1; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -S | FileCheck %s 2; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=IND 3; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=UNROLL 4; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -S | FileCheck %s --check-prefix=UNROLL-NO-IC 5; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=4 -enable-interleaved-mem-accesses -instcombine -S | FileCheck %s --check-prefix=INTERLEAVE 6 7target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" 8 9; Make sure that we can handle multiple integer induction variables. 10; CHECK-LABEL: @multi_int_induction( 11; CHECK: vector.body: 12; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 13; CHECK: %[[VAR:.*]] = trunc i64 %index to i32 14; CHECK: %offset.idx = add i32 190, %[[VAR]] 15define void @multi_int_induction(i32* %A, i32 %N) { 16for.body.lr.ph: 17 br label %for.body 18 19for.body: 20 %indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ] 21 %count.09 = phi i32 [ 190, %for.body.lr.ph ], [ %inc, %for.body ] 22 %arrayidx2 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv 23 store i32 %count.09, i32* %arrayidx2, align 4 24 %inc = add nsw i32 %count.09, 1 25 %indvars.iv.next = add i64 %indvars.iv, 1 26 %lftr.wideiv = trunc i64 %indvars.iv.next to i32 27 %exitcond = icmp ne i32 %lftr.wideiv, %N 28 br i1 %exitcond, label %for.body, label %for.end 29 30for.end: 31 ret void 32} 33 34; Make sure we remove unneeded vectorization of induction variables. 35; In order for instcombine to cleanup the vectorized induction variables that we 36; create in the loop vectorizer we need to perform some form of redundancy 37; elimination to get rid of multiple uses. 38 39; IND-LABEL: scalar_use 40 41; IND: br label %vector.body 42; IND: vector.body: 43; Vectorized induction variable. 44; IND-NOT: insertelement <2 x i64> 45; IND-NOT: shufflevector <2 x i64> 46; IND: br {{.*}}, label %vector.body 47 48define void @scalar_use(float* %a, float %b, i64 %offset, i64 %offset2, i64 %n) { 49entry: 50 br label %for.body 51 52for.body: 53 %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] 54 %ind.sum = add i64 %iv, %offset 55 %arr.idx = getelementptr inbounds float, float* %a, i64 %ind.sum 56 %l1 = load float, float* %arr.idx, align 4 57 %ind.sum2 = add i64 %iv, %offset2 58 %arr.idx2 = getelementptr inbounds float, float* %a, i64 %ind.sum2 59 %l2 = load float, float* %arr.idx2, align 4 60 %m = fmul fast float %b, %l2 61 %ad = fadd fast float %l1, %m 62 store float %ad, float* %arr.idx, align 4 63 %iv.next = add nuw nsw i64 %iv, 1 64 %exitcond = icmp eq i64 %iv.next, %n 65 br i1 %exitcond, label %loopexit, label %for.body 66 67loopexit: 68 ret void 69} 70 71; Make sure we don't create a vector induction phi node that is unused. 72; Scalarize the step vectors instead. 73; 74; for (int i = 0; i < n; ++i) 75; sum += a[i]; 76; 77; CHECK-LABEL: @scalarize_induction_variable_01( 78; CHECK: vector.body: 79; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 80; CHECK: %[[i0:.+]] = add i64 %index, 0 81; CHECK: %[[i1:.+]] = add i64 %index, 1 82; CHECK: getelementptr inbounds i64, i64* %a, i64 %[[i0]] 83; CHECK: getelementptr inbounds i64, i64* %a, i64 %[[i1]] 84; 85; UNROLL-NO-IC-LABEL: @scalarize_induction_variable_01( 86; UNROLL-NO-IC: vector.body: 87; UNROLL-NO-IC: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 88; UNROLL-NO-IC: %[[i0:.