1 /*
2 * Copyright 2011 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "SkAAClip.h"
9 #include "SkAtomics.h"
10 #include "SkBlitter.h"
11 #include "SkColorData.h"
12 #include "SkRectPriv.h"
13 #include "SkPath.h"
14 #include "SkScan.h"
15 #include "SkUtils.h"
16
17 class AutoAAClipValidate {
18 public:
AutoAAClipValidate(const SkAAClip & clip)19 AutoAAClipValidate(const SkAAClip& clip) : fClip(clip) {
20 fClip.validate();
21 }
~AutoAAClipValidate()22 ~AutoAAClipValidate() {
23 fClip.validate();
24 }
25 private:
26 const SkAAClip& fClip;
27 };
28
29 #ifdef SK_DEBUG
30 #define AUTO_AACLIP_VALIDATE(clip) AutoAAClipValidate acv(clip)
31 #else
32 #define AUTO_AACLIP_VALIDATE(clip)
33 #endif
34
35 ///////////////////////////////////////////////////////////////////////////////
36
37 #define kMaxInt32 0x7FFFFFFF
38
39 #ifdef SK_DEBUG
x_in_rect(int x,const SkIRect & rect)40 static inline bool x_in_rect(int x, const SkIRect& rect) {
41 return (unsigned)(x - rect.fLeft) < (unsigned)rect.width();
42 }
43 #endif
44
y_in_rect(int y,const SkIRect & rect)45 static inline bool y_in_rect(int y, const SkIRect& rect) {
46 return (unsigned)(y - rect.fTop) < (unsigned)rect.height();
47 }
48
49 /*
50 * Data runs are packed [count, alpha]
51 */
52
53 struct SkAAClip::YOffset {
54 int32_t fY;
55 uint32_t fOffset;
56 };
57
58 struct SkAAClip::RunHead {
59 int32_t fRefCnt;
60 int32_t fRowCount;
61 size_t fDataSize;
62
yoffsetsSkAAClip::RunHead63 YOffset* yoffsets() {
64 return (YOffset*)((char*)this + sizeof(RunHead));
65 }
yoffsetsSkAAClip::RunHead66 const YOffset* yoffsets() const {
67 return (const YOffset*)((const char*)this + sizeof(RunHead));
68 }
dataSkAAClip::RunHead69 uint8_t* data() {
70 return (uint8_t*)(this->yoffsets() + fRowCount);
71 }
dataSkAAClip::RunHead72 const uint8_t* data() const {
73 return (const uint8_t*)(this->yoffsets() + fRowCount);
74 }
75
AllocSkAAClip::RunHead76 static RunHead* Alloc(int rowCount, size_t dataSize) {
77 size_t size = sizeof(RunHead) + rowCount * sizeof(YOffset) + dataSize;
78 RunHead* head = (RunHead*)sk_malloc_throw(size);
79 head->fRefCnt = 1;
80 head->fRowCount = rowCount;
81 head->fDataSize = dataSize;
82 return head;
83 }
84
ComputeRowSizeForWidthSkAAClip::RunHead85 static int ComputeRowSizeForWidth(int width) {
86 // 2 bytes per segment, where each segment can store up to 255 for count
87 int segments = 0;
88 while (width > 0) {
89 segments += 1;
90 int n = SkMin32(width, 255);
91 width -= n;
92 }
93 return segments * 2; // each segment is row[0] + row[1] (n + alpha)
94 }
95
AllocRectSkAAClip::RunHead96 static RunHead* AllocRect(const SkIRect& bounds) {
97 SkASSERT(!bounds.isEmpty());
98 int width = bounds.width();
99 size_t rowSize = ComputeRowSizeForWidth(width);
100 RunHead* head = RunHead::Alloc(1, rowSize);
101 YOffset* yoff = head->yoffsets();
102 yoff->fY = bounds.height() - 1;
103 yoff->fOffset = 0;
104 uint8_t* row = head->data();
105 while (width > 0) {
106 int n = SkMin32(width, 255);
107 row[0] = n;
108 row[1] = 0xFF;
109 width -= n;
110 row += 2;
111 }
112 return head;
113 }
114 };
115
116 class SkAAClip::Iter {
117 public:
118 Iter(const SkAAClip&);
119
done() const120 bool done() const { return fDone; }
top() const121 int top() const { return fTop; }
bottom() const122 int bottom() const { return fBottom; }
data() const123 const uint8_t* data() const { return fData; }
124 void next();
125
126 private:
127 const YOffset* fCurrYOff;
128 const YOffset* fStopYOff;
129 const uint8_t* fData;
130
131 int fTop, fBottom;
132 bool fDone;
133 };
134
Iter(const SkAAClip & clip)135 SkAAClip::Iter::Iter(const SkAAClip& clip) {
136 if (clip.isEmpty()) {
137 fDone = true;
138 fTop = fBottom = clip.fBounds.fBottom;
139 fData = nullptr;
140 fCurrYOff = nullptr;
141 fStopYOff = nullptr;
142 return;
143 }
144
145 const RunHead* head = clip.fRunHead;
146 fCurrYOff = head->yoffsets();
147 fStopYOff = fCurrYOff + head->fRowCount;
148 fData = head->data() + fCurrYOff->fOffset;
149
150 // setup first value
151 fTop = clip.fBounds.fTop;
152 fBottom = clip.fBounds.fTop + fCurrYOff->fY + 1;
153 fDone = false;
154 }
155
next()156 void SkAAClip::Iter::next() {
157 if (!fDone) {
158 const YOffset* prev = fCurrYOff;
159 const YOffset* curr = prev + 1;
160 SkASSERT(curr <= fStopYOff);
161
162 fTop = fBottom;
163 if (curr >= fStopYOff) {
164 fDone = true;
165 fBottom = kMaxInt32;
166 fData = nullptr;
167 } else {
168 fBottom += curr->fY - prev->fY;
169 fData += curr->fOffset - prev->fOffset;
170 fCurrYOff = curr;
171 }
172 }
173 }
174
175 #ifdef SK_DEBUG
176 // assert we're exactly width-wide, and then return the number of bytes used
compute_row_length(const uint8_t row[],int width)177 static size_t compute_row_length(const uint8_t row[], int width) {
178 const uint8_t* origRow = row;
179 while (width > 0) {
180 int n = row[0];
181 SkASSERT(n > 0);
182 SkASSERT(n <= width);
183 row += 2;
184 width -= n;
185 }
186 SkASSERT(0 == width);
187 return row - origRow;
188 }
189
validate() const190 void SkAAClip::validate() const {
191 if (nullptr == fRunHead) {
192 SkASSERT(fBounds.isEmpty());
193 return;
194 }
195 SkASSERT(!fBounds.isEmpty());
196
197 const RunHead* head = fRunHead;
198 SkASSERT(head->fRefCnt > 0);
199 SkASSERT(head->fRowCount > 0);
200
201 const YOffset* yoff = head->yoffsets();
202 const YOffset* ystop = yoff + head->fRowCount;
203 const int lastY = fBounds.height() - 1;
204
205 // Y and offset must be monotonic
206 int prevY = -1;
207 int32_t prevOffset = -1;
208 while (yoff < ystop) {
209 SkASSERT(prevY < yoff->fY);
210 SkASSERT(yoff->fY <= lastY);
211 prevY = yoff->fY;
212 SkASSERT(prevOffset < (int32_t)yoff->fOffset);
213 prevOffset = yoff->fOffset;
214 const uint8_t* row = head->data() + yoff->fOffset;
215 size_t rowLength = compute_row_length(row, fBounds.width());
216 SkASSERT(yoff->fOffset + rowLength <= head->fDataSize);
217 yoff += 1;
218 }
219 // check the last entry;
220 --yoff;
221 SkASSERT(yoff->fY == lastY);
222 }
223
dump_one_row(const uint8_t * SK_RESTRICT row,int width,int leading_num)224 static void dump_one_row(const uint8_t* SK_RESTRICT row,
225 int width, int leading_num) {
226 if (leading_num) {
227 SkDebugf( "%03d ", leading_num );
228 }
229 while (width > 0) {
230 int n = row[0];
231 int val = row[1];
232 char out = '.';
233 if (val == 0xff) {
234 out = '*';
235 } else if (val > 0) {
236 out = '+';
237 }
238 for (int i = 0 ; i < n ; i++) {
239 SkDebugf( "%c", out );
240 }
241 row += 2;
242 width -= n;
243 }
244 SkDebugf( "\n" );
245 }
246
debug(bool compress_y) const247 void SkAAClip::debug(bool compress_y) const {
248 Iter iter(*this);
249 const int width = fBounds.width();
250
251 int y = fBounds.fTop;
252 while (!iter.done()) {
253 if (compress_y) {
254 dump_one_row(iter.data(), width, iter.bottom() - iter.top() + 1);
255 } else {
256 do {
257 dump_one_row(iter.data(), width, 0);
258 } while (++y < iter.bottom());
259 }
260 iter.next();
261 }
262 }
263 #endif
264
265 ///////////////////////////////////////////////////////////////////////////////
266
267 // Count the number of zeros on the left and right edges of the passed in
268 // RLE row. If 'row' is all zeros return 'width' in both variables.
count_left_right_zeros(const uint8_t * row,int width,int * leftZ,int * riteZ)269 static void count_left_right_zeros(const uint8_t* row, int width,
270 int* leftZ, int* riteZ) {
271 int zeros = 0;
272 do {
273 if (row[1]) {
274 break;
275 }
276 int n = row[0];
277 SkASSERT(n > 0);
278 SkASSERT(n <= width);
279 zeros += n;
280 row += 2;
281 width -= n;
282 } while (width > 0);
283 *leftZ = zeros;
284
285 if (0 == width) {
286 // this line is completely empty return 'width' in both variables
287 *riteZ = *leftZ;
288 return;
289 }
290
291 zeros = 0;
292 while (width > 0) {
293 int n = row[0];
294 SkASSERT(n > 0);
295 if (0 == row[1]) {
296 zeros += n;
297 } else {
298 zeros = 0;
299 }
300 row += 2;
301 width -= n;
302 }
303 *riteZ = zeros;
304 }
305
306 #ifdef SK_DEBUG
test_count_left_right_zeros()307 static void test_count_left_right_zeros() {
308 static bool gOnce;
309 if (gOnce) {
310 return;
311 }
312 gOnce = true;
313
314 const uint8_t data0[] = { 0, 0, 10, 0xFF };
315 const uint8_t data1[] = { 0, 0, 5, 0xFF, 2, 0, 3, 0xFF };
316 const uint8_t data2[] = { 7, 0, 5, 0, 2, 0, 3, 0xFF };
317 const uint8_t data3[] = { 0, 5, 5, 0xFF, 2, 0, 3, 0 };
318 const uint8_t data4[] = { 2, 3, 2, 0, 5, 0xFF, 3, 0 };
319 const uint8_t data5[] = { 10, 10, 10, 0 };
320 const uint8_t data6[] = { 2, 2, 2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
321
322 const uint8_t* array[] = {
323 data0, data1, data2, data3, data4, data5, data6
324 };
325
326 for (size_t i = 0; i < SK_ARRAY_COUNT(array); ++i) {
327 const uint8_t* data = array[i];
328 const int expectedL = *data++;
329 const int expectedR = *data++;
330 int L = 12345, R = 12345;
331 count_left_right_zeros(data, 10, &L, &R);
332 SkASSERT(expectedL == L);
333 SkASSERT(expectedR == R);
334 }
335 }
336 #endif
337
338 // modify row in place, trimming off (zeros) from the left and right sides.
