1; RUN: llc -verify-machineinstrs < %s -mtriple=aarch64-none-linux-gnu -disable-post-ra | FileCheck %s 2; RUN: llc -verify-machineinstrs < %s -mtriple=aarch64-none-linux-gnu -mattr=-fp-armv8 -disable-post-ra | FileCheck --check-prefix=CHECK-NOFP %s 3 4%myStruct = type { i64 , i8, i32 } 5 6@var8 = global i8 0 7@var32 = global i32 0 8@var64 = global i64 0 9@var128 = global i128 0 10@varfloat = global float 0.0 11@vardouble = global double 0.0 12@varstruct = global %myStruct zeroinitializer 13 14define void @take_i8s(i8 %val1, i8 %val2) { 15; CHECK-LABEL: take_i8s: 16 store i8 %val2, i8* @var8 17 ; Not using w1 may be technically allowed, but it would indicate a 18 ; problem in itself. 19; CHECK: strb w1, [{{x[0-9]+}}, {{#?}}:lo12:var8] 20 ret void 21} 22 23define void @add_floats(float %val1, float %val2) { 24; CHECK-LABEL: add_floats: 25 %newval = fadd float %val1, %val2 26; CHECK: fadd [[ADDRES:s[0-9]+]], s0, s1 27; CHECK-NOFP-NOT: fadd 28 store float %newval, float* @varfloat 29; CHECK: str [[ADDRES]], [{{x[0-9]+}}, {{#?}}:lo12:varfloat] 30 ret void 31} 32 33; byval pointers should be allocated to the stack and copied as if 34; with memcpy. 35define void @take_struct(%myStruct* byval %structval) { 36; CHECK-LABEL: take_struct: 37 %addr0 = getelementptr %myStruct, %myStruct* %structval, i64 0, i32 2 38 %addr1 = getelementptr %myStruct, %myStruct* %structval, i64 0, i32 0 39 40 %val0 = load volatile i32, i32* %addr0 41 ; Some weird move means x0 is used for one access 42; CHECK: ldr [[REG32:w[0-9]+]], [{{x[0-9]+|sp}}, #12] 43 store volatile i32 %val0, i32* @var32 44; CHECK: str [[REG32]], [{{x[0-9]+}}, {{#?}}:lo12:var32] 45 46 %val1 = load volatile i64, i64* %addr1 47; CHECK: ldr [[REG64:x[0-9]+]], [{{x[0-9]+|sp}}] 48 store volatile i64 %val1, i64* @var64 49; CHECK: str [[REG64]], [{{x[0-9]+}}, {{#?}}:lo12:var64] 50 51 ret void 52} 53 54; %structval should be at sp + 16 55define void @check_byval_align(i32* byval %ignore, %myStruct* byval align 16 %structval) { 56; CHECK-LABEL: check_byval_align: 57 58 %addr0 = getelementptr %myStruct, %myStruct* %structval, i64 0, i32 2 59 %addr1 = getelementptr %myStruct, %myStruct* %structval, i64 0, i32 0 60 61 %val0 = load volatile i32, i32* %addr0 62 ; Some weird move means x0 is used for one access 63; CHECK: ldr [[REG32:w[0-9]+]], [sp, #28] 64 store i32 %val0, i32* @var32 65; CHECK: str [[REG32]], [{{x[0-9]+}}, {{#?}}:lo12:var32] 66 67 %val1 = load volatile i64, i64* %addr1 68; CHECK: ldr [[REG64:x[0-9]+]], [sp, #16] 69 store i64 %val1, i64* @var64 70; CHECK: str [[REG64]], [{{x[0-9]+}}, {{#?}}:lo12:var64] 71 72 ret void 73} 74 75define i32 @return_int() { 76; CHECK-LABEL: return_int: 77 %val = load i32, i32* @var32 78 ret i32 %val 79; CHECK: ldr w0, [{{x[0-9]+}}, {{#?}}:lo12:var32] 80 ; Make sure epilogue follows 81; CHECK-NEXT: ret 82} 83 84define double @return_double() { 85; CHECK-LABEL: return_double: 86 ret double 3.14 87; CHECK: ldr d0, [{{x[0-9]+}}, {{#?}}:lo12:.LCPI 88; CHECK-NOFP-NOT: ldr d0, 89} 90 91; This is the kind of IR clang will produce for returning a struct 92; small enough to go into registers. Not all that pretty, but it 93; works. 94define [2 x i64] @return_struct() { 95; CHECK-LABEL: return_struct: 96 %addr = bitcast %myStruct* @varstruct to [2 x i64]* 97 %val = load [2 x i64], [2 x i64]* %addr 98 ret [2 x i64] %val 99; CHECK: add x[[VARSTRUCT:[0-9]+]], {{x[0-9]+}}, :lo12:varstruct 100; CHECK: ldp x0, x1, [x[[VARSTRUCT]]] 101 ; Make sure epilogue immediately follows 102; CHECK-NEXT: ret 103} 104 105; Large structs are passed by reference (storage allocated by caller 106; to preserve value semantics) in x8. Strictly this only applies to 107; structs larger than 16 bytes, but C semantics