1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the pass which converts floating point instructions from
11 // pseudo registers into register stack instructions. This pass uses live
12 // variable information to indicate where the FPn registers are used and their
13 // lifetimes.
14 //
15 // The x87 hardware tracks liveness of the stack registers, so it is necessary
16 // to implement exact liveness tracking between basic blocks. The CFG edges are
17 // partitioned into bundles where the same FP registers must be live in
18 // identical stack positions. Instructions are inserted at the end of each basic
19 // block to rearrange the live registers to match the outgoing bundle.
20 //
21 // This approach avoids splitting critical edges at the potential cost of more
22 // live register shuffling instructions when critical edges are present.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #include "X86.h"
27 #include "X86InstrInfo.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LivePhysRegs.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/Passes.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetMachine.h"
46 #include "llvm/Target/TargetSubtargetInfo.h"
47 #include <algorithm>
48 #include <bitset>
49 using namespace llvm;
50
51 #define DEBUG_TYPE "x86-codegen"
52
53 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
54 STATISTIC(NumFP , "Number of floating point instructions");
55
56 namespace {
57 const unsigned ScratchFPReg = 7;
58
59 struct FPS : public MachineFunctionPass {
60 static char ID;
FPS__anonce176ede0111::FPS61 FPS() : MachineFunctionPass(ID) {
62 initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
63 // This is really only to keep valgrind quiet.
64 // The logic in isLive() is too much for it.
65 memset(Stack, 0, sizeof(Stack));
66 memset(RegMap, 0, sizeof(RegMap));
67 }
68
getAnalysisUsage__anonce176ede0111::FPS69 void getAnalysisUsage(AnalysisUsage &AU) const override {
70 AU.setPreservesCFG();
71 AU.addRequired<EdgeBundles>();
72 AU.addPreservedID(MachineLoopInfoID);
73 AU.addPreservedID(MachineDominatorsID);
74 MachineFunctionPass::getAnalysisUsage(AU);
75 }
76
77 bool runOnMachineFunction(MachineFunction &MF) override;
78
getRequiredProperties__anonce176ede0111::FPS79 MachineFunctionProperties getRequiredProperties() const override {
80 return MachineFunctionProperties().set(
81 MachineFunctionProperties::Property::AllVRegsAllocated);
82 }
83
getPassName__anonce176ede0111::FPS84 const char *getPassName() const override { return "X86 FP Stackifier"; }
85
86 private:
87 const TargetInstrInfo *TII; // Machine instruction info.
88
89 // Two CFG edges are related if they leave the same block, or enter the same
90 // block. The transitive closure of an edge under this relation is a
91 // LiveBundle. It represents a set of CFG edges where the live FP stack
92 // registers must be allocated identically in the x87 stack.
93 //
94 // A LiveBundle is usually all the edges leaving a block, or all the edges
95 // entering a block, but it can contain more edges if critical edges are
96 // present.
97 //
98 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
99 // but the exact mapping of FP registers to stack slots is fixed later.
100 struct LiveBundle {
101 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
102 unsigned Mask;
103
104 // Number of pre-assigned live registers in FixStack. This is 0 when the
105 // stack order has not yet been fixed.
106 unsigned FixCount;
107
108 // Assigned stack order for live-in registers.
109 // FixStack[i] == getStackEntry(i) for all i < FixCount.
110 unsigned char FixStack[8];
111
LiveBundle__anonce176ede0111::FPS::LiveBundle112 LiveBundle() : Mask(0), FixCount(0) {}
113
114 // Have the live registers been assigned a stack order yet?
isFixed__anonce176ede0111::FPS::LiveBundle115 bool isFixed() const { return !Mask || FixCount; }
116 };
117
118 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
119 // with no live FP registers.
120 SmallVector<LiveBundle, 8> LiveBundles;
121
122 // The edge bundle analysis provides indices into the LiveBundles vector.
123 EdgeBundles *Bundles;
124
125 // Return a bitmask of FP registers in block's live-in list.
calcLiveInMask__anonce176ede0111::FPS126 static unsigned calcLiveInMask(MachineBasicBlock *MBB) {
127 unsigned Mask = 0;
128 for (const auto &LI : MBB->liveins()) {
129 if (LI.PhysReg < X86::FP0 || LI.PhysReg > X86::FP6)
130 continue;
131 Mask |= 1 << (LI.PhysReg - X86::FP0);
132 }
133 return Mask;
134 }
135
136 // Partition all the CFG edges into LiveBundles.
137 void bundleCFG(MachineFunction &MF);
138
139 MachineBasicBlock *MBB; // Current basic block
140
141 // The hardware keeps track of how many FP registers are live, so we have
142 // to model that exactly. Usually, each live register corresponds to an
143 // FP<n> register, but when dealing with calls, returns, and inline
144 // assembly, it is sometimes necessary to have live scratch registers.
145 unsigned Stack[8]; // FP<n> Registers in each stack slot...
146 unsigned StackTop; // The current top of the FP stack.
147
148 enum {
149 NumFPRegs = 8 // Including scratch pseudo-registers.
150 };
151
152 // For each live FP<n> register, point to its Stack[] entry.
153 // The first entries correspond to FP0-FP6, the rest are scratch registers
154 // used when we need slightly different live registers than what the
155 // register allocator thinks.
156 unsigned RegMap[NumFPRegs];
157
158 // Set up our stack model to match the incoming registers to MBB.
159 void setupBlockStack();
160
161 // Shuffle live registers to match the expectations of successor blocks.
162 void finishBlockStack();
163
164 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpStack__anonce176ede0111::FPS165 void dumpStack() const {
166 dbgs() << "Stack contents:";
167 for (unsigned i = 0; i != StackTop; ++i) {
168 dbgs() << " FP" << Stack[i];
169 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
170 }
171 }
172 #endif
173
174 /// getSlot - Return the stack slot number a particular register number is
175 /// in.
getSlot__anonce176ede0111::FPS176 unsigned getSlot(unsigned RegNo) const {
177 assert(RegNo < NumFPRegs && "Regno out of range!");
178 return RegMap[RegNo];
179 }
180
181 /// isLive - Is RegNo currently live in the stack?
isLive__anonce176ede0111::FPS182 bool isLive(unsigned RegNo) const {
183 unsigned Slot = getSlot(RegNo);
184 return Slot < StackTop && Stack[Slot] == RegNo;
185 }
186
187 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
getStackEntry__anonce176ede0111::FPS188 unsigned getStackEntry(unsigned STi) const {
189 if (STi >= StackTop)
190 report_fatal_error("Access past stack top!");
191 return Stack[StackTop-1-STi];
192 }
193
194 /// getSTReg - Return the X86::ST(i) register which contains the specified
195 /// FP<RegNo> register.
getSTReg__anonce176ede0111::FPS196 unsigned getSTReg(unsigned RegNo) const {
197 return StackTop - 1 - getSlot(RegNo) + X86::ST0;
198 }
199
200 // pushReg - Push the specified FP<n> register onto the stack.
pushReg__anonce176ede0111::FPS201 void pushReg(unsigned Reg) {
202 assert(Reg < NumFPRegs && "Register number out of range!");
203 if (StackTop >= 8)
204 report_fatal_error("Stack overflow!");
205 Stack[StackTop] = Reg;
206 RegMap[Reg] = StackTop++;
207 }
208
isAtTop__anonce176ede0111::FPS209 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
moveToTop__anonce176ede0111::FPS210 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
211 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
212 if (isAtTop(RegNo)) return;
213
214 unsigned STReg = getSTReg(RegNo);
215 unsigned RegOnTop = getStackEntry(0);
216
217 // Swap the slots the regs are in.
218 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
219
220 // Swap stack slot contents.
221 if (RegMap[RegOnTop] >= StackTop)
222 report_fatal_error("Access past stack top!");
223 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
224
225 // Emit an fxch to update the runtime processors version of the state.