+]] = add i64 %index, 0 89; UNROLL-NO-IC: %[[i1:.+]] = add i64 %index, 1 90; UNROLL-NO-IC: %[[i2:.+]] = add i64 %index, 2 91; UNROLL-NO-IC: %[[i3:.+]] = add i64 %index, 3 92; UNROLL-NO-IC: getelementptr inbounds i64, i64* %a, i64 %[[i0]] 93; UNROLL-NO-IC: getelementptr inbounds i64, i64* %a, i64 %[[i1]] 94; UNROLL-NO-IC: getelementptr inbounds i64, i64* %a, i64 %[[i2]] 95; UNROLL-NO-IC: getelementptr inbounds i64, i64* %a, i64 %[[i3]] 96; 97; IND-LABEL: @scalarize_induction_variable_01( 98; IND: vector.body: 99; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 100; IND-NOT: add i64 {{.*}}, 2 101; IND: getelementptr inbounds i64, i64* %a, i64 %index 102; 103; UNROLL-LABEL: @scalarize_induction_variable_01( 104; UNROLL: vector.body: 105; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 106; UNROLL-NOT: add i64 {{.*}}, 4 107; UNROLL: %[[g1:.+]] = getelementptr inbounds i64, i64* %a, i64 %index 108; UNROLL: getelementptr i64, i64* %[[g1]], i64 2 109 110define i64 @scalarize_induction_variable_01(i64 *%a, i64 %n) { 111entry: 112 br label %for.body 113 114for.body: 115 %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] 116 %sum = phi i64 [ %2, %for.body ], [ 0, %entry ] 117 %0 = getelementptr inbounds i64, i64* %a, i64 %i 118 %1 = load i64, i64* %0, align 8 119 %2 = add i64 %1, %sum 120 %i.next = add nuw nsw i64 %i, 1 121 %cond = icmp slt i64 %i.next, %n 122 br i1 %cond, label %for.body, label %for.end 123 124for.end: 125 %3 = phi i64 [ %2, %for.body ] 126 ret i64 %3 127} 128 129; Make sure we scalarize the step vectors used for the pointer arithmetic. We 130; can't easily simplify vectorized step vectors. 131; 132; float s = 0; 133; for (int i ; 0; i < n; i += 8) 134; s += (a[i] + b[i] + 1.0f); 135; 136; CHECK-LABEL: @scalarize_induction_variable_02( 137; CHECK: vector.body: 138; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 139; CHECK: %offset.idx = shl i64 %index, 3 140; CHECK: %[[i0:.+]] = add i64 %offset.idx, 0 141; CHECK: %[[i1:.+]] = add i64 %offset.idx, 8 142; CHECK: getelementptr inbounds float, float* %a, i64 %[[i0]] 143; CHECK: getelementptr inbounds float, float* %a, i64 %[[i1]] 144; CHECK: getelementptr inbounds float, float* %b, i64 %[[i0]] 145; CHECK: getelementptr inbounds float, float* %b, i64 %[[i1]] 146; 147; UNROLL-NO-IC-LABEL: @scalarize_induction_variable_02( 148; UNROLL-NO-IC: vector.body: 149; UNROLL-NO-IC: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 150; UNROLL-NO-IC: %offset.idx = shl i64 %index, 3 151; UNROLL-NO-IC: %[[i0:.+]] = add i64 %offset.idx, 0 152; UNROLL-NO-IC: %[[i1:.+]] = add i64 %offset.idx, 8 153; UNROLL-NO-IC: %[[i2:.+]] = add i64 %offset.idx, 16 154; UNROLL-NO-IC: %[[i3:.+]] = add i64 %offset.idx, 24 155; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i0]] 156; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i1]] 157; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i2]] 158; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i3]] 159; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i0]] 160; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i1]] 161; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i2]] 162; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i3]] 163; 164; IND-LABEL: @scalarize_induction_variable_02( 165; IND: vector.body: 166; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 167; IND: %[[i0:.