• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "brw_fs.h"
29 #include "brw_fs_live_variables.h"
30 #include "brw_vec4.h"
31 #include "brw_cfg.h"
32 #include "brw_shader.h"
33 
34 using namespace brw;
35 
36 /** @file brw_fs_schedule_instructions.cpp
37  *
38  * List scheduling of FS instructions.
39  *
40  * The basic model of the list scheduler is to take a basic block,
41  * compute a DAG of the dependencies (RAW ordering with latency, WAW
42  * ordering with latency, WAR ordering), and make a list of the DAG heads.
43  * Heuristically pick a DAG head, then put all the children that are
44  * now DAG heads into the list of things to schedule.
45  *
46  * The heuristic is the important part.  We're trying to be cheap,
47  * since actually computing the optimal scheduling is NP complete.
48  * What we do is track a "current clock".  When we schedule a node, we
49  * update the earliest-unblocked clock time of its children, and
50  * increment the clock.  Then, when trying to schedule, we just pick
51  * the earliest-unblocked instruction to schedule.
52  *
53  * Note that often there will be many things which could execute
54  * immediately, and there are a range of heuristic options to choose
55  * from in picking among those.
56  */
57 
58 static bool debug = false;
59 
60 class instruction_scheduler;
61 
62 class schedule_node : public exec_node
63 {
64 public:
65    schedule_node(backend_instruction *inst, instruction_scheduler *sched);
66    void set_latency_gen4();
67    void set_latency_gen7(bool is_haswell);
68 
69    backend_instruction *inst;
70    schedule_node **children;
71    int *child_latency;
72    int child_count;
73    int parent_count;
74    int child_array_size;
75    int unblocked_time;
76    int latency;
77 
78    /**
79     * Which iteration of pushing groups of children onto the candidates list
80     * this node was a part of.
81     */
82    unsigned cand_generation;
83 
84    /**
85     * This is the sum of the instruction's latency plus the maximum delay of
86     * its children, or just the issue_time if it's a leaf node.
87     */
88    int delay;
89 
90    /**
91     * Preferred exit node among the (direct or indirect) successors of this
92     * node.  Among the scheduler nodes blocked by this node, this will be the
93     * one that may cause earliest program termination, or NULL if none of the
94     * successors is an exit node.
95     */
96    schedule_node *exit;
97 
98    bool is_barrier;
99 };
100 
101 /**
102  * Lower bound of the scheduling time after which one of the instructions
103  * blocked by this node may lead to program termination.
104  *
105  * exit_unblocked_time() determines a strict partial ordering relation '«' on
106  * the set of scheduler nodes as follows:
107  *
108  *   n « m <-> exit_unblocked_time(n) < exit_unblocked_time(m)
109  *
110  * which can be used to heuristically order nodes according to how early they
111  * can unblock an exit node and lead to program termination.
112  */
113 static inline int
exit_unblocked_time(const schedule_node * n)114 exit_unblocked_time(const schedule_node *n)
115 {
116    return n->exit ? n->exit->unblocked_time : INT_MAX;
117 }
118 
119 void
set_latency_gen4()120 schedule_node::set_latency_gen4()
121 {
122    int chans = 8;
123    int math_latency = 22;
124 
125    switch (inst->opcode) {
126    case SHADER_OPCODE_RCP:
127       this->latency = 1 * chans * math_latency;
128       break;
129    case SHADER_OPCODE_RSQ:
130       this->latency = 2 * chans * math_latency;
131       break;
132    case SHADER_OPCODE_INT_QUOTIENT:
133    case SHADER_OPCODE_SQRT:
134    case SHADER_OPCODE_LOG2:
135       /* full precision log.  partial is 2. */
136       this->latency = 3 * chans * math_latency;
137       break;
138    case SHADER_OPCODE_INT_REMAINDER:
139    case SHADER_OPCODE_EXP2:
140       /* full precision.  partial is 3, same throughput. */
141       this->latency = 4 * chans * math_latency;
142       break;
143    case SHADER_OPCODE_POW:
144       this->latency = 8 * chans * math_latency;
145       break;
146    case SHADER_OPCODE_SIN:
147    case SHADER_OPCODE_COS:
148       /* minimum latency, max is 12 rounds. */
149       this->latency = 5 * chans * math_latency;
150       break;
151    default:
152       this->latency = 2;
153       break;
154    }
155 }
156 
157 void
set_latency_gen7(bool is_haswell)158 schedule_node::set_latency_gen7(bool is_haswell)
159 {
160    switch (inst->opcode) {
161    case BRW_OPCODE_MAD:
162       /* 2 cycles
163        *  (since the last two src operands are in different register banks):
164        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
165        *
166        * 3 cycles on IVB, 4 on HSW
167        *  (since the last two src operands are in the same register bank):
168        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
169        *
170        * 18 cycles on IVB, 16 on HSW
171        *  (since the last two src operands are in different register banks):
172        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
173        * mov(8) null   g4<4,5,1>F                     { align16 WE_normal 1Q };
174        *
175        * 20 cycles on IVB, 18 on HSW
176        *  (since the last two src operands are in the same register bank):
177        * mad(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
178        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
179        */
180 
181       /* Our register allocator doesn't know about register banks, so use the
182        * higher latency.
183        */
184       latency = is_haswell ? 16 : 18;
185       break;
186 
187    case BRW_OPCODE_LRP:
188       /* 2 cycles
189        *  (since the last two src operands are in different register banks):
190        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
191        *
192        * 3 cycles on IVB, 4 on HSW
193        *  (since the last two src operands are in the same register bank):
194        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
195        *
196        * 16 cycles on IVB, 14 on HSW
197        *  (since the last two src operands are in different register banks):
198        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g3.1<4,4,1>F.x { align16 WE_normal 1Q };
199        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
200        *
201        * 16 cycles
202        *  (since the last two src operands are in the same register bank):
203        * lrp(8) g4<1>F g2.2<4,4,1>F.x  g2<4,4,1>F.x g2.1<4,4,1>F.x { align16 WE_normal 1Q };
204        * mov(8) null   g4<4,4,1>F                     { align16 WE_normal 1Q };
205        */
206 
207       /* Our register allocator doesn't know about register banks, so use the
208        * higher latency.
209        */
210       latency = 14;
211       break;
212 
213    case SHADER_OPCODE_RCP:
214    case SHADER_OPCODE_RSQ:
215    case SHADER_OPCODE_SQRT:
216    case SHADER_OPCODE_LOG2:
217    case SHADER_OPCODE_EXP2:
218    case SHADER_OPCODE_SIN:
219    case SHADER_OPCODE_COS:
220       /* 2 cycles:
221        * math inv(8) g4<1>F g2<0,1,0>F      null       { align1 WE_normal 1Q };
222        *
223        * 18 cycles:
224        * math inv(8) g4<1>F g2<0,1,0>F      null       { align1 WE_normal 1Q };
225        * mov(8)      null   g4<8,8,1>F                 { align1 WE_normal 1Q };
226        *
227        * Same for exp2, log2, rsq, sqrt, sin, cos.
228        */
229       latency = is_haswell ? 14 : 16;
230       break;
231 
232    case SHADER_OPCODE_POW:
233       /* 2 cycles:
234        * math pow(8) g4<1>F g2<0,1,0>F   g2.1<0,1,0>F  { align1 WE_normal 1Q };
235        *
236        * 26 cycles:
237        * math pow(8) g4<1>F g2<0,1,0>F   g2.1<0,1,0>F  { align1 WE_normal 1Q };
238        * mov(8)      null   g4<8,8,1>F                 { align1 WE_normal 1Q };
239        */
240       latency = is_haswell ? 22 : 24;
241       break;
242 
243    case SHADER_OPCODE_TEX:
244    case SHADER_OPCODE_TXD:
245    case SHADER_OPCODE_TXF:
246    case SHADER_OPCODE_TXF_LZ:
247    case SHADER_OPCODE_TXL:
248    case SHADER_OPCODE_TXL_LZ:
249       /* 18 cycles:
250        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
251        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
252        * send(8) g4<1>UW    g114<8,8,1>F
253        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
254        *
255        * 697 +/-49 cycles (min 610, n=26):
256        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
257        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
258        * send(8) g4<1>UW    g114<8,8,1>F
259        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
260        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
261        *
262        * So the latency on our first texture load of the batchbuffer takes
263        * ~700 cycles, since the caches are cold at that point.