339 // return the number of bytes that were completely eliminated from the left
trim_row_left_right(uint8_t * row,int width,int leftZ,int riteZ)340 static int trim_row_left_right(uint8_t* row, int width, int leftZ, int riteZ) {
341 int trim = 0;
342 while (leftZ > 0) {
343 SkASSERT(0 == row[1]);
344 int n = row[0];
345 SkASSERT(n > 0);
346 SkASSERT(n <= width);
347 width -= n;
348 row += 2;
349 if (n > leftZ) {
350 row[-2] = n - leftZ;
351 break;
352 }
353 trim += 2;
354 leftZ -= n;
355 SkASSERT(leftZ >= 0);
356 }
357
358 if (riteZ) {
359 // walk row to the end, and then we'll back up to trim riteZ
360 while (width > 0) {
361 int n = row[0];
362 SkASSERT(n <= width);
363 width -= n;
364 row += 2;
365 }
366 // now skip whole runs of zeros
367 do {
368 row -= 2;
369 SkASSERT(0 == row[1]);
370 int n = row[0];
371 SkASSERT(n > 0);
372 if (n > riteZ) {
373 row[0] = n - riteZ;
374 break;
375 }
376 riteZ -= n;
377 SkASSERT(riteZ >= 0);
378 } while (riteZ > 0);
379 }
380
381 return trim;
382 }
383
384 #ifdef SK_DEBUG
385 // assert that this row is exactly this width
assert_row_width(const uint8_t * row,int width)386 static void assert_row_width(const uint8_t* row, int width) {
387 while (width > 0) {
388 int n = row[0];
389 SkASSERT(n > 0);
390 SkASSERT(n <= width);
391 width -= n;
392 row += 2;
393 }
394 SkASSERT(0 == width);
395 }
396
test_trim_row_left_right()397 static void test_trim_row_left_right() {
398 static bool gOnce;
399 if (gOnce) {
400 return;
401 }
402 gOnce = true;
403
404 uint8_t data0[] = { 0, 0, 0, 10, 10, 0xFF };
405 uint8_t data1[] = { 2, 0, 0, 10, 5, 0, 2, 0, 3, 0xFF };
406 uint8_t data2[] = { 5, 0, 2, 10, 5, 0, 2, 0, 3, 0xFF };
407 uint8_t data3[] = { 6, 0, 2, 10, 5, 0, 2, 0, 3, 0xFF };
408 uint8_t data4[] = { 0, 0, 0, 10, 2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
409 uint8_t data5[] = { 1, 0, 0, 10, 2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
410 uint8_t data6[] = { 0, 1, 0, 10, 2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
411 uint8_t data7[] = { 1, 1, 0, 10, 2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
412 uint8_t data8[] = { 2, 2, 2, 10, 2, 0, 2, 0xFF, 2, 0, 2, 0xFF, 2, 0 };
413 uint8_t data9[] = { 5, 2, 4, 10, 2, 0, 2, 0, 2, 0, 2, 0xFF, 2, 0 };
414 uint8_t data10[] ={ 74, 0, 4, 150, 9, 0, 65, 0, 76, 0xFF };
415
416 uint8_t* array[] = {
417 data0, data1, data2, data3, data4,
418 data5, data6, data7, data8, data9,
419 data10
420 };
421
422 for (size_t i = 0; i < SK_ARRAY_COUNT(array); ++i) {
423 uint8_t* data = array[i];
424 const int trimL = *data++;
425 const int trimR = *data++;
426 const int expectedSkip = *data++;
427 const int origWidth = *data++;
428 assert_row_width(data, origWidth);
429 int skip = trim_row_left_right(data, origWidth, trimL, trimR);
430 SkASSERT(expectedSkip == skip);
431 int expectedWidth = origWidth - trimL - trimR;
432 assert_row_width(data + skip, expectedWidth);
433 }
434 }
435 #endif
436
trimLeftRight()437 bool SkAAClip::trimLeftRight() {
438 SkDEBUGCODE(test_trim_row_left_right();)
439
440 if (this->isEmpty()) {
441 return false;
442 }
443
444 AUTO_AACLIP_VALIDATE(*this);
445
446 const int width = fBounds.width();
447 RunHead* head = fRunHead;
448 YOffset* yoff = head->yoffsets();
449 YOffset* stop = yoff + head->fRowCount;
450 uint8_t* base = head->data();
451
452 // After this loop, 'leftZeros' & 'rightZeros' will contain the minimum
453 // number of zeros on the left and right of the clip. This information
454 // can be used to shrink the bounding box.
455 int leftZeros = width;
456 int riteZeros = width;
457 while (yoff < stop) {
458 int L, R;
459 count_left_right_zeros(base + yoff->fOffset, width, &L, &R);
460 SkASSERT(L + R < width || (L == width && R == width));
461 if (L < leftZeros) {
462 leftZeros = L;
463 }
464 if (R < riteZeros) {
465 riteZeros = R;
466 }
467 if (0 == (leftZeros | riteZeros)) {
468 // no trimming to do
469 return true;
470 }
471 yoff += 1;
472 }
473
474 SkASSERT(leftZeros || riteZeros);
475 if (width == leftZeros) {
476 SkASSERT(width == riteZeros);
477 return this->setEmpty();
478 }
479
480 this->validate();
481
482 fBounds.fLeft += leftZeros;
483 fBounds.fRight -= riteZeros;
484 SkASSERT(!fBounds.isEmpty());
485
486 // For now we don't realloc the storage (for time), we just shrink in place
487 // This means we don't have to do any memmoves either, since we can just
488 // play tricks with the yoff->fOffset for each row
489 yoff = head->yoffsets();
490 while (yoff < stop) {
491 uint8_t* row = base + yoff->fOffset;
492 SkDEBUGCODE((void)compute_row_length(row, width);)
493 yoff->fOffset += trim_row_left_right(row, width, leftZeros, riteZeros);
494 SkDEBUGCODE((void)compute_row_length(base + yoff->fOffset, width - leftZeros - riteZeros);)
495 yoff += 1;
496 }
497 return true;
498 }
499
row_is_all_zeros(const uint8_t * row,int width)500 static bool row_is_all_zeros(const uint8_t* row, int width) {
501 SkASSERT(width > 0);
502 do {
503 if (row[1]) {
504 return false;
505 }
506 int n = row[0];
507 SkASSERT(n <= width);
508 width -= n;
509 row += 2;
510 } while (width > 0);
511 SkASSERT(0 == width);
512 return true;
513 }
514
trimTopBottom()515 bool SkAAClip::trimTopBottom() {
516 if (this->isEmpty()) {
517 return false;
518 }
519
520 this->validate();
521
522 const int width = fBounds.width();
523 RunHead* head = fRunHead;
524 YOffset* yoff = head->yoffsets();
525 YOffset* stop = yoff + head->fRowCount;
526 const uint8_t* base = head->data();
527
528 // Look to trim away empty rows from the top.
529 //
530 int skip = 0;
531 while (yoff < stop) {
532 const uint8_t* data = base + yoff->fOffset;
533 if (!row_is_all_zeros(data, width)) {
534 break;
535 }
536 skip += 1;
537 yoff += 1;
538 }
539 SkASSERT(skip <= head->fRowCount);
540 if (skip == head->fRowCount) {
541 return this->setEmpty();
542 }
543 if (skip > 0) {
544 // adjust fRowCount and fBounds.fTop, and slide all the data up
545 // as we remove [skip] number of YOffset entries
546 yoff = head->yoffsets();
547 int dy = yoff[skip - 1].fY + 1;
548 for (int i = skip; i < head->fRowCount; ++i) {
549 SkASSERT(yoff[i].fY >= dy);
550 yoff[i].fY -= dy;
551 }
552 YOffset* dst = head->yoffsets();
553 size_t size = head->fRowCount * sizeof(YOffset) + head->fDataSize;
554 memmove(dst, dst + skip, size - skip * sizeof(YOffset));
555
556 fBounds.fTop += dy;
557 SkASSERT(!fBounds.isEmpty());
558 head->fRowCount -= skip;
559 SkASSERT(head->fRowCount > 0);
560
561 this->validate();
562 // need to reset this after the memmove
563 base = head->data();
564 }
565
566 // Look to trim away empty rows from the bottom.
567 // We know that we have at least one non-zero row, so we can just walk
568 // backwards without checking for running past the start.
569 //
570 stop = yoff = head->yoffsets() + head->fRowCount;
571 do {
572 yoff -= 1;
573 } while (row_is_all_zeros(base + yoff->fOffset, width));
574 skip = SkToInt(stop - yoff - 1);
575 SkASSERT(skip >= 0 && skip < head->fRowCount);
576 if (skip > 0) {
577 // removing from the bottom is easier than from the top, as we don't
578 // have to adjust any of the Y values, we just have to trim the array
579 memmove(stop - skip, stop, head->fDataSize);
580
581 fBounds.fBottom = fBounds.fTop + yoff->fY + 1;
582 SkASSERT(!fBounds.isEmpty());
583 head->fRowCount -= skip;
584 SkASSERT(head->fRowCount > 0);
585 }
586 this->validate();
587
588 return true;
589 }
590
591 // can't validate before we're done, since trimming is part of the process of
592 // making us valid after the Builder. Since we build from top to bottom, its
593 // possible our fBounds.fBottom is bigger than our last scanline of data, so
594 // we trim fBounds.fBottom back up.
