• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "brw_context.h"
25 #include "brw_defines.h"
26 #include "intel_fbo.h"
27 #include "brw_meta_util.h"
28 #include "brw_state.h"
29 #include "main/blend.h"
30 #include "main/fbobject.h"
31 #include "util/format_srgb.h"
32 
33 /**
34  * Helper function for handling mirror image blits.
35  *
36  * If coord0 > coord1, swap them and invert the "mirror" boolean.
37  */
38 static inline void
fixup_mirroring(bool * mirror,float * coord0,float * coord1)39 fixup_mirroring(bool *mirror, float *coord0, float *coord1)
40 {
41    if (*coord0 > *coord1) {
42       *mirror = !*mirror;
43       float tmp = *coord0;
44       *coord0 = *coord1;
45       *coord1 = tmp;
46    }
47 }
48 
49 /**
50  * Compute the number of pixels to clip for each side of a rect
51  *
52  * \param x0 The rect's left coordinate
53  * \param y0 The rect's bottom coordinate
54  * \param x1 The rect's right coordinate
55  * \param y1 The rect's top coordinate
56  * \param min_x The clipping region's left coordinate
57  * \param min_y The clipping region's bottom coordinate
58  * \param max_x The clipping region's right coordinate
59  * \param max_y The clipping region's top coordinate
60  * \param clipped_x0 The number of pixels to clip from the left side
61  * \param clipped_y0 The number of pixels to clip from the bottom side
62  * \param clipped_x1 The number of pixels to clip from the right side
63  * \param clipped_y1 The number of pixels to clip from the top side
64  *
65  * \return false if we clip everything away, true otherwise
66  */
67 static inline bool
compute_pixels_clipped(float x0,float y0,float x1,float y1,float min_x,float min_y,float max_x,float max_y,float * clipped_x0,float * clipped_y0,float * clipped_x1,float * clipped_y1)68 compute_pixels_clipped(float x0, float y0, float x1, float y1,
69                        float min_x, float min_y, float max_x, float max_y,
70                        float *clipped_x0, float *clipped_y0, float *clipped_x1, float *clipped_y1)
71 {
72    /* If we are going to clip everything away, stop. */
73    if (!(min_x <= max_x &&
74          min_y <= max_y &&
75          x0 <= max_x &&
76          y0 <= max_y &&
77          min_x <= x1 &&
78          min_y <= y1 &&
79          x0 <= x1 &&
80          y0 <= y1)) {
81       return false;
82    }
83 
84    if (x0 < min_x)
85       *clipped_x0 = min_x - x0;
86    else
87       *clipped_x0 = 0;
88    if (max_x < x1)
89       *clipped_x1 = x1 - max_x;
90    else
91       *clipped_x1 = 0;
92 
93    if (y0 < min_y)
94       *clipped_y0 = min_y - y0;
95    else
96       *clipped_y0 = 0;
97    if (max_y < y1)
98       *clipped_y1 = y1 - max_y;
99    else
100       *clipped_y1 = 0;
101 
102    return true;
103 }
104 
105 /**
106  * Clips a coordinate (left, right, top or bottom) for the src or dst rect
107  * (whichever requires the largest clip) and adjusts the coordinate
108  * for the other rect accordingly.
109  *
110  * \param mirror true if mirroring is required
111  * \param src the source rect coordinate (for example srcX0)
112  * \param dst0 the dst rect coordinate (for example dstX0)
113  * \param dst1 the opposite dst rect coordinate (for example dstX1)
114  * \param clipped_src0 number of pixels to clip from the src coordinate
115  * \param clipped_dst0 number of pixels to clip from the dst coordinate
116  * \param clipped_dst1 number of pixels to clip from the opposite dst coordinate
117  * \param scale the src vs dst scale involved for that coordinate
118  * \param isLeftOrBottom true if we are clipping the left or bottom sides
119  *        of the rect.
120  */
121 static inline void
clip_coordinates(bool mirror,float * src,float * dst0,float * dst1,float clipped_src0,float clipped_dst0,float clipped_dst1,float scale,bool isLeftOrBottom)122 clip_coordinates(bool mirror,
123                  float *src, float *dst0, float *dst1,
124                  float clipped_src0,
125                  float clipped_dst0,
126                  float clipped_dst1,
127                  float scale,
128                  bool isLeftOrBottom)
129 {
130    /* When clipping we need to add or subtract pixels from the original
131     * coordinates depending on whether we are acting on the left/bottom
132     * or right/top sides of the rect respectively. We assume we have to
133     * add them in the code below, and multiply by -1 when we should
134     * subtract.
