A array/variable index is always of the form i*S where S is the
905 // constant scale size. See if we can push the scale into immediates.
906 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
907 for (;;) {
908 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
909 // Constant-offset addressing.
910 Disp += CI->getSExtValue() * S;
911 break;
912 }
913 if (canFoldAddIntoGEP(U, Op)) {
914 // A compatible add with a constant operand. Fold the constant.
915 ConstantInt *CI =
916 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
917 Disp += CI->getSExtValue() * S;
918 // Iterate on the other operand.
919 Op = cast<AddOperator>(Op)->getOperand(0);
920 continue;
921 }
922 if (IndexReg == 0 &&
923 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
924 (S == 1 || S == 2 || S == 4 || S == 8)) {
925 // Scaled-index addressing.
926 Scale = S;
927 IndexReg = getRegForGEPIndex(Op).first;
928 if (IndexReg == 0)
929 return false;
930 break;
931 }
932 // Unsupported.
933 goto unsupported_gep;
934 }
935 }
936
937 // Check for displacement overflow.
938 if (!isInt<32>(Disp))
939 break;
940
941 AM.IndexReg = IndexReg;
942 AM.Scale = Scale;
943 AM.Disp = (uint32_t)Disp;
944 GEPs.push_back(V);
945
946 if (const GetElementPtrInst *GEP =
947 dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
948 // Ok, the GEP indices were covered by constant-offset and scaled-index
949 // addressing. Update the address state and move on to examining the base.
950 V = GEP;
951 goto redo_gep;
952 } else if (X86SelectAddress(U->getOperand(0), AM)) {
953 return true;
954 }
955
956 // If we couldn't merge the gep value into this addr mode, revert back to
957 // our address and just match the value instead of completely failing.
958 AM = SavedAM;
959
960 for (const Value *I : reverse(GEPs))
961 if (handleConstantAddresses(I, AM))
962 return true;
963
964 return false;
965 unsupported_gep:
966 // Ok, the GEP indices weren't all covered.
967 break;
968 }
969 }
970
971 return handleConstantAddresses(V, AM);
972 }
973
974 /// X86SelectCallAddress - Attempt to fill in an address from the given value.
975 ///
X86SelectCallAddress(const Value * V,X86AddressMode & AM)976 bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
977 const User *U = nullptr;
978 unsigned Opcode = Instruction::UserOp1;
979 const Instruction *I = dyn_cast<Instruction>(V);
980 // Record if the value is defined in the same basic block.
981 //
982 // This information is crucial to know whether or not folding an
983 // operand is valid.
984 // Indeed, FastISel generates or reuses a virtual register for all
985 // operands of all instructions it selects. Obviously, the definition and
986 // its uses must use the same virtual register otherwise the produced
987 // code is incorrect.
988 // Before instruction selection, FunctionLoweringInfo::set sets the virtual
989 // registers for values that are alive across basic blocks. This ensures
990 // that the values are consistently set between across basic block, even
991 // if different instruction selection mechanisms are used (e.g., a mix of
992 // SDISel and FastISel).
993 // For values local to a basic block, the instruction selection process
994 // generates these virtual registers with whatever method is appropriate
995 // for its needs. In particular, FastISel and SDISel do not share the way
996 // local virtual registers are set.
997 // Therefore, this is impossible (or at least unsafe) to share values
998 // between basic blocks unless they use the same instruction selection
999 // method, which is not guarantee for X86.
1000 // Moreover, things like hasOneUse could not be used accurately, if we
1001 // allow to reference values across basic blocks whereas they are not
1002 // alive across basic blocks initially.
1003 bool InMBB = true;
1004 if (I) {
1005 Opcode = I->getOpcode();
1006 U = I;
1007 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
1008 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
1009 Opcode = C->getOpcode();
1010 U = C;
1011 }
1012
1013 switch (Opcode) {
1014 default: break;
1015 case Instruction::BitCast:
1016 // Look past bitcasts if its operand is in the same BB.
1017 if (InMBB)
1018 return X86SelectCallAddress(U->getOperand(0), AM);
1019 break;
1020
1021 case Instruction::IntToPtr:
1022 // Look past no-op inttoptrs if its operand is in the same BB.
1023 if (InMBB &&
1024 TLI.getValueType(DL, U->getOperand(0)->getType()) ==
1025 TLI.getPointerTy(DL))
1026 return X86SelectCallAddress(U->getOperand(0), AM);
1027 break;
1028
1029 case Instruction::PtrToInt:
1030 // Look past no-op ptrtoints if its operand is in the same BB.
1031 if (InMBB && TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
1032 return X86SelectCallAddress(U->getOperand(0), AM);
1033 break;
1034 }
1035
1036 // Handle constant address.
1037 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1038 // Can't handle alternate code models yet.
1039 if (TM.getCodeModel() != CodeModel::Small)
1040 return false;
1041
1042 // RIP-relative addresses can't have additional register operands.
1043 if (Subtarget->isPICStyleRIPRel() &&
1044 (AM.Base.Reg != 0 || AM.IndexReg != 0))
1045 return false;
1046
1047 // Can't handle DLL Import.
1048 if (GV->hasDLLImportStorageClass())
1049 return false;
1050
1051 // Can't handle TLS.
1052 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
1053 if (GVar->isThreadLocal())
1054 return false;
1055
1056 // Okay, we've committed to selecting this global. Set up the basic address.
1057 AM.GV = GV;
1058
1059 // No ABI requires an extra load for anything other than DLLImport, which
1060 // we rejected above. Return a direct reference to the global.
1061 if (Subtarget->isPICStyleRIPRel()) {
1062 // Use rip-relative addressing if we can. Above we verified that the
1063 // base and index registers are unused.
1064 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
1065 AM.Base.Reg = X86::RIP;
1066 } else {
1067 AM.GVOpFlags = Subtarget->classifyLocalReference(nullptr);
1068 }
1069
1070 return true;
1071 }
1072
1073 // If all else fails, try to materialize the value in a register.
1074 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
1075 if (AM.Base.Reg == 0) {
1076 AM.Base.Reg = getRegForValue(V);
1077 return AM.Base.Reg != 0;
1078 }
1079 if (AM.IndexReg == 0) {
1080 assert(AM.Scale == 1 && "Scale with no index!");
1081 AM.IndexReg = getRegForValue(V);
1082 return AM.IndexReg != 0;
1083 }
1084 }
1085
1086 return false;
1087 }
1088
1089
1090 /// X86SelectStore - Select and emit code to implement store instructions.
X86SelectStore(const Instruction * I)1091 bool X86FastISel::X86SelectStore(const Instruction *I) {
1092 // Atomic stores need special handling.
1093 const StoreInst *S = cast<StoreInst>(I);
1094
1095 if (S->isAtomic())
1096 return false;
1097
1098 const Value *PtrV = I->getOperand(1);
1099 if (TLI.supportSwiftError()) {
1100 // Swifterror values can come from either a function parameter with
1101 // swifterror attribute or an alloca with swifterror attribute.
1102 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1103 if (Arg->hasSwiftErrorAttr())
1104 return false;
1105 }
1106
1107 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1108 if (Alloca->isSwiftError())
1109 return false;
1110 }
1111 }
1112
1113 const Value *Val = S->getValueOperand();
1114 const Value *Ptr = S->getPointerOperand();
1115
1116 MVT VT;
1117 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
1118 return false;
1119
1120 unsigned Alignment = S->getAlignment();
1121 unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
1122 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1123 Alignment = ABIAlignment;
1124 bool Aligned = Alignment >= ABIAlignment;
1125
1126 X86AddressMode AM;
1127 if (!X86SelectAddress(Ptr, AM))
1128 return false;
1129
1130 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
1131 }
1132
1133 /// X86SelectRet - Select and emit code to implement ret instructions.
X86SelectRet(const Instruction * I)1134 bool X86FastISel::X86SelectRet(const Instruction *I) {
1135 const ReturnInst *Ret = cast<ReturnInst>(I);
1136 const Function &F = *I->getParent()->getParent();
1137 const X86MachineFunctionInfo *X86MFInfo =
1138 FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
1139
1140 if (!FuncInfo.CanLowerReturn)
1141 return false;
1142
1143 if (TLI.supportSwiftError() &&
1144 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
1145 return false;
1146
1147 if (TLI.supportSplitCSR(FuncInfo.MF))
1148 return false;
1149
1150 CallingConv::ID CC = F.getCallingConv();
1151 if (CC != CallingConv::C &&
1152 CC != CallingConv::Fast &&
1153 CC != CallingConv::X86_FastCall &&
1154 CC != CallingConv::X86_StdCall &&
1155 CC != CallingConv::X86_ThisCall &&
1156 CC != CallingConv::X86_64_SysV)
1157 return false;
1158
1159 if (Subtarget->isCallingConvWin64(CC))
1160 return false;
1161
1162 // Don't handle popping bytes if they don't fit the ret's immediate.
1163 if (!isUInt<16>(X86MFInfo->getBytesToPopOnReturn()))
1164 return false;
1165
1166 // fastcc with -tailcallopt is intended to provide a guaranteed
1167 // tail call optimization. Fastisel doesn't know how to do that.
1168 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
1169 return false;
1170
1171 // Let SDISel handle vararg functions.
1172 if (F.isVarArg())
1173 return false;
1174
1175 // Build a list of return value registers.
1176 SmallVector<unsigned, 4> RetRegs;
1177
1178 if (Ret->getNumOperands() > 0) {
1179 SmallVector<ISD::OutputArg, 4> Outs;
1180 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1181
1182 // Analyze operands of the call, assigning locations to each operand.
1183 SmallVector<CCValAssign, 16> ValLocs;
1184 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1185 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1186
1187 const Value *RV = Ret->getOperand(0);
1188 unsigned Reg = getRegForValue(RV);
1189 if (Reg == 0)
1190 return false;
1191
1192 // Only handle a single return value for now.
1193 if (ValLocs.size() != 1)
1194 return false;
1195
1196 CCValAssign &VA = ValLocs[0];
1197
1198 // Don't bother handling odd stuff for now.
1199 if (VA.getLocInfo() != CCValAssign::Full)
1200 return false;
1201 // Only handle register returns for now.
1202 if (!VA.isRegLoc())
1203 return false;
1204
1205 // The calling-convention tables for x87 returns don't tell
1206 // the whole story.
1207 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1208 return false;
1209
1210 unsigned SrcReg = Reg + VA.getValNo();
1211 EVT SrcVT = TLI.getValueType(DL, RV->getType());
1212 EVT DstVT = VA.getValVT();
1213 // Special handling for extended integers.
1214 if (SrcVT != DstVT) {
1215 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1216 return false;
1217
1218 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1219 return false;
1220
1221 assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1222
1223 if (SrcVT == MVT::i1) {
1224 if (Outs[0].Flags.isSExt())
1225 return false;
1226 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1227 SrcVT = MVT::i8;
1228 }
1229 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1230 ISD::SIGN_EXTEND;
1231 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1232 SrcReg, /*TODO: Kill=*/false);
1233 }
1234
1235 // Make the copy.
1236 unsigned DstReg = VA.getLocReg();
1237 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1238 // Avoid a cross-class copy. This is very unlikely.
1239 if (!SrcRC->contains(DstReg))
1240 return false;
1241 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1242 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1243
1244 // Add register to return instruction.
1245 RetRegs.push_back(VA.getLocReg());
1246 }
1247
1248 // Swift calling convention does not require we copy the sret argument
1249 // into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
1250
1251 // All x86 ABIs require that for returning structs by value we copy
1252 // the sret argument into %rax/%eax (depending on ABI) for the return.
1253 // We saved the argument into a virtual register in the entry block,
1254 // so now we copy the value out and into %rax/%eax.
1255 if (F.hasStructRetAttr() && CC != CallingConv::Swift) {
1256 unsigned Reg = X86MFInfo->getSRetReturnReg();
1257 assert(Reg &&
1258 "SRetReturnReg should have been set in LowerFormalArguments()!");
1259 unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
1260 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1261 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1262 RetRegs.push_back(RetReg);
1263 }
1264
1265 // Now emit the RET.