+]] = shl i64 %index, 3 168; IND: %[[i1:.+]] = or i64 %[[i0]], 8 169; IND: getelementptr inbounds float, float* %a, i64 %[[i0]] 170; IND: getelementptr inbounds float, float* %a, i64 %[[i1]] 171; 172; UNROLL-LABEL: @scalarize_induction_variable_02( 173; UNROLL: vector.body: 174; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 175; UNROLL: %[[i0:.+]] = shl i64 %index, 3 176; UNROLL: %[[i1:.+]] = or i64 %[[i0]], 8 177; UNROLL: %[[i2:.+]] = or i64 %[[i0]], 16 178; UNROLL: %[[i3:.+]] = or i64 %[[i0]], 24 179; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i0]] 180; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i1]] 181; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i2]] 182; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i3]] 183 184define float @scalarize_induction_variable_02(float* %a, float* %b, i64 %n) { 185entry: 186 br label %for.body 187 188for.body: 189 %i = phi i64 [ 0, %entry ], [ %i.next, %for.body ] 190 %s = phi float [ 0.0, %entry ], [ %6, %for.body ] 191 %0 = getelementptr inbounds float, float* %a, i64 %i 192 %1 = load float, float* %0, align 4 193 %2 = getelementptr inbounds float, float* %b, i64 %i 194 %3 = load float, float* %2, align 4 195 %4 = fadd fast float %s, 1.0 196 %5 = fadd fast float %4, %1 197 %6 = fadd fast float %5, %3 198 %i.next = add nuw nsw i64 %i, 8 199 %cond = icmp slt i64 %i.next, %n 200 br i1 %cond, label %for.body, label %for.end 201 202for.end: 203 %s.lcssa = phi float [ %6, %for.body ] 204 ret float %s.lcssa 205} 206 207; Make sure we scalarize the step vectors used for the pointer arithmetic. We 208; can't easily simplify vectorized step vectors. (Interleaved accesses.) 209; 210; for (int i = 0; i < n; ++i) 211; a[i].f ^= y; 212; 213; INTERLEAVE-LABEL: @scalarize_induction_variable_03( 214; INTERLEAVE: vector.body: 215; INTERLEAVE: %[[i0:.+]] = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 216; INTERLEAVE: %[[i1:.+]] = or i64 %[[i0]], 1 217; INTERLEAVE: %[[i2:.+]] = or i64 %[[i0]], 2 218; INTERLEAVE: %[[i3:.+]] = or i64 %[[i0]], 3 219; INTERLEAVE: %[[i4:.+]] = or i64 %[[i0]], 4 220; INTERLEAVE: %[[i5:.+]] = or i64 %[[i0]], 5 221; INTERLEAVE: %[[i6:.+]] = or i64 %[[i0]], 6 222; INTERLEAVE: %[[i7:.+]] = or i64 %[[i0]], 7 223; INTERLEAVE: getelementptr inbounds %pair, %pair* %p, i64 %[[i0]], i32 1 224; INTERLEAVE: getelementptr inbounds %pair, %pair* %p, i64 %[[i1]], i32 1 225; INTERLEAVE: getelementptr inbounds %pair, %pair* %p, i64 %[[i2]], i32 1 226; INTERLEAVE: getelementptr inbounds %pair, %pair* %p, i64 %[[i3]], i32 1 227; INTERLEAVE: getelementptr inbounds %pair, %pair* %p, i64 %[[i4]], i32 1 228; INTERLEAVE: getelementptr inbounds %pair, %pair* %p, i64 %[[i5]], i32 1 229; INTERLEAVE: getelementptr inbounds %pair, %pair* %p, i64 %[[i6]], i32 1 230; INTERLEAVE: getelementptr inbounds %pair, %pair* %p, i64 %[[i7]], i32 1 231 232%pair = type { i32, i32 } 233define void @scalarize_induction_variable_03(%pair *%p, i32 %y, i64 %n) { 234entry: 235 br label %for.body 236 237for.body: 238 %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] 239 %f = getelementptr inbounds %pair, %pair* %p, i64 %i, i32 1 240 %0 = load i32, i32* %f, align 8 241 %1 = xor i32 %0, %y 242 store i32 %1, i32* %f, align 8 243 %i.next = add nuw nsw i64 %i, 1 244 %cond = icmp slt i64 %i.next, %n 245 br i1 %cond, label %for.body, label %for.end 246 247for.end: 248 ret void 249} 250 251; Make sure that the loop exit count computation does not overflow for i8 and 252; i16. The exit count of these loops is i8/i16 max + 1. If we don't cast the 253; induction variable to a bigger type the exit count computation will overflow 254; to 0. 