135     */
136    int mult = isLeftOrBottom ? 1 : -1;
137 
138    if (!mirror) {
139       if (clipped_src0 >= clipped_dst0 * scale) {
140          *src += clipped_src0 * mult;
141          *dst0 += clipped_src0 / scale * mult;
142       } else {
143          *dst0 += clipped_dst0 * mult;
144          *src += clipped_dst0 * scale * mult;
145       }
146    } else {
147       if (clipped_src0 >= clipped_dst1 * scale) {
148          *src += clipped_src0 * mult;
149          *dst1 -= clipped_src0 / scale * mult;
150       } else {
151          *dst1 -= clipped_dst1 * mult;
152          *src += clipped_dst1 * scale * mult;
153       }
154    }
155 }
156 
157 bool
brw_meta_mirror_clip_and_scissor(const struct gl_context * ctx,const struct gl_framebuffer * read_fb,const struct gl_framebuffer * draw_fb,GLfloat * srcX0,GLfloat * srcY0,GLfloat * srcX1,GLfloat * srcY1,GLfloat * dstX0,GLfloat * dstY0,GLfloat * dstX1,GLfloat * dstY1,bool * mirror_x,bool * mirror_y)158 brw_meta_mirror_clip_and_scissor(const struct gl_context *ctx,
159                                  const struct gl_framebuffer *read_fb,
160                                  const struct gl_framebuffer *draw_fb,
161                                  GLfloat *srcX0, GLfloat *srcY0,
162                                  GLfloat *srcX1, GLfloat *srcY1,
163                                  GLfloat *dstX0, GLfloat *dstY0,
164                                  GLfloat *dstX1, GLfloat *dstY1,
165                                  bool *mirror_x, bool *mirror_y)
166 {
167    *mirror_x = false;
168    *mirror_y = false;
169 
170    /* Detect if the blit needs to be mirrored */
171    fixup_mirroring(mirror_x, srcX0, srcX1);
172    fixup_mirroring(mirror_x, dstX0, dstX1);
173    fixup_mirroring(mirror_y, srcY0, srcY1);
174    fixup_mirroring(mirror_y, dstY0, dstY1);
175 
176    /* Compute number of pixels to clip for each side of both rects. Return
177     * early if we are going to clip everything away.
178     */
179    float clip_src_x0;
180    float clip_src_x1;
181    float clip_src_y0;
182    float clip_src_y1;
183    float clip_dst_x0;
184    float clip_dst_x1;
185    float clip_dst_y0;
186    float clip_dst_y1;
187 
188    if (!compute_pixels_clipped(*srcX0, *srcY0, *srcX1, *srcY1,
189                                0, 0, read_fb->Width, read_fb->Height,
190                                &clip_src_x0, &clip_src_y0, &clip_src_x1, &clip_src_y1))
191       return true;
192 
193    if (!compute_pixels_clipped(*dstX0, *dstY0, *dstX1, *dstY1,
194                                draw_fb->_Xmin, draw_fb->_Ymin, draw_fb->_Xmax, draw_fb->_Ymax,
195                                &clip_dst_x0, &clip_dst_y0, &clip_dst_x1, &clip_dst_y1))
196       return true;
197 
198    /* When clipping any of the two rects we need to adjust the coordinates in
199     * the other rect considering the scaling factor involved. To obtain the best
200     * precision we want to make sure that we only clip once per side to avoid
201     * accumulating errors due to the scaling adjustment.
202     *
203     * For example, if srcX0 and dstX0 need both to be clipped we want to avoid
204     * the situation where we clip srcX0 first, then adjust dstX0 accordingly
205     * but then we realize that the resulting dstX0 still needs to be clipped,
206     * so we clip dstX0 and adjust srcX0 again. Because we are applying scaling
207     * factors to adjust the coordinates in each clipping pass we lose some
208     * precision and that can affect the results of the blorp blit operation
209     * slightly. What we want to do here is detect the rect that we should
210     * clip first for each side so that when we adjust the other rect we ensure
211     * the resulting coordinate does not need to be clipped again.
212     *
213     * The code below implements this by comparing the number of pixels that
214     * we need to clip for each side of both rects  considering the scales
215     * involved. For example, clip_src_x0 represents the number of pixels to be
216     * clipped for the src rect's left side, so if clip_src_x0 = 5,
217     * clip_dst_x0 = 4 and scaleX = 2 it means that we are clipping more from
218     * the dst rect so we should clip dstX0 only and adjust srcX0. This is
219     * because clipping 4 pixels in the dst is equivalent to clipping
220     * 4 * 2 = 8 > 5 in the src.
