• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2010 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
18  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
19  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
20  * USE OR OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * The above copyright notice and this permission notice (including the
23  * next paragraph) shall be included in all copies or substantial portions
24  * of the Software.
25  *
26  **************************************************************************/
27 
28 
29 #include "util/u_debug.h"
30 #include "util/u_cpu_detect.h"
31 #include "util/u_math.h"
32 #include "lp_bld_debug.h"
33 #include "lp_bld_const.h"
34 #include "lp_bld_format.h"
35 #include "lp_bld_gather.h"
36 #include "lp_bld_swizzle.h"
37 #include "lp_bld_type.h"
38 #include "lp_bld_init.h"
39 #include "lp_bld_intr.h"
40 #include "lp_bld_pack.h"
41 
42 
43 /**
44  * Get the pointer to one element from scatter positions in memory.
45  *
46  * @sa lp_build_gather()
47  */
48 LLVMValueRef
lp_build_gather_elem_ptr(struct gallivm_state * gallivm,unsigned length,LLVMValueRef base_ptr,LLVMValueRef offsets,unsigned i)49 lp_build_gather_elem_ptr(struct gallivm_state *gallivm,
50                          unsigned length,
51                          LLVMValueRef base_ptr,
52                          LLVMValueRef offsets,
53                          unsigned i)
54 {
55    LLVMValueRef offset;
56    LLVMValueRef ptr;
57 
58    assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0));
59 
60    if (length == 1) {
61       assert(i == 0);
62       offset = offsets;
63    } else {
64       LLVMValueRef index = lp_build_const_int32(gallivm, i);
65       offset = LLVMBuildExtractElement(gallivm->builder, offsets, index, "");
66    }
67 
68    ptr = LLVMBuildGEP(gallivm->builder, base_ptr, &offset, 1, "");
69 
70    return ptr;
71 }
72 
73 
74 /**
75  * Gather one element from scatter positions in memory.
76  *
77  * @sa lp_build_gather()
78  */
79 LLVMValueRef
lp_build_gather_elem(struct gallivm_state * gallivm,unsigned length,unsigned src_width,unsigned dst_width,boolean aligned,LLVMValueRef base_ptr,LLVMValueRef offsets,unsigned i,boolean vector_justify)80 lp_build_gather_elem(struct gallivm_state *gallivm,
81                      unsigned length,
82                      unsigned src_width,
83                      unsigned dst_width,
84                      boolean aligned,
85                      LLVMValueRef base_ptr,
86                      LLVMValueRef offsets,
87                      unsigned i,
88                      boolean vector_justify)
89 {
90    LLVMTypeRef src_type = LLVMIntTypeInContext(gallivm->context, src_width);
91    LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0);
92    LLVMTypeRef dst_elem_type = LLVMIntTypeInContext(gallivm->context, dst_width);
93    LLVMValueRef ptr;
94    LLVMValueRef res;
95 
96    assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0));
97 
98    ptr = lp_build_gather_elem_ptr(gallivm, length, base_ptr, offsets, i);
99    ptr = LLVMBuildBitCast(gallivm->builder, ptr, src_ptr_type, "");
100    res = LLVMBuildLoad(gallivm->builder, ptr, "");
101 
102    /* XXX
103     * On some archs we probably really want to avoid having to deal
104     * with alignments lower than 4 bytes (if fetch size is a power of
105     * two >= 32). On x86 it doesn't matter, however.
106     * We should be able to guarantee full alignment for any kind of texture
107     * fetch (except ARB_texture_buffer_range, oops), but not vertex fetch
108     * (there's PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY and friends
109     * but I don't think that's quite what we wanted).
110     * For ARB_texture_buffer_range, PIPE_CAP_TEXTURE_BUFFER_OFFSET_ALIGNMENT
111     * looks like a good fit, but it seems this cap bit (and OpenGL) aren't
112     * enforcing what we want (which is what d3d10 does, the offset needs to
113     * be aligned to element size, but GL has bytes regardless of element
114     * size which would only leave us with minimum alignment restriction of 16
115     * which doesn't make much sense if the type isn't 4x32bit). Due to
116     * translation of offsets to first_elem in sampler_views it actually seems
117     * gallium could not do anything else except 16 no matter what...
