• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2013 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkMipMap.h"
9 #include "SkBitmap.h"
10 #include "SkColorData.h"
11 #include "SkHalf.h"
12 #include "SkImageInfoPriv.h"
13 #include "SkMathPriv.h"
14 #include "SkNx.h"
15 #include "SkPM4fPriv.h"
16 #include "SkSRGB.h"
17 #include "SkTypes.h"
18 
19 //
20 // ColorTypeFilter is the "Type" we pass to some downsample template functions.
21 // It controls how we expand a pixel into a large type, with space between each component,
22 // so we can then perform our simple filter (either box or triangle) and store the intermediates
23 // in the expanded type.
24 //
25 
26 struct ColorTypeFilter_8888 {
27     typedef uint32_t Type;
ExpandColorTypeFilter_888828     static Sk4h Expand(uint32_t x) {
29         return SkNx_cast<uint16_t>(Sk4b::Load(&x));
30     }
CompactColorTypeFilter_888831     static uint32_t Compact(const Sk4h& x) {
32         uint32_t r;
33         SkNx_cast<uint8_t>(x).store(&r);
34         return r;
35     }
36 };
37 
38 struct ColorTypeFilter_S32 {
39     typedef uint32_t Type;
ExpandColorTypeFilter_S3240     static Sk4h Expand(uint32_t x) {
41         return Sk4h(sk_linear12_from_srgb[(x      ) & 0xFF],
42                     sk_linear12_from_srgb[(x >>  8) & 0xFF],
43                     sk_linear12_from_srgb[(x >> 16) & 0xFF],
44                                           (x >> 24) <<   4);
45     }
CompactColorTypeFilter_S3246     static uint32_t Compact(const Sk4h& x) {
47         return sk_linear12_to_srgb[x[0]]       |
48                sk_linear12_to_srgb[x[1]] <<  8 |
49                sk_linear12_to_srgb[x[2]] << 16 |
50                (x[3] >> 4)               << 24;
51     }
52 };
53 
54 struct ColorTypeFilter_565 {
55     typedef uint16_t Type;
ExpandColorTypeFilter_56556     static uint32_t Expand(uint16_t x) {
57         return (x & ~SK_G16_MASK_IN_PLACE) | ((x & SK_G16_MASK_IN_PLACE) << 16);
58     }
CompactColorTypeFilter_56559     static uint16_t Compact(uint32_t x) {
60         return (x & ~SK_G16_MASK_IN_PLACE) | ((x >> 16) & SK_G16_MASK_IN_PLACE);
61     }
62 };
63 
64 struct ColorTypeFilter_4444 {
65     typedef uint16_t Type;
ExpandColorTypeFilter_444466     static uint32_t Expand(uint16_t x) {
67         return (x & 0xF0F) | ((x & ~0xF0F) << 12);
68     }
CompactColorTypeFilter_444469     static uint16_t Compact(uint32_t x) {
70         return (x & 0xF0F) | ((x >> 12) & ~0xF0F);
71     }
72 };
73 
74 struct ColorTypeFilter_8 {
75     typedef uint8_t Type;
ExpandColorTypeFilter_876     static unsigned Expand(unsigned x) {
77         return x;
78     }
CompactColorTypeFilter_879     static uint8_t Compact(unsigned x) {
80         return (uint8_t)x;
81     }
82 };
83 
84 struct ColorTypeFilter_F16 {
85     typedef uint64_t Type; // SkHalf x4
ExpandColorTypeFilter_F1686     static Sk4f Expand(uint64_t x) {
87         return SkHalfToFloat_finite_ftz(x);
88     }
CompactColorTypeFilter_F1689     static uint64_t Compact(const Sk4f& x) {
90         uint64_t r;
91         SkFloatToHalf_finite_ftz(x).store(&r);
92         return r;
93     }
94 };
95 
add_121(const T & a,const T & b,const T & c)96 template <typename T> T add_121(const T& a, const T& b, const T& c) {
97     return a + b + b + c;
98 }
99 
shift_right(const T & x,int bits)100 template <typename T> T shift_right(const T& x, int bits) {
101     return x >> bits;
102 }
103 
shift_right(const Sk4f & x,int bits)104 Sk4f shift_right(const Sk4f& x, int bits) {
105     return x * (1.0f / (1 << bits));
106 }
107 
shift_left(const T & x,int bits)108 template <typename T> T shift_left(const T& x, int bits) {
109     return x << bits;
110 }
111 
shift_left(const Sk4f & x,int bits)112 Sk4f shift_left(const Sk4f& x, int bits) {
113     return x * (1 << bits);
114 }
115 
116 //
117 //  To produce each mip level, we need to filter down by 1/2 (e.g. 100x100 -> 50,50)
118 //  If the starting dimension is odd, we floor the size of the lower level (e.g. 101 -> 50)
119 //  In those (odd) cases, we use a triangle filter, with 1-pixel overlap between samplings,
120 //  else for even cases, we just use a 2x box filter.