1266 MachineInstrBuilder MIB;
1267 if (X86MFInfo->getBytesToPopOnReturn()) {
1268 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1269 TII.get(Subtarget->is64Bit() ? X86::RETIQ : X86::RETIL))
1270 .addImm(X86MFInfo->getBytesToPopOnReturn());
1271 } else {
1272 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1273 TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1274 }
1275 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1276 MIB.addReg(RetRegs[i], RegState::Implicit);
1277 return true;
1278 }
1279
1280 /// X86SelectLoad - Select and emit code to implement load instructions.
1281 ///
X86SelectLoad(const Instruction * I)1282 bool X86FastISel::X86SelectLoad(const Instruction *I) {
1283 const LoadInst *LI = cast<LoadInst>(I);
1284
1285 // Atomic loads need special handling.
1286 if (LI->isAtomic())
1287 return false;
1288
1289 const Value *SV = I->getOperand(0);
1290 if (TLI.supportSwiftError()) {
1291 // Swifterror values can come from either a function parameter with
1292 // swifterror attribute or an alloca with swifterror attribute.
1293 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1294 if (Arg->hasSwiftErrorAttr())
1295 return false;
1296 }
1297
1298 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1299 if (Alloca->isSwiftError())
1300 return false;
1301 }
1302 }
1303
1304 MVT VT;
1305 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1306 return false;
1307
1308 const Value *Ptr = LI->getPointerOperand();
1309
1310 X86AddressMode AM;
1311 if (!X86SelectAddress(Ptr, AM))
1312 return false;
1313
1314 unsigned Alignment = LI->getAlignment();
1315 unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1316 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1317 Alignment = ABIAlignment;
1318
1319 unsigned ResultReg = 0;
1320 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1321 Alignment))
1322 return false;
1323
1324 updateValueMap(I, ResultReg);
1325 return true;
1326 }
1327
X86ChooseCmpOpcode(EVT VT,const X86Subtarget * Subtarget)1328 static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1329 bool HasAVX = Subtarget->hasAVX();
1330 bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1331 bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1332
1333 switch (VT.getSimpleVT().SimpleTy) {
1334 default: return 0;
1335 case MVT::i8: return X86::CMP8rr;
1336 case MVT::i16: return X86::CMP16rr;
1337 case MVT::i32: return X86::CMP32rr;
1338 case MVT::i64: return X86::CMP64rr;
1339 case MVT::f32:
1340 return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
1341 case MVT::f64:
1342 return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
1343 }
1344 }
1345
1346 /// If we have a comparison with RHS as the RHS of the comparison, return an
1347 /// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
X86ChooseCmpImmediateOpcode(EVT VT,const ConstantInt * RHSC)1348 static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
1349 int64_t Val = RHSC->getSExtValue();
1350 switch (VT.getSimpleVT().SimpleTy) {
1351 // Otherwise, we can't fold the immediate into this comparison.
1352 default:
1353 return 0;
1354 case MVT::i8:
1355 return X86::CMP8ri;
1356 case MVT::i16:
1357 if (isInt<8>(Val))
1358 return X86::CMP16ri8;
1359 return X86::CMP16ri;
1360 case MVT::i32:
1361 if (isInt<8>(Val))
1362 return X86::CMP32ri8;
1363 return X86::CMP32ri;
1364 case MVT::i64:
1365 if (isInt<8>(Val))
1366 return X86::CMP64ri8;
1367 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1368 // field.
1369 if (isInt<32>(Val))
1370 return X86::CMP64ri32;
1371 return 0;
1372 }
1373 }
1374
X86FastEmitCompare(const Value * Op0,const Value * Op1,EVT VT,const DebugLoc & CurDbgLoc)1375 bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT,
1376 const DebugLoc &CurDbgLoc) {
1377 unsigned Op0Reg = getRegForValue(Op0);
1378 if (Op0Reg == 0) return false;
1379
1380 // Handle 'null' like i32/i64 0.
1381 if (isa<ConstantPointerNull>(Op1))
1382 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1383
1384 // We have two options: compare with register or immediate. If the RHS of
1385 // the compare is an immediate that we can fold into this compare, use
1386 // CMPri, otherwise use CMPrr.
1387 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1388 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1389 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1390 .addReg(Op0Reg)
1391 .addImm(Op1C->getSExtValue());
1392 return true;
1393 }
1394 }
1395
1396 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1397 if (CompareOpc == 0) return false;
1398
1399 unsigned Op1Reg = getRegForValue(Op1);
1400 if (Op1Reg == 0) return false;
1401 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1402 .addReg(Op0Reg)
1403 .addReg(Op1Reg);
1404
1405 return true;
1406 }
1407
X86SelectCmp(const Instruction * I)1408 bool X86FastISel::X86SelectCmp(const Instruction *I) {
1409 const CmpInst *CI = cast<CmpInst>(I);
1410
1411 MVT VT;
1412 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1413 return false;
1414
1415 if (I->getType()->isIntegerTy(1) && Subtarget->hasAVX512())
1416 return false;
1417
1418 // Try to optimize or fold the cmp.
1419 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1420 unsigned ResultReg = 0;
1421 switch (Predicate) {
1422 default: break;
1423 case CmpInst::FCMP_FALSE: {
1424 ResultReg = createResultReg(&X86::GR32RegClass);
1425 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1426 ResultReg);
1427 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1428 X86::sub_8bit);
1429 if (!ResultReg)
1430 return false;
1431 break;
1432 }
1433 case CmpInst::FCMP_TRUE: {
1434 ResultReg = createResultReg(&X86::GR8RegClass);
1435 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1436 ResultReg).addImm(1);
1437 break;
1438 }
1439 }
1440
1441 if (ResultReg) {
1442 updateValueMap(I, ResultReg);
1443 return true;
1444 }
1445
1446 const Value *LHS = CI->getOperand(0);
1447 const Value *RHS = CI->getOperand(1);
1448
1449 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1450 // We don't have to materialize a zero constant for this case and can just use
1451 // %x again on the RHS.
1452 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1453 const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1454 if (RHSC && RHSC->isNullValue())
1455 RHS = LHS;
1456 }
1457
1458 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1459 static unsigned SETFOpcTable[2][3] = {
1460 { X86::SETEr, X86::SETNPr, X86::AND8rr },
1461 { X86::SETNEr, X86::SETPr, X86::OR8rr }
1462 };
1463 unsigned *SETFOpc = nullptr;
1464 switch (Predicate) {
1465 default: break;
1466 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1467 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1468 }
1469
1470 ResultReg = createResultReg(&X86::GR8RegClass);
1471 if (SETFOpc) {
1472 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1473 return false;
1474
1475 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1476 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1477 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1478 FlagReg1);
1479 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1480 FlagReg2);
1481 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1482 ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1483 updateValueMap(I, ResultReg);
1484 return true;
1485 }
1486
1487 X86::CondCode CC;
1488 bool SwapArgs;
1489 std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1490 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1491 unsigned Opc = X86::getSETFromCond(CC);
1492
1493 if (SwapArgs)
1494 std::swap(LHS, RHS);
1495
1496 // Emit a compare of LHS/RHS.
1497 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1498 return false;
1499
1500 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
1501 updateValueMap(I, ResultReg);
1502 return true;
1503 }
1504
X86SelectZExt(const Instruction * I)1505 bool X86FastISel::X86SelectZExt(const Instruction *I) {
1506 EVT DstVT = TLI.getValueType(DL, I->getType());
1507 if (!TLI.isTypeLegal(DstVT))
1508 return false;
1509
1510 unsigned ResultReg = getRegForValue(I->getOperand(0));
1511 if (ResultReg == 0)
1512 return false;
1513
1514 // Handle zero-extension from i1 to i8, which is common.
1515 MVT SrcVT = TLI.getSimpleValueType(DL, I->getOperand(0)->getType());
1516 if (SrcVT.SimpleTy == MVT::i1) {
1517 // Set the high bits to zero.
1518 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1519 SrcVT = MVT::i8;
1520
1521 if (ResultReg == 0)
1522 return false;
1523 }
1524
1525 if (DstVT == MVT::i64) {
1526 // Handle extension to 64-bits via sub-register shenanigans.
1527 unsigned MovInst;
1528
1529 switch (SrcVT.SimpleTy) {
1530 case MVT::i8: MovInst = X86::MOVZX32rr8; break;
1531 case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1532 case MVT::i32: MovInst = X86::MOV32rr; break;
1533 default: llvm_unreachable("Unexpected zext to i64 source type");
1534 }
1535
1536 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1537 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1538 .addReg(ResultReg);
1539
1540 ResultReg = createResultReg(&X86::GR64RegClass);
1541 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1542 ResultReg)
1543 .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1544 } else if (DstVT != MVT::i8) {
1545 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1546 ResultReg, /*Kill=*/true);
1547 if (ResultReg == 0)
1548 return false;
1549 }
1550
1551 updateValueMap(I, ResultReg);
1552 return true;
1553 }
1554
X86SelectBranch(const Instruction * I)1555 bool X86FastISel::X86SelectBranch(const Instruction *I) {
1556 // Unconditional branches are selected by tablegen-generated code.
1557 // Handle a conditional branch.
1558 const BranchInst *BI = cast<BranchInst>(I);
1559 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1560 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1561
1562 // Fold the common case of a conditional branch with a comparison
1563 // in the same block (values defined on other blocks may not have
1564 // initialized registers).
1565 X86::CondCode CC;
1566 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1567 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1568 EVT VT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1569
1570 // Try to optimize or fold the cmp.
1571 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1572 switch (Predicate) {
1573 default: break;
1574 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1575 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true;
1576 }
1577
1578 const Value *CmpLHS = CI->getOperand(0);
1579 const Value *CmpRHS = CI->getOperand(1);
1580
1581 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1582 // 0.0.
1583 // We don't have to materialize a zero constant for this case and can just
1584 // use %x again on the RHS.
1585 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1586 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1587 if (CmpRHSC && CmpRHSC->isNullValue())
1588 CmpRHS = CmpLHS;
1589 }
1590
1591 // Try to take advantage of fallthrough opportunities.
1592 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1593 std::swap(TrueMBB, FalseMBB);
1594 Predicate = CmpInst::getInversePredicate(Predicate);
1595 }
1596
1597 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1598 // code check. Instead two branch instructions are required to check all
1599 // the flags. First we change the predicate to a supported condition code,
1600 // which will be the first branch. Later one we will emit the second
1601 // branch.
1602 bool NeedExtraBranch = false;
1603 switch (Predicate) {
1604 default: break;
1605 case CmpInst::FCMP_OEQ:
1606 std::swap(TrueMBB, FalseMBB); // fall-through
1607 case CmpInst::FCMP_UNE:
1608 NeedExtraBranch = true;
1609 Predicate = CmpInst::FCMP_ONE;
1610 break;
1611 }
1612
1613 bool SwapArgs;
1614 unsigned BranchOpc;
1615 std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1616 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1617
1618 BranchOpc = X86::GetCondBranchFromCond(CC);
1619 if (SwapArgs)
1620 std::swap(CmpLHS, CmpRHS);
1621
1622 // Emit a compare of the LHS and RHS, setting the flags.
1623 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1624 return false;
1625
1626 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1627 .addMBB(TrueMBB);
1628
1629 // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1630 // to UNE above).
1631 if (NeedExtraBranch) {
1632 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
1633 .addMBB(TrueMBB);
1634 }
1635
1636 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1637 return true;
1638 }
1639 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1640 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1641 // typically happen for _Bool and C++ bools.
1642 MVT SourceVT;
1643 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1644 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1645 unsigned TestOpc = 0;
1646 switch (SourceVT.SimpleTy) {
1647 default: break;
1648 case MVT::i8: TestOpc = X86::TEST8ri; break;
1649 case MVT::i16: TestOpc = X86::TEST16ri; break;
1650 case MVT::i32: TestOpc = X86::TEST32ri; break;
1651 case MVT::i64: TestOpc = X86::TEST64ri32; break;
1652 }
1653 if (TestOpc) {
1654 unsigned OpReg = getRegForValue(TI->getOperand(0));
1655 if (OpReg == 0) return false;
1656 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1657 .addReg(OpReg).addImm(1);
1658
1659 unsigned JmpOpc = X86::JNE_1;
1660 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1661 std::swap(TrueMBB, FalseMBB);
1662 JmpOpc = X86::JE_1;
1663 }
1664
1665 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
1666 .addMBB(TrueMBB);
1667
1668 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1669 return true;
1670 }
1671 }
1672 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1673 // Fake request the condition, otherwise the intrinsic might be completely
1674 // optimized away.