118     */
119    if (!aligned) {
120       LLVMSetAlignment(res, 1);
121    } else if (!util_is_power_of_two(src_width)) {
122       /*
123        * Full alignment is impossible, assume the caller really meant
124        * the individual elements were aligned (e.g. 3x32bit format).
125        * And yes the generated code may otherwise crash, llvm will
126        * really assume 128bit alignment with a 96bit fetch (I suppose
127        * that makes sense as it can just assume the upper 32bit to be
128        * whatever).
129        * Maybe the caller should be able to explicitly set this, but
130        * this should cover all the 3-channel formats.
131        */
132       if (((src_width / 24) * 24 == src_width) &&
133            util_is_power_of_two(src_width / 24)) {
134           LLVMSetAlignment(res, src_width / 24);
135       } else {
136          LLVMSetAlignment(res, 1);
137       }
138    }
139 
140    assert(src_width <= dst_width);
141    if (src_width < dst_width) {
142       res = LLVMBuildZExt(gallivm->builder, res, dst_elem_type, "");
143       if (vector_justify) {
144 #ifdef PIPE_ARCH_BIG_ENDIAN
145          res = LLVMBuildShl(gallivm->builder, res,
146                             LLVMConstInt(dst_elem_type, dst_width - src_width, 0), "");
147 #endif
148       }
149    }
150 
151    return res;
152 }
153 
154 
155 /**
156  * Gather one element from scatter positions in memory.
157  * Nearly the same as above, however the individual elements
158  * may be vectors themselves, and fetches may be float type.
159  * Can also do pad vector instead of ZExt.
160  *
161  * @sa lp_build_gather()
162  */
163 static LLVMValueRef
lp_build_gather_elem_vec(struct gallivm_state * gallivm,unsigned length,unsigned src_width,LLVMTypeRef src_type,struct lp_type dst_type,boolean aligned,LLVMValueRef base_ptr,LLVMValueRef offsets,unsigned i,boolean vector_justify)164 lp_build_gather_elem_vec(struct gallivm_state *gallivm,
165                          unsigned length,
166                          unsigned src_width,
167                          LLVMTypeRef src_type,
168                          struct lp_type dst_type,
169                          boolean aligned,
170                          LLVMValueRef base_ptr,
171                          LLVMValueRef offsets,
172                          unsigned i,
173                          boolean vector_justify)
174 {
175    LLVMValueRef ptr, res;
176    LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0);
177    assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0));
178 
179    ptr = lp_build_gather_elem_ptr(gallivm, length, base_ptr, offsets, i);
180    ptr = LLVMBuildBitCast(gallivm->builder, ptr, src_ptr_type, "");
181    res = LLVMBuildLoad(gallivm->builder, ptr, "");
182 
183    /* XXX
184     * On some archs we probably really want to avoid having to deal
185     * with alignments lower than 4 bytes (if fetch size is a power of
186     * two >= 32). On x86 it doesn't matter, however.
187     * We should be able to guarantee full alignment for any kind of texture
188     * fetch (except ARB_texture_buffer_range, oops), but not vertex fetch
189     * (there's PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY and friends
190     * but I don't think that's quite what we wanted).
191     * For ARB_texture_buffer_range, PIPE_CAP_TEXTURE_BUFFER_OFFSET_ALIGNMENT
192     * looks like a good fit, but it seems this cap bit (and OpenGL) aren't
193     * enforcing what we want (which is what d3d10 does, the offset needs to
194     * be aligned to element size, but GL has bytes regardless of element
195     * size which would only leave us with minimum alignment restriction of 16
196     * which doesn't make much sense if the type isn't 4x32bit). Due to
197     * translation of offsets to first_elem in sampler_views it actually seems
198     * gallium could not do anything else except 16 no matter what...
199     */
200    if (!aligned) {
201       LLVMSetAlignment(res, 1);
202    } else if (!util_is_power_of_two(src_width)) {
203       /*
204        * Full alignment is impossible, assume the caller really meant
205        * the individual elements were aligned (e.g. 3x32bit format).
206        * And yes the generated code may otherwise crash, llvm will
207        * really assume 128bit alignment with a 96bit fetch (I suppose
208        * that makes sense as it can just assume the upper 32bit to be
209        * whatever).