121 //
122 //  This produces 4 possible isotropic filters: 2x2 2x3 3x2 3x3 where WxH indicates the number of
123 //  src pixels we need to sample in each dimension to produce 1 dst pixel.
124 //
125 //  OpenGL expects a full mipmap stack to contain anisotropic space as well.
126 //  This means a 100x1 image would continue down to a 50x1 image, 25x1 image...
127 //  Because of this, we need 4 more anisotropic filters: 1x2, 1x3, 2x1, 3x1.
128 
downsample_1_2(void * dst,const void * src,size_t srcRB,int count)129 template <typename F> void downsample_1_2(void* dst, const void* src, size_t srcRB, int count) {
130     SkASSERT(count > 0);
131     auto p0 = static_cast<const typename F::Type*>(src);
132     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
133     auto d = static_cast<typename F::Type*>(dst);
134 
135     for (int i = 0; i < count; ++i) {
136         auto c00 = F::Expand(p0[0]);
137         auto c10 = F::Expand(p1[0]);
138 
139         auto c = c00 + c10;
140         d[i] = F::Compact(shift_right(c, 1));
141         p0 += 2;
142         p1 += 2;
143     }
144 }
145 
downsample_1_3(void * dst,const void * src,size_t srcRB,int count)146 template <typename F> void downsample_1_3(void* dst, const void* src, size_t srcRB, int count) {
147     SkASSERT(count > 0);
148     auto p0 = static_cast<const typename F::Type*>(src);
149     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
150     auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
151     auto d = static_cast<typename F::Type*>(dst);
152 
153     for (int i = 0; i < count; ++i) {
154         auto c00 = F::Expand(p0[0]);
155         auto c10 = F::Expand(p1[0]);
156         auto c20 = F::Expand(p2[0]);
157 
158         auto c = add_121(c00, c10, c20);
159         d[i] = F::Compact(shift_right(c, 2));
160         p0 += 2;
161         p1 += 2;
162         p2 += 2;
163     }
164 }
165 
downsample_2_1(void * dst,const void * src,size_t srcRB,int count)166 template <typename F> void downsample_2_1(void* dst, const void* src, size_t srcRB, int count) {
167     SkASSERT(count > 0);
168     auto p0 = static_cast<const typename F::Type*>(src);
169     auto d = static_cast<typename F::Type*>(dst);
170 
171     for (int i = 0; i < count; ++i) {
172         auto c00 = F::Expand(p0[0]);
173         auto c01 = F::Expand(p0[1]);
174 
175         auto c = c00 + c01;
176         d[i] = F::Compact(shift_right(c, 1));
177         p0 += 2;
178     }
179 }
180 
downsample_2_2(void * dst,const void * src,size_t srcRB,int count)181 template <typename F> void downsample_2_2(void* dst, const void* src, size_t srcRB, int count) {
182     SkASSERT(count > 0);
183     auto p0 = static_cast<const typename F::Type*>(src);
184     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
185     auto d = static_cast<typename F::Type*>(dst);
186 
187     for (int i = 0; i < count; ++i) {
188         auto c00 = F::Expand(p0[0]);
189         auto c01 = F::Expand(p0[1]);
190         auto c10 = F::Expand(p1[0]);
191         auto c11 = F::Expand(p1[1]);
192 
193         auto c = c00 + c10 + c01 + c11;
194         d[i] = F::Compact(shift_right(c, 2));
195         p0 += 2;
196         p1 += 2;
197     }
198 }
199 
downsample_2_3(void * dst,const void * src,size_t srcRB,int count)200 template <typename F> void downsample_2_3(void* dst, const void* src, size_t srcRB, int count) {
201     SkASSERT(count > 0);
202     auto p0 = static_cast<const typename F::Type*>(src);
203     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
204     auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
205     auto d = static_cast<typename F::Type*>(dst);
206 
207     for (int i = 0; i < count; ++i) {
208         auto c00 = F::Expand(p0[0]);
209         auto c01 = F::Expand(p0[1]);
210         auto c10 = F::Expand(p1[0]);
211         auto c11 = F::Expand(p1[1]);
212         auto c20 = F::Expand(p2[0]);
213         auto c21 = F::Expand(p2[1]);
214 
215         auto c = add_121(c00, c10, c20) + add_121(c01, c11, c21);
216         d[i] = F::Compact(shift_right(c, 3));
217         p0 += 2;
218         p1 += 2;
219         p2 += 2;
220     }
221 }
222 
downsample_3_1(void * dst,const void * src,size_t srcRB,int count)223 template <typename F> void downsample_3_1(void* dst, const void* src, size_t srcRB, int count) {
224     SkASSERT(count > 0);
225     auto p0 = static_cast<const typename F::Type*>(src);
226     auto d = static_cast<typename F::Type*>(dst);
227 
228     auto c02 = F::Expand(p0[0]);
229     for (int i = 0; i < count; ++i) {
230         auto c00 = c02;
231         auto c01 = F::Expand(p0[1]);
232              c02 = F::Expand(p0[2]);
233 
234         auto c = add_121(c00, c01, c02);
235         d[i] = F::Compact(shift_right(c, 2));
236         p0 += 2;
237     }
238 }
239 
downsample_3_2(void * dst,const void * src,size_t srcRB,int count)240 template <typename F> void downsample_3_2(void* dst, const void* src, size_t srcRB, int count) {
241     SkASSERT(count > 0);
242     auto p0 = static_cast<const typename F::Type*>(src);
243     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
244     auto d = static_cast<typename F::Type*>(dst);
245 
246     // Given pixels:
247     // a0 b0 c0 d0 e0 ...