1675 unsigned TmpReg = getRegForValue(BI->getCondition());
1676 if (TmpReg == 0)
1677 return false;
1678
1679 unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
1680
1681 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1682 .addMBB(TrueMBB);
1683 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1684 return true;
1685 }
1686
1687 // Otherwise do a clumsy setcc and re-test it.
1688 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1689 // in an explicit cast, so make sure to handle that correctly.
1690 unsigned OpReg = getRegForValue(BI->getCondition());
1691 if (OpReg == 0) return false;
1692
1693 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1694 .addReg(OpReg).addImm(1);
1695 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
1696 .addMBB(TrueMBB);
1697 finishCondBranch(BI->getParent(), TrueMBB, FalseMBB);
1698 return true;
1699 }
1700
X86SelectShift(const Instruction * I)1701 bool X86FastISel::X86SelectShift(const Instruction *I) {
1702 unsigned CReg = 0, OpReg = 0;
1703 const TargetRegisterClass *RC = nullptr;
1704 if (I->getType()->isIntegerTy(8)) {
1705 CReg = X86::CL;
1706 RC = &X86::GR8RegClass;
1707 switch (I->getOpcode()) {
1708 case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1709 case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1710 case Instruction::Shl: OpReg = X86::SHL8rCL; break;
1711 default: return false;
1712 }
1713 } else if (I->getType()->isIntegerTy(16)) {
1714 CReg = X86::CX;
1715 RC = &X86::GR16RegClass;
1716 switch (I->getOpcode()) {
1717 case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1718 case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1719 case Instruction::Shl: OpReg = X86::SHL16rCL; break;
1720 default: return false;
1721 }
1722 } else if (I->getType()->isIntegerTy(32)) {
1723 CReg = X86::ECX;
1724 RC = &X86::GR32RegClass;
1725 switch (I->getOpcode()) {
1726 case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1727 case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1728 case Instruction::Shl: OpReg = X86::SHL32rCL; break;
1729 default: return false;
1730 }
1731 } else if (I->getType()->isIntegerTy(64)) {
1732 CReg = X86::RCX;
1733 RC = &X86::GR64RegClass;
1734 switch (I->getOpcode()) {
1735 case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1736 case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1737 case Instruction::Shl: OpReg = X86::SHL64rCL; break;
1738 default: return false;
1739 }
1740 } else {
1741 return false;
1742 }
1743
1744 MVT VT;
1745 if (!isTypeLegal(I->getType(), VT))
1746 return false;
1747
1748 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1749 if (Op0Reg == 0) return false;
1750
1751 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1752 if (Op1Reg == 0) return false;
1753 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1754 CReg).addReg(Op1Reg);
1755
1756 // The shift instruction uses X86::CL. If we defined a super-register
1757 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1758 if (CReg != X86::CL)
1759 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1760 TII.get(TargetOpcode::KILL), X86::CL)
1761 .addReg(CReg, RegState::Kill);
1762
1763 unsigned ResultReg = createResultReg(RC);
1764 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1765 .addReg(Op0Reg);
1766 updateValueMap(I, ResultReg);
1767 return true;
1768 }
1769
X86SelectDivRem(const Instruction * I)1770 bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1771 const static unsigned NumTypes = 4; // i8, i16, i32, i64
1772 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
1773 const static bool S = true; // IsSigned
1774 const static bool U = false; // !IsSigned
1775 const static unsigned Copy = TargetOpcode::COPY;
1776 // For the X86 DIV/IDIV instruction, in most cases the dividend
1777 // (numerator) must be in a specific register pair highreg:lowreg,
1778 // producing the quotient in lowreg and the remainder in highreg.
1779 // For most data types, to set up the instruction, the dividend is
1780 // copied into lowreg, and lowreg is sign-extended or zero-extended
1781 // into highreg. The exception is i8, where the dividend is defined
1782 // as a single register rather than a register pair, and we
1783 // therefore directly sign-extend or zero-extend the dividend into
1784 // lowreg, instead of copying, and ignore the highreg.
1785 const static struct DivRemEntry {
1786 // The following portion depends only on the data type.
1787 const TargetRegisterClass *RC;
1788 unsigned LowInReg; // low part of the register pair
1789 unsigned HighInReg; // high part of the register pair
1790 // The following portion depends on both the data type and the operation.
1791 struct DivRemResult {
1792 unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
1793 unsigned OpSignExtend; // Opcode for sign-extending lowreg into
1794 // highreg, or copying a zero into highreg.
1795 unsigned OpCopy; // Opcode for copying dividend into lowreg, or
1796 // zero/sign-extending into lowreg for i8.
1797 unsigned DivRemResultReg; // Register containing the desired result.
1798 bool IsOpSigned; // Whether to use signed or unsigned form.
1799 } ResultTable[NumOps];
1800 } OpTable[NumTypes] = {
1801 { &X86::GR8RegClass, X86::AX, 0, {
1802 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
1803 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
1804 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
1805 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
1806 }
1807 }, // i8
1808 { &X86::GR16RegClass, X86::AX, X86::DX, {
1809 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
1810 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
1811 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
1812 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
1813 }
1814 }, // i16
1815 { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1816 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
1817 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
1818 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
1819 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
1820 }
1821 }, // i32
1822 { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1823 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
1824 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
1825 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
1826 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
1827 }
1828 }, // i64
1829 };
1830
1831 MVT VT;
1832 if (!isTypeLegal(I->getType(), VT))
1833 return false;
1834
1835 unsigned TypeIndex, OpIndex;
1836 switch (VT.SimpleTy) {
1837 default: return false;
1838 case MVT::i8: TypeIndex = 0; break;
1839 case MVT::i16: TypeIndex = 1; break;
1840 case MVT::i32: TypeIndex = 2; break;
1841 case MVT::i64: TypeIndex = 3;
1842 if (!Subtarget->is64Bit())
1843 return false;
1844 break;
1845 }
1846
1847 switch (I->getOpcode()) {
1848 default: llvm_unreachable("Unexpected div/rem opcode");
1849 case Instruction::SDiv: OpIndex = 0; break;
1850 case Instruction::SRem: OpIndex = 1; break;
1851 case Instruction::UDiv: OpIndex = 2; break;
1852 case Instruction::URem: OpIndex = 3; break;
1853 }
1854
1855 const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1856 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1857 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1858 if (Op0Reg == 0)
1859 return false;
1860 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1861 if (Op1Reg == 0)
1862 return false;
1863
1864 // Move op0 into low-order input register.
1865 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1866 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1867 // Zero-extend or sign-extend into high-order input register.
1868 if (OpEntry.OpSignExtend) {
1869 if (OpEntry.IsOpSigned)
1870 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1871 TII.get(OpEntry.OpSignExtend));
1872 else {
1873 unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1874 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1875 TII.get(X86::MOV32r0), Zero32);
1876
1877 // Copy the zero into the appropriate sub/super/identical physical
1878 // register. Unfortunately the operations needed are not uniform enough
1879 // to fit neatly into the table above.
1880 if (VT.SimpleTy == MVT::i16) {
1881 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1882 TII.get(Copy), TypeEntry.HighInReg)
1883 .addReg(Zero32, 0, X86::sub_16bit);
1884 } else if (VT.SimpleTy == MVT::i32) {
1885 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1886 TII.get(Copy), TypeEntry.HighInReg)
1887 .addReg(Zero32);
1888 } else if (VT.SimpleTy == MVT::i64) {
1889 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1890 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1891 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1892 }
1893 }
1894 }
1895 // Generate the DIV/IDIV instruction.
1896 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1897 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1898 // For i8 remainder, we can't reference AH directly, as we'll end
1899 // up with bogus copies like %R9B = COPY %AH. Reference AX
1900 // instead to prevent AH references in a REX instruction.
1901 //
1902 // The current assumption of the fast register allocator is that isel
1903 // won't generate explicit references to the GPR8_NOREX registers. If
1904 // the allocator and/or the backend get enhanced to be more robust in
1905 // that regard, this can be, and should be, removed.
1906 unsigned ResultReg = 0;
1907 if ((I->getOpcode() == Instruction::SRem ||
1908 I->getOpcode() == Instruction::URem) &&
1909 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1910 unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
1911 unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
1912 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1913 TII.get(Copy), SourceSuperReg).addReg(X86::AX);
1914
1915 // Shift AX right by 8 bits instead of using AH.
1916 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
1917 ResultSuperReg).addReg(SourceSuperReg).addImm(8);
1918
1919 // Now reference the 8-bit subreg of the result.
1920 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
1921 /*Kill=*/true, X86::sub_8bit);
1922 }
1923 // Copy the result out of the physreg if we haven't already.
1924 if (!ResultReg) {
1925 ResultReg = createResultReg(TypeEntry.RC);
1926 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
1927 .addReg(OpEntry.DivRemResultReg);
1928 }
1929 updateValueMap(I, ResultReg);
1930
1931 return true;
1932 }
1933
1934 /// \brief Emit a conditional move instruction (if the are supported) to lower
1935 /// the select.
X86FastEmitCMoveSelect(MVT RetVT,const Instruction * I)1936 bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
1937 // Check if the subtarget supports these instructions.
1938 if (!Subtarget->hasCMov())
1939 return false;
1940
1941 // FIXME: Add support for i8.
1942 if (RetVT < MVT::i16 || RetVT > MVT::i64)
1943 return false;
1944
1945 const Value *Cond = I->getOperand(0);
1946 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
1947 bool NeedTest = true;
1948 X86::CondCode CC = X86::COND_NE;
1949
1950 // Optimize conditions coming from a compare if both instructions are in the
1951 // same basic block (values defined in other basic blocks may not have
1952 // initialized registers).
1953 const auto *CI = dyn_cast<CmpInst>(Cond);
1954 if (CI && (CI->getParent() == I->getParent())) {
1955 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1956
1957 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1958 static unsigned SETFOpcTable[2][3] = {
1959 { X86::SETNPr, X86::SETEr , X86::TEST8rr },
1960 { X86::SETPr, X86::SETNEr, X86::OR8rr }
1961 };
1962 unsigned *SETFOpc = nullptr;
1963 switch (Predicate) {
1964 default: break;
1965 case CmpInst::FCMP_OEQ:
1966 SETFOpc = &SETFOpcTable[0][0];
1967 Predicate = CmpInst::ICMP_NE;
1968 break;
1969 case CmpInst::FCMP_UNE:
1970 SETFOpc = &SETFOpcTable[1][0];
1971 Predicate = CmpInst::ICMP_NE;
1972 break;
1973 }
1974
1975 bool NeedSwap;
1976 std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate);
1977 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1978
1979 const Value *CmpLHS = CI->getOperand(0);
1980 const Value *CmpRHS = CI->getOperand(1);
1981 if (NeedSwap)
1982 std::swap(CmpLHS, CmpRHS);
1983
1984 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
1985 // Emit a compare of the LHS and RHS, setting the flags.
1986 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
1987 return false;
1988
1989 if (SETFOpc) {
1990 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1991 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1992 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1993 FlagReg1);
1994 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1995 FlagReg2);
1996 auto const &II = TII.get(SETFOpc[2]);
1997 if (II.getNumDefs()) {
1998 unsigned TmpReg = createResultReg(&X86::GR8RegClass);
1999 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
2000 .addReg(FlagReg2).addReg(FlagReg1);
2001 } else {
2002 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
2003 .addReg(FlagReg2).addReg(FlagReg1);
2004 }
2005 }
2006 NeedTest = false;
2007 } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
2008 // Fake request the condition, otherwise the intrinsic might be completely
2009 // optimized away.