264        *
265        * 840 +/- 92 cycles (min 720, n=25):
266        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
267        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
268        * send(8) g4<1>UW    g114<8,8,1>F
269        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
270        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
271        * send(8) g4<1>UW    g114<8,8,1>F
272        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
273        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
274        *
275        * On the second load, it takes just an extra ~140 cycles, and after
276        * accounting for the 14 cycles of the MOV's latency, that makes ~130.
277        *
278        * 683 +/- 49 cycles (min = 602, n=47):
279        * mov(8)  g115<1>F   0F                         { align1 WE_normal 1Q };
280        * mov(8)  g114<1>F   0F                         { align1 WE_normal 1Q };
281        * send(8) g4<1>UW    g114<8,8,1>F
282        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
283        * send(8) g50<1>UW   g114<8,8,1>F
284        *   sampler (10, 0, 0, 1) mlen 2 rlen 4         { align1 WE_normal 1Q };
285        * mov(8)  null       g4<8,8,1>F                 { align1 WE_normal 1Q };
286        *
287        * The unit appears to be pipelined, since this matches up with the
288        * cache-cold case, despite there being two loads here.  If you replace
289        * the g4 in the MOV to null with g50, it's still 693 +/- 52 (n=39).
290        *
291        * So, take some number between the cache-hot 140 cycles and the
292        * cache-cold 700 cycles.  No particular tuning was done on this.
293        *
294        * I haven't done significant testing of the non-TEX opcodes.  TXL at
295        * least looked about the same as TEX.
296        */
297       latency = 200;
298       break;
299 
300    case SHADER_OPCODE_TXS:
301       /* Testing textureSize(sampler2D, 0), one load was 420 +/- 41
302        * cycles (n=15):
303        * mov(8)   g114<1>UD  0D                        { align1 WE_normal 1Q };
304        * send(8)  g6<1>UW    g114<8,8,1>F
305        *   sampler (10, 0, 10, 1) mlen 1 rlen 4        { align1 WE_normal 1Q };
306        * mov(16)  g6<1>F     g6<8,8,1>D                { align1 WE_normal 1Q };
307        *
308        *
309        * Two loads was 535 +/- 30 cycles (n=19):
310        * mov(16)   g114<1>UD  0D                       { align1 WE_normal 1H };
311        * send(16)  g6<1>UW    g114<8,8,1>F
312        *   sampler (10, 0, 10, 2) mlen 2 rlen 8        { align1 WE_normal 1H };
313        * mov(16)   g114<1>UD  0D                       { align1 WE_normal 1H };
314        * mov(16)   g6<1>F     g6<8,8,1>D               { align1 WE_normal 1H };
315        * send(16)  g8<1>UW    g114<8,8,1>F
316        *   sampler (10, 0, 10, 2) mlen 2 rlen 8        { align1 WE_normal 1H };
317        * mov(16)   g8<1>F     g8<8,8,1>D               { align1 WE_normal 1H };
318        * add(16)   g6<1>F     g6<8,8,1>F   g8<8,8,1>F  { align1 WE_normal 1H };
319        *
320        * Since the only caches that should matter are just the
321        * instruction/state cache containing the surface state, assume that we
322        * always have hot caches.
323        */
324       latency = 100;
325       break;
326 
327    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
328    case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
329    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
330    case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
331    case VS_OPCODE_PULL_CONSTANT_LOAD:
332       /* testing using varying-index pull constants:
333        *
334        * 16 cycles:
335        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
336        * send(8) g4<1>F  g4<8,8,1>D
337        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
338        *
339        * ~480 cycles:
340        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
341        * send(8) g4<1>F  g4<8,8,1>D
342        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
343        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
344        *
345        * ~620 cycles:
346        * mov(8)  g4<1>D  g2.1<0,1,0>F                  { align1 WE_normal 1Q };
347        * send(8) g4<1>F  g4<8,8,1>D
348        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
349        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
350        * send(8) g4<1>F  g4<8,8,1>D
351        *   data (9, 2, 3) mlen 1 rlen 1                { align1 WE_normal 1Q };
352        * mov(8)  null    g4<8,8,1>F                    { align1 WE_normal 1Q };
353        *
354        * So, if it's cache-hot, it's about 140.  If it's cache cold, it's
355        * about 460.  We expect to mostly be cache hot, so pick something more
356        * in that direction.
357        */
358       latency = 200;
359       break;
360 
361    case SHADER_OPCODE_GEN7_SCRATCH_READ:
362       /* Testing a load from offset 0, that had been previously written:
363        *
364        * send(8) g114<1>UW g0<8,8,1>F data (0, 0, 0) mlen 1 rlen 1 { align1 WE_normal 1Q };
365        * mov(8)  null      g114<8,8,1>F { align1 WE_normal 1Q };
366        *
367        * The cycles spent seemed to be grouped around 40-50 (as low as 38),
368        * then around 140.  Presumably this is cache hit vs miss.
369        */
370       latency = 50;
371       break;
372 
373    case SHADER_OPCODE_UNTYPED_ATOMIC:
374    case SHADER_OPCODE_TYPED_ATOMIC:
375       /* Test code:
376        *   mov(8)    g112<1>ud       0x00000000ud       { align1 WE_all 1Q };
377        *   mov(1)    g112.7<1>ud     g1.7<0,1,0>ud      { align1 WE_all };
378        *   mov(8)    g113<1>ud       0x00000000ud       { align1 WE_normal 1Q };
379        *   send(8)   g4<1>ud         g112<8,8,1>ud
380        *             data (38, 5, 6) mlen 2 rlen 1      { align1 WE_normal 1Q };
381        *
382        * Running it 100 times as fragment shader on a 128x128 quad
383        * gives an average latency of 13867 cycles per atomic op,
384        * standard deviation 3%.  Note that this is a rather
385        * pessimistic estimate, the actual latency in cases with few
386        * collisions between threads and favorable pipelining has been
387        * seen to be reduced by a factor of 100.
388        */
389       latency = 14000;
390       break;
391 
392    case SHADER_OPCODE_UNTYPED_SURFACE_READ:
393    case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
394    case SHADER_OPCODE_TYPED_SURFACE_READ:
395    case SHADER_OPCODE_TYPED_SURFACE_WRITE:
396       /* Test code:
397        *   mov(8)    g112<1>UD       0x00000000UD       { align1 WE_all 1Q };
398        *   mov(1)    g112.7<1>UD     g1.7<0,1,0>UD      { align1 WE_all };
399        *   mov(8)    g113<1>UD       0x00000000UD       { align1 WE_normal 1Q };
400        *   send(8)   g4<1>UD         g112<8,8,1>UD
401        *             data (38, 6, 5) mlen 2 rlen 1      { align1 WE_normal 1Q };
402        *   .
403        *   . [repeats 8 times]
404        *   .
405        *   mov(8)    g112<1>UD       0x00000000UD       { align1 WE_all 1Q };
406        *   mov(1)    g112.7<1>UD     g1.7<0,1,0>UD      { align1 WE_all };
407        *   mov(8)    g113<1>UD       0x00000000UD       { align1 WE_normal 1Q };
408        *   send(8)   g4<1>UD         g112<8,8,1>UD
409        *             data (38, 6, 5) mlen 2 rlen 1      { align1 WE_normal 1Q };
410        *
411        * Running it 100 times as fragment shader on a 128x128 quad
412        * gives an average latency of 583 cycles per surface read,
413        * standard deviation 0.9%.