221     */
222 
223    float scaleX = (float) (*srcX1 - *srcX0) / (*dstX1 - *dstX0);
224    float scaleY = (float) (*srcY1 - *srcY0) / (*dstY1 - *dstY0);
225 
226    /* Clip left side */
227    clip_coordinates(*mirror_x,
228                     srcX0, dstX0, dstX1,
229                     clip_src_x0, clip_dst_x0, clip_dst_x1,
230                     scaleX, true);
231 
232    /* Clip right side */
233    clip_coordinates(*mirror_x,
234                     srcX1, dstX1, dstX0,
235                     clip_src_x1, clip_dst_x1, clip_dst_x0,
236                     scaleX, false);
237 
238    /* Clip bottom side */
239    clip_coordinates(*mirror_y,
240                     srcY0, dstY0, dstY1,
241                     clip_src_y0, clip_dst_y0, clip_dst_y1,
242                     scaleY, true);
243 
244    /* Clip top side */
245    clip_coordinates(*mirror_y,
246                     srcY1, dstY1, dstY0,
247                     clip_src_y1, clip_dst_y1, clip_dst_y0,
248                     scaleY, false);
249 
250    /* Account for the fact that in the system framebuffer, the origin is at
251     * the lower left.
252     */
253    if (_mesa_is_winsys_fbo(read_fb)) {
254       GLint tmp = read_fb->Height - *srcY0;
255       *srcY0 = read_fb->Height - *srcY1;
256       *srcY1 = tmp;
257       *mirror_y = !*mirror_y;
258    }
259    if (_mesa_is_winsys_fbo(draw_fb)) {
260       GLint tmp = draw_fb->Height - *dstY0;
261       *dstY0 = draw_fb->Height - *dstY1;
262       *dstY1 = tmp;
263       *mirror_y = !*mirror_y;
264    }
265 
266    return false;
267 }
268 
269 /**
270  * Creates a new named renderbuffer that wraps the first slice
271  * of an existing miptree.
272  *
273  * Clobbers the current renderbuffer binding (ctx->CurrentRenderbuffer).
274  */
275 struct gl_renderbuffer *
brw_get_rb_for_slice(struct brw_context * brw,struct intel_mipmap_tree * mt,unsigned level,unsigned layer,bool flat)276 brw_get_rb_for_slice(struct brw_context *brw,
277                      struct intel_mipmap_tree *mt,
278                      unsigned level, unsigned layer, bool flat)
279 {
280    struct gl_context *ctx = &brw->ctx;
281    struct gl_renderbuffer *rb = ctx->Driver.NewRenderbuffer(ctx, 0xDEADBEEF);
282    struct intel_renderbuffer *irb = intel_renderbuffer(rb);
283 
284    rb->RefCount = 1;
285    rb->Format = mt->format;
286    rb->_BaseFormat = _mesa_get_format_base_format(mt->format);
287 
288    /* Program takes care of msaa and mip-level access manually for stencil.
289     * The surface is also treated as Y-tiled instead of as W-tiled calling for
290     * twice the width and half the height in dimensions.
291     */
292    if (flat) {
293       const unsigned halign_stencil = 8;
294 
295       rb->NumSamples = 0;
296       rb->Width = ALIGN(mt->total_width, halign_stencil) * 2;
297       rb->Height = (mt->total_height / mt->physical_depth0) / 2;
298       irb->mt_level = 0;
299    } else {
300       rb->NumSamples = mt->num_samples;
301       rb->Width = mt->logical_width0;
302       rb->Height = mt->logical_height0;
303       irb->mt_level = level;
304    }
305 
306    irb->mt_layer = layer;
307 
308    intel_miptree_reference(&irb->mt, mt);
309 
310    return rb;
311 }
312 
313 /**
314  * Determine if fast color clear supports the given clear color.
315  *
316  * Fast color clear can only clear to color values of 1.0 or 0.0.  At the
317  * moment we only support floating point, unorm, and snorm buffers.
318  */
319 bool
brw_is_color_fast_clear_compatible(struct brw_context * brw,const struct intel_mipmap_tree * mt,const union gl_color_union * color)320 brw_is_color_fast_clear_compatible(struct brw_context *brw,
321                                    const struct intel_mipmap_tree *mt,
322                                    const union gl_color_union *color)
323 {
324    const struct gl_context *ctx = &brw->ctx;
325 
326    /* If we're mapping the render format to a different format than the
327     * format we use for texturing then it is a bit questionable whether it
328     * should be possible to use a fast clear. Although we only actually
329     * render using a renderable format, without the override workaround it
330     * wouldn't be possible to have a non-renderable surface in a fast clear
331     * state so the hardware probably legitimately doesn't need to support
332     * this case. At least on Gen9 this really does seem to cause problems.