2010 unsigned TmpReg = getRegForValue(Cond);
2011 if (TmpReg == 0)
2012 return false;
2013
2014 NeedTest = false;
2015 }
2016
2017 if (NeedTest) {
2018 // Selects operate on i1, however, CondReg is 8 bits width and may contain
2019 // garbage. Indeed, only the less significant bit is supposed to be
2020 // accurate. If we read more than the lsb, we may see non-zero values
2021 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
2022 // the select. This is achieved by performing TEST against 1.
2023 unsigned CondReg = getRegForValue(Cond);
2024 if (CondReg == 0)
2025 return false;
2026 bool CondIsKill = hasTrivialKill(Cond);
2027
2028 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2029 .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
2030 }
2031
2032 const Value *LHS = I->getOperand(1);
2033 const Value *RHS = I->getOperand(2);
2034
2035 unsigned RHSReg = getRegForValue(RHS);
2036 bool RHSIsKill = hasTrivialKill(RHS);
2037
2038 unsigned LHSReg = getRegForValue(LHS);
2039 bool LHSIsKill = hasTrivialKill(LHS);
2040
2041 if (!LHSReg || !RHSReg)
2042 return false;
2043
2044 unsigned Opc = X86::getCMovFromCond(CC, RC->getSize());
2045 unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
2046 LHSReg, LHSIsKill);
2047 updateValueMap(I, ResultReg);
2048 return true;
2049 }
2050
2051 /// \brief Emit SSE or AVX instructions to lower the select.
2052 ///
2053 /// Try to use SSE1/SSE2 instructions to simulate a select without branches.
2054 /// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
2055 /// SSE instructions are available. If AVX is available, try to use a VBLENDV.
X86FastEmitSSESelect(MVT RetVT,const Instruction * I)2056 bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
2057 // Optimize conditions coming from a compare if both instructions are in the
2058 // same basic block (values defined in other basic blocks may not have
2059 // initialized registers).
2060 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
2061 if (!CI || (CI->getParent() != I->getParent()))
2062 return false;
2063
2064 if (I->getType() != CI->getOperand(0)->getType() ||
2065 !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
2066 (Subtarget->hasSSE2() && RetVT == MVT::f64)))
2067 return false;
2068
2069 const Value *CmpLHS = CI->getOperand(0);
2070 const Value *CmpRHS = CI->getOperand(1);
2071 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2072
2073 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
2074 // We don't have to materialize a zero constant for this case and can just use
2075 // %x again on the RHS.
2076 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
2077 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
2078 if (CmpRHSC && CmpRHSC->isNullValue())
2079 CmpRHS = CmpLHS;
2080 }
2081
2082 unsigned CC;
2083 bool NeedSwap;
2084 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
2085 if (CC > 7)
2086 return false;
2087
2088 if (NeedSwap)
2089 std::swap(CmpLHS, CmpRHS);
2090
2091 // Choose the SSE instruction sequence based on data type (float or double).
2092 static unsigned OpcTable[2][4] = {
2093 { X86::CMPSSrr, X86::FsANDPSrr, X86::FsANDNPSrr, X86::FsORPSrr },
2094 { X86::CMPSDrr, X86::FsANDPDrr, X86::FsANDNPDrr, X86::FsORPDrr }
2095 };
2096
2097 unsigned *Opc = nullptr;
2098 switch (RetVT.SimpleTy) {
2099 default: return false;
2100 case MVT::f32: Opc = &OpcTable[0][0]; break;
2101 case MVT::f64: Opc = &OpcTable[1][0]; break;
2102 }
2103
2104 const Value *LHS = I->getOperand(1);
2105 const Value *RHS = I->getOperand(2);
2106
2107 unsigned LHSReg = getRegForValue(LHS);
2108 bool LHSIsKill = hasTrivialKill(LHS);
2109
2110 unsigned RHSReg = getRegForValue(RHS);
2111 bool RHSIsKill = hasTrivialKill(RHS);
2112
2113 unsigned CmpLHSReg = getRegForValue(CmpLHS);
2114 bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
2115
2116 unsigned CmpRHSReg = getRegForValue(CmpRHS);
2117 bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
2118
2119 if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
2120 return false;
2121
2122 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2123 unsigned ResultReg;
2124
2125 if (Subtarget->hasAVX()) {
2126 const TargetRegisterClass *FR32 = &X86::FR32RegClass;
2127 const TargetRegisterClass *VR128 = &X86::VR128RegClass;
2128
2129 // If we have AVX, create 1 blendv instead of 3 logic instructions.
2130 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
2131 // uses XMM0 as the selection register. That may need just as many
2132 // instructions as the AND/ANDN/OR sequence due to register moves, so
2133 // don't bother.
2134 unsigned CmpOpcode =
2135 (RetVT.SimpleTy == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
2136 unsigned BlendOpcode =
2137 (RetVT.SimpleTy == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
2138
2139 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, FR32, CmpLHSReg, CmpLHSIsKill,
2140 CmpRHSReg, CmpRHSIsKill, CC);
2141 unsigned VBlendReg = fastEmitInst_rrr(BlendOpcode, VR128, RHSReg, RHSIsKill,
2142 LHSReg, LHSIsKill, CmpReg, true);
2143 ResultReg = createResultReg(RC);
2144 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2145 TII.get(TargetOpcode::COPY), ResultReg).addReg(VBlendReg);
2146 } else {
2147 unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
2148 CmpRHSReg, CmpRHSIsKill, CC);
2149 unsigned AndReg = fastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,
2150 LHSReg, LHSIsKill);
2151 unsigned AndNReg = fastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,
2152 RHSReg, RHSIsKill);
2153 ResultReg = fastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,
2154 AndReg, /*IsKill=*/true);
2155 }
2156 updateValueMap(I, ResultReg);
2157 return true;
2158 }
2159
X86FastEmitPseudoSelect(MVT RetVT,const Instruction * I)2160 bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
2161 // These are pseudo CMOV instructions and will be later expanded into control-
2162 // flow.
2163 unsigned Opc;
2164 switch (RetVT.SimpleTy) {
2165 default: return false;
2166 case MVT::i8: Opc = X86::CMOV_GR8; break;
2167 case MVT::i16: Opc = X86::CMOV_GR16; break;
2168 case MVT::i32: Opc = X86::CMOV_GR32; break;
2169 case MVT::f32: Opc = X86::CMOV_FR32; break;
2170 case MVT::f64: Opc = X86::CMOV_FR64; break;
2171 }
2172
2173 const Value *Cond = I->getOperand(0);
2174 X86::CondCode CC = X86::COND_NE;
2175
2176 // Optimize conditions coming from a compare if both instructions are in the
2177 // same basic block (values defined in other basic blocks may not have
2178 // initialized registers).
2179 const auto *CI = dyn_cast<CmpInst>(Cond);
2180 if (CI && (CI->getParent() == I->getParent())) {
2181 bool NeedSwap;
2182 std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate());
2183 if (CC > X86::LAST_VALID_COND)
2184 return false;
2185
2186 const Value *CmpLHS = CI->getOperand(0);
2187 const Value *CmpRHS = CI->getOperand(1);
2188
2189 if (NeedSwap)
2190 std::swap(CmpLHS, CmpRHS);
2191
2192 EVT CmpVT = TLI.getValueType(DL, CmpLHS->getType());
2193 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2194 return false;
2195 } else {
2196 unsigned CondReg = getRegForValue(Cond);
2197 if (CondReg == 0)
2198 return false;
2199 bool CondIsKill = hasTrivialKill(Cond);
2200 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2201 .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
2202 }
2203
2204 const Value *LHS = I->getOperand(1);
2205 const Value *RHS = I->getOperand(2);
2206
2207 unsigned LHSReg = getRegForValue(LHS);
2208 bool LHSIsKill = hasTrivialKill(LHS);
2209
2210 unsigned RHSReg = getRegForValue(RHS);
2211 bool RHSIsKill = hasTrivialKill(RHS);
2212
2213 if (!LHSReg || !RHSReg)
2214 return false;
2215
2216 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2217
2218 unsigned ResultReg =
2219 fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2220 updateValueMap(I, ResultReg);
2221 return true;
2222 }
2223
X86SelectSelect(const Instruction * I)2224 bool X86FastISel::X86SelectSelect(const Instruction *I) {
2225 MVT RetVT;
2226 if (!isTypeLegal(I->getType(), RetVT))
2227 return false;
2228
2229 // Check if we can fold the select.
2230 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2231 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2232 const Value *Opnd = nullptr;
2233 switch (Predicate) {
2234 default: break;
2235 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2236 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
2237 }
2238 // No need for a select anymore - this is an unconditional move.
2239 if (Opnd) {
2240 unsigned OpReg = getRegForValue(Opnd);
2241 if (OpReg == 0)
2242 return false;
2243 bool OpIsKill = hasTrivialKill(Opnd);
2244 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2245 unsigned ResultReg = createResultReg(RC);
2246 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2247 TII.get(TargetOpcode::COPY), ResultReg)
2248 .addReg(OpReg, getKillRegState(OpIsKill));
2249 updateValueMap(I, ResultReg);
2250 return true;
2251 }
2252 }
2253
2254 // First try to use real conditional move instructions.
2255 if (X86FastEmitCMoveSelect(RetVT, I))
2256 return true;
2257
2258 // Try to use a sequence of SSE instructions to simulate a conditional move.
2259 if (X86FastEmitSSESelect(RetVT, I))
2260 return true;
2261
2262 // Fall-back to pseudo conditional move instructions, which will be later
2263 // converted to control-flow.
2264 if (X86FastEmitPseudoSelect(RetVT, I))
2265 return true;
2266
2267 return false;
2268 }
2269
X86SelectSIToFP(const Instruction * I)2270 bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
2271 // The target-independent selection algorithm in FastISel already knows how
2272 // to select a SINT_TO_FP if the target is SSE but not AVX.
2273 // Early exit if the subtarget doesn't have AVX.
2274 if (!Subtarget->hasAVX())
2275 return false;
2276
2277 if (!I->getOperand(0)->getType()->isIntegerTy(32))
2278 return false;
2279
2280 // Select integer to float/double conversion.
2281 unsigned OpReg = getRegForValue(I->getOperand(0));
2282 if (OpReg == 0)
2283 return false;
2284
2285 const TargetRegisterClass *RC = nullptr;
2286 unsigned Opcode;
2287
2288 if (I->getType()->isDoubleTy()) {
2289 // sitofp int -> double
2290 Opcode = X86::VCVTSI2SDrr;
2291 RC = &X86::FR64RegClass;
2292 } else if (I->getType()->isFloatTy()) {
2293 // sitofp int -> float
2294 Opcode = X86::VCVTSI2SSrr;
2295 RC = &X86::FR32RegClass;
2296 } else
2297 return false;
2298
2299 unsigned ImplicitDefReg = createResultReg(RC);
2300 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2301 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2302 unsigned ResultReg =
2303 fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
2304 updateValueMap(I, ResultReg);
2305 return true;
2306 }
2307
2308 // Helper method used by X86SelectFPExt and X86SelectFPTrunc.
X86SelectFPExtOrFPTrunc(const Instruction * I,unsigned TargetOpc,const TargetRegisterClass * RC)2309 bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2310 unsigned TargetOpc,
2311 const TargetRegisterClass *RC) {
2312 assert((I->getOpcode() == Instruction::FPExt ||
2313 I->getOpcode() == Instruction::FPTrunc) &&
2314 "Instruction must be an FPExt or FPTrunc!");
2315
2316 unsigned OpReg = getRegForValue(I->getOperand(0));
2317 if (OpReg == 0)
2318 return false;
2319
2320 unsigned ResultReg = createResultReg(RC);
2321 MachineInstrBuilder MIB;
2322 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2323 ResultReg);
2324 if (Subtarget->hasAVX())
2325 MIB.addReg(OpReg);
2326 MIB.addReg(OpReg);
2327 updateValueMap(I, ResultReg);
2328 return true;
2329 }
2330
X86SelectFPExt(const Instruction * I)2331 bool X86FastISel::X86SelectFPExt(const Instruction *I) {
2332 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2333 I->getOperand(0)->getType()->isFloatTy()) {
2334 // fpext from float to double.