595 //
596 // TODO: check for duplicates in X and Y to further compress our data
597 //
trimBounds()598 bool SkAAClip::trimBounds() {
599 if (this->isEmpty()) {
600 return false;
601 }
602
603 const RunHead* head = fRunHead;
604 const YOffset* yoff = head->yoffsets();
605
606 SkASSERT(head->fRowCount > 0);
607 const YOffset& lastY = yoff[head->fRowCount - 1];
608 SkASSERT(lastY.fY + 1 <= fBounds.height());
609 fBounds.fBottom = fBounds.fTop + lastY.fY + 1;
610 SkASSERT(lastY.fY + 1 == fBounds.height());
611 SkASSERT(!fBounds.isEmpty());
612
613 return this->trimTopBottom() && this->trimLeftRight();
614 }
615
616 ///////////////////////////////////////////////////////////////////////////////
617
freeRuns()618 void SkAAClip::freeRuns() {
619 if (fRunHead) {
620 SkASSERT(fRunHead->fRefCnt >= 1);
621 if (1 == sk_atomic_dec(&fRunHead->fRefCnt)) {
622 sk_free(fRunHead);
623 }
624 }
625 }
626
SkAAClip()627 SkAAClip::SkAAClip() {
628 fBounds.setEmpty();
629 fRunHead = nullptr;
630 }
631
SkAAClip(const SkAAClip & src)632 SkAAClip::SkAAClip(const SkAAClip& src) {
633 SkDEBUGCODE(fBounds.setEmpty();) // need this for validate
634 fRunHead = nullptr;
635 *this = src;
636 }
637
~SkAAClip()638 SkAAClip::~SkAAClip() {
639 this->freeRuns();
640 }
641
operator =(const SkAAClip & src)642 SkAAClip& SkAAClip::operator=(const SkAAClip& src) {
643 AUTO_AACLIP_VALIDATE(*this);
644 src.validate();
645
646 if (this != &src) {
647 this->freeRuns();
648 fBounds = src.fBounds;
649 fRunHead = src.fRunHead;
650 if (fRunHead) {
651 sk_atomic_inc(&fRunHead->fRefCnt);
652 }
653 }
654 return *this;
655 }
656
operator ==(const SkAAClip & a,const SkAAClip & b)657 bool operator==(const SkAAClip& a, const SkAAClip& b) {
658 a.validate();
659 b.validate();
660
661 if (&a == &b) {
662 return true;
663 }
664 if (a.fBounds != b.fBounds) {
665 return false;
666 }
667
668 const SkAAClip::RunHead* ah = a.fRunHead;
669 const SkAAClip::RunHead* bh = b.fRunHead;
670
671 // this catches empties and rects being equal
672 if (ah == bh) {
673 return true;
674 }
675
676 // now we insist that both are complex (but different ptrs)
677 if (!a.fRunHead || !b.fRunHead) {
678 return false;
679 }
680
681 return ah->fRowCount == bh->fRowCount &&
682 ah->fDataSize == bh->fDataSize &&
683 !memcmp(ah->data(), bh->data(), ah->fDataSize);
684 }
685
swap(SkAAClip & other)686 void SkAAClip::swap(SkAAClip& other) {
687 AUTO_AACLIP_VALIDATE(*this);
688 other.validate();
689
690 SkTSwap(fBounds, other.fBounds);
691 SkTSwap(fRunHead, other.fRunHead);
692 }
693
set(const SkAAClip & src)694 bool SkAAClip::set(const SkAAClip& src) {
695 *this = src;
696 return !this->isEmpty();
697 }
698
setEmpty()699 bool SkAAClip::setEmpty() {
700 this->freeRuns();
701 fBounds.setEmpty();
702 fRunHead = nullptr;
703 return false;
704 }
705
setRect(const SkIRect & bounds)706 bool SkAAClip::setRect(const SkIRect& bounds) {
707 if (bounds.isEmpty()) {
708 return this->setEmpty();
709 }
710
711 AUTO_AACLIP_VALIDATE(*this);
712
713 #if 0
714 SkRect r;
715 r.set(bounds);
716 SkPath path;
717 path.addRect(r);
718 return this->setPath(path);
719 #else
720 this->freeRuns();
721 fBounds = bounds;
722 fRunHead = RunHead::AllocRect(bounds);
723 SkASSERT(!this->isEmpty());
724 return true;
725 #endif
726 }
727
isRect() const728 bool SkAAClip::isRect() const {
729 if (this->isEmpty()) {
730 return false;
731 }
732
733 const RunHead* head = fRunHead;
734 if (head->fRowCount != 1) {
735 return false;
736 }
737 const YOffset* yoff = head->yoffsets();
738 if (yoff->fY != fBounds.fBottom - 1) {
739 return false;
740 }
741
742 const uint8_t* row = head->data() + yoff->fOffset;
743 int width = fBounds.width();
744 do {
745 if (row[1] != 0xFF) {
746 return false;
747 }
748 int n = row[0];
749 SkASSERT(n <= width);
750 width -= n;
751 row += 2;
752 } while (width > 0);
753 return true;
754 }
755
setRect(const SkRect & r,bool doAA)756 bool SkAAClip::setRect(const SkRect& r, bool doAA) {
757 if (r.isEmpty()) {
758 return this->setEmpty();
759 }
760
761 AUTO_AACLIP_VALIDATE(*this);
762
763 // TODO: special case this
764
765 SkPath path;
766 path.addRect(r);
767 return this->setPath(path, nullptr, doAA);
768 }
769
append_run(SkTDArray<uint8_t> & array,uint8_t value,int count)770 static void append_run(SkTDArray<uint8_t>& array, uint8_t value, int count) {
771 SkASSERT(count >= 0);
772 while (count > 0) {
773 int n = count;
774 if (n > 255) {
775 n = 255;
776 }
777 uint8_t* data = array.append(2);
778 data[0] = n;
779 data[1] = value;
780 count -= n;
781 }
782 }
783
setRegion(const SkRegion & rgn)784 bool SkAAClip::setRegion(const SkRegion& rgn) {
785 if (rgn.isEmpty()) {
786 return this->setEmpty();
787 }
788 if (rgn.isRect()) {
789 return this->setRect(rgn.getBounds());
790 }
791
792 #if 0
793 SkAAClip clip;
794 SkRegion::Iterator iter(rgn);
795 for (; !iter.done(); iter.next()) {
796 clip.op(iter.rect(), SkRegion::kUnion_Op);
797 }
798 this->swap(clip);
799 return !this->isEmpty();
800 #else
801 const SkIRect& bounds = rgn.getBounds();
802 const int offsetX = bounds.fLeft;
803 const int offsetY = bounds.fTop;
804
805 SkTDArray<YOffset> yArray;
806 SkTDArray<uint8_t> xArray;
807
808 yArray.setReserve(SkMin32(bounds.height(), 1024));
809 xArray.setReserve(SkMin32(bounds.width(), 512) * 128);
810
811 SkRegion::Iterator iter(rgn);
812 int prevRight = 0;
813 int prevBot = 0;
814 YOffset* currY = nullptr;
815
816 for (; !iter.done(); iter.next()) {
817 const SkIRect& r = iter.rect();
818 SkASSERT(bounds.contains(r));
819
820 int bot = r.fBottom - offsetY;
821 SkASSERT(bot >= prevBot);
822 if (bot > prevBot) {
823 if (currY) {
824 // flush current row
825 append_run(xArray, 0, bounds.width() - prevRight);
826 }
827 // did we introduce an empty-gap from the prev row?