226 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
227 ++NumFXCH;
228 }
229
duplicateToTop__anonce176ede0111::FPS230 void duplicateToTop(unsigned RegNo, unsigned AsReg,
231 MachineBasicBlock::iterator I) {
232 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
233 unsigned STReg = getSTReg(RegNo);
234 pushReg(AsReg); // New register on top of stack
235
236 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
237 }
238
239 /// popStackAfter - Pop the current value off of the top of the FP stack
240 /// after the specified instruction.
241 void popStackAfter(MachineBasicBlock::iterator &I);
242
243 /// freeStackSlotAfter - Free the specified register from the register
244 /// stack, so that it is no longer in a register. If the register is
245 /// currently at the top of the stack, we just pop the current instruction,
246 /// otherwise we store the current top-of-stack into the specified slot,
247 /// then pop the top of stack.
248 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
249
250 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
251 /// instruction.
252 MachineBasicBlock::iterator
253 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
254
255 /// Adjust the live registers to be the set in Mask.
256 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
257
258 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
259 /// st(0), FP reg FixStack[1] is st(1) etc.
260 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
261 MachineBasicBlock::iterator I);
262
263 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
264
265 void handleCall(MachineBasicBlock::iterator &I);
266 void handleReturn(MachineBasicBlock::iterator &I);
267 void handleZeroArgFP(MachineBasicBlock::iterator &I);
268 void handleOneArgFP(MachineBasicBlock::iterator &I);
269 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
270 void handleTwoArgFP(MachineBasicBlock::iterator &I);
271 void handleCompareFP(MachineBasicBlock::iterator &I);
272 void handleCondMovFP(MachineBasicBlock::iterator &I);
273 void handleSpecialFP(MachineBasicBlock::iterator &I);
274
275 // Check if a COPY instruction is using FP registers.
isFPCopy__anonce176ede0111::FPS276 static bool isFPCopy(MachineInstr &MI) {
277 unsigned DstReg = MI.getOperand(0).getReg();
278 unsigned SrcReg = MI.getOperand(1).getReg();
279
280 return X86::RFP80RegClass.contains(DstReg) ||
281 X86::RFP80RegClass.contains(SrcReg);
282 }
283
284 void setKillFlags(MachineBasicBlock &MBB) const;
285 };
286 char FPS::ID = 0;
287 }
288
createX86FloatingPointStackifierPass()289 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
290
291 /// getFPReg - Return the X86::FPx register number for the specified operand.
292 /// For example, this returns 3 for X86::FP3.
getFPReg(const MachineOperand & MO)293 static unsigned getFPReg(const MachineOperand &MO) {
294 assert(MO.isReg() && "Expected an FP register!");
295 unsigned Reg = MO.getReg();
296 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
297 return Reg - X86::FP0;
298 }
299
300 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
301 /// register references into FP stack references.
302 ///
runOnMachineFunction(MachineFunction & MF)303 bool FPS::runOnMachineFunction(MachineFunction &MF) {
304 // We only need to run this pass if there are any FP registers used in this
305 // function. If it is all integer, there is nothing for us to do!
306 bool FPIsUsed = false;
307
308 static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
309 const MachineRegisterInfo &MRI = MF.getRegInfo();
310 for (unsigned i = 0; i <= 6; ++i)
311 if (!MRI.reg_nodbg_empty(X86::FP0 + i)) {
312 FPIsUsed = true;
313 break;
314 }
315
316 // Early exit.
317 if (!FPIsUsed) return false;
318
319 Bundles = &getAnalysis<EdgeBundles>();
320 TII = MF.getSubtarget().getInstrInfo();
321
322 // Prepare cross-MBB liveness.
323 bundleCFG(MF);
324
325 StackTop = 0;
326
327 // Process the function in depth first order so that we process at least one
328 // of the predecessors for every reachable block in the function.
329 SmallPtrSet<MachineBasicBlock*, 8> Processed;
330 MachineBasicBlock *Entry = &MF.front();
331
332 bool Changed = false;
333 for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
334 Changed |= processBasicBlock(MF, *BB);
335
336 // Process any unreachable blocks in arbitrary order now.
337 if (MF.size() != Processed.size())
338 for (MachineBasicBlock &BB : MF)
339 if (Processed.insert(&BB).second)
340 Changed |= processBasicBlock(MF, BB);
341
342 LiveBundles.clear();
343
344 return Changed;
345 }
346
347 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
348 /// live-out sets for the FP registers. Consistent means that the set of
349 /// registers live-out from a block is identical to the live-in set of all
350 /// successors. This is not enforced by the normal live-in lists since
351 /// registers may be implicitly defined, or not used by all successors.
bundleCFG(MachineFunction & MF)352 void FPS::bundleCFG(MachineFunction &MF) {
353 assert(LiveBundles.empty() && "Stale data in LiveBundles");
354 LiveBundles.resize(Bundles->getNumBundles());
355
356 // Gather the actual live-in masks for all MBBs.
357 for (MachineBasicBlock &MBB : MF) {
358 const unsigned Mask = calcLiveInMask(&MBB);
359 if (!Mask)
360 continue;
361 // Update MBB ingoing bundle mask.
362 LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask;
363 }
364 }
365
366 /// processBasicBlock - Loop over all of the instructions in the basic block,
367 /// transforming FP instructions into their stack form.
368 ///
processBasicBlock(MachineFunction & MF,MachineBasicBlock & BB)369 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
370 bool Changed = false;
371 MBB = &BB;
372
373 setKillFlags(BB);
374 setupBlockStack();
375
376 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
377 MachineInstr &MI = *I;
378 uint64_t Flags = MI.getDesc().TSFlags;
379
380 unsigned FPInstClass = Flags & X86II::FPTypeMask;
381 if (MI.isInlineAsm())
382 FPInstClass = X86II::SpecialFP;
383
384 if (MI.isCopy() && isFPCopy(MI))
385 FPInstClass = X86II::SpecialFP;
386
387 if (MI.isImplicitDef() &&
388 X86::RFP80RegClass.contains(MI.getOperand(0).getReg()))
389 FPInstClass = X86II::SpecialFP;
390
391 if (MI.isCall())
392 FPInstClass = X86II::SpecialFP;
393
394 if (FPInstClass == X86II::NotFP)
395 continue; // Efficiently ignore non-fp insts!
396
397 MachineInstr *PrevMI = nullptr;
398 if (I != BB.begin())
399 PrevMI = &*std::prev(I);
400
401 ++NumFP; // Keep track of # of pseudo instrs
402 DEBUG(dbgs() << "\nFPInst:\t" << MI);
403
404 // Get dead variables list now because the MI pointer may be deleted as part
405 // of processing!
406 SmallVector<unsigned, 8> DeadRegs;
407 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
408 const MachineOperand &MO = MI.getOperand(i);
409 if (MO.isReg() && MO.isDead())
410 DeadRegs.push_back(MO.getReg());
411 }
412
413 switch (FPInstClass) {
414 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
415 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
416 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
417 case X86II::TwoArgFP: handleTwoArgFP(I); break;
418 case X86II::CompareFP: handleCompareFP(I); break;
419 case X86II::CondMovFP: handleCondMovFP(I); break;
420 case X86II::SpecialFP: handleSpecialFP(I); break;
421 default: llvm_unreachable("Unknown FP Type!");
422 }
423
424 // Check to see if any of the values defined by this instruction are dead
425 // after definition. If so, pop them.
426 for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) {
427 unsigned Reg = DeadRegs[i];
428 // Check if Reg is live on the stack. An inline-asm register operand that
429 // is in the clobber list and marked dead might not be live on the stack.