2335 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2336 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR64RegClass);
2337 }
2338
2339 return false;
2340 }
2341
X86SelectFPTrunc(const Instruction * I)2342 bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
2343 if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2344 I->getOperand(0)->getType()->isDoubleTy()) {
2345 // fptrunc from double to float.
2346 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2347 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR32RegClass);
2348 }
2349
2350 return false;
2351 }
2352
X86SelectTrunc(const Instruction * I)2353 bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2354 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
2355 EVT DstVT = TLI.getValueType(DL, I->getType());
2356
2357 // This code only handles truncation to byte.
2358 if (DstVT != MVT::i8 && DstVT != MVT::i1)
2359 return false;
2360 if (!TLI.isTypeLegal(SrcVT))
2361 return false;
2362
2363 unsigned InputReg = getRegForValue(I->getOperand(0));
2364 if (!InputReg)
2365 // Unhandled operand. Halt "fast" selection and bail.
2366 return false;
2367
2368 if (SrcVT == MVT::i8) {
2369 // Truncate from i8 to i1; no code needed.
2370 updateValueMap(I, InputReg);
2371 return true;
2372 }
2373
2374 bool KillInputReg = false;
2375 if (!Subtarget->is64Bit()) {
2376 // If we're on x86-32; we can't extract an i8 from a general register.
2377 // First issue a copy to GR16_ABCD or GR32_ABCD.
2378 const TargetRegisterClass *CopyRC =
2379 (SrcVT == MVT::i16) ? &X86::GR16_ABCDRegClass : &X86::GR32_ABCDRegClass;
2380 unsigned CopyReg = createResultReg(CopyRC);
2381 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2382 TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg);
2383 InputReg = CopyReg;
2384 KillInputReg = true;
2385 }
2386
2387 // Issue an extract_subreg.
2388 unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
2389 InputReg, KillInputReg,
2390 X86::sub_8bit);
2391 if (!ResultReg)
2392 return false;
2393
2394 updateValueMap(I, ResultReg);
2395 return true;
2396 }
2397
IsMemcpySmall(uint64_t Len)2398 bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2399 return Len <= (Subtarget->is64Bit() ? 32 : 16);
2400 }
2401
TryEmitSmallMemcpy(X86AddressMode DestAM,X86AddressMode SrcAM,uint64_t Len)2402 bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2403 X86AddressMode SrcAM, uint64_t Len) {
2404
2405 // Make sure we don't bloat code by inlining very large memcpy's.
2406 if (!IsMemcpySmall(Len))
2407 return false;
2408
2409 bool i64Legal = Subtarget->is64Bit();
2410
2411 // We don't care about alignment here since we just emit integer accesses.
2412 while (Len) {
2413 MVT VT;
2414 if (Len >= 8 && i64Legal)
2415 VT = MVT::i64;
2416 else if (Len >= 4)
2417 VT = MVT::i32;
2418 else if (Len >= 2)
2419 VT = MVT::i16;
2420 else
2421 VT = MVT::i8;
2422
2423 unsigned Reg;
2424 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2425 RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2426 assert(RV && "Failed to emit load or store??");
2427
2428 unsigned Size = VT.getSizeInBits()/8;
2429 Len -= Size;
2430 DestAM.Disp += Size;
2431 SrcAM.Disp += Size;
2432 }
2433
2434 return true;
2435 }
2436
fastLowerIntrinsicCall(const IntrinsicInst * II)2437 bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2438 // FIXME: Handle more intrinsics.
2439 switch (II->getIntrinsicID()) {
2440 default: return false;
2441 case Intrinsic::convert_from_fp16:
2442 case Intrinsic::convert_to_fp16: {
2443 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
2444 return false;
2445
2446 const Value *Op = II->getArgOperand(0);
2447 unsigned InputReg = getRegForValue(Op);
2448 if (InputReg == 0)
2449 return false;
2450
2451 // F16C only allows converting from float to half and from half to float.
2452 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2453 if (IsFloatToHalf) {
2454 if (!Op->getType()->isFloatTy())
2455 return false;
2456 } else {
2457 if (!II->getType()->isFloatTy())
2458 return false;
2459 }
2460
2461 unsigned ResultReg = 0;
2462 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2463 if (IsFloatToHalf) {
2464 // 'InputReg' is implicitly promoted from register class FR32 to
2465 // register class VR128 by method 'constrainOperandRegClass' which is
2466 // directly called by 'fastEmitInst_ri'.
2467 // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2468 // used to provide rounding control: use MXCSR.RC, encoded as 0b100.
2469 // It's consistent with the other FP instructions, which are usually
2470 // controlled by MXCSR.
2471 InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 4);
2472
2473 // Move the lower 32-bits of ResultReg to another register of class GR32.
2474 ResultReg = createResultReg(&X86::GR32RegClass);
2475 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2476 TII.get(X86::VMOVPDI2DIrr), ResultReg)
2477 .addReg(InputReg, RegState::Kill);
2478
2479 // The result value is in the lower 16-bits of ResultReg.
2480 unsigned RegIdx = X86::sub_16bit;
2481 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2482 } else {
2483 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2484 // Explicitly sign-extend the input to 32-bit.
2485 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2486 /*Kill=*/false);
2487
2488 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2489 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2490 InputReg, /*Kill=*/true);
2491
2492 InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2493
2494 // The result value is in the lower 32-bits of ResultReg.
2495 // Emit an explicit copy from register class VR128 to register class FR32.
2496 ResultReg = createResultReg(&X86::FR32RegClass);
2497 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2498 TII.get(TargetOpcode::COPY), ResultReg)
2499 .addReg(InputReg, RegState::Kill);
2500 }
2501
2502 updateValueMap(II, ResultReg);
2503 return true;
2504 }
2505 case Intrinsic::frameaddress: {
2506 MachineFunction *MF = FuncInfo.MF;
2507 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2508 return false;
2509
2510 Type *RetTy = II->getCalledFunction()->getReturnType();
2511
2512 MVT VT;
2513 if (!isTypeLegal(RetTy, VT))
2514 return false;
2515
2516 unsigned Opc;
2517 const TargetRegisterClass *RC = nullptr;
2518
2519 switch (VT.SimpleTy) {
2520 default: llvm_unreachable("Invalid result type for frameaddress.");
2521 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2522 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2523 }
2524
2525 // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2526 // we get the wrong frame register.
2527 MachineFrameInfo *MFI = MF->getFrameInfo();
2528 MFI->setFrameAddressIsTaken(true);
2529
2530 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
2531 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
2532 assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2533 (FrameReg == X86::EBP && VT == MVT::i32)) &&
2534 "Invalid Frame Register!");
2535
2536 // Always make a copy of the frame register to to a vreg first, so that we
2537 // never directly reference the frame register (the TwoAddressInstruction-
2538 // Pass doesn't like that).
2539 unsigned SrcReg = createResultReg(RC);
2540 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2541 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2542
2543 // Now recursively load from the frame address.
2544 // movq (%rbp), %rax
2545 // movq (%rax), %rax
2546 // movq (%rax), %rax
2547 // ...
2548 unsigned DestReg;
2549 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2550 while (Depth--) {
2551 DestReg = createResultReg(RC);
2552 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2553 TII.get(Opc), DestReg), SrcReg);
2554 SrcReg = DestReg;
2555 }
2556
2557 updateValueMap(II, SrcReg);
2558 return true;
2559 }
2560 case Intrinsic::memcpy: {
2561 const MemCpyInst *MCI = cast<MemCpyInst>(II);
2562 // Don't handle volatile or variable length memcpys.
2563 if (MCI->isVolatile())
2564 return false;
2565
2566 if (isa<ConstantInt>(MCI->getLength())) {
2567 // Small memcpy's are common enough that we want to do them
2568 // without a call if possible.
2569 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2570 if (IsMemcpySmall(Len)) {
2571 X86AddressMode DestAM, SrcAM;
2572 if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2573 !X86SelectAddress(MCI->getRawSource(), SrcAM))
2574 return false;
2575 TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2576 return true;
2577 }
2578 }
2579
2580 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2581 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2582 return false;
2583
2584 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2585 return false;
2586
2587 return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
2588 }
2589 case Intrinsic::memset: {
2590 const MemSetInst *MSI = cast<MemSetInst>(II);
2591
2592 if (MSI->isVolatile())
2593 return false;
2594
2595 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2596 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2597 return false;
2598
2599 if (MSI->getDestAddressSpace() > 255)
2600 return false;
2601
2602 return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
2603 }
2604 case Intrinsic::stackprotector: {
2605 // Emit code to store the stack guard onto the stack.
2606 EVT PtrTy = TLI.getPointerTy(DL);
2607
2608 const Value *Op1 = II->getArgOperand(0); // The guard's value.
2609 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2610
2611 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2612
2613 // Grab the frame index.
2614 X86AddressMode AM;
2615 if (!X86SelectAddress(Slot, AM)) return false;
2616 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2617 return true;
2618 }
2619 case Intrinsic::dbg_declare: {
2620 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2621 X86AddressMode AM;
2622 assert(DI->getAddress() && "Null address should be checked earlier!");
2623 if (!X86SelectAddress(DI->getAddress(), AM))
2624 return false;
2625 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2626 // FIXME may need to add RegState::Debug to any registers produced,
2627 // although ESP/EBP should be the only ones at the moment.
2628 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2629 "Expected inlined-at fields to agree");
2630 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2631 .addImm(0)
2632 .addMetadata(DI->getVariable())
2633 .addMetadata(DI->getExpression());
2634 return true;
2635 }
2636 case Intrinsic::trap: {
2637 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2638 return true;
2639 }
2640 case Intrinsic::sqrt: {
2641 if (!Subtarget->hasSSE1())
2642 return false;
2643
2644 Type *RetTy = II->getCalledFunction()->getReturnType();
2645
2646 MVT VT;
2647 if (!isTypeLegal(RetTy, VT))
2648 return false;
2649
2650 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2651 // is not generated by FastISel yet.
2652 // FIXME: Update this code once tablegen can handle it.
2653 static const uint16_t SqrtOpc[2][2] = {
2654 {X86::SQRTSSr, X86::VSQRTSSr},
2655 {X86::SQRTSDr, X86::VSQRTSDr}
2656 };
2657 bool HasAVX = Subtarget->hasAVX();
2658 unsigned Opc;
2659 const TargetRegisterClass *RC;
2660 switch (VT.SimpleTy) {
2661 default: return false;
2662 case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;
2663 case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
2664 }
2665
2666 const Value *SrcVal = II->getArgOperand(0);
2667 unsigned SrcReg = getRegForValue(SrcVal);
2668
2669 if (SrcReg == 0)
2670 return false;
2671
2672 unsigned ImplicitDefReg = 0;
2673 if (HasAVX) {
2674 ImplicitDefReg = createResultReg(RC);
2675 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2676 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2677 }
2678
2679 unsigned ResultReg = createResultReg(RC);
2680 MachineInstrBuilder MIB;
2681 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2682 ResultReg);
2683
2684 if (ImplicitDefReg)
2685 MIB.addReg(ImplicitDefReg);
2686
2687 MIB.addReg(SrcReg);
2688
2689 updateValueMap(II, ResultReg);
2690 return true;
2691 }
2692 case Intrinsic::sadd_with_overflow:
2693 case Intrinsic::uadd_with_overflow:
2694 case Intrinsic::ssub_with_overflow:
2695 case Intrinsic::usub_with_overflow:
2696 case Intrinsic::smul_with_overflow:
2697 case Intrinsic::umul_with_overflow: {
2698 // This implements the basic lowering of the xalu with overflow intrinsics
2699 // into add/sub/mul followed by either seto or setb.
2700 const Function *Callee = II->getCalledFunction();
2701 auto *Ty = cast<StructType>(Callee->getReturnType());
2702 Type *RetTy = Ty->getTypeAtIndex(0U);
2703 Type *CondTy = Ty->getTypeAtIndex(1);
2704
2705 MVT VT;
2706 if (!isTypeLegal(RetTy, VT))
2707 return false;
2708
2709 if (VT < MVT::i8 || VT > MVT::i64)
2710 return false;
2711
2712 const Value *LHS = II->getArgOperand(0);
2713 const Value *RHS = II->getArgOperand(1);
2714
2715 // Canonicalize immediate to the RHS.