828 int top = r.fTop - offsetY;
829 if (top > prevBot) {
830 currY = yArray.append();
831 currY->fY = top - 1;
832 currY->fOffset = xArray.count();
833 append_run(xArray, 0, bounds.width());
834 }
835 // create a new record for this Y value
836 currY = yArray.append();
837 currY->fY = bot - 1;
838 currY->fOffset = xArray.count();
839 prevRight = 0;
840 prevBot = bot;
841 }
842
843 int x = r.fLeft - offsetX;
844 append_run(xArray, 0, x - prevRight);
845
846 int w = r.fRight - r.fLeft;
847 append_run(xArray, 0xFF, w);
848 prevRight = x + w;
849 SkASSERT(prevRight <= bounds.width());
850 }
851 // flush last row
852 append_run(xArray, 0, bounds.width() - prevRight);
853
854 // now pack everything into a RunHead
855 RunHead* head = RunHead::Alloc(yArray.count(), xArray.bytes());
856 memcpy(head->yoffsets(), yArray.begin(), yArray.bytes());
857 memcpy(head->data(), xArray.begin(), xArray.bytes());
858
859 this->setEmpty();
860 fBounds = bounds;
861 fRunHead = head;
862 this->validate();
863 return true;
864 #endif
865 }
866
867 ///////////////////////////////////////////////////////////////////////////////
868
findRow(int y,int * lastYForRow) const869 const uint8_t* SkAAClip::findRow(int y, int* lastYForRow) const {
870 SkASSERT(fRunHead);
871
872 if (!y_in_rect(y, fBounds)) {
873 return nullptr;
874 }
875 y -= fBounds.y(); // our yoffs values are relative to the top
876
877 const YOffset* yoff = fRunHead->yoffsets();
878 while (yoff->fY < y) {
879 yoff += 1;
880 SkASSERT(yoff - fRunHead->yoffsets() < fRunHead->fRowCount);
881 }
882
883 if (lastYForRow) {
884 *lastYForRow = fBounds.y() + yoff->fY;
885 }
886 return fRunHead->data() + yoff->fOffset;
887 }
888
findX(const uint8_t data[],int x,int * initialCount) const889 const uint8_t* SkAAClip::findX(const uint8_t data[], int x, int* initialCount) const {
890 SkASSERT(x_in_rect(x, fBounds));
891 x -= fBounds.x();
892
893 // first skip up to X
894 for (;;) {
895 int n = data[0];
896 if (x < n) {
897 if (initialCount) {
898 *initialCount = n - x;
899 }
900 break;
901 }
902 data += 2;
903 x -= n;
904 }
905 return data;
906 }
907
quickContains(int left,int top,int right,int bottom) const908 bool SkAAClip::quickContains(int left, int top, int right, int bottom) const {
909 if (this->isEmpty()) {
910 return false;
911 }
912 if (!fBounds.contains(left, top, right, bottom)) {
913 return false;
914 }
915 #if 0
916 if (this->isRect()) {
917 return true;
918 }
919 #endif
920
921 int lastY SK_INIT_TO_AVOID_WARNING;
922 const uint8_t* row = this->findRow(top, &lastY);
923 if (lastY < bottom) {
924 return false;
925 }
926 // now just need to check in X
927 int count;
928 row = this->findX(row, left, &count);
929 #if 0
930 return count >= (right - left) && 0xFF == row[1];
931 #else
932 int rectWidth = right - left;
933 while (0xFF == row[1]) {
934 if (count >= rectWidth) {
935 return true;
936 }
937 rectWidth -= count;
938 row += 2;
939 count = row[0];
940 }
941 return false;
942 #endif
943 }
944
945 ///////////////////////////////////////////////////////////////////////////////
946
947 class SkAAClip::Builder {
948 SkIRect fBounds;
949 struct Row {
950 int fY;
951 int fWidth;
952 SkTDArray<uint8_t>* fData;
953 };
954 SkTDArray<Row> fRows;
955 Row* fCurrRow;
956 int fPrevY;
957 int fWidth;
958 int fMinY;
959
960 public:
Builder(const SkIRect & bounds)961 Builder(const SkIRect& bounds) : fBounds(bounds) {
962 fPrevY = -1;
963 fWidth = bounds.width();
964 fCurrRow = nullptr;
965 fMinY = bounds.fTop;
966 }
967
~Builder()968 ~Builder() {
969 Row* row = fRows.begin();
970 Row* stop = fRows.end();
971 while (row < stop) {
972 delete row->fData;
973 row += 1;
974 }
975 }
976
getBounds() const977 const SkIRect& getBounds() const { return fBounds; }
978
addRun(int x,int y,U8CPU alpha,int count)979 void addRun(int x, int y, U8CPU alpha, int count) {
980 SkASSERT(count > 0);
981 SkASSERT(fBounds.contains(x, y));
982 SkASSERT(fBounds.contains(x + count - 1, y));
983
984 x -= fBounds.left();
985 y -= fBounds.top();
986
987 Row* row = fCurrRow;
988 if (y != fPrevY) {
989 SkASSERT(y > fPrevY);
990 fPrevY = y;
991 row = this->flushRow(true);
992 row->fY = y;
993 row->fWidth = 0;
994 SkASSERT(row->fData);
995 SkASSERT(0 == row->fData->count());
996 fCurrRow = row;
997 }
998
999 SkASSERT(row->fWidth <= x);
1000 SkASSERT(row->fWidth < fBounds.width());
1001
1002 SkTDArray<uint8_t>& data = *row->fData;
1003
1004 int gap = x - row->fWidth;
1005 if (gap) {
1006 AppendRun(data, 0, gap);
1007 row->fWidth += gap;
1008 SkASSERT(row->fWidth < fBounds.width());
1009 }
1010
1011 AppendRun(data, alpha, count);
1012 row->fWidth += count;
1013 SkASSERT(row->fWidth <= fBounds.width());
1014 }
1015
addColumn(int x,int y,U8CPU alpha,int height)1016 void addColumn(int x, int y, U8CPU alpha, int height) {
1017 SkASSERT(fBounds.contains(x, y + height - 1));
1018
1019 this->addRun(x, y, alpha, 1);
1020 this->flushRowH(fCurrRow);
1021 y -= fBounds.fTop;
1022 SkASSERT(y == fCurrRow->fY);
1023 fCurrRow->fY = y + height - 1;
1024 }
1025
addRectRun(int x,int y,int width,int height)1026 void addRectRun(int x, int y, int width, int height) {
1027 SkASSERT(fBounds.contains(x + width - 1, y + height - 1));
1028 this->addRun(x, y, 0xFF, width);
1029
1030 // we assum the rect must be all we'll see for these scanlines
1031 // so we ensure our row goes all the way to our right
1032 this->flushRowH(fCurrRow);
1033
1034 y -= fBounds.fTop;
1035 SkASSERT(y == fCurrRow->fY);
1036 fCurrRow->fY = y + height - 1;
1037 }
1038
addAntiRectRun(int x,int y,int width,int height,SkAlpha leftAlpha,SkAlpha rightAlpha)1039 void addAntiRectRun(int x, int y, int width, int height,
1040 SkAlpha leftAlpha, SkAlpha rightAlpha) {
1041 // According to SkBlitter.cpp, no matter whether leftAlpha is 0 or positive,
1042 // we should always consider [x, x+1] as the left-most column and [x+1, x+1+width]
1043 // as the rect with full alpha.
1044 SkASSERT(fBounds.contains(x + width + (rightAlpha > 0 ? 1 : 0),
1045 y + height - 1));
1046 SkASSERT(width >= 0);
1047
1048 // Conceptually we're always adding 3 runs, but we should
1049 // merge or omit them if possible.
1050 if (leftAlpha == 0xFF) {
1051 width++;
1052 } else if (leftAlpha > 0) {
1053 this->addRun(x++, y, leftAlpha, 1);
1054 } else {
1055 // leftAlpha is 0, ignore the left column
1056 x++;
1057 }
1058 if (rightAlpha == 0xFF) {
1059 width++;
1060 }
1061 if (width > 0) {
1062 this->addRun(x, y, 0xFF, width);
1063 }
1064 if (rightAlpha > 0 && rightAlpha < 255) {
1065 this->addRun(x + width, y, rightAlpha, 1);
1066 }
1067
1068 // we assume the rect must be all we'll see for these scanlines
1069 // so we ensure our row goes all the way to our right
1070 this->flushRowH(fCurrRow);
1071
1072 y -= fBounds.fTop;
1073 SkASSERT(y == fCurrRow->fY);
1074 fCurrRow->fY = y + height - 1;
1075 }
1076
finish(SkAAClip * target)1077 bool finish(SkAAClip* target) {
1078 this->flushRow(false);
1079
1080 const Row* row = fRows.begin();
1081 const Row* stop = fRows.end();
1082
1083 size_t dataSize = 0;
1084 while (row < stop) {
1085 dataSize += row->fData->count();
1086 row += 1;
1087 }
1088
1089 if (0 == dataSize) {
1090 return target->setEmpty();
1091 }
1092
1093 SkASSERT(fMinY >= fBounds.fTop);
1094 SkASSERT(fMinY < fBounds.fBottom);
1095 int adjustY = fMinY - fBounds.fTop;
1096 fBounds.fTop = fMinY;
1097
1098 RunHead* head = RunHead::Alloc(fRows.count(), dataSize);
1099 YOffset* yoffset = head->yoffsets();
1100 uint8_t* data = head->data();
1101 uint8_t* baseData = data;
1102
1103 row = fRows.begin();
1104 SkDEBUGCODE(int prevY = row->fY - 1;)
1105 while (row < stop) {
1106 SkASSERT(prevY < row->fY); // must be monotonic
1107 SkDEBUGCODE(prevY = row->fY);
1108
1109 yoffset->fY = row->fY - adjustY;
1110 yoffset->fOffset = SkToU32(data - baseData);
1111 yoffset += 1;
1112
1113 size_t n = row->fData->count();
1114 memcpy(data, row->fData->begin(), n);
1115 #ifdef SK_DEBUG
1116 size_t bytesNeeded = compute_row_length(data, fBounds.width());
1117 SkASSERT(bytesNeeded == n);
1118 #endif
1119 data += n;
1120
1121 row += 1;
1122 }
1123
1124 target->freeRuns();
1125 target->fBounds = fBounds;
1126 target->fRunHead = head;
1127 return target->trimBounds();
1128 }
1129
dump()1130 void dump() {
1131 this->validate();
1132 int y;
1133 for (y = 0; y < fRows.count(); ++y) {
1134 const Row& row = fRows[y];
1135 SkDebugf("Y:%3d W:%3d", row.fY, row.fWidth);
1136 const SkTDArray<uint8_t>& data = *row.fData;
1137 int count = data.count();
1138 SkASSERT(!(count & 1));
1139 const uint8_t* ptr = data.begin();
1140 for (int x = 0; x < count; x += 2) {
1141 SkDebugf(" [%3d:%02X]", ptr[0], ptr[1]);
1142 ptr += 2;
1143 }
1144 SkDebugf("\n");
1145 }
1146 }
1147
validate()1148 void validate() {
1149 #ifdef SK_DEBUG
1150 if (false) { // avoid bit rot, suppress warning
1151 test_count_left_right_zeros();
1152 }
1153 int prevY = -1;
1154 for (int i = 0; i < fRows.count(); ++i) {
1155 const Row& row = fRows[i];
1156 SkASSERT(prevY < row.fY);
1157 SkASSERT(fWidth == row.fWidth);
1158 int count = row.fData->count();
1159 const uint8_t* ptr = row.fData->begin();
1160 SkASSERT(!(count & 1));
1161 int w = 0;
1162 for (int x = 0; x < count; x += 2) {
1163 int n = ptr[0];
1164 SkASSERT(n > 0);
1165 w += n;
1166 SkASSERT(w <= fWidth);
1167 ptr += 2;
1168 }
1169 SkASSERT(w == fWidth);
1170 prevY = row.fY;
1171 }
1172 #endif
1173 }
1174
1175 // only called by BuilderBlitter
setMinY(int y)1176 void setMinY(int y) {
1177 fMinY = y;
1178 }
1179
1180 private:
flushRowH(Row * row)1181 void flushRowH(Row* row) {
1182 // flush current row if needed
1183 if (row->fWidth < fWidth) {
1184 AppendRun(*row->fData, 0, fWidth - row->fWidth);
1185 row->fWidth = fWidth;
1186 }
1187 }
1188
flushRow(bool readyForAnother)1189 Row* flushRow(bool readyForAnother) {
1190 Row* next = nullptr;
1191 int count = fRows.count();
1192 if (count > 0) {
1193 this->flushRowH(&fRows[count - 1]);
1194 }
1195 if (count > 1) {
1196 // are our last two runs the same?