414        */
415       latency = is_haswell ? 300 : 600;
416       break;
417 
418    default:
419       /* 2 cycles:
420        * mul(8) g4<1>F g2<0,1,0>F      0.5F            { align1 WE_normal 1Q };
421        *
422        * 16 cycles:
423        * mul(8) g4<1>F g2<0,1,0>F      0.5F            { align1 WE_normal 1Q };
424        * mov(8) null   g4<8,8,1>F                      { align1 WE_normal 1Q };
425        */
426       latency = 14;
427       break;
428    }
429 }
430 
431 class instruction_scheduler {
432 public:
instruction_scheduler(backend_shader * s,int grf_count,int hw_reg_count,int block_count,instruction_scheduler_mode mode)433    instruction_scheduler(backend_shader *s, int grf_count,
434                          int hw_reg_count, int block_count,
435                          instruction_scheduler_mode mode)
436    {
437       this->bs = s;
438       this->mem_ctx = ralloc_context(NULL);
439       this->grf_count = grf_count;
440       this->hw_reg_count = hw_reg_count;
441       this->instructions.make_empty();
442       this->instructions_to_schedule = 0;
443       this->post_reg_alloc = (mode == SCHEDULE_POST);
444       this->mode = mode;
445       if (!post_reg_alloc) {
446          this->reg_pressure_in = rzalloc_array(mem_ctx, int, block_count);
447 
448          this->livein = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
449          for (int i = 0; i < block_count; i++)
450             this->livein[i] = rzalloc_array(mem_ctx, BITSET_WORD,
451                                             BITSET_WORDS(grf_count));
452 
453          this->liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
454          for (int i = 0; i < block_count; i++)
455             this->liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
456                                              BITSET_WORDS(grf_count));
457 
458          this->hw_liveout = ralloc_array(mem_ctx, BITSET_WORD *, block_count);
459          for (int i = 0; i < block_count; i++)
460             this->hw_liveout[i] = rzalloc_array(mem_ctx, BITSET_WORD,
461                                                 BITSET_WORDS(hw_reg_count));
462 
463          this->written = rzalloc_array(mem_ctx, bool, grf_count);
464 
465          this->reads_remaining = rzalloc_array(mem_ctx, int, grf_count);
466 
467          this->hw_reads_remaining = rzalloc_array(mem_ctx, int, hw_reg_count);
468       } else {
469          this->reg_pressure_in = NULL;
470          this->livein = NULL;
471          this->liveout = NULL;
472          this->hw_liveout = NULL;
473          this->written = NULL;
474          this->reads_remaining = NULL;
475          this->hw_reads_remaining = NULL;
476       }
477    }
478 
~instruction_scheduler()479    ~instruction_scheduler()
480    {
481       ralloc_free(this->mem_ctx);
482    }
483    void add_barrier_deps(schedule_node *n);
484    void add_dep(schedule_node *before, schedule_node *after, int latency);
485    void add_dep(schedule_node *before, schedule_node *after);
486 
487    void run(cfg_t *cfg);
488    void add_insts_from_block(bblock_t *block);
489    void compute_delays();
490    void compute_exits();
491    virtual void calculate_deps() = 0;
492    virtual schedule_node *choose_instruction_to_schedule() = 0;
493 
494    /**
495     * Returns how many cycles it takes the instruction to issue.
496     *
497     * Instructions in gen hardware are handled one simd4 vector at a time,
498     * with 1 cycle per vector dispatched.  Thus SIMD8 pixel shaders take 2
499     * cycles to dispatch and SIMD16 (compressed) instructions take 4.
500     */
501    virtual int issue_time(backend_instruction *inst) = 0;
502 
503    virtual void count_reads_remaining(backend_instruction *inst) = 0;
504    virtual void setup_liveness(cfg_t *cfg) = 0;
505    virtual void update_register_pressure(backend_instruction *inst) = 0;
506    virtual int get_register_pressure_benefit(backend_instruction *inst) = 0;
507 
508    void schedule_instructions(bblock_t *block);
509 
510    void *mem_ctx;
511 
512    bool post_reg_alloc;
513    int instructions_to_schedule;
514    int grf_count;
515    int hw_reg_count;
516    int reg_pressure;
517    int block_idx;
518    exec_list instructions;
519    backend_shader *bs;
520 
521    instruction_scheduler_mode mode;
522 
523    /*
524     * The register pressure at the beginning of each basic block.
525     */
526 
527    int *reg_pressure_in;
528 
529    /*
530     * The virtual GRF's whose range overlaps the beginning of each basic block.
531     */
532 
533    BITSET_WORD **livein;
534 
535    /*
536     * The virtual GRF's whose range overlaps the end of each basic block.
537     */
538 
539    BITSET_WORD **liveout;
540 
541    /*
542     * The hardware GRF's whose range overlaps the end of each basic block.
543     */
544 
545    BITSET_WORD **hw_liveout;
546 
547    /*
548     * Whether we've scheduled a write for this virtual GRF yet.
549     */
550 
551    bool *written;
552 
553    /*
554     * How many reads we haven't scheduled for this virtual GRF yet.
555     */
556 
557    int *reads_remaining;
558 
559    /*
560     * How many reads we haven't scheduled for this hardware GRF yet.
561     */
562 
563    int *hw_reads_remaining;
564 };
565 
566 class fs_instruction_scheduler : public instruction_scheduler
567 {
568 public:
569    fs_instruction_scheduler(fs_visitor *v, int grf_count, int hw_reg_count,
570                             int block_count,
571                             instruction_scheduler_mode mode);
572    void calculate_deps();
573    bool is_compressed(fs_inst *inst);
574    schedule_node *choose_instruction_to_schedule();
575    int issue_time(backend_instruction *inst);
576    fs_visitor *v;
577 
578    void count_reads_remaining(backend_instruction *inst);
579    void setup_liveness(cfg_t *cfg);
580    void update_register_pressure(backend_instruction *inst);
581    int get_register_pressure_benefit(backend_instruction *inst);
582 };
583 
fs_instruction_scheduler(fs_visitor * v,int grf_count,int hw_reg_count,int block_count,instruction_scheduler_mode mode)584 fs_instruction_scheduler::fs_instruction_scheduler(fs_visitor *v,
585                                                    int grf_count, int hw_reg_count,
586                                                    int block_count,
587                                                    instruction_scheduler_mode mode)
588    : instruction_scheduler(v, grf_count, hw_reg_count, block_count, mode),
589      v(v)
590 {
591 }
592 
593 static bool
is_src_duplicate(fs_inst * inst,int src)594 is_src_duplicate(fs_inst *inst, int src)
595 {
596    for (int i = 0; i < src; i++)
597      if (inst->src[i].equals(inst->src[src]))
598        return true;
599 
600   return false;
601 }
602 
603 void
count_reads_remaining(backend_instruction * be)604 fs_instruction_scheduler::count_reads_remaining(backend_instruction *be)
605 {
606    fs_inst *inst = (fs_inst *)be;
607 
608    if (!reads_remaining)
609       return;
610 
611    for (int i = 0; i < inst->sources; i++) {
612       if (is_src_duplicate(inst, i))
613          continue;
614 
615       if (inst->src[i].file == VGRF) {
616          reads_remaining[inst->src[i].nr]++;
617       } else if (inst->src[i].file == FIXED_GRF) {
618          if (inst->src[i].nr >= hw_reg_count)
619             continue;
620 
621          for (unsigned j = 0; j < regs_read(inst, i); j++)
622             hw_reads_remaining[inst->src[i].nr + j]++;
623       }
624    }
625 }
626 
627 void
setup_liveness(cfg_t * cfg)628 fs_instruction_scheduler::setup_liveness(cfg_t *cfg)
629 {
630    /* First, compute liveness on a per-GRF level using the in/out sets from
631     * liveness calculation.
632     */
633    for (int block = 0; block < cfg->num_blocks; block++) {
634       for (int i = 0; i < v->live_intervals->num_vars; i++) {
635          if (BITSET_TEST(v->live_intervals->block_data[block].livein, i)) {
636             int vgrf = v->live_intervals->vgrf_from_var[i];
637             if (!BITSET_TEST(livein[block], vgrf)) {
638                reg_pressure_in[block] += v->alloc.sizes[vgrf];
639                BITSET_SET(livein[block], vgrf);
640             }
641          }
642 
643          if (BITSET_TEST(v->live_intervals->block_data[block].liveout, i))
644             BITSET_SET(liveout[block], v->live_intervals->vgrf_from_var[i]);
645       }
646    }
647 
648    /* Now, extend the live in/live out sets for when a range crosses a block
649     * boundary, which matches what our register allocator/interference code
650     * does to account for force_writemask_all and incompatible exec_mask's.