2716 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2717 isCommutativeIntrinsic(II))
2718 std::swap(LHS, RHS);
2719
2720 bool UseIncDec = false;
2721 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())
2722 UseIncDec = true;
2723
2724 unsigned BaseOpc, CondOpc;
2725 switch (II->getIntrinsicID()) {
2726 default: llvm_unreachable("Unexpected intrinsic!");
2727 case Intrinsic::sadd_with_overflow:
2728 BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);
2729 CondOpc = X86::SETOr;
2730 break;
2731 case Intrinsic::uadd_with_overflow:
2732 BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
2733 case Intrinsic::ssub_with_overflow:
2734 BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);
2735 CondOpc = X86::SETOr;
2736 break;
2737 case Intrinsic::usub_with_overflow:
2738 BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
2739 case Intrinsic::smul_with_overflow:
2740 BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
2741 case Intrinsic::umul_with_overflow:
2742 BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
2743 }
2744
2745 unsigned LHSReg = getRegForValue(LHS);
2746 if (LHSReg == 0)
2747 return false;
2748 bool LHSIsKill = hasTrivialKill(LHS);
2749
2750 unsigned ResultReg = 0;
2751 // Check if we have an immediate version.
2752 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2753 static const uint16_t Opc[2][4] = {
2754 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2755 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2756 };
2757
2758 if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {
2759 ResultReg = createResultReg(TLI.getRegClassFor(VT));
2760 bool IsDec = BaseOpc == X86ISD::DEC;
2761 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2762 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2763 .addReg(LHSReg, getKillRegState(LHSIsKill));
2764 } else
2765 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2766 CI->getZExtValue());
2767 }
2768
2769 unsigned RHSReg;
2770 bool RHSIsKill;
2771 if (!ResultReg) {
2772 RHSReg = getRegForValue(RHS);
2773 if (RHSReg == 0)
2774 return false;
2775 RHSIsKill = hasTrivialKill(RHS);
2776 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2777 RHSIsKill);
2778 }
2779
2780 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2781 // it manually.
2782 if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2783 static const uint16_t MULOpc[] =
2784 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2785 static const MCPhysReg Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2786 // First copy the first operand into RAX, which is an implicit input to
2787 // the X86::MUL*r instruction.
2788 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2789 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2790 .addReg(LHSReg, getKillRegState(LHSIsKill));
2791 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2792 TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2793 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2794 static const uint16_t MULOpc[] =
2795 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2796 if (VT == MVT::i8) {
2797 // Copy the first operand into AL, which is an implicit input to the
2798 // X86::IMUL8r instruction.
2799 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2800 TII.get(TargetOpcode::COPY), X86::AL)
2801 .addReg(LHSReg, getKillRegState(LHSIsKill));
2802 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2803 RHSIsKill);
2804 } else
2805 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2806 TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2807 RHSReg, RHSIsKill);
2808 }
2809
2810 if (!ResultReg)
2811 return false;
2812
2813 unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy);
2814 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2815 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
2816 ResultReg2);
2817
2818 updateValueMap(II, ResultReg, 2);
2819 return true;
2820 }
2821 case Intrinsic::x86_sse_cvttss2si:
2822 case Intrinsic::x86_sse_cvttss2si64:
2823 case Intrinsic::x86_sse2_cvttsd2si:
2824 case Intrinsic::x86_sse2_cvttsd2si64: {
2825 bool IsInputDouble;
2826 switch (II->getIntrinsicID()) {
2827 default: llvm_unreachable("Unexpected intrinsic.");
2828 case Intrinsic::x86_sse_cvttss2si:
2829 case Intrinsic::x86_sse_cvttss2si64:
2830 if (!Subtarget->hasSSE1())
2831 return false;
2832 IsInputDouble = false;
2833 break;
2834 case Intrinsic::x86_sse2_cvttsd2si:
2835 case Intrinsic::x86_sse2_cvttsd2si64:
2836 if (!Subtarget->hasSSE2())
2837 return false;
2838 IsInputDouble = true;
2839 break;
2840 }
2841
2842 Type *RetTy = II->getCalledFunction()->getReturnType();
2843 MVT VT;
2844 if (!isTypeLegal(RetTy, VT))
2845 return false;
2846
2847 static const uint16_t CvtOpc[2][2][2] = {
2848 { { X86::CVTTSS2SIrr, X86::VCVTTSS2SIrr },
2849 { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr } },
2850 { { X86::CVTTSD2SIrr, X86::VCVTTSD2SIrr },
2851 { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr } }
2852 };
2853 bool HasAVX = Subtarget->hasAVX();
2854 unsigned Opc;
2855 switch (VT.SimpleTy) {
2856 default: llvm_unreachable("Unexpected result type.");
2857 case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;
2858 case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;
2859 }
2860
2861 // Check if we can fold insertelement instructions into the convert.
2862 const Value *Op = II->getArgOperand(0);
2863 while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
2864 const Value *Index = IE->getOperand(2);
2865 if (!isa<ConstantInt>(Index))
2866 break;
2867 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
2868
2869 if (Idx == 0) {
2870 Op = IE->getOperand(1);
2871 break;
2872 }
2873 Op = IE->getOperand(0);
2874 }
2875
2876 unsigned Reg = getRegForValue(Op);
2877 if (Reg == 0)
2878 return false;
2879
2880 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
2881 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
2882 .addReg(Reg);
2883
2884 updateValueMap(II, ResultReg);
2885 return true;
2886 }
2887 }
2888 }
2889
fastLowerArguments()2890 bool X86FastISel::fastLowerArguments() {
2891 if (!FuncInfo.CanLowerReturn)
2892 return false;
2893
2894 const Function *F = FuncInfo.Fn;
2895 if (F->isVarArg())
2896 return false;
2897
2898 CallingConv::ID CC = F->getCallingConv();
2899 if (CC != CallingConv::C)
2900 return false;
2901
2902 if (Subtarget->isCallingConvWin64(CC))
2903 return false;
2904
2905 if (!Subtarget->is64Bit())
2906 return false;
2907
2908 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
2909 unsigned GPRCnt = 0;
2910 unsigned FPRCnt = 0;
2911 unsigned Idx = 0;
2912 for (auto const &Arg : F->args()) {
2913 // The first argument is at index 1.
2914 ++Idx;
2915 if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
2916 F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
2917 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
2918 F->getAttributes().hasAttribute(Idx, Attribute::SwiftSelf) ||
2919 F->getAttributes().hasAttribute(Idx, Attribute::SwiftError) ||
2920 F->getAttributes().hasAttribute(Idx, Attribute::Nest))
2921 return false;
2922
2923 Type *ArgTy = Arg.getType();
2924 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
2925 return false;
2926
2927 EVT ArgVT = TLI.getValueType(DL, ArgTy);
2928 if (!ArgVT.isSimple()) return false;
2929 switch (ArgVT.getSimpleVT().SimpleTy) {
2930 default: return false;
2931 case MVT::i32:
2932 case MVT::i64:
2933 ++GPRCnt;
2934 break;
2935 case MVT::f32:
2936 case MVT::f64:
2937 if (!Subtarget->hasSSE1())
2938 return false;
2939 ++FPRCnt;
2940 break;
2941 }
2942
2943 if (GPRCnt > 6)
2944 return false;
2945
2946 if (FPRCnt > 8)
2947 return false;
2948 }
2949
2950 static const MCPhysReg GPR32ArgRegs[] = {
2951 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
2952 };
2953 static const MCPhysReg GPR64ArgRegs[] = {
2954 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
2955 };
2956 static const MCPhysReg XMMArgRegs[] = {
2957 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2958 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2959 };
2960
2961 unsigned GPRIdx = 0;
2962 unsigned FPRIdx = 0;
2963 for (auto const &Arg : F->args()) {
2964 MVT VT = TLI.getSimpleValueType(DL, Arg.getType());
2965 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2966 unsigned SrcReg;
2967 switch (VT.SimpleTy) {
2968 default: llvm_unreachable("Unexpected value type.");
2969 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
2970 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
2971 case MVT::f32: // fall-through
2972 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
2973 }
2974 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
2975 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
2976 // Without this, EmitLiveInCopies may eliminate the livein if its only
2977 // use is a bitcast (which isn't turned into an instruction).
2978 unsigned ResultReg = createResultReg(RC);
2979 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2980 TII.get(TargetOpcode::COPY), ResultReg)
2981 .addReg(DstReg, getKillRegState(true));
2982 updateValueMap(&Arg, ResultReg);
2983 }
2984 return true;
2985 }
2986
computeBytesPoppedByCalleeForSRet(const X86Subtarget * Subtarget,CallingConv::ID CC,ImmutableCallSite * CS)2987 static unsigned computeBytesPoppedByCalleeForSRet(const X86Subtarget *Subtarget,
2988 CallingConv::ID CC,
2989 ImmutableCallSite *CS) {
2990 if (Subtarget->is64Bit())
2991 return 0;
2992 if (Subtarget->getTargetTriple().isOSMSVCRT())
2993 return 0;
2994 if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2995 CC == CallingConv::HiPE)
2996 return 0;
2997
2998 if (CS)
2999 if (CS->arg_empty() || !CS->paramHasAttr(1, Attribute::StructRet) ||
3000 CS->paramHasAttr(1, Attribute::InReg) || Subtarget->isTargetMCU())
3001 return 0;
3002
3003 return 4;
3004 }
3005
fastLowerCall(CallLoweringInfo & CLI)3006 bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
3007 auto &OutVals = CLI.OutVals;
3008 auto &OutFlags = CLI.OutFlags;
3009 auto &OutRegs = CLI.OutRegs;
3010 auto &Ins = CLI.Ins;
3011 auto &InRegs = CLI.InRegs;
3012 CallingConv::ID CC = CLI.CallConv;
3013 bool &IsTailCall = CLI.IsTailCall;
3014 bool IsVarArg = CLI.IsVarArg;
3015 const Value *Callee = CLI.Callee;
3016 MCSymbol *Symbol = CLI.Symbol;
3017
3018 bool Is64Bit = Subtarget->is64Bit();
3019 bool IsWin64 = Subtarget->isCallingConvWin64(CC);
3020
3021 // Handle only C, fastcc, and webkit_js calling conventions for now.
3022 switch (CC) {
3023 default: return false;
3024 case CallingConv::C:
3025 case CallingConv::Fast:
3026 case CallingConv::WebKit_JS:
3027 case CallingConv::Swift:
3028 case CallingConv::X86_FastCall:
3029 case CallingConv::X86_StdCall:
3030 case CallingConv::X86_ThisCall:
3031 case CallingConv::X86_64_Win64:
3032 case CallingConv::X86_64_SysV:
3033 break;
3034 }
3035
3036 // Allow SelectionDAG isel to handle tail calls.
3037 if (IsTailCall)
3038 return false;
3039
3040 // fastcc with -tailcallopt is intended to provide a guaranteed
3041 // tail call optimization. Fastisel doesn't know how to do that.
3042 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
3043 return false;
3044
3045 // Don't know how to handle Win64 varargs yet. Nothing special needed for
3046 // x86-32. Special handling for x86-64 is implemented.
3047 if (IsVarArg && IsWin64)
3048 return false;
3049
3050 // Don't know about inalloca yet.
3051 if (CLI.CS && CLI.CS->hasInAllocaArgument())
3052 return false;
3053
3054 for (auto Flag : CLI.OutFlags)
3055 if (Flag.isSwiftError())
3056 return false;
3057
3058 SmallVector<MVT, 16> OutVTs;
3059 SmallVector<unsigned, 16> ArgRegs;
3060
3061 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
3062 // instruction. This is safe because it is common to all FastISel supported
3063 // calling conventions on x86.
3064 for (int i = 0, e = OutVals.size(); i != e; ++i) {
3065 Value *&Val = OutVals[i];
3066 ISD::ArgFlagsTy Flags = OutFlags[i];
3067 if (auto *CI = dyn_cast<ConstantInt>(Val)) {
3068 if (CI->getBitWidth() < 32) {
3069 if (Flags.isSExt())
3070 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
3071 else
3072 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
3073 }
3074 }
3075
3076 // Passing bools around ends up doing a trunc to i1 and passing it.