210        * Maybe the caller should be able to explicitly set this, but
211        * this should cover all the 3-channel formats.
212        */
213       if (((src_width / 24) * 24 == src_width) &&
214            util_is_power_of_two(src_width / 24)) {
215           LLVMSetAlignment(res, src_width / 24);
216       } else {
217          LLVMSetAlignment(res, 1);
218       }
219    }
220 
221    assert(src_width <= dst_type.width * dst_type.length);
222    if (src_width < dst_type.width * dst_type.length) {
223       if (dst_type.length > 1) {
224          res = lp_build_pad_vector(gallivm, res, dst_type.length);
225          /*
226           * vector_justify hopefully a non-issue since we only deal
227           * with src_width >= 32 here?
228           */
229       } else {
230          LLVMTypeRef dst_elem_type = lp_build_vec_type(gallivm, dst_type);
231 
232          /*
233           * Only valid if src_ptr_type is int type...
234           */
235          res = LLVMBuildZExt(gallivm->builder, res, dst_elem_type, "");
236 
237          if (vector_justify) {
238 #ifdef PIPE_ARCH_BIG_ENDIAN
239          res = LLVMBuildShl(gallivm->builder, res,
240                             LLVMConstInt(dst_elem_type,
241                                          dst_type.width - src_width, 0), "");
242 #endif
243          }
244       }
245    }
246    return res;
247 }
248 
249 
250 
251 
252 static LLVMValueRef
lp_build_gather_avx2(struct gallivm_state * gallivm,unsigned length,unsigned src_width,struct lp_type dst_type,LLVMValueRef base_ptr,LLVMValueRef offsets)253 lp_build_gather_avx2(struct gallivm_state *gallivm,
254                      unsigned length,
255                      unsigned src_width,
256                      struct lp_type dst_type,
257                      LLVMValueRef base_ptr,
258                      LLVMValueRef offsets)
259 {
260    LLVMBuilderRef builder = gallivm->builder;
261    LLVMTypeRef src_type, src_vec_type;
262    LLVMValueRef res;
263    struct lp_type res_type = dst_type;
264    res_type.length *= length;
265 
266    if (dst_type.floating) {
267       src_type = src_width == 64 ? LLVMDoubleTypeInContext(gallivm->context) :
268                                    LLVMFloatTypeInContext(gallivm->context);
269    } else {
270       src_type = LLVMIntTypeInContext(gallivm->context, src_width);
271    }
272    src_vec_type = LLVMVectorType(src_type, length);
273 
274    /* XXX should allow hw scaling (can handle i8, i16, i32, i64 for x86) */
275    assert(LLVMTypeOf(base_ptr) == LLVMPointerType(LLVMInt8TypeInContext(gallivm->context), 0));
276 
277    if (0) {
278       /*
279        * XXX: This will cause LLVM pre 3.7 to hang; it works on LLVM 3.8 but
280        * will not use the AVX2 gather instrinsics (even with llvm 4.0), at
281        * least with Haswell. See
282        * http://lists.llvm.org/pipermail/llvm-dev/2016-January/094448.html
283        * And the generated code doing the emulation is quite a bit worse
284        * than what we get by doing it ourselves too.