430 if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
431 DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n");
432 freeStackSlotAfter(I, Reg-X86::FP0);
433 }
434 }
435
436 // Print out all of the instructions expanded to if -debug
437 DEBUG({
438 MachineBasicBlock::iterator PrevI = PrevMI;
439 if (I == PrevI) {
440 dbgs() << "Just deleted pseudo instruction\n";
441 } else {
442 MachineBasicBlock::iterator Start = I;
443 // Rewind to first instruction newly inserted.
444 while (Start != BB.begin() && std::prev(Start) != PrevI)
445 --Start;
446 dbgs() << "Inserted instructions:\n\t";
447 Start->print(dbgs());
448 while (++Start != std::next(I)) {
449 }
450 }
451 dumpStack();
452 });
453 (void)PrevMI;
454
455 Changed = true;
456 }
457
458 finishBlockStack();
459
460 return Changed;
461 }
462
463 /// setupBlockStack - Use the live bundles to set up our model of the stack
464 /// to match predecessors' live out stack.
setupBlockStack()465 void FPS::setupBlockStack() {
466 DEBUG(dbgs() << "\nSetting up live-ins for BB#" << MBB->getNumber()
467 << " derived from " << MBB->getName() << ".\n");
468 StackTop = 0;
469 // Get the live-in bundle for MBB.
470 const LiveBundle &Bundle =
471 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
472
473 if (!Bundle.Mask) {
474 DEBUG(dbgs() << "Block has no FP live-ins.\n");
475 return;
476 }
477
478 // Depth-first iteration should ensure that we always have an assigned stack.
479 assert(Bundle.isFixed() && "Reached block before any predecessors");
480
481 // Push the fixed live-in registers.
482 for (unsigned i = Bundle.FixCount; i > 0; --i) {
483 MBB->addLiveIn(X86::ST0+i-1);
484 DEBUG(dbgs() << "Live-in st(" << (i-1) << "): %FP"
485 << unsigned(Bundle.FixStack[i-1]) << '\n');
486 pushReg(Bundle.FixStack[i-1]);
487 }
488
489 // Kill off unwanted live-ins. This can happen with a critical edge.
490 // FIXME: We could keep these live registers around as zombies. They may need
491 // to be revived at the end of a short block. It might save a few instrs.
492 adjustLiveRegs(calcLiveInMask(MBB), MBB->begin());
493 DEBUG(MBB->dump());
494 }
495
496 /// finishBlockStack - Revive live-outs that are implicitly defined out of
497 /// MBB. Shuffle live registers to match the expected fixed stack of any
498 /// predecessors, and ensure that all predecessors are expecting the same
499 /// stack.
finishBlockStack()500 void FPS::finishBlockStack() {
501 // The RET handling below takes care of return blocks for us.
502 if (MBB->succ_empty())
503 return;
504
505 DEBUG(dbgs() << "Setting up live-outs for BB#" << MBB->getNumber()
506 << " derived from " << MBB->getName() << ".\n");
507
508 // Get MBB's live-out bundle.
509 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
510 LiveBundle &Bundle = LiveBundles[BundleIdx];
511
512 // We may need to kill and define some registers to match successors.
513 // FIXME: This can probably be combined with the shuffle below.
514 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
515 adjustLiveRegs(Bundle.Mask, Term);
516
517 if (!Bundle.Mask) {
518 DEBUG(dbgs() << "No live-outs.\n");
519 return;
520 }
521
522 // Has the stack order been fixed yet?
523 DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
524 if (Bundle.isFixed()) {
525 DEBUG(dbgs() << "Shuffling stack to match.\n");
526 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
527 } else {
528 // Not fixed yet, we get to choose.
529 DEBUG(dbgs() << "Fixing stack order now.\n");
530 Bundle.FixCount = StackTop;
531 for (unsigned i = 0; i < StackTop; ++i)
532 Bundle.FixStack[i] = getStackEntry(i);
533 }
534 }
535
536
537 //===----------------------------------------------------------------------===//
538 // Efficient Lookup Table Support
539 //===----------------------------------------------------------------------===//
540
541 namespace {
542 struct TableEntry {
543 uint16_t from;
544 uint16_t to;
operator <__anonce176ede0311::TableEntry545 bool operator<(const TableEntry &TE) const { return from < TE.from; }
operator <(const TableEntry & TE,unsigned V)546 friend bool operator<(const TableEntry &TE, unsigned V) {
547 return TE.from < V;
548 }
operator <(unsigned V,const TableEntry & TE)549 friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
550 const TableEntry &TE) {
551 return V < TE.from;
552 }
553 };
554 }
555
Lookup(ArrayRef<TableEntry> Table,unsigned Opcode)556 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) {
557 const TableEntry *I = std::lower_bound(Table.begin(), Table.end(), Opcode);
558 if (I != Table.end() && I->from == Opcode)
559 return I->to;
560 return -1;
561 }
562
563 #ifdef NDEBUG
564 #define ASSERT_SORTED(TABLE)
565 #else
566 #define ASSERT_SORTED(TABLE) \
567 { static bool TABLE##Checked = false; \
568 if (!TABLE##Checked) { \
569 assert(std::is_sorted(std::begin(TABLE), std::end(TABLE)) && \
570 "All lookup tables must be sorted for efficient access!"); \
571 TABLE##Checked = true; \
572 } \
573 }
574 #endif
575
576 //===----------------------------------------------------------------------===//
577 // Register File -> Register Stack Mapping Methods
578 //===----------------------------------------------------------------------===//
579
580 // OpcodeTable - Sorted map of register instructions to their stack version.
581 // The first element is an register file pseudo instruction, the second is the
582 // concrete X86 instruction which uses the register stack.