1197 Row* prev = &fRows[count - 2];
1198 Row* curr = &fRows[count - 1];
1199 SkASSERT(prev->fWidth == fWidth);
1200 SkASSERT(curr->fWidth == fWidth);
1201 if (*prev->fData == *curr->fData) {
1202 prev->fY = curr->fY;
1203 if (readyForAnother) {
1204 curr->fData->rewind();
1205 next = curr;
1206 } else {
1207 delete curr->fData;
1208 fRows.removeShuffle(count - 1);
1209 }
1210 } else {
1211 if (readyForAnother) {
1212 next = fRows.append();
1213 next->fData = new SkTDArray<uint8_t>;
1214 }
1215 }
1216 } else {
1217 if (readyForAnother) {
1218 next = fRows.append();
1219 next->fData = new SkTDArray<uint8_t>;
1220 }
1221 }
1222 return next;
1223 }
1224
AppendRun(SkTDArray<uint8_t> & data,U8CPU alpha,int count)1225 static void AppendRun(SkTDArray<uint8_t>& data, U8CPU alpha, int count) {
1226 do {
1227 int n = count;
1228 if (n > 255) {
1229 n = 255;
1230 }
1231 uint8_t* ptr = data.append(2);
1232 ptr[0] = n;
1233 ptr[1] = alpha;
1234 count -= n;
1235 } while (count > 0);
1236 }
1237 };
1238
1239 class SkAAClip::BuilderBlitter : public SkBlitter {
1240 int fLastY;
1241
1242 /*
1243 If we see a gap of 1 or more empty scanlines while building in Y-order,
1244 we inject an explicit empty scanline (alpha==0)
1245
1246 See AAClipTest.cpp : test_path_with_hole()
1247 */
checkForYGap(int y)1248 void checkForYGap(int y) {
1249 SkASSERT(y >= fLastY);
1250 if (fLastY > -SK_MaxS32) {
1251 int gap = y - fLastY;
1252 if (gap > 1) {
1253 fBuilder->addRun(fLeft, y - 1, 0, fRight - fLeft);
1254 }
1255 }
1256 fLastY = y;
1257 }
1258
1259 public:
1260
BuilderBlitter(Builder * builder)1261 BuilderBlitter(Builder* builder) {
1262 fBuilder = builder;
1263 fLeft = builder->getBounds().fLeft;
1264 fRight = builder->getBounds().fRight;
1265 fMinY = SK_MaxS32;
1266 fLastY = -SK_MaxS32; // sentinel
1267 }
1268
finish()1269 void finish() {
1270 if (fMinY < SK_MaxS32) {
1271 fBuilder->setMinY(fMinY);
1272 }
1273 }
1274
1275 /**
1276 Must evaluate clips in scan-line order, so don't want to allow blitV(),
1277 but an AAClip can be clipped down to a single pixel wide, so we
1278 must support it (given AntiRect semantics: minimum width is 2).
1279 Instead we'll rely on the runtime asserts to guarantee Y monotonicity;
1280 any failure cases that misses may have minor artifacts.
1281 */
blitV(int x,int y,int height,SkAlpha alpha)1282 void blitV(int x, int y, int height, SkAlpha alpha) override {
1283 if (height == 1) {
1284 // We're still in scan-line order if height is 1
1285 // This is useful for Analytic AA
1286 const SkAlpha alphas[2] = {alpha, 0};
1287 const int16_t runs[2] = {1, 0};
1288 this->blitAntiH(x, y, alphas, runs);
1289 } else {
1290 this->recordMinY(y);
1291 fBuilder->addColumn(x, y, alpha, height);
1292 fLastY = y + height - 1;
1293 }
1294 }
1295
blitRect(int x,int y,int width,int height)1296 void blitRect(int x, int y, int width, int height) override {
1297 this->recordMinY(y);
1298 this->checkForYGap(y);
1299 fBuilder->addRectRun(x, y, width, height);
1300 fLastY = y + height - 1;
1301 }
1302
blitAntiRect(int x,int y,int width,int height,SkAlpha leftAlpha,SkAlpha rightAlpha)1303 virtual void blitAntiRect(int x, int y, int width, int height,
1304 SkAlpha leftAlpha, SkAlpha rightAlpha) override {
1305 this->recordMinY(y);
1306 this->checkForYGap(y);
1307 fBuilder->addAntiRectRun(x, y, width, height, leftAlpha, rightAlpha);
1308 fLastY = y + height - 1;
1309 }
1310
blitMask(const SkMask &,const SkIRect & clip)1311 void blitMask(const SkMask&, const SkIRect& clip) override
1312 { unexpected(); }
1313
justAnOpaqueColor(uint32_t *)1314 const SkPixmap* justAnOpaqueColor(uint32_t*) override {
1315 return nullptr;
1316 }
1317
blitH(int x,int y,int width)1318 void blitH(int x, int y, int width) override {
1319 this->recordMinY(y);
1320 this->checkForYGap(y);
1321 fBuilder->addRun(x, y, 0xFF, width);
1322 }
1323
blitAntiH(int x,int y,const SkAlpha alpha[],const int16_t runs[])1324 virtual void blitAntiH(int x, int y, const SkAlpha alpha[],
1325 const int16_t runs[]) override {
1326 this->recordMinY(y);
1327 this->checkForYGap(y);
1328 for (;;) {
1329 int count = *runs;
1330 if (count <= 0) {
1331 return;
1332 }
1333
1334 // The supersampler's buffer can be the width of the device, so
1335 // we may have to trim the run to our bounds. Previously, we assert that
1336 // the extra spans are always alpha==0.
1337 // However, the analytic AA is too sensitive to precision errors
1338 // so it may have extra spans with very tiny alpha because after several
1339 // arithmatic operations, the edge may bleed the path boundary a little bit.
1340 // Therefore, instead of always asserting alpha==0, we assert alpha < 0x10.
1341 int localX = x;
1342 int localCount = count;
1343 if (x < fLeft) {
1344 SkASSERT(0x10 > *alpha);
1345 int gap = fLeft - x;
1346 SkASSERT(gap <= count);
1347 localX += gap;
1348 localCount -= gap;
1349 }
1350 int right = x + count;
1351 if (right > fRight) {
1352 SkASSERT(0x10 > *alpha);
1353 localCount -= right - fRight;
1354 SkASSERT(localCount >= 0);
1355 }
1356
1357 if (localCount) {
1358 fBuilder->addRun(localX, y, *alpha, localCount);
1359 }
1360 // Next run
1361 runs += count;
1362 alpha += count;
1363 x += count;
1364 }
1365 }
1366
1367 private:
1368 Builder* fBuilder;
1369 int fLeft; // cache of builder's bounds' left edge
1370 int fRight;
1371 int fMinY;
1372
1373 /*
1374 * We track this, in case the scan converter skipped some number of
1375 * scanlines at the (relative to the bounds it was given). This allows
1376 * the builder, during its finish, to trip its bounds down to the "real"
1377 * top.
1378 */
recordMinY(int y)1379 void recordMinY(int y) {
1380 if (y < fMinY) {
1381 fMinY = y;
1382 }
1383 }
1384
unexpected()1385 void unexpected() {
1386 SK_ABORT("---- did not expect to get called here");
1387 }
1388 };
1389
setPath(const SkPath & path,const SkRegion * clip,bool doAA)1390 bool SkAAClip::setPath(const SkPath& path, const SkRegion* clip, bool doAA) {
1391 AUTO_AACLIP_VALIDATE(*this);
1392
1393 if (clip && clip->isEmpty()) {
1394 return this->setEmpty();
1395 }
1396
1397 SkIRect ibounds;
1398 path.getBounds().roundOut(&ibounds);
1399
1400 SkRegion tmpClip;
1401 if (nullptr == clip) {
1402 tmpClip.setRect(ibounds);
1403 clip = &tmpClip;
1404 }
1405
1406 // Since we assert that the BuilderBlitter will never blit outside the intersection
1407 // of clip and ibounds, we create this snugClip to be that intersection and send it
1408 // to the scan-converter.