3077 // Codegen this as an argument + "and 1".
3078 MVT VT;
3079 auto *TI = dyn_cast<TruncInst>(Val);
3080 unsigned ResultReg;
3081 if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
3082 (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
3083 TI->hasOneUse()) {
3084 Value *PrevVal = TI->getOperand(0);
3085 ResultReg = getRegForValue(PrevVal);
3086
3087 if (!ResultReg)
3088 return false;
3089
3090 if (!isTypeLegal(PrevVal->getType(), VT))
3091 return false;
3092
3093 ResultReg =
3094 fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
3095 } else {
3096 if (!isTypeLegal(Val->getType(), VT))
3097 return false;
3098 ResultReg = getRegForValue(Val);
3099 }
3100
3101 if (!ResultReg)
3102 return false;
3103
3104 ArgRegs.push_back(ResultReg);
3105 OutVTs.push_back(VT);
3106 }
3107
3108 // Analyze operands of the call, assigning locations to each operand.
3109 SmallVector<CCValAssign, 16> ArgLocs;
3110 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
3111
3112 // Allocate shadow area for Win64
3113 if (IsWin64)
3114 CCInfo.AllocateStack(32, 8);
3115
3116 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
3117
3118 // Get a count of how many bytes are to be pushed on the stack.
3119 unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
3120
3121 // Issue CALLSEQ_START
3122 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
3123 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
3124 .addImm(NumBytes).addImm(0);
3125
3126 // Walk the register/memloc assignments, inserting copies/loads.
3127 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
3128 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3129 CCValAssign const &VA = ArgLocs[i];
3130 const Value *ArgVal = OutVals[VA.getValNo()];
3131 MVT ArgVT = OutVTs[VA.getValNo()];
3132
3133 if (ArgVT == MVT::x86mmx)
3134 return false;
3135
3136 unsigned ArgReg = ArgRegs[VA.getValNo()];
3137
3138 // Promote the value if needed.
3139 switch (VA.getLocInfo()) {
3140 case CCValAssign::Full: break;
3141 case CCValAssign::SExt: {
3142 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3143 "Unexpected extend");
3144
3145 if (ArgVT.SimpleTy == MVT::i1)
3146 return false;
3147
3148 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3149 ArgVT, ArgReg);
3150 assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
3151 ArgVT = VA.getLocVT();
3152 break;
3153 }
3154 case CCValAssign::ZExt: {
3155 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3156 "Unexpected extend");
3157
3158 // Handle zero-extension from i1 to i8, which is common.
3159 if (ArgVT.SimpleTy == MVT::i1) {
3160 // Set the high bits to zero.
3161 ArgReg = fastEmitZExtFromI1(MVT::i8, ArgReg, /*TODO: Kill=*/false);
3162 ArgVT = MVT::i8;
3163
3164 if (ArgReg == 0)
3165 return false;
3166 }
3167
3168 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3169 ArgVT, ArgReg);
3170 assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
3171 ArgVT = VA.getLocVT();
3172 break;
3173 }
3174 case CCValAssign::AExt: {
3175 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
3176 "Unexpected extend");
3177 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
3178 ArgVT, ArgReg);
3179 if (!Emitted)
3180 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
3181 ArgVT, ArgReg);
3182 if (!Emitted)
3183 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
3184 ArgVT, ArgReg);
3185
3186 assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
3187 ArgVT = VA.getLocVT();
3188 break;
3189 }
3190 case CCValAssign::BCvt: {
3191 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
3192 /*TODO: Kill=*/false);
3193 assert(ArgReg && "Failed to emit a bitcast!");
3194 ArgVT = VA.getLocVT();
3195 break;
3196 }
3197 case CCValAssign::VExt:
3198 // VExt has not been implemented, so this should be impossible to reach
3199 // for now. However, fallback to Selection DAG isel once implemented.
3200 return false;
3201 case CCValAssign::AExtUpper:
3202 case CCValAssign::SExtUpper:
3203 case CCValAssign::ZExtUpper:
3204 case CCValAssign::FPExt:
3205 llvm_unreachable("Unexpected loc info!");
3206 case CCValAssign::Indirect:
3207 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3208 // support this.
3209 return false;
3210 }
3211
3212 if (VA.isRegLoc()) {
3213 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3214 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3215 OutRegs.push_back(VA.getLocReg());
3216 } else {
3217 assert(VA.isMemLoc());
3218
3219 // Don't emit stores for undef values.
3220 if (isa<UndefValue>(ArgVal))
3221 continue;
3222
3223 unsigned LocMemOffset = VA.getLocMemOffset();
3224 X86AddressMode AM;
3225 AM.Base.Reg = RegInfo->getStackRegister();
3226 AM.Disp = LocMemOffset;
3227 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3228 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3229 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3230 MachinePointerInfo::getStack(*FuncInfo.MF, LocMemOffset),
3231 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
3232 if (Flags.isByVal()) {
3233 X86AddressMode SrcAM;
3234 SrcAM.Base.Reg = ArgReg;
3235 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3236 return false;
3237 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3238 // If this is a really simple value, emit this with the Value* version
3239 // of X86FastEmitStore. If it isn't simple, we don't want to do this,
3240 // as it can cause us to reevaluate the argument.
3241 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3242 return false;
3243 } else {
3244 bool ValIsKill = hasTrivialKill(ArgVal);
3245 if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3246 return false;
3247 }
3248 }
3249 }
3250
3251 // ELF / PIC requires GOT in the EBX register before function calls via PLT
3252 // GOT pointer.
3253 if (Subtarget->isPICStyleGOT()) {
3254 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3255 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3256 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3257 }
3258
3259 if (Is64Bit && IsVarArg && !IsWin64) {
3260 // From AMD64 ABI document:
3261 // For calls that may call functions that use varargs or stdargs
3262 // (prototype-less calls or calls to functions containing ellipsis (...) in
3263 // the declaration) %al is used as hidden argument to specify the number
3264 // of SSE registers used. The contents of %al do not need to match exactly
3265 // the number of registers, but must be an ubound on the number of SSE
3266 // registers used and is in the range 0 - 8 inclusive.
3267
3268 // Count the number of XMM registers allocated.
3269 static const MCPhysReg XMMArgRegs[] = {
3270 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3271 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3272 };
3273 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
3274 assert((Subtarget->hasSSE1() || !NumXMMRegs)
3275 && "SSE registers cannot be used when SSE is disabled");
3276 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3277 X86::AL).addImm(NumXMMRegs);
3278 }
3279
3280 // Materialize callee address in a register. FIXME: GV address can be
3281 // handled with a CALLpcrel32 instead.
3282 X86AddressMode CalleeAM;
3283 if (!X86SelectCallAddress(Callee, CalleeAM))
3284 return false;
3285
3286 unsigned CalleeOp = 0;
3287 const GlobalValue *GV = nullptr;
3288 if (CalleeAM.GV != nullptr) {
3289 GV = CalleeAM.GV;
3290 } else if (CalleeAM.Base.Reg != 0) {
3291 CalleeOp = CalleeAM.Base.Reg;
3292 } else
3293 return false;
3294
3295 // Issue the call.
3296 MachineInstrBuilder MIB;
3297 if (CalleeOp) {
3298 // Register-indirect call.
3299 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3300 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3301 .addReg(CalleeOp);
3302 } else {
3303 // Direct call.
3304 assert(GV && "Not a direct call");
3305 unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
3306
3307 // See if we need any target-specific flags on the GV operand.
3308 unsigned char OpFlags = Subtarget->classifyGlobalFunctionReference(GV);
3309 // Ignore NonLazyBind attribute in FastISel
3310 if (OpFlags == X86II::MO_GOTPCREL)
3311 OpFlags = 0;
3312
3313 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
3314 if (Symbol)
3315 MIB.addSym(Symbol, OpFlags);
3316 else
3317 MIB.addGlobalAddress(GV, 0, OpFlags);
3318 }
3319
3320 // Add a register mask operand representing the call-preserved registers.
3321 // Proper defs for return values will be added by setPhysRegsDeadExcept().
3322 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
3323
3324 // Add an implicit use GOT pointer in EBX.
3325 if (Subtarget->isPICStyleGOT())
3326 MIB.addReg(X86::EBX, RegState::Implicit);
3327
3328 if (Is64Bit && IsVarArg && !IsWin64)
3329 MIB.addReg(X86::AL, RegState::Implicit);
3330
3331 // Add implicit physical register uses to the call.
3332 for (auto Reg : OutRegs)
3333 MIB.addReg(Reg, RegState::Implicit);
3334
3335 // Issue CALLSEQ_END
3336 unsigned NumBytesForCalleeToPop =
3337 X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
3338 TM.Options.GuaranteedTailCallOpt)
3339 ? NumBytes // Callee pops everything.
3340 : computeBytesPoppedByCalleeForSRet(Subtarget, CC, CLI.CS);
3341 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3342 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3343 .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3344
3345 // Now handle call return values.
3346 SmallVector<CCValAssign, 16> RVLocs;
3347 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3348 CLI.RetTy->getContext());
3349 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3350
3351 // Copy all of the result registers out of their specified physreg.
3352 unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3353 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3354 CCValAssign &VA = RVLocs[i];
3355 EVT CopyVT = VA.getValVT();
3356 unsigned CopyReg = ResultReg + i;
3357
3358 // If this is x86-64, and we disabled SSE, we can't return FP values
3359 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3360 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3361 report_fatal_error("SSE register return with SSE disabled");
3362 }
3363
3364 // If we prefer to use the value in xmm registers, copy it out as f80 and
3365 // use a truncate to move it from fp stack reg to xmm reg.
3366 if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
3367 isScalarFPTypeInSSEReg(VA.getValVT())) {
3368 CopyVT = MVT::f80;
3369 CopyReg = createResultReg(&X86::RFP80RegClass);
3370 }
3371
3372 // Copy out the result.
3373 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3374 TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
3375 InRegs.push_back(VA.getLocReg());
3376
3377 // Round the f80 to the right size, which also moves it to the appropriate
3378 // xmm register. This is accomplished by storing the f80 value in memory
3379 // and then loading it back.
3380 if (CopyVT != VA.getValVT()) {
3381 EVT ResVT = VA.getValVT();
3382 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3383 unsigned MemSize = ResVT.getSizeInBits()/8;
3384 int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3385 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3386 TII.get(Opc)), FI)
3387 .addReg(CopyReg);
3388 Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
3389 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3390 TII.get(Opc), ResultReg + i), FI);
3391 }
3392 }
3393
3394 CLI.ResultReg = ResultReg;
3395 CLI.NumResultRegs = RVLocs.size();
3396 CLI.Call = MIB;
3397
3398 return true;
3399 }
3400
3401 bool
fastSelectInstruction(const Instruction * I)3402 X86FastISel::fastSelectInstruction(const Instruction *I) {
3403 switch (I->getOpcode()) {
3404 default: break;
3405 case Instruction::Load:
3406 return X86SelectLoad(I);
3407 case Instruction::Store:
3408 return X86SelectStore(I);
3409 case Instruction::Ret:
3410 return X86SelectRet(I);
3411 case Instruction::ICmp:
3412 case Instruction::FCmp:
3413 return X86SelectCmp(I);
3414 case Instruction::ZExt:
3415 return X86SelectZExt(I);
3416 case Instruction::Br:
3417 return X86SelectBranch(I);
3418 case Instruction::LShr:
3419 case Instruction::AShr:
3420 case Instruction::Shl:
3421 return X86SelectShift(I);
3422 case Instruction::SDiv:
3423 case Instruction::UDiv:
3424 case Instruction::SRem:
3425 case Instruction::URem:
3426 return X86SelectDivRem(I);
3427 case Instruction::Select:
3428 return X86SelectSelect(I);
3429 case Instruction::Trunc:
3430 return X86SelectTrunc(I);
3431 case Instruction::FPExt:
3432 return X86SelectFPExt(I);
3433 case Instruction::FPTrunc:
3434 return X86SelectFPTrunc(I);
3435 case Instruction::SIToFP:
3436 return X86SelectSIToFP(I);
3437 case Instruction::IntToPtr: // Deliberate fall-through.