255; PR17532 256 257; CHECK-LABEL: i8_loop 258; CHECK: icmp eq i32 {{.*}}, 256 259define i32 @i8_loop() nounwind readnone ssp uwtable { 260 br label %1 261 262; <label>:1 ; preds = %1, %0 263 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] 264 %b.0 = phi i8 [ 0, %0 ], [ %3, %1 ] 265 %2 = and i32 %a.0, 4 266 %3 = add i8 %b.0, -1 267 %4 = icmp eq i8 %3, 0 268 br i1 %4, label %5, label %1 269 270; <label>:5 ; preds = %1 271 ret i32 %2 272} 273 274; CHECK-LABEL: i16_loop 275; CHECK: icmp eq i32 {{.*}}, 65536 276 277define i32 @i16_loop() nounwind readnone ssp uwtable { 278 br label %1 279 280; <label>:1 ; preds = %1, %0 281 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] 282 %b.0 = phi i16 [ 0, %0 ], [ %3, %1 ] 283 %2 = and i32 %a.0, 4 284 %3 = add i16 %b.0, -1 285 %4 = icmp eq i16 %3, 0 286 br i1 %4, label %5, label %1 287 288; <label>:5 ; preds = %1 289 ret i32 %2 290} 291 292; This loop has a backedge taken count of i32_max. We need to check for this 293; condition and branch directly to the scalar loop. 294 295; CHECK-LABEL: max_i32_backedgetaken 296; CHECK: br i1 true, label %scalar.ph, label %min.iters.checked 297 298; CHECK: middle.block: 299; CHECK: %[[v9:.+]] = extractelement <2 x i32> %bin.rdx, i32 0 300; CHECK: scalar.ph: 301; CHECK: %bc.resume.val = phi i32 [ 0, %middle.block ], [ 0, %[[v0:.+]] ] 302; CHECK: %bc.merge.rdx = phi i32 [ 1, %[[v0:.+]] ], [ 1, %min.iters.checked ], [ %[[v9]], %middle.block ] 303 304define i32 @max_i32_backedgetaken() nounwind readnone ssp uwtable { 305 306 br label %1 307 308; <label>:1 ; preds = %1, %0 309 %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] 310 %b.0 = phi i32 [ 0, %0 ], [ %3, %1 ] 311 %2 = and i32 %a.0, 4 312 %3 = add i32 %b.0, -1 313 %4 = icmp eq i32 %3, 0 314 br i1 %4, label %5, label %1 315 316; <label>:5 ; preds = %1 317 ret i32 %2 318} 319 320; When generating the overflow check we must sure that the induction start value 321; is defined before the branch to the scalar preheader. 322 323; CHECK-LABEL: testoverflowcheck 324; CHECK: entry 325; CHECK: %[[LOAD:.*]] = load i8 326; CHECK: br 327 328; CHECK: scalar.ph 329; CHECK: phi i8 [ %{{.*}}, %middle.block ], [ %[[LOAD]], %entry ] 330 331@e = global i8 1, align 1 332@d = common global i32 0, align 4 333@c = common global i32 0, align 4 334define i32 @testoverflowcheck() { 335entry: 336 %.pr.i = load i8, i8* @e, align 1 337 %0 = load i32, i32* @d, align 4 338 %c.promoted.i = load i32, i32* @c, align 4 339 br label %cond.end.i 340 341cond.end.i: 342 %inc4.i = phi i8 [ %.pr.i, %entry ], [ %inc.i, %cond.end.i ] 343 %and3.i = phi i32 [ %c.promoted.i, %entry ], [ %and.i, %cond.end.i ] 344 %and.i = and i32 %0, %and3.i 345 %inc.i = add i8 %inc4.i, 1 346 %tobool.i = icmp eq i8 %inc.i, 0 347 br i1 %tobool.i, label %loopexit, label %cond.end.i 348 349loopexit: 350 ret i32 %and.i 351} 352 353; The SCEV expression of %sphi is (zext i8 {%t,+,1}<%loop> to i32) 354; In order to recognize %sphi as an induction PHI and vectorize this loop, 355; we need to convert the SCEV expression into an AddRecExpr. 