1409 SkRegion snugClip(*clip);
1410
1411 if (path.isInverseFillType()) {
1412 ibounds = clip->getBounds();
1413 } else {
1414 if (ibounds.isEmpty() || !ibounds.intersect(clip->getBounds())) {
1415 return this->setEmpty();
1416 }
1417 snugClip.op(ibounds, SkRegion::kIntersect_Op);
1418 }
1419
1420 Builder builder(ibounds);
1421 BuilderBlitter blitter(&builder);
1422
1423 if (doAA) {
1424 SkScan::AntiFillPath(path, snugClip, &blitter, true);
1425 } else {
1426 SkScan::FillPath(path, snugClip, &blitter);
1427 }
1428
1429 blitter.finish();
1430 return builder.finish(this);
1431 }
1432
1433 ///////////////////////////////////////////////////////////////////////////////
1434
1435 typedef void (*RowProc)(SkAAClip::Builder&, int bottom,
1436 const uint8_t* rowA, const SkIRect& rectA,
1437 const uint8_t* rowB, const SkIRect& rectB);
1438
1439 typedef U8CPU (*AlphaProc)(U8CPU alphaA, U8CPU alphaB);
1440
sectAlphaProc(U8CPU alphaA,U8CPU alphaB)1441 static U8CPU sectAlphaProc(U8CPU alphaA, U8CPU alphaB) {
1442 // Multiply
1443 return SkMulDiv255Round(alphaA, alphaB);
1444 }
1445
unionAlphaProc(U8CPU alphaA,U8CPU alphaB)1446 static U8CPU unionAlphaProc(U8CPU alphaA, U8CPU alphaB) {
1447 // SrcOver
1448 return alphaA + alphaB - SkMulDiv255Round(alphaA, alphaB);
1449 }
1450
diffAlphaProc(U8CPU alphaA,U8CPU alphaB)1451 static U8CPU diffAlphaProc(U8CPU alphaA, U8CPU alphaB) {
1452 // SrcOut
1453 return SkMulDiv255Round(alphaA, 0xFF - alphaB);
1454 }
1455
xorAlphaProc(U8CPU alphaA,U8CPU alphaB)1456 static U8CPU xorAlphaProc(U8CPU alphaA, U8CPU alphaB) {
1457 // XOR
1458 return alphaA + alphaB - 2 * SkMulDiv255Round(alphaA, alphaB);
1459 }
1460
find_alpha_proc(SkRegion::Op op)1461 static AlphaProc find_alpha_proc(SkRegion::Op op) {
1462 switch (op) {
1463 case SkRegion::kIntersect_Op:
1464 return sectAlphaProc;
1465 case SkRegion::kDifference_Op:
1466 return diffAlphaProc;
1467 case SkRegion::kUnion_Op:
1468 return unionAlphaProc;
1469 case SkRegion::kXOR_Op:
1470 return xorAlphaProc;
1471 default:
1472 SkDEBUGFAIL("unexpected region op");
1473 return sectAlphaProc;
1474 }
1475 }
1476
1477 class RowIter {
1478 public:
RowIter(const uint8_t * row,const SkIRect & bounds)1479 RowIter(const uint8_t* row, const SkIRect& bounds) {
1480 fRow = row;
1481 fLeft = bounds.fLeft;
1482 fBoundsRight = bounds.fRight;
1483 if (row) {
1484 fRight = bounds.fLeft + row[0];
1485 SkASSERT(fRight <= fBoundsRight);
1486 fAlpha = row[1];
1487 fDone = false;
1488 } else {
1489 fDone = true;
1490 fRight = kMaxInt32;
1491 fAlpha = 0;
1492 }
1493 }
1494
done() const1495 bool done() const { return fDone; }
left() const1496 int left() const { return fLeft; }
right() const1497 int right() const { return fRight; }
alpha() const1498 U8CPU alpha() const { return fAlpha; }
next()1499 void next() {
1500 if (!fDone) {
1501 fLeft = fRight;
1502 if (fRight == fBoundsRight) {
1503 fDone = true;
1504 fRight = kMaxInt32;
1505 fAlpha = 0;
1506 } else {
1507 fRow += 2;
1508 fRight += fRow[0];
1509 fAlpha = fRow[1];
1510 SkASSERT(fRight <= fBoundsRight);
1511 }
1512 }
1513 }
1514
1515 private:
1516 const uint8_t* fRow;
1517 int fLeft;
1518 int fRight;
1519 int fBoundsRight;
1520 bool fDone;
1521 uint8_t fAlpha;
1522 };
1523
adjust_row(RowIter & iter,int & leftA,int & riteA,int rite)1524 static void adjust_row(RowIter& iter, int& leftA, int& riteA, int rite) {
1525 if (rite == riteA) {
1526 iter.next();
1527 leftA = iter.left();
1528 riteA = iter.right();
1529 }
1530 }
1531
1532 #if 0 // UNUSED
1533 static bool intersect(int& min, int& max, int boundsMin, int boundsMax) {
1534 SkASSERT(min < max);
1535 SkASSERT(boundsMin < boundsMax);
1536 if (min >= boundsMax || max <= boundsMin) {
1537 return false;
1538 }
1539 if (min < boundsMin) {
1540 min = boundsMin;
1541 }
1542 if (max > boundsMax) {
1543 max = boundsMax;
1544 }
1545 return true;
1546 }
1547 #endif
1548
operatorX(SkAAClip::Builder & builder,int lastY,RowIter & iterA,RowIter & iterB,AlphaProc proc,const SkIRect & bounds)1549 static void operatorX(SkAAClip::Builder& builder, int lastY,
1550 RowIter& iterA, RowIter& iterB,
1551 AlphaProc proc, const SkIRect& bounds) {
1552 int leftA = iterA.left();
1553 int riteA = iterA.right();
1554 int leftB = iterB.left();
1555 int riteB = iterB.right();
1556
1557 int prevRite = bounds.fLeft;
1558
1559 do {
1560 U8CPU alphaA = 0;
1561 U8CPU alphaB = 0;
1562 int left, rite;
1563
1564 if (leftA < leftB) {
1565 left = leftA;
1566 alphaA = iterA.alpha();
1567 if (riteA <= leftB) {
1568 rite = riteA;
1569 } else {
1570 rite = leftA = leftB;
1571 }
1572 } else if (leftB < leftA) {
1573 left = leftB;
1574 alphaB = iterB.alpha();
1575 if (riteB <= leftA) {
1576 rite = riteB;
1577 } else {
1578 rite = leftB = leftA;
1579 }
1580 } else {
1581 left = leftA; // or leftB, since leftA == leftB
1582 rite = leftA = leftB = SkMin32(riteA, riteB);
1583 alphaA = iterA.alpha();
1584 alphaB = iterB.alpha();
1585 }
1586
1587 if (left >= bounds.fRight) {
1588 break;
1589 }
1590 if (rite > bounds.fRight) {
1591 rite = bounds.fRight;
1592 }
1593
1594 if (left >= bounds.fLeft) {
1595 SkASSERT(rite > left);
1596 builder.addRun(left, lastY, proc(alphaA, alphaB), rite - left);
1597 prevRite = rite;
1598 }
1599
1600 adjust_row(iterA, leftA, riteA, rite);
1601 adjust_row(iterB, leftB, riteB, rite);
1602 } while (!iterA.done() || !iterB.done());
1603
1604 if (prevRite < bounds.fRight) {
1605 builder.addRun(prevRite, lastY, 0, bounds.fRight - prevRite);
1606 }
1607 }
1608
adjust_iter(SkAAClip::Iter & iter,int & topA,int & botA,int bot)1609 static void adjust_iter(SkAAClip::Iter& iter, int& topA, int& botA, int bot) {
1610 if (bot == botA) {
1611 iter.next();
1612 topA = botA;
1613 SkASSERT(botA == iter.top());
1614 botA = iter.bottom();
1615 }
1616 }
1617
operateY(SkAAClip::Builder & builder,const SkAAClip & A,const SkAAClip & B,SkRegion::Op op)1618 static void operateY(SkAAClip::Builder& builder, const SkAAClip& A,
1619 const SkAAClip& B, SkRegion::Op op) {
1620 AlphaProc proc = find_alpha_proc(op);
1621 const SkIRect& bounds = builder.getBounds();
1622
1623 SkAAClip::Iter iterA(A);
1624 SkAAClip::Iter iterB(B);
1625
1626 SkASSERT(!iterA.done());
1627 int topA = iterA.top();
1628 int botA = iterA.bottom();
1629 SkASSERT(!iterB.done());
1630 int topB = iterB.top();
1631 int botB = iterB.bottom();
1632
1633 do {
1634 const uint8_t* rowA = nullptr;
1635 const uint8_t* rowB = nullptr;
1636 int top, bot;
1637
1638 if (topA < topB) {
1639 top = topA;
1640 rowA = iterA.data();
1641 if (botA <= topB) {
1642 bot = botA;
1643 } else {
1644 bot = topA = topB;
1645 }
1646
1647 } else if (topB < topA) {
1648 top = topB;
1649 rowB = iterB.data();
1650 if (botB <= topA) {
1651 bot = botB;
1652 } else {
1653 bot = topB = topA;
1654 }
1655 } else {
1656 top = topA; // or topB, since topA == topB
1657 bot = topA = topB = SkMin32(botA, botB);
1658 rowA = iterA.data();
1659 rowB = iterB.data();
1660 }
1661
1662 if (top >= bounds.fBottom) {
1663 break;
1664 }
1665
1666 if (bot > bounds.fBottom) {
1667 bot = bounds.fBottom;
1668 }
1669 SkASSERT(top < bot);
1670
1671 if (!rowA && !rowB) {
1672 builder.addRun(bounds.fLeft, bot - 1, 0, bounds.width());
1673 } else if (top >= bounds.fTop) {
1674 SkASSERT(bot <= bounds.fBottom);
1675 RowIter rowIterA(rowA, rowA ? A.getBounds() : bounds);
1676 RowIter rowIterB(rowB, rowB ? B.getBounds() : bounds);
1677 operatorX(builder, bot - 1, rowIterA, rowIterB, proc, bounds);
1678 }
1679
1680 adjust_iter(iterA, topA, botA, bot);
1681 adjust_iter(iterB, topB, botB, bot);
1682 } while (!iterA.done() || !iterB.done());
1683 }
1684
op(const SkAAClip & clipAOrig,const SkAAClip & clipBOrig,SkRegion::Op op)1685 bool SkAAClip::op(const SkAAClip& clipAOrig, const SkAAClip& clipBOrig,
1686 SkRegion::Op op) {
1687 AUTO_AACLIP_VALIDATE(*this);
1688
1689 if (SkRegion::kReplace_Op == op) {
1690 return this->set(clipBOrig);
1691 }
1692
1693 const SkAAClip* clipA = &clipAOrig;
1694 const SkAAClip* clipB = &clipBOrig;
1695
1696 if (SkRegion::kReverseDifference_Op == op) {
1697 SkTSwap(clipA, clipB);
1698 op = SkRegion::kDifference_Op;
1699 }
1700
1701 bool a_empty = clipA->isEmpty();
1702 bool b_empty = clipB->isEmpty();
1703
1704 SkIRect bounds;
1705 switch (op) {
1706 case SkRegion::kDifference_Op:
1707 if (a_empty) {
1708 return this->setEmpty();
1709 }
1710 if (b_empty || !SkIRect::Intersects(clipA->fBounds, clipB->fBounds)) {
1711 return this->set(*clipA);
1712 }
1713 bounds = clipA->fBounds;
1714 break;
1715
1716 case SkRegion::kIntersect_Op:
1717 if ((a_empty | b_empty) || !bounds.intersect(clipA->fBounds,
1718 clipB->fBounds)) {
1719 return this->setEmpty();
1720 }
1721 break;
1722
1723 case SkRegion::kUnion_Op:
1724 case SkRegion::kXOR_Op:
1725 if (a_empty) {
1726 return this->set(*clipB);
1727 }
1728 if (b_empty) {
1729 return this->set(*clipA);
1730 }
1731 bounds = clipA->fBounds;
1732 bounds.join(clipB->fBounds);
1733 break;
1734
1735 default:
1736 SkDEBUGFAIL("unknown region op");
1737 return !this->isEmpty();
1738 }
1739
1740 SkASSERT(SkIRect::Intersects(bounds, clipB->fBounds));
1741 SkASSERT(SkIRect::Intersects(bounds, clipB->fBounds));
1742
1743 Builder builder(bounds);
1744 operateY(builder, *clipA, *clipB, op);
1745
1746 return builder.finish(this);
1747 }
1748
1749 /*
1750 * It can be expensive to build a local aaclip before applying the op, so
1751 * we first see if we can restrict the bounds of new rect to our current
1752 * bounds, or note that the new rect subsumes our current clip.