3438 case Instruction::PtrToInt: {
3439 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3440 EVT DstVT = TLI.getValueType(DL, I->getType());
3441 if (DstVT.bitsGT(SrcVT))
3442 return X86SelectZExt(I);
3443 if (DstVT.bitsLT(SrcVT))
3444 return X86SelectTrunc(I);
3445 unsigned Reg = getRegForValue(I->getOperand(0));
3446 if (Reg == 0) return false;
3447 updateValueMap(I, Reg);
3448 return true;
3449 }
3450 case Instruction::BitCast: {
3451 // Select SSE2/AVX bitcasts between 128/256 bit vector types.
3452 if (!Subtarget->hasSSE2())
3453 return false;
3454
3455 EVT SrcVT = TLI.getValueType(DL, I->getOperand(0)->getType());
3456 EVT DstVT = TLI.getValueType(DL, I->getType());
3457
3458 if (!SrcVT.isSimple() || !DstVT.isSimple())
3459 return false;
3460
3461 if (!SrcVT.is128BitVector() &&
3462 !(Subtarget->hasAVX() && SrcVT.is256BitVector()))
3463 return false;
3464
3465 unsigned Reg = getRegForValue(I->getOperand(0));
3466 if (Reg == 0)
3467 return false;
3468
3469 // No instruction is needed for conversion. Reuse the register used by
3470 // the fist operand.
3471 updateValueMap(I, Reg);
3472 return true;
3473 }
3474 }
3475
3476 return false;
3477 }
3478
X86MaterializeInt(const ConstantInt * CI,MVT VT)3479 unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3480 if (VT > MVT::i64)
3481 return 0;
3482
3483 uint64_t Imm = CI->getZExtValue();
3484 if (Imm == 0) {
3485 unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3486 switch (VT.SimpleTy) {
3487 default: llvm_unreachable("Unexpected value type");
3488 case MVT::i1:
3489 case MVT::i8:
3490 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3491 X86::sub_8bit);
3492 case MVT::i16:
3493 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3494 X86::sub_16bit);
3495 case MVT::i32:
3496 return SrcReg;
3497 case MVT::i64: {
3498 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3499 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3500 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3501 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3502 return ResultReg;
3503 }
3504 }
3505 }
3506
3507 unsigned Opc = 0;
3508 switch (VT.SimpleTy) {
3509 default: llvm_unreachable("Unexpected value type");
3510 case MVT::i1: VT = MVT::i8; // fall-through
3511 case MVT::i8: Opc = X86::MOV8ri; break;
3512 case MVT::i16: Opc = X86::MOV16ri; break;
3513 case MVT::i32: Opc = X86::MOV32ri; break;
3514 case MVT::i64: {
3515 if (isUInt<32>(Imm))
3516 Opc = X86::MOV32ri;
3517 else if (isInt<32>(Imm))
3518 Opc = X86::MOV64ri32;
3519 else
3520 Opc = X86::MOV64ri;
3521 break;
3522 }
3523 }
3524 if (VT == MVT::i64 && Opc == X86::MOV32ri) {
3525 unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);
3526 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3527 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3528 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3529 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3530 return ResultReg;
3531 }
3532 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3533 }
3534
X86MaterializeFP(const ConstantFP * CFP,MVT VT)3535 unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3536 if (CFP->isNullValue())
3537 return fastMaterializeFloatZero(CFP);
3538
3539 // Can't handle alternate code models yet.
3540 CodeModel::Model CM = TM.getCodeModel();
3541 if (CM != CodeModel::Small && CM != CodeModel::Large)
3542 return 0;
3543
3544 // Get opcode and regclass of the output for the given load instruction.
3545 unsigned Opc = 0;
3546 const TargetRegisterClass *RC = nullptr;
3547 switch (VT.SimpleTy) {
3548 default: return 0;
3549 case MVT::f32:
3550 if (X86ScalarSSEf32) {
3551 Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
3552 RC = &X86::FR32RegClass;
3553 } else {
3554 Opc = X86::LD_Fp32m;
3555 RC = &X86::RFP32RegClass;
3556 }
3557 break;
3558 case MVT::f64:
3559 if (X86ScalarSSEf64) {
3560 Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
3561 RC = &X86::FR64RegClass;
3562 } else {
3563 Opc = X86::LD_Fp64m;
3564 RC = &X86::RFP64RegClass;
3565 }
3566 break;
3567 case MVT::f80:
3568 // No f80 support yet.
3569 return 0;
3570 }
3571
3572 // MachineConstantPool wants an explicit alignment.
3573 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3574 if (Align == 0) {
3575 // Alignment of vector types. FIXME!
3576 Align = DL.getTypeAllocSize(CFP->getType());
3577 }
3578
3579 // x86-32 PIC requires a PIC base register for constant pools.
3580 unsigned PICBase = 0;
3581 unsigned char OpFlag = Subtarget->classifyLocalReference(nullptr);
3582 if (OpFlag == X86II::MO_PIC_BASE_OFFSET)
3583 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3584 else if (OpFlag == X86II::MO_GOTOFF)
3585 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3586 else if (Subtarget->is64Bit() && TM.getCodeModel() == CodeModel::Small)
3587 PICBase = X86::RIP;
3588
3589 // Create the load from the constant pool.
3590 unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3591 unsigned ResultReg = createResultReg(RC);
3592
3593 if (CM == CodeModel::Large) {
3594 unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3595 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3596 AddrReg)
3597 .addConstantPoolIndex(CPI, 0, OpFlag);
3598 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3599 TII.get(Opc), ResultReg);
3600 addDirectMem(MIB, AddrReg);
3601 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3602 MachinePointerInfo::getConstantPool(*FuncInfo.MF),
3603 MachineMemOperand::MOLoad, DL.getPointerSize(), Align);
3604 MIB->addMemOperand(*FuncInfo.MF, MMO);
3605 return ResultReg;
3606 }
3607
3608 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3609 TII.get(Opc), ResultReg),
3610 CPI, PICBase, OpFlag);
3611 return ResultReg;
3612 }
3613
X86MaterializeGV(const GlobalValue * GV,MVT VT)3614 unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3615 // Can't handle alternate code models yet.
3616 if (TM.getCodeModel() != CodeModel::Small)
3617 return 0;
3618
3619 // Materialize addresses with LEA/MOV instructions.
3620 X86AddressMode AM;
3621 if (X86SelectAddress(GV, AM)) {
3622 // If the expression is just a basereg, then we're done, otherwise we need
3623 // to emit an LEA.
3624 if (AM.BaseType == X86AddressMode::RegBase &&
3625 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3626 return AM.Base.Reg;
3627
3628 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3629 if (TM.getRelocationModel() == Reloc::Static &&
3630 TLI.getPointerTy(DL) == MVT::i64) {
3631 // The displacement code could be more than 32 bits away so we need to use
3632 // an instruction with a 64 bit immediate
3633 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3634 ResultReg)
3635 .addGlobalAddress(GV);
3636 } else {
3637 unsigned Opc =
3638 TLI.getPointerTy(DL) == MVT::i32
3639 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3640 : X86::LEA64r;
3641 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3642 TII.get(Opc), ResultReg), AM);
3643 }
3644 return ResultReg;
3645 }
3646 return 0;
3647 }
3648
fastMaterializeConstant(const Constant * C)3649 unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3650 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
3651
3652 // Only handle simple types.
3653 if (!CEVT.isSimple())
3654 return 0;
3655 MVT VT = CEVT.getSimpleVT();
3656
3657 if (const auto *CI = dyn_cast<ConstantInt>(C))
3658 return X86MaterializeInt(CI, VT);
3659 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3660 return X86MaterializeFP(CFP, VT);
3661 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3662 return X86MaterializeGV(GV, VT);
3663
3664 return 0;
3665 }
3666
fastMaterializeAlloca(const AllocaInst * C)3667 unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3668 // Fail on dynamic allocas. At this point, getRegForValue has already
3669 // checked its CSE maps, so if we're here trying to handle a dynamic
3670 // alloca, we're not going to succeed. X86SelectAddress has a
3671 // check for dynamic allocas, because it's called directly from
3672 // various places, but targetMaterializeAlloca also needs a check
3673 // in order to avoid recursion between getRegForValue,
3674 // X86SelectAddrss, and targetMaterializeAlloca.
3675 if (!FuncInfo.StaticAllocaMap.count(C))
3676 return 0;
3677 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3678
3679 X86AddressMode AM;
3680 if (!X86SelectAddress(C, AM))
3681 return 0;
3682 unsigned Opc =
3683 TLI.getPointerTy(DL) == MVT::i32
3684 ? (Subtarget->isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r)
3685 : X86::LEA64r;
3686 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3687 unsigned ResultReg = createResultReg(RC);
3688 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3689 TII.get(Opc), ResultReg), AM);
3690 return ResultReg;
3691 }
3692
fastMaterializeFloatZero(const ConstantFP * CF)3693 unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3694 MVT VT;
3695 if (!isTypeLegal(CF->getType(), VT))
3696 return 0;
3697
3698 // Get opcode and regclass for the given zero.
3699 unsigned Opc = 0;
3700 const TargetRegisterClass *RC = nullptr;
3701 switch (VT.SimpleTy) {
3702 default: return 0;
3703 case MVT::f32:
3704 if (X86ScalarSSEf32) {
3705 Opc = X86::FsFLD0SS;
3706 RC = &X86::FR32RegClass;
3707 } else {
3708 Opc = X86::LD_Fp032;
3709 RC = &X86::RFP32RegClass;
3710 }
3711 break;
3712 case MVT::f64:
3713 if (X86ScalarSSEf64) {
3714 Opc = X86::FsFLD0SD;
3715 RC = &X86::FR64RegClass;
3716 } else {
3717 Opc = X86::LD_Fp064;
3718 RC = &X86::RFP64RegClass;
3719 }
3720 break;
3721 case MVT::f80:
3722 // No f80 support yet.
3723 return 0;
3724 }
3725
3726 unsigned ResultReg = createResultReg(RC);
3727 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3728 return ResultReg;
3729 }
3730
3731
tryToFoldLoadIntoMI(MachineInstr * MI,unsigned OpNo,const LoadInst * LI)3732 bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3733 const LoadInst *LI) {
3734 const Value *Ptr = LI->getPointerOperand();
3735 X86AddressMode AM;
3736 if (!X86SelectAddress(Ptr, AM))
3737 return false;
3738
3739 const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3740
3741 unsigned Size = DL.getTypeAllocSize(LI->getType());
3742 unsigned Alignment = LI->getAlignment();
3743
3744 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3745 Alignment = DL.getABITypeAlignment(LI->getType());
3746
3747 SmallVector<MachineOperand, 8> AddrOps;
3748 AM.getFullAddress(AddrOps);
3749
3750 MachineInstr *Result = XII.foldMemoryOperandImpl(
3751 *FuncInfo.MF, *MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
3752 /*AllowCommute=*/true);
3753 if (!Result)
3754 return false;
3755
3756 // The index register could be in the wrong register class. Unfortunately,
3757 // foldMemoryOperandImpl could have commuted the instruction so its not enough
3758 // to just look at OpNo + the offset to the index reg. We actually need to
3759 // scan the instruction to find the index reg and see if its the correct reg
3760 // class.
3761 unsigned OperandNo = 0;
3762 for (MachineInstr::mop_iterator I = Result->operands_begin(),
3763 E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3764 MachineOperand &MO = *I;
3765 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
3766 continue;
3767 // Found the index reg, now try to rewrite it.
3768 unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
3769 MO.getReg(), OperandNo);
3770 if (IndexReg == MO.getReg())
3771 continue;
3772 MO.setReg(IndexReg);
3773 }
3774
3775 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
3776 MI->eraseFromParent();
3777 return true;
3778 }
3779
3780
3781 namespace llvm {
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)3782 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
3783 const TargetLibraryInfo *libInfo) {
3784 return new X86FastISel(funcInfo, libInfo);
3785 }
3786 }
3787