• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1
2"""
3csv.py - read/write/investigate CSV files
4"""
5
6import re
7from _csv import Error, __version__, writer, reader, register_dialect, \
8                 unregister_dialect, get_dialect, list_dialects, \
9                 field_size_limit, \
10                 QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \
11                 __doc__
12from _csv import Dialect as _Dialect
13
14from collections import OrderedDict
15from io import StringIO
16
17__all__ = ["QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE",
18           "Error", "Dialect", "__doc__", "excel", "excel_tab",
19           "field_size_limit", "reader", "writer",
20           "register_dialect", "get_dialect", "list_dialects", "Sniffer",
21           "unregister_dialect", "__version__", "DictReader", "DictWriter",
22           "unix_dialect"]
23
24class Dialect:
25    """Describe a CSV dialect.
26
27    This must be subclassed (see csv.excel).  Valid attributes are:
28    delimiter, quotechar, escapechar, doublequote, skipinitialspace,
29    lineterminator, quoting.
30
31    """
32    _name = ""
33    _valid = False
34    # placeholders
35    delimiter = None
36    quotechar = None
37    escapechar = None
38    doublequote = None
39    skipinitialspace = None
40    lineterminator = None
41    quoting = None
42
43    def __init__(self):
44        if self.__class__ != Dialect:
45            self._valid = True
46        self._validate()
47
48    def _validate(self):
49        try:
50            _Dialect(self)
51        except TypeError as e:
52            # We do this for compatibility with py2.3
53            raise Error(str(e))
54
55class excel(Dialect):
56    """Describe the usual properties of Excel-generated CSV files."""
57    delimiter = ','
58    quotechar = '"'
59    doublequote = True
60    skipinitialspace = False
61    lineterminator = '\r\n'
62    quoting = QUOTE_MINIMAL
63register_dialect("excel", excel)
64
65class excel_tab(excel):
66    """Describe the usual properties of Excel-generated TAB-delimited files."""
67    delimiter = '\t'
68register_dialect("excel-tab", excel_tab)
69
70class unix_dialect(Dialect):
71    """Describe the usual properties of Unix-generated CSV files."""
72    delimiter = ','
73    quotechar = '"'
74    doublequote = True
75    skipinitialspace = False
76    lineterminator = '\n'
77    quoting = QUOTE_ALL
78register_dialect("unix", unix_dialect)
79
80
81class DictReader:
82    def __init__(self, f, fieldnames=None, restkey=None, restval=None,
83                 dialect="excel", *args, **kwds):
84        self._fieldnames = fieldnames   # list of keys for the dict
85        self.restkey = restkey          # key to catch long rows
86        self.restval = restval          # default value for short rows
87        self.reader = reader(f, dialect, *args, **kwds)
88        self.dialect = dialect
89        self.line_num = 0
90
91    def __iter__(self):
92        return self
93
94    @property
95    def fieldnames(self):
96        if self._fieldnames is None:
97            try:
98                self._fieldnames = next(self.reader)
99            except StopIteration:
100                pass
101        self.line_num = self.reader.line_num
102        return self._fieldnames
103
104    @fieldnames.setter
105    def fieldnames(self, value):
106        self._fieldnames = value
107
108    def __next__(self):
109        if self.line_num == 0:
110            # Used only for its side effect.
111            self.fieldnames
112        row = next(self.reader)
113        self.line_num = self.reader.line_num
114
115        # unlike the basic reader, we prefer not to return blanks,
116        # because we will typically wind up with a dict full of None
117        # values
118        while row == []:
119            row = next(self.reader)
120        d = OrderedDict(zip(self.fieldnames, row))
121        lf = len(self.fieldnames)
122        lr = len(row)
123        if lf < lr:
124            d[self.restkey] = row[lf:]
125        elif lf > lr:
126            for key in self.fieldnames[lr:]:
127                d[key] = self.restval
128        return d
129
130
131class DictWriter:
132    def __init__(self, f, fieldnames, restval="", extrasaction="raise",
133                 dialect="excel", *args, **kwds):
134        self.fieldnames = fieldnames    # list of keys for the dict
135        self.restval = restval          # for writing short dicts
136        if extrasaction.lower() not in ("raise", "ignore"):
137            raise ValueError("extrasaction (%s) must be 'raise' or 'ignore'"
138                             % extrasaction)
139        self.extrasaction = extrasaction
140        self.writer = writer(f, dialect, *args, **kwds)
141
142    def writeheader(self):
143        header = dict(zip(self.fieldnames, self.fieldnames))
144        self.writerow(header)
145
146    def _dict_to_list(self, rowdict):
147        if self.extrasaction == "raise":
148            wrong_fields = rowdict.keys() - self.fieldnames
149            if wrong_fields:
150                raise ValueError("dict contains fields not in fieldnames: "
151                                 + ", ".join([repr(x) for x in wrong_fields]))
152        return (rowdict.get(key, self.restval) for key in self.fieldnames)
153
154    def writerow(self, rowdict):
155        return self.writer.writerow(self._dict_to_list(rowdict))
156
157    def writerows(self, rowdicts):
158        return self.writer.writerows(map(self._dict_to_list, rowdicts))
159
160# Guard Sniffer's type checking against builds that exclude complex()
161try:
162    complex
163except NameError:
164    complex = float
165
166class Sniffer:
167    '''
168    "Sniffs" the format of a CSV file (i.e. delimiter, quotechar)