651     */
652    for (int block = 0; block < cfg->num_blocks - 1; block++) {
653       for (int i = 0; i < grf_count; i++) {
654          if (v->virtual_grf_start[i] <= cfg->blocks[block]->end_ip &&
655              v->virtual_grf_end[i] >= cfg->blocks[block + 1]->start_ip) {
656             if (!BITSET_TEST(livein[block + 1], i)) {
657                 reg_pressure_in[block + 1] += v->alloc.sizes[i];
658                 BITSET_SET(livein[block + 1], i);
659             }
660 
661             BITSET_SET(liveout[block], i);
662          }
663       }
664    }
665 
666    int payload_last_use_ip[hw_reg_count];
667    v->calculate_payload_ranges(hw_reg_count, payload_last_use_ip);
668 
669    for (int i = 0; i < hw_reg_count; i++) {
670       if (payload_last_use_ip[i] == -1)
671          continue;
672 
673       for (int block = 0; block < cfg->num_blocks; block++) {
674          if (cfg->blocks[block]->start_ip <= payload_last_use_ip[i])
675             reg_pressure_in[block]++;
676 
677          if (cfg->blocks[block]->end_ip <= payload_last_use_ip[i])
678             BITSET_SET(hw_liveout[block], i);
679       }
680    }
681 }
682 
683 void
update_register_pressure(backend_instruction * be)684 fs_instruction_scheduler::update_register_pressure(backend_instruction *be)
685 {
686    fs_inst *inst = (fs_inst *)be;
687 
688    if (!reads_remaining)
689       return;
690 
691    if (inst->dst.file == VGRF) {
692       written[inst->dst.nr] = true;
693    }
694 
695    for (int i = 0; i < inst->sources; i++) {
696       if (is_src_duplicate(inst, i))
697           continue;
698 
699       if (inst->src[i].file == VGRF) {
700          reads_remaining[inst->src[i].nr]--;
701       } else if (inst->src[i].file == FIXED_GRF &&
702                  inst->src[i].nr < hw_reg_count) {
703          for (unsigned off = 0; off < regs_read(inst, i); off++)
704             hw_reads_remaining[inst->src[i].nr + off]--;
705       }
706    }
707 }
708 
709 int
get_register_pressure_benefit(backend_instruction * be)710 fs_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
711 {
712    fs_inst *inst = (fs_inst *)be;
713    int benefit = 0;
714 
715    if (inst->dst.file == VGRF) {
716       if (!BITSET_TEST(livein[block_idx], inst->dst.nr) &&
717           !written[inst->dst.nr])
718          benefit -= v->alloc.sizes[inst->dst.nr];
719    }
720 
721    for (int i = 0; i < inst->sources; i++) {
722       if (is_src_duplicate(inst, i))
723          continue;
724 
725       if (inst->src[i].file == VGRF &&
726           !BITSET_TEST(liveout[block_idx], inst->src[i].nr) &&
727           reads_remaining[inst->src[i].nr] == 1)
728          benefit += v->alloc.sizes[inst->src[i].nr];
729 
730       if (inst->src[i].file == FIXED_GRF &&
731           inst->src[i].nr < hw_reg_count) {
732          for (unsigned off = 0; off < regs_read(inst, i); off++) {
733             int reg = inst->src[i].nr + off;
734             if (!BITSET_TEST(hw_liveout[block_idx], reg) &&
735                 hw_reads_remaining[reg] == 1) {
736                benefit++;
737             }
738          }
739       }
740    }
741 
742    return benefit;
743 }
744 
745 class vec4_instruction_scheduler : public instruction_scheduler
746 {
747 public:
748    vec4_instruction_scheduler(vec4_visitor *v, int grf_count);
749    void calculate_deps();
750    schedule_node *choose_instruction_to_schedule();
751    int issue_time(backend_instruction *inst);
752    vec4_visitor *v;
753 
754    void count_reads_remaining(backend_instruction *inst);
755    void setup_liveness(cfg_t *cfg);
756    void update_register_pressure(backend_instruction *inst);
757    int get_register_pressure_benefit(backend_instruction *inst);
758 };
759 
vec4_instruction_scheduler(vec4_visitor * v,int grf_count)760 vec4_instruction_scheduler::vec4_instruction_scheduler(vec4_visitor *v,
761                                                        int grf_count)
762    : instruction_scheduler(v, grf_count, 0, 0, SCHEDULE_POST),
763      v(v)
764 {
765 }
766 
767 void
count_reads_remaining(backend_instruction * be)768 vec4_instruction_scheduler::count_reads_remaining(backend_instruction *be)
769 {
770 }
771 
772 void
setup_liveness(cfg_t * cfg)773 vec4_instruction_scheduler::setup_liveness(cfg_t *cfg)
774 {
775 }
776 
777 void
update_register_pressure(backend_instruction * be)778 vec4_instruction_scheduler::update_register_pressure(backend_instruction *be)
779 {
780 }
781 
782 int
get_register_pressure_benefit(backend_instruction * be)783 vec4_instruction_scheduler::get_register_pressure_benefit(backend_instruction *be)
784 {
785    return 0;
786 }
787 
schedule_node(backend_instruction * inst,instruction_scheduler * sched)788 schedule_node::schedule_node(backend_instruction *inst,
789                              instruction_scheduler *sched)
790 {
791    const struct gen_device_info *devinfo = sched->bs->devinfo;
792 
793    this->inst = inst;
794    this->child_array_size = 0;
795    this->children = NULL;
796    this->child_latency = NULL;
797    this->child_count = 0;
798    this->parent_count = 0;
799    this->unblocked_time = 0;
800    this->cand_generation = 0;
801    this->delay = 0;
802    this->exit = NULL;
803    this->is_barrier = false;
804 
805    /* We can't measure Gen6 timings directly but expect them to be much
806     * closer to Gen7 than Gen4.
807     */
808    if (!sched->post_reg_alloc)
809       this->latency = 1;
810    else if (devinfo->gen >= 6)
811       set_latency_gen7(devinfo->is_haswell);
812    else
813       set_latency_gen4();
814 }
815 
816 void
add_insts_from_block(bblock_t * block)817 instruction_scheduler::add_insts_from_block(bblock_t *block)
818 {
819    foreach_inst_in_block(backend_instruction, inst, block) {
820       schedule_node *n = new(mem_ctx) schedule_node(inst, this);
821 
822       instructions.push_tail(n);
823    }
824 
825    this->instructions_to_schedule = block->end_ip - block->start_ip + 1;
826 }
827 
828 /** Computation of the delay member of each node. */
829 void
compute_delays()830 instruction_scheduler::compute_delays()
831 {
832    foreach_in_list_reverse(schedule_node, n, &instructions) {
833       if (!n->child_count) {
834          n->delay = issue_time(n->inst);
835       } else {
836          for (int i = 0; i < n->child_count; i++) {
837             assert(n->children[i]->delay);
838             n->delay = MAX2(n->delay, n->latency + n->children[i]->delay);
839          }
840       }
841    }
842 }
843 
844 void
compute_exits()845 instruction_scheduler::compute_exits()
846 {
847    /* Calculate a lower bound of the scheduling time of each node in the
848     * graph.  This is analogous to the node's critical path but calculated
849     * from the top instead of from the bottom of the block.
850     */
851    foreach_in_list(schedule_node, n, &instructions) {
852       for (int i = 0; i < n->child_count; i++) {
853          n->children[i]->unblocked_time =
854             MAX2(n->children[i]->unblocked_time,
855                  n->unblocked_time + issue_time(n->inst) + n->child_latency[i]);
856       }
857    }
858 
859    /* Calculate the exit of each node by induction based on the exit nodes of
860     * its children.  The preferred exit of a node is the one among the exit
861     * nodes of its children which can be unblocked first according to the
862     * optimistic unblocked time estimate calculated above.
863     */
864    foreach_in_list_reverse(schedule_node, n, &instructions) {
865       n->exit = (n->inst->opcode == FS_OPCODE_DISCARD_JUMP ? n : NULL);
866 
867       for (int i = 0; i < n->child_count; i++) {
868          if (exit_unblocked_time(n->children[i]) < exit_unblocked_time(n))
869             n->exit = n->children[i]->exit;
870       }
871    }
872 }
873 
874 /**
875  * Add a dependency between two instruction nodes.