333     */
334    if (brw->gen >= 9 &&
335        brw_format_for_mesa_format(mt->format) !=
336        brw->render_target_format[mt->format])
337       return false;
338 
339    /* Gen9 doesn't support fast clear on single-sampled SRGB buffers. When
340     * GL_FRAMEBUFFER_SRGB is enabled any color renderbuffers will be
341     * resolved in intel_update_state. In that case it's pointless to do a
342     * fast clear because it's very likely to be immediately resolved.
343     */
344    if (brw->gen >= 9 &&
345        mt->num_samples <= 1 &&
346        ctx->Color.sRGBEnabled &&
347        _mesa_get_srgb_format_linear(mt->format) != mt->format)
348       return false;
349 
350    const mesa_format format = _mesa_get_render_format(ctx, mt->format);
351    if (_mesa_is_format_integer_color(format)) {
352       if (brw->gen >= 8) {
353          perf_debug("Integer fast clear not enabled for (%s)",
354                     _mesa_get_format_name(format));
355       }
356       return false;
357    }
358 
359    for (int i = 0; i < 4; i++) {
360       if (!_mesa_format_has_color_component(format, i)) {
361          continue;
362       }
363 
364       if (brw->gen < 9 &&
365           color->f[i] != 0.0f && color->f[i] != 1.0f) {
366          return false;
367       }
368    }
369    return true;
370 }
371 
372 /**
373  * Convert the given color to a bitfield suitable for ORing into DWORD 7 of
374  * SURFACE_STATE (DWORD 12-15 on SKL+).
375  */
376 union gl_color_union
brw_meta_convert_fast_clear_color(const struct brw_context * brw,const struct intel_mipmap_tree * mt,const union gl_color_union * color)377 brw_meta_convert_fast_clear_color(const struct brw_context *brw,
378                                   const struct intel_mipmap_tree *mt,
379                                   const union gl_color_union *color)
380 {
381    union gl_color_union override_color = *color;
382 
383    /* The sampler doesn't look at the format of the surface when the fast
384     * clear color is used so we need to implement luminance, intensity and
385     * missing components manually.
386     */
387    switch (_mesa_get_format_base_format(mt->format)) {
388    case GL_INTENSITY:
389       override_color.ui[3] = override_color.ui[0];
390       /* flow through */
391    case GL_LUMINANCE:
392    case GL_LUMINANCE_ALPHA:
393       override_color.ui[1] = override_color.ui[0];
394       override_color.ui[2] = override_color.ui[0];
395       break;
396    default:
397       for (int i = 0; i < 3; i++) {
398          if (!_mesa_format_has_color_component(mt->format, i))
399             override_color.ui[i] = 0;
400       }
401       break;
402    }
403 
404    if (!_mesa_format_has_color_component(mt->format, 3)) {
405       if (_mesa_is_format_integer_color(mt->format))
406          override_color.ui[3] = 1;
407       else
408          override_color.f[3] = 1.0f;
409    }
410 
411    /* Handle linear to SRGB conversion */
412    if (brw->ctx.Color.sRGBEnabled &&
413        _mesa_get_srgb_format_linear(mt->format) != mt->format) {
414       for (int i = 0; i < 3; i++) {
415          override_color.f[i] =
416             util_format_linear_to_srgb_float(override_color.f[i]);
417       }
418    }
419 
420    return override_color;
421 }
422 
423 /* Returned boolean tells if the given color differs from the current. */
424 bool
brw_meta_set_fast_clear_color(struct brw_context * brw,union gl_color_union * curr_color,const union gl_color_union * new_color)425 brw_meta_set_fast_clear_color(struct brw_context *brw,
426                               union gl_color_union *curr_color,
427                               const union gl_color_union *new_color)
428 {
429    bool updated;
430 
431    if (brw->gen >= 9) {
432       updated = memcmp(curr_color, new_color, sizeof(*curr_color));
433       *curr_color = *new_color;
434    } else {
435       const uint32_t old_color_value = *(uint32_t *)curr_color;
436       uint32_t adjusted = 0;
437 
438       for (int i = 0; i < 4; i++) {
439          /* Testing for non-0 works for integer and float colors */
440          if (new_color->f[i] != 0.0f) {
441             adjusted |= 1 << (GEN7_SURFACE_CLEAR_COLOR_SHIFT + (3 - i));
442          }
443       }
444 
445       updated = (old_color_value != adjusted);
446       *(uint32_t *)curr_color = adjusted;
447    }
448 
449    return updated;
450 }
451