285        */
286       LLVMTypeRef i32_type = LLVMIntTypeInContext(gallivm->context, 32);
287       LLVMTypeRef i32_vec_type = LLVMVectorType(i32_type, length);
288       LLVMTypeRef i1_type = LLVMIntTypeInContext(gallivm->context, 1);
289       LLVMTypeRef i1_vec_type = LLVMVectorType(i1_type, length);
290       LLVMTypeRef src_ptr_type = LLVMPointerType(src_type, 0);
291       LLVMValueRef src_ptr;
292 
293       base_ptr = LLVMBuildBitCast(builder, base_ptr, src_ptr_type, "");
294 
295       /* Rescale offsets from bytes to elements */
296       LLVMValueRef scale = LLVMConstInt(i32_type, src_width/8, 0);
297       scale = lp_build_broadcast(gallivm, i32_vec_type, scale);
298       assert(LLVMTypeOf(offsets) == i32_vec_type);
299       offsets = LLVMBuildSDiv(builder, offsets, scale, "");
300 
301       src_ptr = LLVMBuildGEP(builder, base_ptr, &offsets, 1, "vector-gep");
302 
303       char intrinsic[64];
304       util_snprintf(intrinsic, sizeof intrinsic, "llvm.masked.gather.v%u%s%u",
305                     length, dst_type.floating ? "f" : "i", src_width);
306       LLVMValueRef alignment = LLVMConstInt(i32_type, src_width/8, 0);
307       LLVMValueRef mask = LLVMConstAllOnes(i1_vec_type);
308       LLVMValueRef passthru = LLVMGetUndef(src_vec_type);
309 
310       LLVMValueRef args[] = { src_ptr, alignment, mask, passthru };
311 
312       res = lp_build_intrinsic(builder, intrinsic, src_vec_type, args, 4, 0);
313    } else {
314       LLVMTypeRef i8_type = LLVMIntTypeInContext(gallivm->context, 8);
315       const char *intrinsic = NULL;
316       unsigned l_idx = 0;
317 
318       assert(src_width == 32 || src_width == 64);
319       if (src_width == 32) {
320          assert(length == 4 || length == 8);
321       } else {
322          assert(length == 2 || length == 4);
323       }
324 
325       static const char *intrinsics[2][2][2] = {
326 
327          {{"llvm.x86.avx2.gather.d.d",
328            "llvm.x86.avx2.gather.d.d.256"},
329           {"llvm.x86.avx2.gather.d.q",
330            "llvm.x86.avx2.gather.d.q.256"}},
331 
332          {{"llvm.x86.avx2.gather.d.ps",
333            "llvm.x86.avx2.gather.d.ps.256"},
334           {"llvm.x86.avx2.gather.d.pd",
335            "llvm.x86.avx2.gather.d.pd.256"}},
336       };
337 
338       if ((src_width == 32 && length == 8) ||
339           (src_width == 64 && length == 4)) {
340          l_idx = 1;
341       }
342       intrinsic = intrinsics[dst_type.floating][src_width == 64][l_idx];
343 
344       LLVMValueRef passthru = LLVMGetUndef(src_vec_type);
345       LLVMValueRef mask = LLVMConstAllOnes(src_vec_type);
346       mask = LLVMConstBitCast(mask, src_vec_type);
347       LLVMValueRef scale = LLVMConstInt(i8_type, 1, 0);
348 
349       LLVMValueRef args[] = { passthru, base_ptr, offsets, mask, scale };
350 
351       res = lp_build_intrinsic(builder, intrinsic, src_vec_type, args, 5, 0);
352    }
353    res = LLVMBuildBitCast(builder, res, lp_build_vec_type(gallivm, res_type), "");
354 
355    return res;
356 }
357 
358 
359 /**
360  * Gather elements from scatter positions in memory into a single vector.
361  * Use for fetching texels from a texture.
362  * For SSE, typical values are length=4, src_width=32, dst_width=32.
363  *
364  * When src_width < dst_width, the return value can be justified in
365  * one of two ways:
366  * "integer justification" is used when the caller treats the destination
367  * as a packed integer bitmask, as described by the channels' "shift" and
368  * "width" fields;
369  * "vector justification" is used when the caller casts the destination
370  * to a vector and needs channel X to be in vector element 0.
371  *
372  * @param length length of the offsets
373  * @param src_width src element width in bits
374  * @param dst_type result element type (src will be expanded to fit,
375  *        but truncation is not allowed)
376  *        (this may be a vector, must be pot sized)
377  * @param aligned whether the data is guaranteed to be aligned (to src_width)
378  * @param base_ptr base pointer, needs to be a i8 pointer type.
379  * @param offsets vector with offsets
380  * @param vector_justify select vector rather than integer justification
381  */
382 LLVMValueRef
lp_build_gather(struct gallivm_state * gallivm,unsigned length,unsigned src_width,struct lp_type dst_type,boolean aligned,LLVMValueRef base_ptr,LLVMValueRef offsets,boolean vector_justify)383 lp_build_gather(struct gallivm_state *gallivm,
384                 unsigned length,
385                 unsigned src_width,
386                 struct lp_type dst_type,
387                 boolean aligned,
388                 LLVMValueRef base_ptr,
389                 LLVMValueRef offsets,
390                 boolean vector_justify)
391 {
392    LLVMValueRef res;
393    boolean need_expansion = src_width < dst_type.width * dst_type.length;
394    boolean vec_fetch;
395    struct lp_type fetch_type, fetch_dst_type;
396    LLVMTypeRef src_type;
397 
398    assert(src_width <= dst_type.width * dst_type.length);
399 
400    /*
401     * This is quite a mess...