876  *
877  * The @after node will be scheduled after @before.  We will try to
878  * schedule it @latency cycles after @before, but no guarantees there.
879  */
880 void
add_dep(schedule_node * before,schedule_node * after,int latency)881 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after,
882                                int latency)
883 {
884    if (!before || !after)
885       return;
886 
887    assert(before != after);
888 
889    for (int i = 0; i < before->child_count; i++) {
890       if (before->children[i] == after) {
891          before->child_latency[i] = MAX2(before->child_latency[i], latency);
892          return;
893       }
894    }
895 
896    if (before->child_array_size <= before->child_count) {
897       if (before->child_array_size < 16)
898          before->child_array_size = 16;
899       else
900          before->child_array_size *= 2;
901 
902       before->children = reralloc(mem_ctx, before->children,
903                                   schedule_node *,
904                                   before->child_array_size);
905       before->child_latency = reralloc(mem_ctx, before->child_latency,
906                                        int, before->child_array_size);
907    }
908 
909    before->children[before->child_count] = after;
910    before->child_latency[before->child_count] = latency;
911    before->child_count++;
912    after->parent_count++;
913 }
914 
915 void
add_dep(schedule_node * before,schedule_node * after)916 instruction_scheduler::add_dep(schedule_node *before, schedule_node *after)
917 {
918    if (!before)
919       return;
920 
921    add_dep(before, after, before->latency);
922 }
923 
924 /**
925  * Sometimes we really want this node to execute after everything that
926  * was before it and before everything that followed it.  This adds
927  * the deps to do so.
928  */
929 void
add_barrier_deps(schedule_node * n)930 instruction_scheduler::add_barrier_deps(schedule_node *n)
931 {
932    schedule_node *prev = (schedule_node *)n->prev;
933    schedule_node *next = (schedule_node *)n->next;
934 
935    n->is_barrier = true;
936 
937    if (prev) {
938       while (!prev->is_head_sentinel()) {
939          add_dep(prev, n, 0);
940          if (prev->is_barrier)
941             break;
942          prev = (schedule_node *)prev->prev;
943       }
944    }
945 
946    if (next) {
947       while (!next->is_tail_sentinel()) {
948          add_dep(n, next, 0);
949          if (next->is_barrier)
950             break;
951          next = (schedule_node *)next->next;
952       }
953    }
954 }
955 
956 /* instruction scheduling needs to be aware of when an MRF write
957  * actually writes 2 MRFs.
958  */
959 bool
is_compressed(fs_inst * inst)960 fs_instruction_scheduler::is_compressed(fs_inst *inst)
961 {
962    return inst->exec_size == 16;
963 }
964 
965 static bool
is_scheduling_barrier(const fs_inst * inst)966 is_scheduling_barrier(const fs_inst *inst)
967 {
968    return inst->opcode == FS_OPCODE_PLACEHOLDER_HALT ||
969           inst->is_control_flow() ||
970           inst->has_side_effects();
971 }
972 
973 void
calculate_deps()974 fs_instruction_scheduler::calculate_deps()
975 {
976    /* Pre-register-allocation, this tracks the last write per VGRF offset.
977     * After register allocation, reg_offsets are gone and we track individual
978     * GRF registers.
979     */
980    schedule_node *last_grf_write[grf_count * 16];
981    schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
982    schedule_node *last_conditional_mod[4] = {};
983    schedule_node *last_accumulator_write = NULL;
984    /* Fixed HW registers are assumed to be separate from the virtual
985     * GRFs, so they can be tracked separately.  We don't really write
986     * to fixed GRFs much, so don't bother tracking them on a more
987     * granular level.
988     */
989    schedule_node *last_fixed_grf_write = NULL;
990 
991    memset(last_grf_write, 0, sizeof(last_grf_write));
992    memset(last_mrf_write, 0, sizeof(last_mrf_write));
993 
994    /* top-to-bottom dependencies: RAW and WAW. */
995    foreach_in_list(schedule_node, n, &instructions) {
996       fs_inst *inst = (fs_inst *)n->inst;
997 
998       if (is_scheduling_barrier(inst))
999          add_barrier_deps(n);
1000 
1001       /* read-after-write deps. */
1002       for (int i = 0; i < inst->sources; i++) {
1003          if (inst->src[i].file == VGRF) {
1004             if (post_reg_alloc) {
1005                for (unsigned r = 0; r < regs_read(inst, i); r++)
1006                   add_dep(last_grf_write[inst->src[i].nr + r], n);
1007             } else {
1008                for (unsigned r = 0; r < regs_read(inst, i); r++) {
1009                   add_dep(last_grf_write[inst->src[i].nr * 16 +
1010                                          inst->src[i].offset / REG_SIZE + r], n);
1011                }
1012             }
1013          } else if (inst->src[i].file == FIXED_GRF) {
1014             if (post_reg_alloc) {
1015                for (unsigned r = 0; r < regs_read(inst, i); r++)
1016                   add_dep(last_grf_write[inst->src[i].nr + r], n);
1017             } else {
1018                add_dep(last_fixed_grf_write, n);
1019             }
1020          } else if (inst->src[i].is_accumulator()) {
1021             add_dep(last_accumulator_write, n);
1022          } else if (inst->src[i].file == ARF) {
1023             add_barrier_deps(n);
1024          }
1025       }
1026 
1027       if (inst->base_mrf != -1) {
1028          for (int i = 0; i < inst->mlen; i++) {
1029             /* It looks like the MRF regs are released in the send
1030              * instruction once it's sent, not when the result comes
1031              * back.
1032              */
1033             add_dep(last_mrf_write[inst->base_mrf + i], n);
1034          }
1035       }
1036 
1037       if (const unsigned mask = inst->flags_read(v->devinfo)) {
1038          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1039 
1040          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1041             if (mask & (1 << i))
1042                add_dep(last_conditional_mod[i], n);
1043          }
1044       }
1045 
1046       if (inst->reads_accumulator_implicitly()) {
1047          add_dep(last_accumulator_write, n);
1048       }
1049 
1050       /* write-after-write deps. */
1051       if (inst->dst.file == VGRF) {
1052          if (post_reg_alloc) {
1053             for (unsigned r = 0; r < regs_written(inst); r++) {
1054                add_dep(last_grf_write[inst->dst.nr + r], n);
1055                last_grf_write[inst->dst.nr + r] = n;
1056             }
1057          } else {
1058             for (unsigned r = 0; r < regs_written(inst); r++) {
1059                add_dep(last_grf_write[inst->dst.nr * 16 +
1060                                       inst->dst.offset / REG_SIZE + r], n);
1061                last_grf_write[inst->dst.nr * 16 +
1062                               inst->dst.offset / REG_SIZE + r] = n;
1063             }
1064          }
1065       } else if (inst->dst.file == MRF) {
1066          int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
1067 
1068          add_dep(last_mrf_write[reg], n);
1069          last_mrf_write[reg] = n;
1070          if (is_compressed(inst)) {
1071             if (inst->dst.nr & BRW_MRF_COMPR4)
1072                reg += 4;
1073             else
1074                reg++;
1075             add_dep(last_mrf_write[reg], n);
1076             last_mrf_write[reg] = n;
1077          }
1078       } else if (inst->dst.file == FIXED_GRF) {
1079          if (post_reg_alloc) {
1080             for (unsigned r = 0; r < regs_written(inst); r++)
1081                last_grf_write[inst->dst.nr + r] = n;
1082          } else {
1083             last_fixed_grf_write = n;
1084          }
1085       } else if (inst->dst.is_accumulator()) {
1086          add_dep(last_accumulator_write, n);
1087          last_accumulator_write = n;
1088       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1089          add_barrier_deps(n);
1090       }
1091 
1092       if (inst->mlen > 0 && inst->base_mrf != -1) {
1093          for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1094             add_dep(last_mrf_write[inst->base_mrf + i], n);
1095             last_mrf_write[inst->base_mrf + i] = n;
1096          }
1097       }
1098 
1099       if (const unsigned mask = inst->flags_written()) {
1100          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1101 
1102          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1103             if (mask & (1 << i)) {
1104                add_dep(last_conditional_mod[i], n, 0);
1105                last_conditional_mod[i] = n;
1106             }
1107          }
1108       }
1109 
1110       if (inst->writes_accumulator_implicitly(v->devinfo) &&
1111           !inst->dst.is_accumulator()) {
1112          add_dep(last_accumulator_write, n);
1113          last_accumulator_write = n;
1114       }
1115    }
1116 
1117    /* bottom-to-top dependencies: WAR */
1118    memset(last_grf_write, 0, sizeof(last_grf_write));
1119    memset(last_mrf_write, 0, sizeof(last_mrf_write));
1120    memset(last_conditional_mod, 0, sizeof(last_conditional_mod));
1121    last_accumulator_write = NULL;
1122    last_fixed_grf_write = NULL;
1123 
1124    foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
1125       fs_inst *inst = (fs_inst *)n->inst;
1126 
1127       /* write-after-read deps. */
1128       for (int i = 0; i < inst->sources; i++) {
1129          if (inst->src[i].file == VGRF) {
1130             if (post_reg_alloc) {
1131                for (unsigned r = 0; r < regs_read(inst, i); r++)
1132                   add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1133             } else {
1134                for (unsigned r = 0; r < regs_read(inst, i); r++) {
1135                   add_dep(n, last_grf_write[inst->src[i].nr * 16 +
1136                                             inst->src[i].offset / REG_SIZE + r], 0);
1137                }
1138             }
1139          } else if (inst->src[i].file == FIXED_GRF) {
1140             if (post_reg_alloc) {
1141                for (unsigned r = 0; r < regs_read(inst, i); r++)
1142                   add_dep(n, last_grf_write[inst->src[i].nr + r], 0);
1143             } else {
1144                add_dep(n, last_fixed_grf_write, 0);
1145             }
1146          } else if (inst->src[i].is_accumulator()) {
1147             add_dep(n, last_accumulator_write, 0);
1148          } else if (inst->src[i].file == ARF) {
1149             add_barrier_deps(n);
1150          }
1151       }
1152 
1153       if (inst->base_mrf != -1) {
1154          for (int i = 0; i < inst->mlen; i++) {
1155             /* It looks like the MRF regs are released in the send
1156              * instruction once it's sent, not when the result comes
1157              * back.