583 //
584 static const TableEntry OpcodeTable[] = {
585 { X86::ABS_Fp32 , X86::ABS_F },
586 { X86::ABS_Fp64 , X86::ABS_F },
587 { X86::ABS_Fp80 , X86::ABS_F },
588 { X86::ADD_Fp32m , X86::ADD_F32m },
589 { X86::ADD_Fp64m , X86::ADD_F64m },
590 { X86::ADD_Fp64m32 , X86::ADD_F32m },
591 { X86::ADD_Fp80m32 , X86::ADD_F32m },
592 { X86::ADD_Fp80m64 , X86::ADD_F64m },
593 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
594 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
595 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
596 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
597 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
598 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
599 { X86::CHS_Fp32 , X86::CHS_F },
600 { X86::CHS_Fp64 , X86::CHS_F },
601 { X86::CHS_Fp80 , X86::CHS_F },
602 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
603 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
604 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
605 { X86::CMOVB_Fp32 , X86::CMOVB_F },
606 { X86::CMOVB_Fp64 , X86::CMOVB_F },
607 { X86::CMOVB_Fp80 , X86::CMOVB_F },
608 { X86::CMOVE_Fp32 , X86::CMOVE_F },
609 { X86::CMOVE_Fp64 , X86::CMOVE_F },
610 { X86::CMOVE_Fp80 , X86::CMOVE_F },
611 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
612 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
613 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
614 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
615 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
616 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
617 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
618 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
619 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
620 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
621 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
622 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
623 { X86::CMOVP_Fp32 , X86::CMOVP_F },
624 { X86::CMOVP_Fp64 , X86::CMOVP_F },
625 { X86::CMOVP_Fp80 , X86::CMOVP_F },
626 { X86::COS_Fp32 , X86::COS_F },
627 { X86::COS_Fp64 , X86::COS_F },
628 { X86::COS_Fp80 , X86::COS_F },
629 { X86::DIVR_Fp32m , X86::DIVR_F32m },
630 { X86::DIVR_Fp64m , X86::DIVR_F64m },
631 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
632 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
633 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
634 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
635 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
636 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
637 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
638 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
639 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
640 { X86::DIV_Fp32m , X86::DIV_F32m },
641 { X86::DIV_Fp64m , X86::DIV_F64m },
642 { X86::DIV_Fp64m32 , X86::DIV_F32m },
643 { X86::DIV_Fp80m32 , X86::DIV_F32m },
644 { X86::DIV_Fp80m64 , X86::DIV_F64m },
645 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
646 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
647 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
648 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
649 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
650 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
651 { X86::ILD_Fp16m32 , X86::ILD_F16m },
652 { X86::ILD_Fp16m64 , X86::ILD_F16m },
653 { X86::ILD_Fp16m80 , X86::ILD_F16m },
654 { X86::ILD_Fp32m32 , X86::ILD_F32m },
655 { X86::ILD_Fp32m64 , X86::ILD_F32m },
656 { X86::ILD_Fp32m80 , X86::ILD_F32m },
657 { X86::ILD_Fp64m32 , X86::ILD_F64m },
658 { X86::ILD_Fp64m64 , X86::ILD_F64m },
659 { X86::ILD_Fp64m80 , X86::ILD_F64m },
660 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
661 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
662 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
663 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
664 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
665 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
666 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
667 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
668 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
669 { X86::IST_Fp16m32 , X86::IST_F16m },
670 { X86::IST_Fp16m64 , X86::IST_F16m },
671 { X86::IST_Fp16m80 , X86::IST_F16m },
672 { X86::IST_Fp32m32 , X86::IST_F32m },
673 { X86::IST_Fp32m64 , X86::IST_F32m },
674 { X86::IST_Fp32m80 , X86::IST_F32m },
675 { X86::IST_Fp64m32 , X86::IST_FP64m },
676 { X86::IST_Fp64m64 , X86::IST_FP64m },
677 { X86::IST_Fp64m80 , X86::IST_FP64m },
678 { X86::LD_Fp032 , X86::LD_F0 },
679 { X86::LD_Fp064 , X86::LD_F0 },
680 { X86::LD_Fp080 , X86::LD_F0 },
681 { X86::LD_Fp132 , X86::LD_F1 },
682 { X86::LD_Fp164 , X86::LD_F1 },
683 { X86::LD_Fp180 , X86::LD_F1 },
684 { X86::LD_Fp32m , X86::LD_F32m },
685 { X86::LD_Fp32m64 , X86::LD_F32m },
686 { X86::LD_Fp32m80 , X86::LD_F32m },
687 { X86::LD_Fp64m , X86::LD_F64m },
688 { X86::LD_Fp64m80 , X86::LD_F64m },
689 { X86::LD_Fp80m , X86::LD_F80m },
690 { X86::MUL_Fp32m , X86::MUL_F32m },
691 { X86::MUL_Fp64m , X86::MUL_F64m },
692 { X86::MUL_Fp64m32 , X86::MUL_F32m },
693 { X86::MUL_Fp80m32 , X86::MUL_F32m },
694 { X86::MUL_Fp80m64 , X86::MUL_F64m },
695 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
696 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
697 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
698 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
699 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
700 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
701 { X86::SIN_Fp32 , X86::SIN_F },
702 { X86::SIN_Fp64 , X86::SIN_F },
703 { X86::SIN_Fp80 , X86::SIN_F },
704 { X86::SQRT_Fp32 , X86::SQRT_F },
705 { X86::SQRT_Fp64 , X86::SQRT_F },
706 { X86::SQRT_Fp80 , X86::SQRT_F },
707 { X86::ST_Fp32m , X86::ST_F32m },
708 { X86::ST_Fp64m , X86::ST_F64m },
709 { X86::ST_Fp64m32 , X86::ST_F32m },
710 { X86::ST_Fp80m32 , X86::ST_F32m },
711 { X86::ST_Fp80m64 , X86::ST_F64m },
712 { X86::ST_FpP80m , X86::ST_FP80m },
713 { X86::SUBR_Fp32m , X86::SUBR_F32m },
714 { X86::SUBR_Fp64m , X86::SUBR_F64m },
715 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
716 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
717 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
718 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
719 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
720 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
721 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
722 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
723 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
724 { X86::SUB_Fp32m , X86::SUB_F32m },
725 { X86::SUB_Fp64m , X86::SUB_F64m },
726 { X86::SUB_Fp64m32 , X86::SUB_F32m },
727 { X86::SUB_Fp80m32 , X86::SUB_F32m },
728 { X86::SUB_Fp80m64 , X86::SUB_F64m },
729 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
730 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
731 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
732 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
733 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
734 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
735 { X86::TST_Fp32 , X86::TST_F },
736 { X86::TST_Fp64 , X86::TST_F },
737 { X86::TST_Fp80 , X86::TST_F },
738 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
739 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
740 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
741 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
742 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
743 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
744 };
745
getConcreteOpcode(unsigned Opcode)746 static unsigned getConcreteOpcode(unsigned Opcode) {
747 ASSERT_SORTED(OpcodeTable);
748 int Opc = Lookup(OpcodeTable, Opcode);
749 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
750 return Opc;
751 }
752
753 //===----------------------------------------------------------------------===//
754 // Helper Methods
755 //===----------------------------------------------------------------------===//
756
757 // PopTable - Sorted map of instructions to their popping version. The first
758 // element is an instruction, the second is the version which pops.
759 //
760 static const TableEntry PopTable[] = {
761 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
762
763 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
764 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
765
766 { X86::IST_F16m , X86::IST_FP16m },
767 { X86::IST_F32m , X86::IST_FP32m },
768
769 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
770
771 { X86::ST_F32m , X86::ST_FP32m },
772 { X86::ST_F64m , X86::ST_FP64m },
773 { X86::ST_Frr , X86::ST_FPrr },
774
775 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
776 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
777
778 { X86::UCOM_FIr , X86::UCOM_FIPr },
779
780 { X86::UCOM_FPr , X86::UCOM_FPPr },
781 { X86::UCOM_Fr , X86::UCOM_FPr },
782 };
783
784 /// popStackAfter - Pop the current value off of the top of the FP stack after
785 /// the specified instruction. This attempts to be sneaky and combine the pop
786 /// into the instruction itself if possible. The iterator is left pointing to
787 /// the last instruction, be it a new pop instruction inserted, or the old
788 /// instruction if it was modified in place.
789 ///
popStackAfter(MachineBasicBlock::iterator & I)790 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
791 MachineInstr &MI = *I;
792 const DebugLoc &dl = MI.getDebugLoc();
793 ASSERT_SORTED(PopTable);
794 if (StackTop == 0)
795 report_fatal_error("Cannot pop empty stack!");
796 RegMap[Stack[--StackTop]] = ~0; // Update state
797
798 // Check to see if there is a popping version of this instruction...
799 int Opcode = Lookup(PopTable, I->getOpcode());
800 if (Opcode != -1) {
801 I->setDesc(TII->get(Opcode));
802 if (Opcode == X86::UCOM_FPPr)
803 I->RemoveOperand(0);
804 } else { // Insert an explicit pop
805 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
806 }
807 }
808
809 /// freeStackSlotAfter - Free the specified register from the register stack, so
810 /// that it is no longer in a register. If the register is currently at the top
811 /// of the stack, we just pop the current instruction, otherwise we store the
812 /// current top-of-stack into the specified slot, then pop the top of stack.
freeStackSlotAfter(MachineBasicBlock::iterator & I,unsigned FPRegNo)813 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
814 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
815 popStackAfter(I);
816 return;
817 }
818
819 // Otherwise, store the top of stack into the dead slot, killing the operand
820 // without having to add in an explicit xchg then pop.
821 //
822 I = freeStackSlotBefore(++I, FPRegNo);
823 }
824
825 /// freeStackSlotBefore - Free the specified register without trying any
826 /// folding.