356; The expression gets converted to {zext i8 %t to i32,+,1}. 357 358; CHECK-LABEL: wrappingindvars1 359; CHECK-LABEL: vector.scevcheck 360; CHECK-LABEL: vector.ph 361; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 1> 362; CHECK-LABEL: vector.body 363; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ] 364; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 2, i32 2> 365define void @wrappingindvars1(i8 %t, i32 %len, i32 *%A) { 366 entry: 367 %st = zext i8 %t to i16 368 %ext = zext i8 %t to i32 369 %ecmp = icmp ult i16 %st, 42 370 br i1 %ecmp, label %loop, label %exit 371 372 loop: 373 374 %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ] 375 %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ] 376 %sphi = phi i32 [ %ext, %entry ], [%idx.inc.ext, %loop] 377 378 %ptr = getelementptr inbounds i32, i32* %A, i8 %idx 379 store i32 %sphi, i32* %ptr 380 381 %idx.inc = add i8 %idx, 1 382 %idx.inc.ext = zext i8 %idx.inc to i32 383 %idx.b.inc = add nuw nsw i32 %idx.b, 1 384 385 %c = icmp ult i32 %idx.b, %len 386 br i1 %c, label %loop, label %exit 387 388 exit: 389 ret void 390} 391 392; The SCEV expression of %sphi is (4 * (zext i8 {%t,+,1}<%loop> to i32)) 393; In order to recognize %sphi as an induction PHI and vectorize this loop, 394; we need to convert the SCEV expression into an AddRecExpr. 395; The expression gets converted to ({4 * (zext %t to i32),+,4}). 396; CHECK-LABEL: wrappingindvars2 397; CHECK-LABEL: vector.scevcheck 398; CHECK-LABEL: vector.ph 399; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 4> 400; CHECK-LABEL: vector.body 401; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ] 402; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 8, i32 8> 403define void @wrappingindvars2(i8 %t, i32 %len, i32 *%A) { 404 405entry: 406 %st = zext i8 %t to i16 407 %ext = zext i8 %t to i32 408 %ext.mul = mul i32 %ext, 4 409 410 %ecmp = icmp ult i16 %st, 42 411 br i1 %ecmp, label %loop, label %exit 412 413 loop: 414 415 %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ] 416 %sphi = phi i32 [ %ext.mul, %entry ], [%mul, %loop] 417 %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ] 418 419 %ptr = getelementptr inbounds i32, i32* %A, i8 %idx 420 store i32 %sphi, i32* %ptr 421 422 %idx.inc = add i8 %idx, 1 423 %idx.inc.ext = zext i8 %idx.inc to i32 424 %mul = mul i32 %idx.inc.ext, 4 425 %idx.b.inc = add nuw nsw i32 %idx.b, 1 426 427 %c = icmp ult i32 %idx.b, %len 428 br i1 %c, label %loop, label %exit 429 430 exit: 431 ret void 432} 433 434; Check that we generate vectorized IVs in the pre-header 435; instead of widening the scalar IV inside the loop, when 436; we know how to do that. 437; IND-LABEL: veciv 438; IND: vector.body: 439; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] 440; IND: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %step.add, %vector.body ] 441; IND: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2> 442; IND: %index.next = add i32 %index, 2 443; IND: %[[CMP:.