1158              */
1159             add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1160          }
1161       }
1162 
1163       if (const unsigned mask = inst->flags_read(v->devinfo)) {
1164          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1165 
1166          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1167             if (mask & (1 << i))
1168                add_dep(n, last_conditional_mod[i]);
1169          }
1170       }
1171 
1172       if (inst->reads_accumulator_implicitly()) {
1173          add_dep(n, last_accumulator_write);
1174       }
1175 
1176       /* Update the things this instruction wrote, so earlier reads
1177        * can mark this as WAR dependency.
1178        */
1179       if (inst->dst.file == VGRF) {
1180          if (post_reg_alloc) {
1181             for (unsigned r = 0; r < regs_written(inst); r++)
1182                last_grf_write[inst->dst.nr + r] = n;
1183          } else {
1184             for (unsigned r = 0; r < regs_written(inst); r++) {
1185                last_grf_write[inst->dst.nr * 16 +
1186                               inst->dst.offset / REG_SIZE + r] = n;
1187             }
1188          }
1189       } else if (inst->dst.file == MRF) {
1190          int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
1191 
1192          last_mrf_write[reg] = n;
1193 
1194          if (is_compressed(inst)) {
1195             if (inst->dst.nr & BRW_MRF_COMPR4)
1196                reg += 4;
1197             else
1198                reg++;
1199 
1200             last_mrf_write[reg] = n;
1201          }
1202       } else if (inst->dst.file == FIXED_GRF) {
1203          if (post_reg_alloc) {
1204             for (unsigned r = 0; r < regs_written(inst); r++)
1205                last_grf_write[inst->dst.nr + r] = n;
1206          } else {
1207             last_fixed_grf_write = n;
1208          }
1209       } else if (inst->dst.is_accumulator()) {
1210          last_accumulator_write = n;
1211       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1212          add_barrier_deps(n);
1213       }
1214 
1215       if (inst->mlen > 0 && inst->base_mrf != -1) {
1216          for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1217             last_mrf_write[inst->base_mrf + i] = n;
1218          }
1219       }
1220 
1221       if (const unsigned mask = inst->flags_written()) {
1222          assert(mask < (1 << ARRAY_SIZE(last_conditional_mod)));
1223 
1224          for (unsigned i = 0; i < ARRAY_SIZE(last_conditional_mod); i++) {
1225             if (mask & (1 << i))
1226                last_conditional_mod[i] = n;
1227          }
1228       }
1229 
1230       if (inst->writes_accumulator_implicitly(v->devinfo)) {
1231          last_accumulator_write = n;
1232       }
1233    }
1234 }
1235 
1236 static bool
is_scheduling_barrier(const vec4_instruction * inst)1237 is_scheduling_barrier(const vec4_instruction *inst)
1238 {
1239    return inst->is_control_flow() ||
1240           inst->has_side_effects();
1241 }
1242 
1243 void
calculate_deps()1244 vec4_instruction_scheduler::calculate_deps()
1245 {
1246    schedule_node *last_grf_write[grf_count];
1247    schedule_node *last_mrf_write[BRW_MAX_MRF(v->devinfo->gen)];
1248    schedule_node *last_conditional_mod = NULL;
1249    schedule_node *last_accumulator_write = NULL;
1250    /* Fixed HW registers are assumed to be separate from the virtual
1251     * GRFs, so they can be tracked separately.  We don't really write
1252     * to fixed GRFs much, so don't bother tracking them on a more
1253     * granular level.
1254     */
1255    schedule_node *last_fixed_grf_write = NULL;
1256 
1257    memset(last_grf_write, 0, sizeof(last_grf_write));
1258    memset(last_mrf_write, 0, sizeof(last_mrf_write));
1259 
1260    /* top-to-bottom dependencies: RAW and WAW. */
1261    foreach_in_list(schedule_node, n, &instructions) {
1262       vec4_instruction *inst = (vec4_instruction *)n->inst;
1263 
1264       if (is_scheduling_barrier(inst))
1265          add_barrier_deps(n);
1266 
1267       /* read-after-write deps. */
1268       for (int i = 0; i < 3; i++) {
1269          if (inst->src[i].file == VGRF) {
1270             for (unsigned j = 0; j < regs_read(inst, i); ++j)
1271                add_dep(last_grf_write[inst->src[i].nr + j], n);
1272          } else if (inst->src[i].file == FIXED_GRF) {
1273             add_dep(last_fixed_grf_write, n);
1274          } else if (inst->src[i].is_accumulator()) {
1275             assert(last_accumulator_write);
1276             add_dep(last_accumulator_write, n);
1277          } else if (inst->src[i].file == ARF) {
1278             add_barrier_deps(n);
1279          }
1280       }
1281 
1282       if (!inst->is_send_from_grf()) {
1283          for (int i = 0; i < inst->mlen; i++) {
1284             /* It looks like the MRF regs are released in the send
1285              * instruction once it's sent, not when the result comes
1286              * back.