can still be provided 108; if LLVM does it to %myStruct too. So this is the simplest check 109define void @return_large_struct(%myStruct* sret %retval) { 110; CHECK-LABEL: return_large_struct: 111 %addr0 = getelementptr %myStruct, %myStruct* %retval, i64 0, i32 0 112 %addr1 = getelementptr %myStruct, %myStruct* %retval, i64 0, i32 1 113 %addr2 = getelementptr %myStruct, %myStruct* %retval, i64 0, i32 2 114 115 store i64 42, i64* %addr0 116 store i8 2, i8* %addr1 117 store i32 9, i32* %addr2 118; CHECK: str {{x[0-9]+}}, [x8] 119; CHECK: strb {{w[0-9]+}}, [x8, #8] 120; CHECK: str {{w[0-9]+}}, [x8, #12] 121 122 ret void 123} 124 125; This struct is just too far along to go into registers: (only x7 is 126; available, but it needs two). Also make sure that %stacked doesn't 127; sneak into x7 behind. 128define i32 @struct_on_stack(i8 %var0, i16 %var1, i32 %var2, i64 %var3, i128 %var45, 129 i32* %var6, %myStruct* byval %struct, i32* byval %stacked, 130 double %notstacked) { 131; CHECK-LABEL: struct_on_stack: 132 %addr = getelementptr %myStruct, %myStruct* %struct, i64 0, i32 0 133 %val64 = load volatile i64, i64* %addr 134 store volatile i64 %val64, i64* @var64 135 ; Currently nothing on local stack, so struct should be at sp 136; CHECK: ldr [[VAL64:x[0-9]+]], [sp] 137; CHECK: str [[VAL64]], [{{x[0-9]+}}, {{#?}}:lo12:var64] 138 139 store volatile double %notstacked, double* @vardouble 140; CHECK-NOT: ldr d0 141; CHECK: str d0, [{{x[0-9]+}}, {{#?}}:lo12:vardouble 142; CHECK-NOFP-NOT: str d0, 143 144 %retval = load volatile i32, i32* %stacked 145 ret i32 %retval 146; CHECK-LE: ldr w0, [sp, #16] 147} 148 149define void @stacked_fpu(float %var0, double %var1, float %var2, float %var3, 150 float %var4, float %var5, float %var6, float %var7, 151 float %var8) { 152; CHECK-LABEL: stacked_fpu: 153 store float %var8, float* @varfloat 154 ; Beware as above: the offset would be different on big-endian 155 ; machines if the first ldr were changed to use s-registers. 156; CHECK: ldr {{[ds]}}[[VALFLOAT:[0-9]+]], [sp] 157; CHECK: str s[[VALFLOAT]], [{{x[0-9]+}}, {{#?}}:lo12:varfloat] 158 159 ret void 160} 161 162; 128-bit integer types should be passed in xEVEN, xODD rather than 163; the reverse. In this case x2 and x3. Nothing should use x1. 164define i64 @check_i128_regalign(i32 %val0, i128 %val1, i64 %val2) { 165; CHECK-LABEL: check_i128_regalign 166 store i128 %val1, i128* @var128 167; CHECK: add x[[VAR128:[0-9]+]], {{x[0-9]+}}, :lo12:var128 168; CHECK-DAG: stp x2, x3, [x[[VAR128]]] 169 170 ret i64 %val2 171; CHECK: mov x0, x4 172} 173 174define void @check_i128_stackalign(i32 %val0, i32 %val1, i32 %val2, i32 %val3, 175 i32 %val4, i32 %val5, i32 %val6, i32 %val7, 176 i32 %stack1, i128 %stack2) { 177; CHECK-LABEL: check_i128_stackalign 178 store i128 %stack2, i128* @var128 179 ; Nothing local on stack in current codegen, so first stack is 16 away 180; CHECK-LE: add x[[REG:[0-9]+]], sp, #16 181; CHECK-LE: ldr {{x[0-9]+}}, [x[[REG]], #8] 182 183 ; Important point is that we address sp+24 for second dword 184 185; CHECK: ldp {{x[0-9]+}}, {{x[0-9]+}}, [sp, #16] 186 ret void 187} 188 189declare void @llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1) 190 191define i32 @test_extern() { 192; CHECK-LABEL: test_extern: 193 call void @llvm.memcpy.p0i8.p0i8.i32(i8* undef, i8* undef, i32 undef, i32 4, i1 0) 194; CHECK: bl memcpy 195 ret i32 0 196} 197 198 199; A sub-i32 stack argument must be loaded on big endian with ldr{h,b}, not just 200; implicitly extended to a 32-bit load. 201define i16 @stacked_i16(i32 %val0, i32 %val1, i32 %val2, i32 %val3, 202 i32 %val4, i32 %val5, i32 %val6, i32 %val7, 203 i16 %stack1) { 204; CHECK-LABEL: stacked_i16 205 ret i16 %stack1 206} 207