827 MachineBasicBlock::iterator
freeStackSlotBefore(MachineBasicBlock::iterator I,unsigned FPRegNo)828 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
829 unsigned STReg = getSTReg(FPRegNo);
830 unsigned OldSlot = getSlot(FPRegNo);
831 unsigned TopReg = Stack[StackTop-1];
832 Stack[OldSlot] = TopReg;
833 RegMap[TopReg] = OldSlot;
834 RegMap[FPRegNo] = ~0;
835 Stack[--StackTop] = ~0;
836 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
837 .addReg(STReg)
838 .getInstr();
839 }
840
841 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
842 /// registers with a bit in Mask are live.
adjustLiveRegs(unsigned Mask,MachineBasicBlock::iterator I)843 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
844 unsigned Defs = Mask;
845 unsigned Kills = 0;
846 for (unsigned i = 0; i < StackTop; ++i) {
847 unsigned RegNo = Stack[i];
848 if (!(Defs & (1 << RegNo)))
849 // This register is live, but we don't want it.
850 Kills |= (1 << RegNo);
851 else
852 // We don't need to imp-def this live register.
853 Defs &= ~(1 << RegNo);
854 }
855 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
856
857 // Produce implicit-defs for free by using killed registers.
858 while (Kills && Defs) {
859 unsigned KReg = countTrailingZeros(Kills);
860 unsigned DReg = countTrailingZeros(Defs);
861 DEBUG(dbgs() << "Renaming %FP" << KReg << " as imp %FP" << DReg << "\n");
862 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
863 std::swap(RegMap[KReg], RegMap[DReg]);
864 Kills &= ~(1 << KReg);
865 Defs &= ~(1 << DReg);
866 }
867
868 // Kill registers by popping.
869 if (Kills && I != MBB->begin()) {
870 MachineBasicBlock::iterator I2 = std::prev(I);
871 while (StackTop) {
872 unsigned KReg = getStackEntry(0);
873 if (!(Kills & (1 << KReg)))
874 break;
875 DEBUG(dbgs() << "Popping %FP" << KReg << "\n");
876 popStackAfter(I2);
877 Kills &= ~(1 << KReg);
878 }
879 }
880
881 // Manually kill the rest.
882 while (Kills) {
883 unsigned KReg = countTrailingZeros(Kills);
884 DEBUG(dbgs() << "Killing %FP" << KReg << "\n");
885 freeStackSlotBefore(I, KReg);
886 Kills &= ~(1 << KReg);
887 }
888
889 // Load zeros for all the imp-defs.
890 while(Defs) {
891 unsigned DReg = countTrailingZeros(Defs);
892 DEBUG(dbgs() << "Defining %FP" << DReg << " as 0\n");
893 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
894 pushReg(DReg);
895 Defs &= ~(1 << DReg);
896 }
897
898 // Now we should have the correct registers live.
899 DEBUG(dumpStack());
900 assert(StackTop == countPopulation(Mask) && "Live count mismatch");
901 }
902
903 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
904 /// FixCount entries into the order given by FixStack.
905 /// FIXME: Is there a better algorithm than insertion sort?
shuffleStackTop(const unsigned char * FixStack,unsigned FixCount,MachineBasicBlock::iterator I)906 void FPS::shuffleStackTop(const unsigned char *FixStack,
907 unsigned FixCount,
908 MachineBasicBlock::iterator I) {
909 // Move items into place, starting from the desired stack bottom.
910 while (FixCount--) {
911 // Old register at position FixCount.
912 unsigned OldReg = getStackEntry(FixCount);
913 // Desired register at position FixCount.
914 unsigned Reg = FixStack[FixCount];
915 if (Reg == OldReg)
916 continue;
917 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
918 moveToTop(Reg, I);
919 if (FixCount > 0)
920 moveToTop(OldReg, I);
921 }
922 DEBUG(dumpStack());
923 }
924
925
926 //===----------------------------------------------------------------------===//
927 // Instruction transformation implementation
928 //===----------------------------------------------------------------------===//
929
handleCall(MachineBasicBlock::iterator & I)930 void FPS::handleCall(MachineBasicBlock::iterator &I) {
931 unsigned STReturns = 0;
932
933 for (const auto &MO : I->operands()) {
934 if (!MO.isReg())
935 continue;
936
937 unsigned R = MO.getReg() - X86::FP0;
938
939 if (R < 8) {
940 assert(MO.isDef() && MO.isImplicit());
941 STReturns |= 1 << R;
942 }
943 }
944
945 unsigned N = countTrailingOnes(STReturns);
946
947 // FP registers used for function return must be consecutive starting at
948 // FP0.
949 assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
950
951 for (unsigned I = 0; I < N; ++I)
952 pushReg(N - I - 1);
953 }
954
955 /// If RET has an FP register use operand, pass the first one in ST(0) and
956 /// the second one in ST(1).
handleReturn(MachineBasicBlock::iterator & I)957 void FPS::handleReturn(MachineBasicBlock::iterator &I) {
958 MachineInstr &MI = *I;
959
960 // Find the register operands.
961 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
962 unsigned LiveMask = 0;
963
964 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
965 MachineOperand &Op = MI.getOperand(i);
966 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
967 continue;
968 // FP Register uses must be kills unless there are two uses of the same
969 // register, in which case only one will be a kill.
970 assert(Op.isUse() &&
971 (Op.isKill() || // Marked kill.
972 getFPReg(Op) == FirstFPRegOp || // Second instance.
973 MI.killsRegister(Op.getReg())) && // Later use is marked kill.
974 "Ret only defs operands, and values aren't live beyond it");
975
976 if (FirstFPRegOp == ~0U)
977 FirstFPRegOp = getFPReg(Op);
978 else {
979 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
980 SecondFPRegOp = getFPReg(Op);
981 }
982 LiveMask |= (1 << getFPReg(Op));
983
984 // Remove the operand so that later passes don't see it.
985 MI.RemoveOperand(i);
986 --i;
987 --e;
988 }
989
990 // We may have been carrying spurious live-ins, so make sure only the
991 // returned registers are left live.
992 adjustLiveRegs(LiveMask, MI);
993 if (!LiveMask) return; // Quick check to see if any are possible.
994
995 // There are only four possibilities here:
996 // 1) we are returning a single FP value. In this case, it has to be in
997 // ST(0) already, so just declare success by removing the value from the
998 // FP Stack.
999 if (SecondFPRegOp == ~0U) {
1000 // Assert that the top of stack contains the right FP register.
1001 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1002 "Top of stack not the right register for RET!");
1003
1004 // Ok, everything is good, mark the value as not being on the stack
1005 // anymore so that our assertion about the stack being empty at end of
1006 // block doesn't fire.
1007 StackTop = 0;
1008 return;
1009 }
1010
1011 // Otherwise, we are returning two values:
1012 // 2) If returning the same value for both, we only have one thing in the FP
1013 // stack. Consider: RET FP1, FP1
1014 if (StackTop == 1) {
1015 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1016 "Stack misconfiguration for RET!");
1017
1018 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1019 // register to hold it.
1020 unsigned NewReg = ScratchFPReg;
1021 duplicateToTop(FirstFPRegOp, NewReg, MI);
1022 FirstFPRegOp = NewReg;
1023 }
1024
1025 /// Okay we know we have two different FPx operands now:
1026 assert(StackTop == 2 && "Must have two values live!");
1027
1028 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1029 /// in ST(1). In this case, emit an fxch.
1030 if (getStackEntry(0) == SecondFPRegOp) {
1031 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1032 moveToTop(FirstFPRegOp, MI);
1033 }
1034
1035 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1036 /// ST(1). Just remove both from our understanding of the stack and return.
1037 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1038 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1039 StackTop = 0;
1040 }
1041
1042 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
1043 ///
handleZeroArgFP(MachineBasicBlock::iterator & I)1044 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
1045 MachineInstr &MI = *I;
1046 unsigned DestReg = getFPReg(MI.getOperand(0));
1047
1048 // Change from the pseudo instruction to the concrete instruction.