1287              */
1288             add_dep(last_mrf_write[inst->base_mrf + i], n);
1289          }
1290       }
1291 
1292       if (inst->reads_flag()) {
1293          assert(last_conditional_mod);
1294          add_dep(last_conditional_mod, n);
1295       }
1296 
1297       if (inst->reads_accumulator_implicitly()) {
1298          assert(last_accumulator_write);
1299          add_dep(last_accumulator_write, n);
1300       }
1301 
1302       /* write-after-write deps. */
1303       if (inst->dst.file == VGRF) {
1304          for (unsigned j = 0; j < regs_written(inst); ++j) {
1305             add_dep(last_grf_write[inst->dst.nr + j], n);
1306             last_grf_write[inst->dst.nr + j] = n;
1307          }
1308       } else if (inst->dst.file == MRF) {
1309          add_dep(last_mrf_write[inst->dst.nr], n);
1310          last_mrf_write[inst->dst.nr] = n;
1311      } else if (inst->dst.file == FIXED_GRF) {
1312          last_fixed_grf_write = n;
1313       } else if (inst->dst.is_accumulator()) {
1314          add_dep(last_accumulator_write, n);
1315          last_accumulator_write = n;
1316       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1317          add_barrier_deps(n);
1318       }
1319 
1320       if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1321          for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1322             add_dep(last_mrf_write[inst->base_mrf + i], n);
1323             last_mrf_write[inst->base_mrf + i] = n;
1324          }
1325       }
1326 
1327       if (inst->writes_flag()) {
1328          add_dep(last_conditional_mod, n, 0);
1329          last_conditional_mod = n;
1330       }
1331 
1332       if (inst->writes_accumulator_implicitly(v->devinfo) &&
1333           !inst->dst.is_accumulator()) {
1334          add_dep(last_accumulator_write, n);
1335          last_accumulator_write = n;
1336       }
1337    }
1338 
1339    /* bottom-to-top dependencies: WAR */
1340    memset(last_grf_write, 0, sizeof(last_grf_write));
1341    memset(last_mrf_write, 0, sizeof(last_mrf_write));
1342    last_conditional_mod = NULL;
1343    last_accumulator_write = NULL;
1344    last_fixed_grf_write = NULL;
1345 
1346    foreach_in_list_reverse_safe(schedule_node, n, &instructions) {
1347       vec4_instruction *inst = (vec4_instruction *)n->inst;
1348 
1349       /* write-after-read deps. */
1350       for (int i = 0; i < 3; i++) {
1351          if (inst->src[i].file == VGRF) {
1352             for (unsigned j = 0; j < regs_read(inst, i); ++j)
1353                add_dep(n, last_grf_write[inst->src[i].nr + j]);
1354          } else if (inst->src[i].file == FIXED_GRF) {
1355             add_dep(n, last_fixed_grf_write);
1356          } else if (inst->src[i].is_accumulator()) {
1357             add_dep(n, last_accumulator_write);
1358          } else if (inst->src[i].file == ARF) {
1359             add_barrier_deps(n);
1360          }
1361       }
1362 
1363       if (!inst->is_send_from_grf()) {
1364          for (int i = 0; i < inst->mlen; i++) {
1365             /* It looks like the MRF regs are released in the send
1366              * instruction once it's sent, not when the result comes
1367              * back.
1368              */
1369             add_dep(n, last_mrf_write[inst->base_mrf + i], 2);
1370          }
1371       }
1372 
1373       if (inst->reads_flag()) {
1374          add_dep(n, last_conditional_mod);
1375       }
1376 
1377       if (inst->reads_accumulator_implicitly()) {
1378          add_dep(n, last_accumulator_write);
1379       }
1380 
1381       /* Update the things this instruction wrote, so earlier reads
1382        * can mark this as WAR dependency.
1383        */
1384       if (inst->dst.file == VGRF) {
1385          for (unsigned j = 0; j < regs_written(inst); ++j)
1386             last_grf_write[inst->dst.nr + j] = n;
1387       } else if (inst->dst.file == MRF) {
1388          last_mrf_write[inst->dst.nr] = n;
1389       } else if (inst->dst.file == FIXED_GRF) {
1390          last_fixed_grf_write = n;
1391       } else if (inst->dst.is_accumulator()) {
1392          last_accumulator_write = n;
1393       } else if (inst->dst.file == ARF && !inst->dst.is_null()) {
1394          add_barrier_deps(n);
1395       }
1396 
1397       if (inst->mlen > 0 && !inst->is_send_from_grf()) {
1398          for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
1399             last_mrf_write[inst->base_mrf + i] = n;
1400          }
1401       }
1402 
1403       if (inst->writes_flag()) {
1404          last_conditional_mod = n;
1405       }
1406 
1407       if (inst->writes_accumulator_implicitly(v->devinfo)) {
1408          last_accumulator_write = n;
1409       }
1410    }
1411 }
1412 
1413 schedule_node *
choose_instruction_to_schedule()1414 fs_instruction_scheduler::choose_instruction_to_schedule()
1415 {
1416    schedule_node *chosen = NULL;
1417 
1418    if (mode == SCHEDULE_PRE || mode == SCHEDULE_POST) {
1419       int chosen_time = 0;
1420 
1421       /* Of the instructions ready to execute or the closest to being ready,
1422        * choose the one most likely to unblock an early program exit, or
1423        * otherwise the oldest one.
1424        */
1425       foreach_in_list(schedule_node, n, &instructions) {
1426          if (!chosen ||
1427              exit_unblocked_time(n) < exit_unblocked_time(chosen) ||
1428              (exit_unblocked_time(n) == exit_unblocked_time(chosen) &&
1429               n->unblocked_time < chosen_time)) {
1430             chosen = n;
1431             chosen_time = n->unblocked_time;
1432          }
1433       }
1434    } else {
1435       /* Before register allocation, we don't care about the latencies of
1436        * instructions.  All we care about is reducing live intervals of
1437        * variables so that we can avoid register spilling, or get SIMD16
1438        * shaders which naturally do a better job of hiding instruction
1439        * latency.
1440        */
1441       foreach_in_list(schedule_node, n, &instructions) {
1442          fs_inst *inst = (fs_inst *)n->inst;
1443 
1444          if (!chosen) {
1445             chosen = n;
1446             continue;
1447          }
1448 
1449          /* Most important: If we can definitely reduce register pressure, do
1450           * so immediately.
1451           */
1452          int register_pressure_benefit = get_register_pressure_benefit(n->inst);
1453          int chosen_register_pressure_benefit =
1454             get_register_pressure_benefit(chosen->inst);
1455 
1456          if (register_pressure_benefit > 0 &&
1457              register_pressure_benefit > chosen_register_pressure_benefit) {
1458             chosen = n;
1459             continue;
1460          } else if (chosen_register_pressure_benefit > 0 &&
1461                     (register_pressure_benefit <
1462                      chosen_register_pressure_benefit)) {
1463             continue;
1464          }
1465 
1466          if (mode == SCHEDULE_PRE_LIFO) {
1467             /* Prefer instructions that recently became available for
1468              * scheduling.  These are the things that are most likely to
1469              * (eventually) make a variable dead and reduce register pressure.
1470              * Typical register pressure estimates don't work for us because
1471              * most of our pressure comes from texturing, where no single
1472              * instruction to schedule will make a vec4 value dead.
1473              */
1474             if (n->cand_generation > chosen->cand_generation) {
1475                chosen = n;
1476                continue;
1477             } else if (n->cand_generation < chosen->cand_generation) {
1478                continue;
1479             }
1480 
1481             /* On MRF-using chips, prefer non-SEND instructions.  If we don't
1482              * do this, then because we prefer instructions that just became
1483              * candidates, we'll end up in a pattern of scheduling a SEND,
1484              * then the MRFs for the next SEND, then the next SEND, then the
1485              * MRFs, etc., without ever consuming the results of a send.
1486              */
1487             if (v->devinfo->gen < 7) {
1488                fs_inst *chosen_inst = (fs_inst *)chosen->inst;
1489 
1490                /* We use size_written > 4 * exec_size as our test for the kind
1491                 * of send instruction to avoid -- only sends generate many
1492                 * regs, and a single-result send is probably actually reducing
1493                 * register pressure.
1494                 */
1495                if (inst->size_written <= 4 * inst->exec_size &&
1496                    chosen_inst->size_written > 4 * chosen_inst->exec_size) {
1497                   chosen = n;
1498                   continue;
1499                } else if (inst->size_written > chosen_inst->size_written) {
1500                   continue;
1501                }
1502             }
1503          }
1504 
1505          /* For instructions pushed on the cands list at the same time, prefer
1506           * the one with the highest delay to the end of the program.  This is
1507           * most likely to have its values able to be consumed first (such as
1508           * for a large tree of lowered ubo loads, which appear reversed in
1509           * the instruction stream with respect to when they can be consumed).
1510           */
1511          if (n->delay > chosen->delay) {
1512             chosen = n;
1513             continue;
1514          } else if (n->delay < chosen->delay) {
1515             continue;
1516          }
1517 
1518          /* Prefer the node most likely to unblock an early program exit.