402     * Figure out if the fetch should be done as:
403     * a) scalar or vector
404     * b) float or int
405     *
406     * As an example, for a 96bit fetch expanded into 4x32bit, it is better
407     * to use (3x32bit) vector type (then pad the vector). Otherwise, the
408     * zext will cause extra instructions.
409     * However, the same isn't true for 3x16bit (the codegen for that is
410     * completely worthless on x86 simd, and for 3x8bit is is way worse
411     * still, don't try that... (To get really good code out of llvm for
412     * these cases, the only way is to decompose the fetches manually
413     * into 1x32bit/1x16bit, or 1x16/1x8bit respectively, although the latter
414     * case requires sse41, otherwise simple scalar zext is way better.
415     * But probably not important enough, so don't bother.)
416     * Also, we try to honor the floating bit of destination (but isn't
417     * possible if caller asks for instance for 2x32bit dst_type with
418     * 48bit fetch - the idea would be to use 3x16bit fetch, pad and
419     * cast to 2x32f type, so the fetch is always int and on top of that
420     * we avoid the vec pad and use scalar zext due the above mentioned
421     * issue).
422     * Note this is optimized for x86 sse2 and up backend. Could be tweaked
423     * for other archs if necessary...
424     */
425    if (((src_width % 32) == 0) && ((src_width % dst_type.width) == 0) &&
426        (dst_type.length > 1)) {
427       /* use vector fetch (if dst_type is vector) */
428       vec_fetch = TRUE;
429       if (dst_type.floating) {
430          fetch_type = lp_type_float_vec(dst_type.width, src_width);
431       } else {
432          fetch_type = lp_type_int_vec(dst_type.width, src_width);
433       }
434       /* intentionally not using lp_build_vec_type here */
435       src_type = LLVMVectorType(lp_build_elem_type(gallivm, fetch_type),
436                                 fetch_type.length);
437       fetch_dst_type = fetch_type;
438       fetch_dst_type.length = dst_type.length;
439     } else {
440       /* use scalar fetch */
441       vec_fetch = FALSE;
442       if (dst_type.floating && ((src_width == 32) || (src_width == 64))) {
443          fetch_type = lp_type_float(src_width);
444       } else {
445          fetch_type = lp_type_int(src_width);
446       }
447       src_type = lp_build_vec_type(gallivm, fetch_type);
448       fetch_dst_type = fetch_type;
449       fetch_dst_type.width = dst_type.width * dst_type.length;
450    }
451 
452    if (length == 1) {
453       /* Scalar */
454       res = lp_build_gather_elem_vec(gallivm, length,
455                                      src_width, src_type, fetch_dst_type,
456                                      aligned, base_ptr, offsets, 0,
457                                      vector_justify);
458       return LLVMBuildBitCast(gallivm->builder, res,
459                               lp_build_vec_type(gallivm, dst_type), "");
460       /*
461        * Excluding expansion from these paths because if you need it for
462        * 32bit/64bit fetches you're doing it wrong (this is gather, not
463        * conversion) and it would be awkward for floats.
464        */
465    } else if (util_cpu_caps.has_avx2 && !need_expansion &&
466               src_width == 32 && (length == 4 || length == 8)) {
467       return lp_build_gather_avx2(gallivm, length, src_width, dst_type,
468                                   base_ptr, offsets);
469    /*
470     * This looks bad on paper wrt throughtput/latency on Haswell.
471     * Even on Broadwell it doesn't look stellar.
472     * Albeit no measurements were done (but tested to work).
473     * Should definitely enable on Skylake.
474     * (In general, should be more of a win if the fetch is 256bit wide -
475     * this is true for the 32bit case above too.)