1753 */
1754
op(const SkIRect & rOrig,SkRegion::Op op)1755 bool SkAAClip::op(const SkIRect& rOrig, SkRegion::Op op) {
1756 SkIRect rStorage;
1757 const SkIRect* r = &rOrig;
1758
1759 switch (op) {
1760 case SkRegion::kIntersect_Op:
1761 if (!rStorage.intersect(rOrig, fBounds)) {
1762 // no overlap, so we're empty
1763 return this->setEmpty();
1764 }
1765 if (rStorage == fBounds) {
1766 // we were wholly inside the rect, no change
1767 return !this->isEmpty();
1768 }
1769 if (this->quickContains(rStorage)) {
1770 // the intersection is wholly inside us, we're a rect
1771 return this->setRect(rStorage);
1772 }
1773 r = &rStorage; // use the intersected bounds
1774 break;
1775 case SkRegion::kDifference_Op:
1776 break;
1777 case SkRegion::kUnion_Op:
1778 if (rOrig.contains(fBounds)) {
1779 return this->setRect(rOrig);
1780 }
1781 break;
1782 default:
1783 break;
1784 }
1785
1786 SkAAClip clip;
1787 clip.setRect(*r);
1788 return this->op(*this, clip, op);
1789 }
1790
op(const SkRect & rOrig,SkRegion::Op op,bool doAA)1791 bool SkAAClip::op(const SkRect& rOrig, SkRegion::Op op, bool doAA) {
1792 SkRect rStorage, boundsStorage;
1793 const SkRect* r = &rOrig;
1794
1795 boundsStorage.set(fBounds);
1796 switch (op) {
1797 case SkRegion::kIntersect_Op:
1798 case SkRegion::kDifference_Op:
1799 if (!rStorage.intersect(rOrig, boundsStorage)) {
1800 if (SkRegion::kIntersect_Op == op) {
1801 return this->setEmpty();
1802 } else { // kDifference
1803 return !this->isEmpty();
1804 }
1805 }
1806 r = &rStorage; // use the intersected bounds
1807 break;
1808 case SkRegion::kUnion_Op:
1809 if (rOrig.contains(boundsStorage)) {
1810 return this->setRect(rOrig);
1811 }
1812 break;
1813 default:
1814 break;
1815 }
1816
1817 SkAAClip clip;
1818 clip.setRect(*r, doAA);
1819 return this->op(*this, clip, op);
1820 }
1821
op(const SkAAClip & clip,SkRegion::Op op)1822 bool SkAAClip::op(const SkAAClip& clip, SkRegion::Op op) {
1823 return this->op(*this, clip, op);
1824 }
1825
1826 ///////////////////////////////////////////////////////////////////////////////
1827
translate(int dx,int dy,SkAAClip * dst) const1828 bool SkAAClip::translate(int dx, int dy, SkAAClip* dst) const {
1829 if (nullptr == dst) {
1830 return !this->isEmpty();
1831 }
1832
1833 if (this->isEmpty()) {
1834 return dst->setEmpty();
1835 }
1836
1837 if (this != dst) {
1838 sk_atomic_inc(&fRunHead->fRefCnt);
1839 dst->freeRuns();
1840 dst->fRunHead = fRunHead;
1841 dst->fBounds = fBounds;
1842 }
1843 dst->fBounds.offset(dx, dy);
1844 return true;
1845 }
1846
expand_row_to_mask(uint8_t * SK_RESTRICT mask,const uint8_t * SK_RESTRICT row,int width)1847 static void expand_row_to_mask(uint8_t* SK_RESTRICT mask,
1848 const uint8_t* SK_RESTRICT row,
1849 int width) {
1850 while (width > 0) {
1851 int n = row[0];
1852 SkASSERT(width >= n);
1853 memset(mask, row[1], n);
1854 mask += n;
1855 row += 2;
1856 width -= n;
1857 }
1858 SkASSERT(0 == width);
1859 }
1860
copyToMask(SkMask * mask) const1861 void SkAAClip::copyToMask(SkMask* mask) const {
1862 mask->fFormat = SkMask::kA8_Format;
1863 if (this->isEmpty()) {
1864 mask->fBounds.setEmpty();
1865 mask->fImage = nullptr;
1866 mask->fRowBytes = 0;
1867 return;
1868 }
1869
1870 mask->fBounds = fBounds;
1871 mask->fRowBytes = fBounds.width();
1872 size_t size = mask->computeImageSize();
1873 mask->fImage = SkMask::AllocImage(size);
1874
1875 Iter iter(*this);
1876 uint8_t* dst = mask->fImage;
1877 const int width = fBounds.width();
1878
1879 int y = fBounds.fTop;
1880 while (!iter.done()) {
1881 do {
1882 expand_row_to_mask(dst, iter.data(), width);
1883 dst += mask->fRowBytes;
1884 } while (++y < iter.bottom());
1885 iter.next();
1886 }
1887 }
1888
1889 ///////////////////////////////////////////////////////////////////////////////
1890 ///////////////////////////////////////////////////////////////////////////////
1891
expandToRuns(const uint8_t * SK_RESTRICT data,int initialCount,int width,int16_t * SK_RESTRICT runs,SkAlpha * SK_RESTRICT aa)1892 static void expandToRuns(const uint8_t* SK_RESTRICT data, int initialCount, int width,
1893 int16_t* SK_RESTRICT runs, SkAlpha* SK_RESTRICT aa) {
1894 // we don't read our initial n from data, since the caller may have had to
1895 // clip it, hence the initialCount parameter.
1896 int n = initialCount;
1897 for (;;) {
1898 if (n > width) {
1899 n = width;
1900 }
1901 SkASSERT(n > 0);
1902 runs[0] = n;
1903 runs += n;
1904
1905 aa[0] = data[1];
1906 aa += n;
1907
1908 data += 2;
1909 width -= n;
1910 if (0 == width) {
1911 break;
1912 }
1913 // load the next count
1914 n = data[0];
1915 }
1916 runs[0] = 0; // sentinel
1917 }
1918
~SkAAClipBlitter()1919 SkAAClipBlitter::~SkAAClipBlitter() {
1920 sk_free(fScanlineScratch);
1921 }
1922
ensureRunsAndAA()1923 void SkAAClipBlitter::ensureRunsAndAA() {
1924 if (nullptr == fScanlineScratch) {
1925 // add 1 so we can store the terminating run count of 0
1926 int count = fAAClipBounds.width() + 1;
1927 // we use this either for fRuns + fAA, or a scaline of a mask
1928 // which may be as deep as 32bits
1929 fScanlineScratch = sk_malloc_throw(count * sizeof(SkPMColor));
1930 fRuns = (int16_t*)fScanlineScratch;
1931 fAA = (SkAlpha*)(fRuns + count);
1932 }
1933 }
1934
blitH(int x,int y,int width)1935 void SkAAClipBlitter::blitH(int x, int y, int width) {
1936 SkASSERT(width > 0);
1937 SkASSERT(fAAClipBounds.contains(x, y));
1938 SkASSERT(fAAClipBounds.contains(x + width - 1, y));
1939
1940 const uint8_t* row = fAAClip->findRow(y);
1941 int initialCount;
1942 row = fAAClip->findX(row, x, &initialCount);
1943
1944 if (initialCount >= width) {
1945 SkAlpha alpha = row[1];
1946 if (0 == alpha) {
1947 return;
1948 }
1949 if (0xFF == alpha) {
1950 fBlitter->blitH(x, y, width);
1951 return;
1952 }
1953 }
1954
1955 this->ensureRunsAndAA();
1956 expandToRuns(row, initialCount, width, fRuns, fAA);
1957
1958 fBlitter->blitAntiH(x, y, fAA, fRuns);
1959 }
1960
merge(const uint8_t * SK_RESTRICT row,int rowN,const SkAlpha * SK_RESTRICT srcAA,const int16_t * SK_RESTRICT srcRuns,SkAlpha * SK_RESTRICT dstAA,int16_t * SK_RESTRICT dstRuns,int width)1961 static void merge(const uint8_t* SK_RESTRICT row, int rowN,
1962 const SkAlpha* SK_RESTRICT srcAA,
1963 const int16_t* SK_RESTRICT srcRuns,
1964 SkAlpha* SK_RESTRICT dstAA,
1965 int16_t* SK_RESTRICT dstRuns,
1966 int width) {
1967 SkDEBUGCODE(int accumulated = 0;)
1968 int srcN = srcRuns[0];
1969 // do we need this check?