1519           */
1520          if (exit_unblocked_time(n) < exit_unblocked_time(chosen)) {
1521             chosen = n;
1522             continue;
1523          } else if (exit_unblocked_time(n) > exit_unblocked_time(chosen)) {
1524             continue;
1525          }
1526 
1527          /* If all other metrics are equal, we prefer the first instruction in
1528           * the list (program execution).
1529           */
1530       }
1531    }
1532 
1533    return chosen;
1534 }
1535 
1536 schedule_node *
choose_instruction_to_schedule()1537 vec4_instruction_scheduler::choose_instruction_to_schedule()
1538 {
1539    schedule_node *chosen = NULL;
1540    int chosen_time = 0;
1541 
1542    /* Of the instructions ready to execute or the closest to being ready,
1543     * choose the oldest one.
1544     */
1545    foreach_in_list(schedule_node, n, &instructions) {
1546       if (!chosen || n->unblocked_time < chosen_time) {
1547          chosen = n;
1548          chosen_time = n->unblocked_time;
1549       }
1550    }
1551 
1552    return chosen;
1553 }
1554 
1555 int
issue_time(backend_instruction * inst)1556 fs_instruction_scheduler::issue_time(backend_instruction *inst)
1557 {
1558    if (is_compressed((fs_inst *)inst))
1559       return 4;
1560    else
1561       return 2;
1562 }
1563 
1564 int
issue_time(backend_instruction * inst)1565 vec4_instruction_scheduler::issue_time(backend_instruction *inst)
1566 {
1567    /* We always execute as two vec4s in parallel. */
1568    return 2;
1569 }
1570 
1571 void
schedule_instructions(bblock_t * block)1572 instruction_scheduler::schedule_instructions(bblock_t *block)
1573 {
1574    const struct gen_device_info *devinfo = bs->devinfo;
1575    int time = 0;
1576    if (!post_reg_alloc)
1577       reg_pressure = reg_pressure_in[block->num];
1578    block_idx = block->num;
1579 
1580    /* Remove non-DAG heads from the list. */
1581    foreach_in_list_safe(schedule_node, n, &instructions) {
1582       if (n->parent_count != 0)
1583          n->remove();
1584    }
1585 
1586    unsigned cand_generation = 1;
1587    while (!instructions.is_empty()) {
1588       schedule_node *chosen = choose_instruction_to_schedule();
1589 
1590       /* Schedule this instruction. */
1591       assert(chosen);
1592       chosen->remove();
1593       chosen->inst->exec_node::remove();
1594       block->instructions.push_tail(chosen->inst);
1595       instructions_to_schedule--;
1596 
1597       if (!post_reg_alloc) {
1598          reg_pressure -= get_register_pressure_benefit(chosen->inst);
1599          update_register_pressure(chosen->inst);
1600       }
1601 
1602       /* If we expected a delay for scheduling, then bump the clock to reflect
1603        * that.  In reality, the hardware will switch to another hyperthread
1604        * and may not return to dispatching our thread for a while even after
1605        * we're unblocked.  After this, we have the time when the chosen
1606        * instruction will start executing.
1607        */
1608       time = MAX2(time, chosen->unblocked_time);
1609 
1610       /* Update the clock for how soon an instruction could start after the
1611        * chosen one.
1612        */
1613       time += issue_time(chosen->inst);
1614 
1615       if (debug) {
1616          fprintf(stderr, "clock %4d, scheduled: ", time);
1617          bs->dump_instruction(chosen->inst);
1618          if (!post_reg_alloc)
1619             fprintf(stderr, "(register pressure %d)\n", reg_pressure);
1620       }
1621 
1622       /* Now that we've scheduled a new instruction, some of its
1623        * children can be promoted to the list of instructions ready to
1624        * be scheduled.  Update the children's unblocked time for this
1625        * DAG edge as we do so.
1626        */
1627       for (int i = chosen->child_count - 1; i >= 0; i--) {
1628          schedule_node *child = chosen->children[i];
1629 
1630          child->unblocked_time = MAX2(child->unblocked_time,
1631                                       time + chosen->child_latency[i]);
1632 
1633          if (debug) {
1634             fprintf(stderr, "\tchild %d, %d parents: ", i, child->parent_count);
1635             bs->dump_instruction(child->inst);
1636          }
1637 
1638          child->cand_generation = cand_generation;
1639          child->parent_count--;
1640          if (child->parent_count == 0) {
1641             if (debug) {
1642                fprintf(stderr, "\t\tnow available\n");
1643             }
1644             instructions.push_head(child);
1645          }
1646       }
1647       cand_generation++;
1648 
1649       /* Shared resource: the mathbox.  There's one mathbox per EU on Gen6+
1650        * but it's more limited pre-gen6, so if we send something off to it then
1651        * the next math instruction isn't going to make progress until the first
1652        * is done.
1653        */
1654       if (devinfo->gen < 6 && chosen->inst->is_math()) {
1655          foreach_in_list(schedule_node, n, &instructions) {
1656             if (n->inst->is_math())
1657                n->unblocked_time = MAX2(n->unblocked_time,
1658                                         time + chosen->latency);
1659          }
1660       }
1661    }
1662 
1663    assert(instructions_to_schedule == 0);
1664 
1665    block->cycle_count = time;
1666 }
1667 
get_cycle_count(cfg_t * cfg)1668 static unsigned get_cycle_count(cfg_t *cfg)
1669 {
1670    unsigned count = 0, multiplier = 1;
1671    foreach_block(block, cfg) {
1672       if (block->start()->opcode == BRW_OPCODE_DO)
1673          multiplier *= 10; /* assume that loops execute ~10 times */
1674 
1675       count += block->cycle_count * multiplier;
1676 
1677       if (block->end()->opcode == BRW_OPCODE_WHILE)
1678          multiplier /= 10;
1679    }
1680 
1681    return count;
1682 }
1683 
1684 void
run(cfg_t * cfg)1685 instruction_scheduler::run(cfg_t *cfg)
1686 {
1687    if (debug && !post_reg_alloc) {
1688       fprintf(stderr, "\nInstructions before scheduling (reg_alloc %d)\n",
1689               post_reg_alloc);
1690          bs->dump_instructions();
1691    }
1692 
1693    if (!post_reg_alloc)
1694       setup_liveness(cfg);
1695 
1696    foreach_block(block, cfg) {
1697       if (reads_remaining) {
1698          memset(reads_remaining, 0,
1699                 grf_count * sizeof(*reads_remaining));
1700          memset(hw_reads_remaining, 0,
1701                 hw_reg_count * sizeof(*hw_reads_remaining));
1702          memset(written, 0, grf_count * sizeof(*written));
1703 
1704          foreach_inst_in_block(fs_inst, inst, block)
1705             count_reads_remaining(inst);
1706       }
1707 
1708       add_insts_from_block(block);
1709 
1710       calculate_deps();
1711 
1712       compute_delays();
1713       compute_exits();
1714 
1715       schedule_instructions(block);
1716    }
1717 
1718    if (debug && !post_reg_alloc) {
1719       fprintf(stderr, "\nInstructions after scheduling (reg_alloc %d)\n",
1720               post_reg_alloc);
1721       bs->dump_instructions();
1722    }
1723 
1724    cfg->cycle_count = get_cycle_count(cfg);
1725 }
1726 
1727 void
schedule_instructions(instruction_scheduler_mode mode)1728 fs_visitor::schedule_instructions(instruction_scheduler_mode mode)
1729 {
1730    if (mode != SCHEDULE_POST)
1731       calculate_live_intervals();
1732 
1733    int grf_count;
1734    if (mode == SCHEDULE_POST)
1735       grf_count = grf_used;
1736    else
1737       grf_count = alloc.count;
1738 
1739    fs_instruction_scheduler sched(this, grf_count, first_non_payload_grf,
1740                                   cfg->num_blocks, mode);
1741    sched.run(cfg);
1742 
1743    invalidate_live_intervals();
1744 }
1745 
1746 void
opt_schedule_instructions()1747 vec4_visitor::opt_schedule_instructions()
1748 {
1749    vec4_instruction_scheduler sched(this, prog_data->total_grf);
1750    sched.run(cfg);
1751 
1752    invalidate_live_intervals();
1753 }
1754