476     */
477    } else if (0 && util_cpu_caps.has_avx2 && !need_expansion &&
478               src_width == 64 && (length == 2 || length == 4)) {
479       return lp_build_gather_avx2(gallivm, length, src_width, dst_type,
480                                   base_ptr, offsets);
481    } else {
482       /* Vector */
483 
484       LLVMValueRef elems[LP_MAX_VECTOR_WIDTH / 8];
485       unsigned i;
486       boolean vec_zext = FALSE;
487       struct lp_type res_type, gather_res_type;
488       LLVMTypeRef res_t, gather_res_t;
489 
490       res_type = fetch_dst_type;
491       res_type.length *= length;
492       gather_res_type = res_type;
493 
494       if (src_width == 16 && dst_type.width == 32 && dst_type.length == 1) {
495          /*
496           * Note that llvm is never able to optimize zext/insert combos
497           * directly (i.e. zero the simd reg, then place the elements into
498           * the appropriate place directly). (I think this has to do with
499           * scalar/vector transition.) And scalar 16->32bit zext simd loads
500           * aren't possible (instead loading to scalar reg first).
501           * No idea about other archs...
502           * We could do this manually, but instead we just use a vector
503           * zext, which is simple enough (and, in fact, llvm might optimize
504           * this away).
505           * (We're not trying that with other bit widths as that might not be
506           * easier, in particular with 8 bit values at least with only sse2.)
507           */
508          assert(vec_fetch == FALSE);
509          gather_res_type.width /= 2;
510          fetch_dst_type = fetch_type;
511          src_type = lp_build_vec_type(gallivm, fetch_type);
512          vec_zext = TRUE;
513       }
514       res_t = lp_build_vec_type(gallivm, res_type);
515       gather_res_t = lp_build_vec_type(gallivm, gather_res_type);
516       res = LLVMGetUndef(gather_res_t);
517       for (i = 0; i < length; ++i) {
518          LLVMValueRef index = lp_build_const_int32(gallivm, i);
519          elems[i] = lp_build_gather_elem_vec(gallivm, length,
520                                              src_width, src_type, fetch_dst_type,
521                                              aligned, base_ptr, offsets, i,
522                                              vector_justify);
523          if (!vec_fetch) {
524             res = LLVMBuildInsertElement(gallivm->builder, res, elems[i], index, "");
525          }
526       }
527       if (vec_zext) {
528          res = LLVMBuildZExt(gallivm->builder, res, res_t, "");
529          if (vector_justify) {
530 #ifdef PIPE_ARCH_BIG_ENDIAN
531             unsigned sv = dst_type.width - src_width;
532             res = LLVMBuildShl(gallivm->builder, res,
533                                lp_build_const_int_vec(gallivm, res_type, sv), "");
534 #endif
535          }
536       }
537       if (vec_fetch) {
538          /*
539           * Do bitcast now otherwise llvm might get some funny ideas wrt
540           * float/int types...
541           */
542          for (i = 0; i < length; i++) {
543             elems[i] = LLVMBuildBitCast(gallivm->builder, elems[i],
544                                         lp_build_vec_type(gallivm, dst_type), "");
545          }
546          res = lp_build_concat(gallivm, elems, dst_type, length);
547       } else {
548          struct lp_type really_final_type = dst_type;
549          assert(res_type.length * res_type.width ==
550                 dst_type.length * dst_type.width * length);
551          really_final_type.length *= length;
552          res = LLVMBuildBitCast(gallivm->builder, res,
553                                 lp_build_vec_type(gallivm, really_final_type), "");
554       }
555    }
556 
557    return res;
558 }
559 
560 LLVMValueRef
lp_build_gather_values(struct gallivm_state * gallivm,LLVMValueRef * values,unsigned value_count)561 lp_build_gather_values(struct gallivm_state * gallivm,
562                        LLVMValueRef * values,
563                        unsigned value_count)
564 {
565    LLVMTypeRef vec_type = LLVMVectorType(LLVMTypeOf(values[0]), value_count);
566    LLVMBuilderRef builder = gallivm->builder;
567    LLVMValueRef vec = LLVMGetUndef(vec_type);
568    unsigned i;
569 
570    for (i = 0; i < value_count; i++) {
571       LLVMValueRef index = lp_build_const_int32(gallivm, i);
572       vec = LLVMBuildInsertElement(builder, vec, values[i], index, "");
573    }
574    return vec;
575 }
576