1049 MI.RemoveOperand(0); // Remove the explicit ST(0) operand
1050 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1051
1052 // Result gets pushed on the stack.
1053 pushReg(DestReg);
1054 }
1055
1056 /// handleOneArgFP - fst <mem>, ST(0)
1057 ///
handleOneArgFP(MachineBasicBlock::iterator & I)1058 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
1059 MachineInstr &MI = *I;
1060 unsigned NumOps = MI.getDesc().getNumOperands();
1061 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
1062 "Can only handle fst* & ftst instructions!");
1063
1064 // Is this the last use of the source register?
1065 unsigned Reg = getFPReg(MI.getOperand(NumOps - 1));
1066 bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1067
1068 // FISTP64m is strange because there isn't a non-popping versions.
1069 // If we have one _and_ we don't want to pop the operand, duplicate the value
1070 // on the stack instead of moving it. This ensure that popping the value is
1071 // always ok.
1072 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1073 //
1074 if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 ||
1075 MI.getOpcode() == X86::ISTT_Fp16m32 ||
1076 MI.getOpcode() == X86::ISTT_Fp32m32 ||
1077 MI.getOpcode() == X86::ISTT_Fp64m32 ||
1078 MI.getOpcode() == X86::IST_Fp64m64 ||
1079 MI.getOpcode() == X86::ISTT_Fp16m64 ||
1080 MI.getOpcode() == X86::ISTT_Fp32m64 ||
1081 MI.getOpcode() == X86::ISTT_Fp64m64 ||
1082 MI.getOpcode() == X86::IST_Fp64m80 ||
1083 MI.getOpcode() == X86::ISTT_Fp16m80 ||
1084 MI.getOpcode() == X86::ISTT_Fp32m80 ||
1085 MI.getOpcode() == X86::ISTT_Fp64m80 ||
1086 MI.getOpcode() == X86::ST_FpP80m)) {
1087 duplicateToTop(Reg, ScratchFPReg, I);
1088 } else {
1089 moveToTop(Reg, I); // Move to the top of the stack...
1090 }
1091
1092 // Convert from the pseudo instruction to the concrete instruction.
1093 MI.RemoveOperand(NumOps - 1); // Remove explicit ST(0) operand
1094 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1095
1096 if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m ||
1097 MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m ||
1098 MI.getOpcode() == X86::ST_FP80m) {
1099 if (StackTop == 0)
1100 report_fatal_error("Stack empty??");
1101 --StackTop;
1102 } else if (KillsSrc) { // Last use of operand?
1103 popStackAfter(I);
1104 }
1105 }
1106
1107
1108 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1109 /// replace the value with a newly computed value. These instructions may have
1110 /// non-fp operands after their FP operands.
1111 ///
1112 /// Examples:
1113 /// R1 = fchs R2
1114 /// R1 = fadd R2, [mem]
1115 ///
handleOneArgFPRW(MachineBasicBlock::iterator & I)1116 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1117 MachineInstr &MI = *I;
1118 #ifndef NDEBUG
1119 unsigned NumOps = MI.getDesc().getNumOperands();
1120 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1121 #endif
1122
1123 // Is this the last use of the source register?
1124 unsigned Reg = getFPReg(MI.getOperand(1));
1125 bool KillsSrc = MI.killsRegister(X86::FP0 + Reg);
1126
1127 if (KillsSrc) {
1128 // If this is the last use of the source register, just make sure it's on
1129 // the top of the stack.
1130 moveToTop(Reg, I);
1131 if (StackTop == 0)
1132 report_fatal_error("Stack cannot be empty!");
1133 --StackTop;
1134 pushReg(getFPReg(MI.getOperand(0)));
1135 } else {
1136 // If this is not the last use of the source register, _copy_ it to the top
1137 // of the stack.
1138 duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I);
1139 }
1140
1141 // Change from the pseudo instruction to the concrete instruction.
1142 MI.RemoveOperand(1); // Drop the source operand.
1143 MI.RemoveOperand(0); // Drop the destination operand.
1144 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1145 }
1146
1147
1148 //===----------------------------------------------------------------------===//
1149 // Define tables of various ways to map pseudo instructions
1150 //
1151
1152 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1153 static const TableEntry ForwardST0Table[] = {
1154 { X86::ADD_Fp32 , X86::ADD_FST0r },
1155 { X86::ADD_Fp64 , X86::ADD_FST0r },
1156 { X86::ADD_Fp80 , X86::ADD_FST0r },
1157 { X86::DIV_Fp32 , X86::DIV_FST0r },
1158 { X86::DIV_Fp64 , X86::DIV_FST0r },
1159 { X86::DIV_Fp80 , X86::DIV_FST0r },
1160 { X86::MUL_Fp32 , X86::MUL_FST0r },
1161 { X86::MUL_Fp64 , X86::MUL_FST0r },
1162 { X86::MUL_Fp80 , X86::MUL_FST0r },
1163 { X86::SUB_Fp32 , X86::SUB_FST0r },
1164 { X86::SUB_Fp64 , X86::SUB_FST0r },
1165 { X86::SUB_Fp80 , X86::SUB_FST0r },
1166 };
1167
1168 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1169 static const TableEntry ReverseST0Table[] = {
1170 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1171 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
1172 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
1173 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1174 { X86::DIV_Fp64 , X86::DIVR_FST0r },
1175 { X86::DIV_Fp80 , X86::DIVR_FST0r },
1176 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1177 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
1178 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
1179 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1180 { X86::SUB_Fp64 , X86::SUBR_FST0r },
1181 { X86::SUB_Fp80 , X86::SUBR_FST0r },
1182 };
1183
1184 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1185 static const TableEntry ForwardSTiTable[] = {
1186 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1187 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
1188 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
1189 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1190 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
1191 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
1192 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1193 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
1194 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
1195 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1196 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
1197 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
1198 };
1199
1200 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1201 static const TableEntry ReverseSTiTable[] = {
1202 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1203 { X86::ADD_Fp64 , X86::ADD_FrST0 },
1204 { X86::ADD_Fp80 , X86::ADD_FrST0 },
1205 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1206 { X86::DIV_Fp64 , X86::DIV_FrST0 },
1207 { X86::DIV_Fp80 , X86::DIV_FrST0 },
1208 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1209 { X86::MUL_Fp64 , X86::MUL_FrST0 },
1210 { X86::MUL_Fp80 , X86::MUL_FrST0 },
1211 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1212 { X86::SUB_Fp64 , X86::SUB_FrST0 },
1213 { X86::SUB_Fp80 , X86::SUB_FrST0 },
1214 };
1215
1216
1217 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1218 /// instructions which need to be simplified and possibly transformed.
1219 ///
1220 /// Result: ST(0) = fsub ST(0), ST(i)
1221 /// ST(i) = fsub ST(0), ST(i)
1222 /// ST(0) = fsubr ST(0), ST(i)
1223 /// ST(i) = fsubr ST(0), ST(i)
1224 ///
handleTwoArgFP(MachineBasicBlock::iterator & I)1225 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1226 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1227 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1228 MachineInstr &MI = *I;
1229
1230 unsigned NumOperands = MI.getDesc().getNumOperands();
1231 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1232 unsigned Dest = getFPReg(MI.getOperand(0));
1233 unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1234 unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1235 bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1236 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1237 DebugLoc dl = MI.getDebugLoc();
1238
1239 unsigned TOS = getStackEntry(0);
1240
1241 // One of our operands must be on the top of the stack. If neither is yet, we
1242 // need to move one.
1243 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1244 // We can choose to move either operand to the top of the stack. If one of
1245 // the operands is killed by this instruction, we want that one so that we
1246 // can update right on top of the old version.