169    Returns a Dialect object.
170    '''
171    def __init__(self):
172        # in case there is more than one possible delimiter
173        self.preferred = [',', '\t', ';', ' ', ':']
174
175
176    def sniff(self, sample, delimiters=None):
177        """
178        Returns a dialect (or None) corresponding to the sample
179        """
180
181        quotechar, doublequote, delimiter, skipinitialspace = \
182                   self._guess_quote_and_delimiter(sample, delimiters)
183        if not delimiter:
184            delimiter, skipinitialspace = self._guess_delimiter(sample,
185                                                                delimiters)
186
187        if not delimiter:
188            raise Error("Could not determine delimiter")
189
190        class dialect(Dialect):
191            _name = "sniffed"
192            lineterminator = '\r\n'
193            quoting = QUOTE_MINIMAL
194            # escapechar = ''
195
196        dialect.doublequote = doublequote
197        dialect.delimiter = delimiter
198        # _csv.reader won't accept a quotechar of ''
199        dialect.quotechar = quotechar or '"'
200        dialect.skipinitialspace = skipinitialspace
201
202        return dialect
203
204
205    def _guess_quote_and_delimiter(self, data, delimiters):
206        """
207        Looks for text enclosed between two identical quotes
208        (the probable quotechar) which are preceded and followed
209        by the same character (the probable delimiter).
210        For example:
211                         ,'some text',
212        The quote with the most wins, same with the delimiter.
213        If there is no quotechar the delimiter can't be determined
214        this way.
215        """
216
217        matches = []
218        for restr in (r'(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?",
219                      r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)',   #  ".*?",
220                      r'(?P<delim>>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)',  # ,".*?"
221                      r'(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'):                            #  ".*?" (no delim, no space)
222            regexp = re.compile(restr, re.DOTALL | re.MULTILINE)
223            matches = regexp.findall(data)
224            if matches:
225                break
226
227        if not matches:
228            # (quotechar, doublequote, delimiter, skipinitialspace)
229            return ('', False, None, 0)
230        quotes = {}
231        delims = {}
232        spaces = 0
233        groupindex = regexp.groupindex
234        for m in matches:
235            n = groupindex['quote'] - 1
236            key = m[n]
237            if key:
238                quotes[key] = quotes.get(key, 0) + 1
239            try:
240                n = groupindex['delim'] - 1
241                key = m[n]
242            except KeyError:
243                continue
244            if key and (delimiters is None or key in delimiters):
245                delims[key] = delims.get(key, 0) + 1
246            try:
247                n = groupindex['space'] - 1
248            except KeyError:
249                continue
250            if m[n]:
251                spaces += 1
252
253        quotechar = max(quotes, key=quotes.get)
254
255        if delims:
256            delim = max(delims, key=delims.get)
257            skipinitialspace = delims[delim] == spaces
258            if delim == '\n': # most likely a file with a single column
259                delim = ''
260        else:
261            # there is *no* delimiter, it's a single column of quoted data
262            delim = ''
263            skipinitialspace = 0
264
265        # if we see an extra quote between delimiters, we've got a
266        # double quoted format
267        dq_regexp = re.compile(
268                               r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % \
269                               {'delim':re.escape(delim), 'quote':quotechar}, re.MULTILINE)
270
271
272
273        if dq_regexp.search(data):
274            doublequote = True
275        else:
276            doublequote = False
277
278        return (quotechar, doublequote, delim, skipinitialspace)
279
280
281    def _guess_delimiter(self, data, delimiters):
282        """
283        The delimiter /should/ occur the same number of times on
284        each row. However, due to malformed data, it may not. We don't want
285        an all or nothing approach, so we allow for small variations in this
286        number.
287          1) build a table of the frequency of each character on every line.
288          2) build a table of frequencies of this frequency (meta-frequency?),
289             e.g.  'x occurred 5 times in 10 rows, 6 times in 1000 rows,
290             7 times in 2 rows'
291          3) use the mode of the meta-frequency to determine the /expected/
292             frequency for that character
293          4) find out how often the character actually meets that goal
294          5) the character that best meets its goal is the delimiter
295        For performance reasons, the data is evaluated in chunks, so it can
296        try and evaluate the smallest portion of the data possible, evaluating
297        additional chunks as necessary.