1970 if (0 == srcN) {
1971 return;
1972 }
1973
1974 for (;;) {
1975 SkASSERT(rowN > 0);
1976 SkASSERT(srcN > 0);
1977
1978 unsigned newAlpha = SkMulDiv255Round(srcAA[0], row[1]);
1979 int minN = SkMin32(srcN, rowN);
1980 dstRuns[0] = minN;
1981 dstRuns += minN;
1982 dstAA[0] = newAlpha;
1983 dstAA += minN;
1984
1985 if (0 == (srcN -= minN)) {
1986 srcN = srcRuns[0]; // refresh
1987 srcRuns += srcN;
1988 srcAA += srcN;
1989 srcN = srcRuns[0]; // reload
1990 if (0 == srcN) {
1991 break;
1992 }
1993 }
1994 if (0 == (rowN -= minN)) {
1995 row += 2;
1996 rowN = row[0]; // reload
1997 }
1998
1999 SkDEBUGCODE(accumulated += minN;)
2000 SkASSERT(accumulated <= width);
2001 }
2002 dstRuns[0] = 0;
2003 }
2004
blitAntiH(int x,int y,const SkAlpha aa[],const int16_t runs[])2005 void SkAAClipBlitter::blitAntiH(int x, int y, const SkAlpha aa[],
2006 const int16_t runs[]) {
2007
2008 const uint8_t* row = fAAClip->findRow(y);
2009 int initialCount;
2010 row = fAAClip->findX(row, x, &initialCount);
2011
2012 this->ensureRunsAndAA();
2013
2014 merge(row, initialCount, aa, runs, fAA, fRuns, fAAClipBounds.width());
2015 fBlitter->blitAntiH(x, y, fAA, fRuns);
2016 }
2017
blitV(int x,int y,int height,SkAlpha alpha)2018 void SkAAClipBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
2019 if (fAAClip->quickContains(x, y, x + 1, y + height)) {
2020 fBlitter->blitV(x, y, height, alpha);
2021 return;
2022 }
2023
2024 for (;;) {
2025 int lastY SK_INIT_TO_AVOID_WARNING;
2026 const uint8_t* row = fAAClip->findRow(y, &lastY);
2027 int dy = lastY - y + 1;
2028 if (dy > height) {
2029 dy = height;
2030 }
2031 height -= dy;
2032
2033 row = fAAClip->findX(row, x);
2034 SkAlpha newAlpha = SkMulDiv255Round(alpha, row[1]);
2035 if (newAlpha) {
2036 fBlitter->blitV(x, y, dy, newAlpha);
2037 }
2038 SkASSERT(height >= 0);
2039 if (height <= 0) {
2040 break;
2041 }
2042 y = lastY + 1;
2043 }
2044 }
2045
blitRect(int x,int y,int width,int height)2046 void SkAAClipBlitter::blitRect(int x, int y, int width, int height) {
2047 if (fAAClip->quickContains(x, y, x + width, y + height)) {
2048 fBlitter->blitRect(x, y, width, height);
2049 return;
2050 }
2051
2052 while (--height >= 0) {
2053 this->blitH(x, y, width);
2054 y += 1;
2055 }
2056 }
2057
2058 typedef void (*MergeAAProc)(const void* src, int width, const uint8_t* row,
2059 int initialRowCount, void* dst);
2060
small_memcpy(void * dst,const void * src,size_t n)2061 static void small_memcpy(void* dst, const void* src, size_t n) {
2062 memcpy(dst, src, n);
2063 }
2064
small_bzero(void * dst,size_t n)2065 static void small_bzero(void* dst, size_t n) {
2066 sk_bzero(dst, n);
2067 }
2068
mergeOne(uint8_t value,unsigned alpha)2069 static inline uint8_t mergeOne(uint8_t value, unsigned alpha) {
2070 return SkMulDiv255Round(value, alpha);
2071 }
2072
mergeOne(uint16_t value,unsigned alpha)2073 static inline uint16_t mergeOne(uint16_t value, unsigned alpha) {
2074 unsigned r = SkGetPackedR16(value);
2075 unsigned g = SkGetPackedG16(value);
2076 unsigned b = SkGetPackedB16(value);
2077 return SkPackRGB16(SkMulDiv255Round(r, alpha),
2078 SkMulDiv255Round(g, alpha),
2079 SkMulDiv255Round(b, alpha));
2080 }
2081
2082 template <typename T>
mergeT(const void * inSrc,int srcN,const uint8_t * SK_RESTRICT row,int rowN,void * inDst)2083 void mergeT(const void* inSrc, int srcN, const uint8_t* SK_RESTRICT row, int rowN, void* inDst) {
2084 const T* SK_RESTRICT src = static_cast<const T*>(inSrc);
2085 T* SK_RESTRICT dst = static_cast<T*>(inDst);
2086 for (;;) {
2087 SkASSERT(rowN > 0);
2088 SkASSERT(srcN > 0);
2089
2090 int n = SkMin32(rowN, srcN);
2091 unsigned rowA = row[1];
2092 if (0xFF == rowA) {
2093 small_memcpy(dst, src, n * sizeof(T));
2094 } else if (0 == rowA) {
2095 small_bzero(dst, n * sizeof(T));
2096 } else {
2097 for (int i = 0; i < n; ++i) {
2098 dst[i] = mergeOne(src[i], rowA);
2099 }
2100 }
2101
2102 if (0 == (srcN -= n)) {
2103 break;
2104 }
2105
2106 src += n;
2107 dst += n;
2108
2109 SkASSERT(rowN == n);
2110 row += 2;
2111 rowN = row[0];
2112 }
2113 }
2114
find_merge_aa_proc(SkMask::Format format)2115 static MergeAAProc find_merge_aa_proc(SkMask::Format format) {
2116 switch (format) {
2117 case SkMask::kBW_Format:
2118 SkDEBUGFAIL("unsupported");
2119 return nullptr;
2120 case SkMask::kA8_Format:
2121 case SkMask::k3D_Format:
2122 return mergeT<uint8_t> ;
2123 case SkMask::kLCD16_Format:
2124 return mergeT<uint16_t>;
2125 default:
2126 SkDEBUGFAIL("unsupported");
2127 return nullptr;
2128 }
2129 }
2130
bit2byte(int bitInAByte)2131 static U8CPU bit2byte(int bitInAByte) {
2132 SkASSERT(bitInAByte <= 0xFF);
2133 // negation turns any non-zero into 0xFFFFFF??, so we just shift down
2134 // some value >= 8 to get a full FF value
2135 return -bitInAByte >> 8;
2136 }
2137
upscaleBW2A8(SkMask * dstMask,const SkMask & srcMask)2138 static void upscaleBW2A8(SkMask* dstMask, const SkMask& srcMask) {
2139 SkASSERT(SkMask::kBW_Format == srcMask.fFormat);
2140 SkASSERT(SkMask::kA8_Format == dstMask->fFormat);
2141
2142 const int width = srcMask.fBounds.width();
2143 const int height = srcMask.fBounds.height();
2144
2145 const uint8_t* SK_RESTRICT src = (const uint8_t*)srcMask.fImage;
2146 const size_t srcRB = srcMask.fRowBytes;
2147 uint8_t* SK_RESTRICT dst = (uint8_t*)dstMask->fImage;
2148 const size_t dstRB = dstMask->fRowBytes;
2149
2150 const int wholeBytes = width >> 3;
2151 const int leftOverBits = width & 7;
2152
2153 for (int y = 0; y < height; ++y) {
2154 uint8_t* SK_RESTRICT d = dst;
2155 for (int i = 0; i < wholeBytes; ++i) {
2156 int srcByte = src[i];
2157 d[0] = bit2byte(srcByte & (1 << 7));
2158 d[1] = bit2byte(srcByte & (1 << 6));
2159 d[2] = bit2byte(srcByte & (1 << 5));
2160 d[3] = bit2byte(srcByte & (1 << 4));
2161 d[4] = bit2byte(srcByte & (1 << 3));
2162 d[5] = bit2byte(srcByte & (1 << 2));
2163 d[6] = bit2byte(srcByte & (1 << 1));
2164 d[7] = bit2byte(srcByte & (1 << 0));
2165 d += 8;
2166 }
2167 if (leftOverBits) {
2168 int srcByte = src[wholeBytes];
2169 for (int x = 0; x < leftOverBits; ++x) {
2170 *d++ = bit2byte(srcByte & 0x80);
2171 srcByte <<= 1;
2172 }
2173 }
2174 src += srcRB;
2175 dst += dstRB;
2176 }
2177 }
2178
blitMask(const SkMask & origMask,const SkIRect & clip)2179 void SkAAClipBlitter::blitMask(const SkMask& origMask, const SkIRect& clip) {
2180 SkASSERT(fAAClip->getBounds().contains(clip));
2181
2182 if (fAAClip->quickContains(clip)) {
2183 fBlitter->blitMask(origMask, clip);
2184 return;
2185 }
2186
2187 const SkMask* mask = &origMask;
2188
2189 // if we're BW, we need to upscale to A8 (ugh)
2190 SkMask grayMask;
2191 if (SkMask::kBW_Format == origMask.fFormat) {
2192 grayMask.fFormat = SkMask::kA8_Format;
2193 grayMask.fBounds = origMask.fBounds;
2194 grayMask.fRowBytes = origMask.fBounds.width();
2195 size_t size = grayMask.computeImageSize();
2196 grayMask.fImage = (uint8_t*)fGrayMaskScratch.reset(size,
2197 SkAutoMalloc::kReuse_OnShrink);
2198
2199 upscaleBW2A8(&grayMask, origMask);
2200 mask = &grayMask;
2201 }
2202
2203 this->ensureRunsAndAA();
2204
2205 // HACK -- we are devolving 3D into A8, need to copy the rest of the 3D
2206 // data into a temp block to support it better (ugh)
2207
2208 const void* src = mask->getAddr(clip.fLeft, clip.fTop);
2209 const size_t srcRB = mask->fRowBytes;
2210 const int width = clip.width();
2211 MergeAAProc mergeProc = find_merge_aa_proc(mask->fFormat);
2212
2213 SkMask rowMask;
2214 rowMask.fFormat = SkMask::k3D_Format == mask->fFormat ? SkMask::kA8_Format : mask->fFormat;
2215 rowMask.fBounds.fLeft = clip.fLeft;
2216 rowMask.fBounds.fRight = clip.fRight;
2217 rowMask.fRowBytes = mask->fRowBytes; // doesn't matter, since our height==1
2218 rowMask.fImage = (uint8_t*)fScanlineScratch;
2219
2220 int y = clip.fTop;
2221 const int stopY = y + clip.height();
2222
2223 do {
2224 int localStopY SK_INIT_TO_AVOID_WARNING;
2225 const uint8_t* row = fAAClip->findRow(y, &localStopY);
2226 // findRow returns last Y, not stop, so we add 1
2227 localStopY = SkMin32(localStopY + 1, stopY);
2228
2229 int initialCount;
2230 row = fAAClip->findX(row, clip.fLeft, &initialCount);
2231 do {
2232 mergeProc(src, width, row, initialCount, rowMask.fImage);
2233 rowMask.fBounds.fTop = y;
2234 rowMask.fBounds.fBottom = y + 1;
2235 fBlitter->blitMask(rowMask, rowMask.fBounds);
2236 src = (const void*)((const char*)src + srcRB);
2237 } while (++y < localStopY);
2238 } while (y < stopY);
2239 }
2240
justAnOpaqueColor(uint32_t * value)2241 const SkPixmap* SkAAClipBlitter::justAnOpaqueColor(uint32_t* value) {
2242 return nullptr;
2243 }
2244