1247 if (KillsOp0) {
1248 moveToTop(Op0, I); // Move dead operand to TOS.
1249 TOS = Op0;
1250 } else if (KillsOp1) {
1251 moveToTop(Op1, I);
1252 TOS = Op1;
1253 } else {
1254 // All of the operands are live after this instruction executes, so we
1255 // cannot update on top of any operand. Because of this, we must
1256 // duplicate one of the stack elements to the top. It doesn't matter
1257 // which one we pick.
1258 //
1259 duplicateToTop(Op0, Dest, I);
1260 Op0 = TOS = Dest;
1261 KillsOp0 = true;
1262 }
1263 } else if (!KillsOp0 && !KillsOp1) {
1264 // If we DO have one of our operands at the top of the stack, but we don't
1265 // have a dead operand, we must duplicate one of the operands to a new slot
1266 // on the stack.
1267 duplicateToTop(Op0, Dest, I);
1268 Op0 = TOS = Dest;
1269 KillsOp0 = true;
1270 }
1271
1272 // Now we know that one of our operands is on the top of the stack, and at
1273 // least one of our operands is killed by this instruction.
1274 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1275 "Stack conditions not set up right!");
1276
1277 // We decide which form to use based on what is on the top of the stack, and
1278 // which operand is killed by this instruction.
1279 ArrayRef<TableEntry> InstTable;
1280 bool isForward = TOS == Op0;
1281 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1282 if (updateST0) {
1283 if (isForward)
1284 InstTable = ForwardST0Table;
1285 else
1286 InstTable = ReverseST0Table;
1287 } else {
1288 if (isForward)
1289 InstTable = ForwardSTiTable;
1290 else
1291 InstTable = ReverseSTiTable;
1292 }
1293
1294 int Opcode = Lookup(InstTable, MI.getOpcode());
1295 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1296
1297 // NotTOS - The register which is not on the top of stack...
1298 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1299
1300 // Replace the old instruction with a new instruction
1301 MBB->remove(&*I++);
1302 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1303
1304 // If both operands are killed, pop one off of the stack in addition to
1305 // overwriting the other one.
1306 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1307 assert(!updateST0 && "Should have updated other operand!");
1308 popStackAfter(I); // Pop the top of stack
1309 }
1310
1311 // Update stack information so that we know the destination register is now on
1312 // the stack.
1313 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1314 assert(UpdatedSlot < StackTop && Dest < 7);
1315 Stack[UpdatedSlot] = Dest;
1316 RegMap[Dest] = UpdatedSlot;
1317 MBB->getParent()->DeleteMachineInstr(&MI); // Remove the old instruction
1318 }
1319
1320 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1321 /// register arguments and no explicit destinations.
1322 ///
handleCompareFP(MachineBasicBlock::iterator & I)1323 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1324 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1325 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1326 MachineInstr &MI = *I;
1327
1328 unsigned NumOperands = MI.getDesc().getNumOperands();
1329 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1330 unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1331 unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1332 bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0);
1333 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1334
1335 // Make sure the first operand is on the top of stack, the other one can be
1336 // anywhere.
1337 moveToTop(Op0, I);
1338
1339 // Change from the pseudo instruction to the concrete instruction.
1340 MI.getOperand(0).setReg(getSTReg(Op1));
1341 MI.RemoveOperand(1);
1342 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1343
1344 // If any of the operands are killed by this instruction, free them.
1345 if (KillsOp0) freeStackSlotAfter(I, Op0);
1346 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1347 }
1348
1349 /// handleCondMovFP - Handle two address conditional move instructions. These
1350 /// instructions move a st(i) register to st(0) iff a condition is true. These
1351 /// instructions require that the first operand is at the top of the stack, but
1352 /// otherwise don't modify the stack at all.
handleCondMovFP(MachineBasicBlock::iterator & I)1353 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1354 MachineInstr &MI = *I;
1355
1356 unsigned Op0 = getFPReg(MI.getOperand(0));
1357 unsigned Op1 = getFPReg(MI.getOperand(2));
1358 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1);
1359
1360 // The first operand *must* be on the top of the stack.
1361 moveToTop(Op0, I);
1362
1363 // Change the second operand to the stack register that the operand is in.
1364 // Change from the pseudo instruction to the concrete instruction.
1365 MI.RemoveOperand(0);
1366 MI.RemoveOperand(1);
1367 MI.getOperand(0).setReg(getSTReg(Op1));
1368 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1369
1370 // If we kill the second operand, make sure to pop it from the stack.
1371 if (Op0 != Op1 && KillsOp1) {
1372 // Get this value off of the register stack.
1373 freeStackSlotAfter(I, Op1);
1374 }
1375 }
1376
1377
1378 /// handleSpecialFP - Handle special instructions which behave unlike other
1379 /// floating point instructions. This is primarily intended for use by pseudo
1380 /// instructions.
1381 ///
handleSpecialFP(MachineBasicBlock::iterator & Inst)1382 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1383 MachineInstr &MI = *Inst;
1384
1385 if (MI.isCall()) {
1386 handleCall(Inst);
1387 return;
1388 }
1389
1390 if (MI.isReturn()) {
1391 handleReturn(Inst);
1392 return;
1393 }
1394
1395 switch (MI.getOpcode()) {
1396 default: llvm_unreachable("Unknown SpecialFP instruction!");
1397 case TargetOpcode::COPY: {
1398 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1399 const MachineOperand &MO1 = MI.getOperand(1);
1400 const MachineOperand &MO0 = MI.getOperand(0);
1401 bool KillsSrc = MI.killsRegister(MO1.getReg());
1402
1403 // FP <- FP copy.
1404 unsigned DstFP = getFPReg(MO0);
1405 unsigned SrcFP = getFPReg(MO1);
1406 assert(isLive(SrcFP) && "Cannot copy dead register");
1407 if (KillsSrc) {
1408 // If the input operand is killed, we can just change the owner of the
1409 // incoming stack slot into the result.
1410 unsigned Slot = getSlot(SrcFP);
1411 Stack[Slot] = DstFP;
1412 RegMap[DstFP] = Slot;
1413 } else {
1414 // For COPY we just duplicate the specified value to a new stack slot.
1415 // This could be made better, but would require substantial changes.
1416 duplicateToTop(SrcFP, DstFP, Inst);
1417 }
1418 break;
1419 }
1420
1421 case TargetOpcode::IMPLICIT_DEF: {
1422 // All FP registers must be explicitly defined, so load a 0 instead.
1423 unsigned Reg = MI.getOperand(0).getReg() - X86::FP0;
1424 DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1425 BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0));
1426 pushReg(Reg);
1427 break;
1428 }
1429
1430 case TargetOpcode::INLINEASM: {
1431 // The inline asm MachineInstr currently only *uses* FP registers for the
1432 // 'f' constraint. These should be turned into the current ST(x) register
1433 // in the machine instr.
1434 //
1435 // There are special rules for x87 inline assembly. The compiler must know
1436 // exactly how many registers are popped and pushed implicitly by the asm.
1437 // Otherwise it is not possible to restore the stack state after the inline
1438 // asm.
1439 //
1440 // There are 3 kinds of input operands:
1441 //
1442 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1443 // popped input operand must be in a fixed stack slot, and it is either
1444 // tied to an output operand, or in the clobber list. The MI has ST use
1445 // and def operands for these inputs.
1446 //
1447 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1448 // preserved by the inline asm. The fixed stack slots must be STn-STm
1449 // following the popped inputs. A fixed input operand cannot be tied to
1450 // an output or appear in the clobber list. The MI has ST use operands
1451 // and no defs for these inputs.
1452 //
1453 // 3. Preserved inputs. These inputs use the "f" constraint which is
1454 // represented as an FP register. The inline asm won't change these
1455 // stack slots.