298        """
299
300        data = list(filter(None, data.split('\n')))
301
302        ascii = [chr(c) for c in range(127)] # 7-bit ASCII
303
304        # build frequency tables
305        chunkLength = min(10, len(data))
306        iteration = 0
307        charFrequency = {}
308        modes = {}
309        delims = {}
310        start, end = 0, min(chunkLength, len(data))
311        while start < len(data):
312            iteration += 1
313            for line in data[start:end]:
314                for char in ascii:
315                    metaFrequency = charFrequency.get(char, {})
316                    # must count even if frequency is 0
317                    freq = line.count(char)
318                    # value is the mode
319                    metaFrequency[freq] = metaFrequency.get(freq, 0) + 1
320                    charFrequency[char] = metaFrequency
321
322            for char in charFrequency.keys():
323                items = list(charFrequency[char].items())
324                if len(items) == 1 and items[0][0] == 0:
325                    continue
326                # get the mode of the frequencies
327                if len(items) > 1:
328                    modes[char] = max(items, key=lambda x: x[1])
329                    # adjust the mode - subtract the sum of all
330                    # other frequencies
331                    items.remove(modes[char])
332                    modes[char] = (modes[char][0], modes[char][1]
333                                   - sum(item[1] for item in items))
334                else:
335                    modes[char] = items[0]
336
337            # build a list of possible delimiters
338            modeList = modes.items()
339            total = float(chunkLength * iteration)
340            # (rows of consistent data) / (number of rows) = 100%
341            consistency = 1.0
342            # minimum consistency threshold
343            threshold = 0.9
344            while len(delims) == 0 and consistency >= threshold:
345                for k, v in modeList:
346                    if v[0] > 0 and v[1] > 0:
347                        if ((v[1]/total) >= consistency and
348                            (delimiters is None or k in delimiters)):
349                            delims[k] = v
350                consistency -= 0.01
351
352            if len(delims) == 1:
353                delim = list(delims.keys())[0]
354                skipinitialspace = (data[0].count(delim) ==
355                                    data[0].count("%c " % delim))
356                return (delim, skipinitialspace)
357
358            # analyze another chunkLength lines
359            start = end
360            end += chunkLength
361
362        if not delims:
363            return ('', 0)
364
365        # if there's more than one, fall back to a 'preferred' list
366        if len(delims) > 1:
367            for d in self.preferred:
368                if d in delims.keys():
369                    skipinitialspace = (data[0].count(d) ==
370                                        data[0].count("%c " % d))
371                    return (d, skipinitialspace)
372
373        # nothing else indicates a preference, pick the character that
374        # dominates(?)
375        items = [(v,k) for (k,v) in delims.items()]
376        items.sort()
377        delim = items[-1][1]
378
379        skipinitialspace = (data[0].count(delim) ==
380                            data[0].count("%c " % delim))
381        return (delim, skipinitialspace)
382
383
384    def has_header(self, sample):
385        # Creates a dictionary of types of data in each column. If any
386        # column is of a single type (say, integers), *except* for the first
387        # row, then the first row is presumed to be labels. If the type
388        # can't be determined, it is assumed to be a string in which case
389        # the length of the string is the determining factor: if all of the
390        # rows except for the first are the same length, it's a header.
391        # Finally, a 'vote' is taken at the end for each column, adding or
392        # subtracting from the likelihood of the first row being a header.
393
394        rdr = reader(StringIO(sample), self.sniff(sample))
395
396        header = next(rdr) # assume first row is header
397
398        columns = len(header)
399        columnTypes = {}
400        for i in range(columns): columnTypes[i] = None
401
402        checked = 0
403        for row in rdr:
404            # arbitrary number of rows to check, to keep it sane
405            if checked > 20:
406                break
407            checked += 1
408
409            if len(row) != columns:
410                continue # skip rows that have irregular number of columns
411
412            for col in list(columnTypes.keys()):
413
414                for thisType in [int, float, complex]:
415                    try:
416                        thisType(row[col])
417                        break
418                    except (ValueError, OverflowError):
419                        pass
420                else:
421                    # fallback to length of string
422                    thisType = len(row[col])
423
424                if thisType != columnTypes[col]:
425                    if columnTypes[col] is None: # add new column type
426                        columnTypes[col] = thisType
427                    else:
428                        # type is inconsistent, remove column from
429                        # consideration
430                        del columnTypes[col]
431
432        # finally, compare results against first row and "vote"
433        # on whether it's a header
434        hasHeader = 0
435        for col, colType in columnTypes.items():
436            if type(colType) == type(0): # it's a length
437                if len(header[col]) != colType:
438                    hasHeader += 1
439                else:
440                    hasHeader -= 1
441            else: # attempt typecast
442                try:
443                    colType(header[col])
444                except (ValueError, TypeError):
445                    hasHeader += 1
446                else:
447                    hasHeader -= 1
448
449        return hasHeader > 0
450