*]] = icmp eq i32 %index.next 444; IND: br i1 %[[CMP]] 445; UNROLL-LABEL: veciv 446; UNROLL: vector.body: 447; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] 448; UNROLL: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %step.add1, %vector.body ] 449; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2> 450; UNROLL: %step.add1 = add <2 x i32> %vec.ind, <i32 4, i32 4> 451; UNROLL: %index.next = add i32 %index, 4 452; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next 453; UNROLL: br i1 %[[CMP]] 454define void @veciv(i32* nocapture %a, i32 %start, i32 %k) { 455for.body.preheader: 456 br label %for.body 457 458for.body: 459 %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ] 460 %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv 461 store i32 %indvars.iv, i32* %arrayidx, align 4 462 %indvars.iv.next = add nuw nsw i32 %indvars.iv, 1 463 %exitcond = icmp eq i32 %indvars.iv.next, %k 464 br i1 %exitcond, label %exit, label %for.body 465 466exit: 467 ret void 468} 469 470; IND-LABEL: trunciv 471; IND: vector.body: 472; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] 473; IND: %[[VECIND:.*]] = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %[[STEPADD:.*]], %vector.body ] 474; IND: %[[STEPADD]] = add <2 x i32> %[[VECIND]], <i32 2, i32 2> 475; IND: %index.next = add i64 %index, 2 476; IND: %[[CMP:.*]] = icmp eq i64 %index.next 477; IND: br i1 %[[CMP]] 478define void @trunciv(i32* nocapture %a, i32 %start, i64 %k) { 479for.body.preheader: 480 br label %for.body 481 482for.body: 483 %indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ] 484 %trunc.iv = trunc i64 %indvars.iv to i32 485 %arrayidx = getelementptr inbounds i32, i32* %a, i32 %trunc.iv 486 store i32 %trunc.iv, i32* %arrayidx, align 4 487 %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 488 %exitcond = icmp eq i64 %indvars.iv.next, %k 489 br i1 %exitcond, label %exit, label %for.body 490 491exit: 492 ret void 493} 494 495; IND-LABEL: nonprimary 496; IND-LABEL: vector.ph 497; IND: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0 498; IND: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer 499; IND: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 42> 500; IND-LABEL: vector.body: 501; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] 502; IND: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %step.add, %vector.body ] 503; IND: %step.add = add <2 x i32> %vec.ind, <i32 84, i32 84> 504; IND: %index.next = add i32 %index, 2 505; IND: %[[CMP:.*]] = icmp eq i32 %index.next 506; IND: br i1 %[[CMP]] 507; UNROLL-LABEL: nonprimary 508; UNROLL-LABEL: vector.ph 509; UNROLL: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0 510; UNROLL: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer 511; UNROLL: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 42> 512; UNROLL-LABEL: vector.body: 513; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] 514; UNROLL: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %step.add1, %vector.body ] 515; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 84, i32 84> 516; UNROLL: %step.add1 = add <2 x i32> %vec.ind, <i32 168, i32 168> 517; UNROLL: %index.next = add i32 %index, 4 518; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next 519; UNROLL: br i1 %[[CMP]] 520define void @nonprimary(i32* nocapture %a, i32 %start, i32 %i, i32 %k) { 521for.body.preheader: 522 br label %for.body 523 524for.body: 525 %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ %i, %for.body.preheader ] 526 %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv 527 store i32 %indvars.iv, i32* %arrayidx, align 4 528 %indvars.iv.next = add nuw nsw i32 %indvars.iv, 42 529 %exitcond = icmp eq i32 %indvars.iv.next, %k 530 br i1 %exitcond, label %exit, label %for.body 531 532exit: 533 ret void 534} 535