1456 //
1457 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1458 // registers do not count as output operands. The inline asm changes the
1459 // stack as if it popped all the popped inputs and then pushed all the
1460 // output operands.
1461
1462 // Scan the assembly for ST registers used, defined and clobbered. We can
1463 // only tell clobbers from defs by looking at the asm descriptor.
1464 unsigned STUses = 0, STDefs = 0, STClobbers = 0, STDeadDefs = 0;
1465 unsigned NumOps = 0;
1466 SmallSet<unsigned, 1> FRegIdx;
1467 unsigned RCID;
1468
1469 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands();
1470 i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) {
1471 unsigned Flags = MI.getOperand(i).getImm();
1472
1473 NumOps = InlineAsm::getNumOperandRegisters(Flags);
1474 if (NumOps != 1)
1475 continue;
1476 const MachineOperand &MO = MI.getOperand(i + 1);
1477 if (!MO.isReg())
1478 continue;
1479 unsigned STReg = MO.getReg() - X86::FP0;
1480 if (STReg >= 8)
1481 continue;
1482
1483 // If the flag has a register class constraint, this must be an operand
1484 // with constraint "f". Record its index and continue.
1485 if (InlineAsm::hasRegClassConstraint(Flags, RCID)) {
1486 FRegIdx.insert(i + 1);
1487 continue;
1488 }
1489
1490 switch (InlineAsm::getKind(Flags)) {
1491 case InlineAsm::Kind_RegUse:
1492 STUses |= (1u << STReg);
1493 break;
1494 case InlineAsm::Kind_RegDef:
1495 case InlineAsm::Kind_RegDefEarlyClobber:
1496 STDefs |= (1u << STReg);
1497 if (MO.isDead())
1498 STDeadDefs |= (1u << STReg);
1499 break;
1500 case InlineAsm::Kind_Clobber:
1501 STClobbers |= (1u << STReg);
1502 break;
1503 default:
1504 break;
1505 }
1506 }
1507
1508 if (STUses && !isMask_32(STUses))
1509 MI.emitError("fixed input regs must be last on the x87 stack");
1510 unsigned NumSTUses = countTrailingOnes(STUses);
1511
1512 // Defs must be contiguous from the stack top. ST0-STn.
1513 if (STDefs && !isMask_32(STDefs)) {
1514 MI.emitError("output regs must be last on the x87 stack");
1515 STDefs = NextPowerOf2(STDefs) - 1;
1516 }
1517 unsigned NumSTDefs = countTrailingOnes(STDefs);
1518
1519 // So must the clobbered stack slots. ST0-STm, m >= n.
1520 if (STClobbers && !isMask_32(STDefs | STClobbers))
1521 MI.emitError("clobbers must be last on the x87 stack");
1522
1523 // Popped inputs are the ones that are also clobbered or defined.
1524 unsigned STPopped = STUses & (STDefs | STClobbers);
1525 if (STPopped && !isMask_32(STPopped))
1526 MI.emitError("implicitly popped regs must be last on the x87 stack");
1527 unsigned NumSTPopped = countTrailingOnes(STPopped);
1528
1529 DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1530 << NumSTPopped << ", and defines " << NumSTDefs << " regs.\n");
1531
1532 #ifndef NDEBUG
1533 // If any input operand uses constraint "f", all output register
1534 // constraints must be early-clobber defs.
1535 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I)
1536 if (FRegIdx.count(I)) {
1537 assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 &&
1538 "Operands with constraint \"f\" cannot overlap with defs");
1539 }
1540 #endif
1541
1542 // Collect all FP registers (register operands with constraints "t", "u",
1543 // and "f") to kill afer the instruction.
1544 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1545 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1546 MachineOperand &Op = MI.getOperand(i);
1547 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1548 continue;
1549 unsigned FPReg = getFPReg(Op);
1550
1551 // If we kill this operand, make sure to pop it from the stack after the
1552 // asm. We just remember it for now, and pop them all off at the end in
1553 // a batch.
1554 if (Op.isUse() && Op.isKill())
1555 FPKills |= 1U << FPReg;
1556 }
1557
1558 // Do not include registers that are implicitly popped by defs/clobbers.
1559 FPKills &= ~(STDefs | STClobbers);
1560
1561 // Now we can rearrange the live registers to match what was requested.
1562 unsigned char STUsesArray[8];
1563
1564 for (unsigned I = 0; I < NumSTUses; ++I)
1565 STUsesArray[I] = I;
1566
1567 shuffleStackTop(STUsesArray, NumSTUses, Inst);
1568 DEBUG({dbgs() << "Before asm: "; dumpStack();});
1569
1570 // With the stack layout fixed, rewrite the FP registers.
1571 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1572 MachineOperand &Op = MI.getOperand(i);
1573 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1574 continue;
1575
1576 unsigned FPReg = getFPReg(Op);
1577
1578 if (FRegIdx.count(i))
1579 // Operand with constraint "f".
1580 Op.setReg(getSTReg(FPReg));
1581 else
1582 // Operand with a single register class constraint ("t" or "u").
1583 Op.setReg(X86::ST0 + FPReg);
1584 }
1585
1586 // Simulate the inline asm popping its inputs and pushing its outputs.
1587 StackTop -= NumSTPopped;
1588
1589 for (unsigned i = 0; i < NumSTDefs; ++i)
1590 pushReg(NumSTDefs - i - 1);
1591
1592 // If this asm kills any FP registers (is the last use of them) we must
1593 // explicitly emit pop instructions for them. Do this now after the asm has
1594 // executed so that the ST(x) numbers are not off (which would happen if we
1595 // did this inline with operand rewriting).
1596 //
1597 // Note: this might be a non-optimal pop sequence. We might be able to do
1598 // better by trying to pop in stack order or something.
1599 while (FPKills) {
1600 unsigned FPReg = countTrailingZeros(FPKills);
1601 if (isLive(FPReg))
1602 freeStackSlotAfter(Inst, FPReg);
1603 FPKills &= ~(1U << FPReg);
1604 }
1605
1606 // Don't delete the inline asm!
1607 return;
1608 }
1609 }
1610
1611 Inst = MBB->erase(Inst); // Remove the pseudo instruction
1612
1613 // We want to leave I pointing to the previous instruction, but what if we
1614 // just erased the first instruction?
1615 if (Inst == MBB->begin()) {
1616 DEBUG(dbgs() << "Inserting dummy KILL\n");
1617 Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
1618 } else
1619 --Inst;
1620 }
1621
setKillFlags(MachineBasicBlock & MBB) const1622 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1623 const TargetRegisterInfo *TRI =
1624 MBB.getParent()->getSubtarget().getRegisterInfo();
1625 LivePhysRegs LPR(TRI);
1626
1627 LPR.addLiveOuts(MBB);
1628
1629 for (MachineBasicBlock::reverse_iterator I = MBB.rbegin(), E = MBB.rend();
1630 I != E; ++I) {
1631 if (I->isDebugValue())
1632 continue;
1633
1634 std::bitset<8> Defs;
1635 SmallVector<MachineOperand *, 2> Uses;
1636 MachineInstr &MI = *I;
1637
1638 for (auto &MO : I->operands()) {
1639 if (!MO.isReg())
1640 continue;
1641
1642 unsigned Reg = MO.getReg() - X86::FP0;
1643
1644 if (Reg >= 8)
1645 continue;
1646
1647 if (MO.isDef()) {
1648 Defs.set(Reg);
1649 if (!LPR.contains(MO.getReg()))
1650 MO.setIsDead();
1651 } else
1652 Uses.push_back(&MO);
1653 }
1654
1655 for (auto *MO : Uses)
1656 if (Defs.test(getFPReg(*MO)) || !LPR.contains(MO->getReg()))
1657 MO->setIsKill();
1658
1659 LPR.stepBackward(MI);
1660 }
1661 }
1662