248     // a1 b1 c1 d1 e1 ...
249     // We want:
250     // (a0 + 2*b0 + c0 + a1 + 2*b1 + c1) / 8
251     // (c0 + 2*d0 + e0 + c1 + 2*d1 + e1) / 8
252     // ...
253 
254     auto c0 = F::Expand(p0[0]);
255     auto c1 = F::Expand(p1[0]);
256     auto c = c0 + c1;
257     for (int i = 0; i < count; ++i) {
258         auto a = c;
259 
260         auto b0 = F::Expand(p0[1]);
261         auto b1 = F::Expand(p1[1]);
262         auto b = b0 + b0 + b1 + b1;
263 
264         c0 = F::Expand(p0[2]);
265         c1 = F::Expand(p1[2]);
266         c = c0 + c1;
267 
268         auto sum = a + b + c;
269         d[i] = F::Compact(shift_right(sum, 3));
270         p0 += 2;
271         p1 += 2;
272     }
273 }
274 
downsample_3_3(void * dst,const void * src,size_t srcRB,int count)275 template <typename F> void downsample_3_3(void* dst, const void* src, size_t srcRB, int count) {
276     SkASSERT(count > 0);
277     auto p0 = static_cast<const typename F::Type*>(src);
278     auto p1 = (const typename F::Type*)((const char*)p0 + srcRB);
279     auto p2 = (const typename F::Type*)((const char*)p1 + srcRB);
280     auto d = static_cast<typename F::Type*>(dst);
281 
282     // Given pixels:
283     // a0 b0 c0 d0 e0 ...
284     // a1 b1 c1 d1 e1 ...
285     // a2 b2 c2 d2 e2 ...
286     // We want:
287     // (a0 + 2*b0 + c0 + 2*a1 + 4*b1 + 2*c1 + a2 + 2*b2 + c2) / 16
288     // (c0 + 2*d0 + e0 + 2*c1 + 4*d1 + 2*e1 + c2 + 2*d2 + e2) / 16
289     // ...
290 
291     auto c0 = F::Expand(p0[0]);
292     auto c1 = F::Expand(p1[0]);
293     auto c2 = F::Expand(p2[0]);
294     auto c = add_121(c0, c1, c2);
295     for (int i = 0; i < count; ++i) {
296         auto a = c;
297 
298         auto b0 = F::Expand(p0[1]);
299         auto b1 = F::Expand(p1[1]);
300         auto b2 = F::Expand(p2[1]);
301         auto b = shift_left(add_121(b0, b1, b2), 1);
302 
303         c0 = F::Expand(p0[2]);
304         c1 = F::Expand(p1[2]);
305         c2 = F::Expand(p2[2]);
306         c = add_121(c0, c1, c2);
307 
308         auto sum = a + b + c;
309         d[i] = F::Compact(shift_right(sum, 4));
310         p0 += 2;
311         p1 += 2;
312         p2 += 2;
313     }
314 }
315 
316 ///////////////////////////////////////////////////////////////////////////////////////////////////
317 
318 // Some sRGB specific performance optimizations.
319 
downsample_2_2_srgb(void * dst,const void * src,size_t srcRB,int count)320 void downsample_2_2_srgb(void* dst, const void* src, size_t srcRB, int count) {
321     const uint8_t* p0 = ((const uint8_t*) src);
322     const uint8_t* p1 = ((const uint8_t*) src) + srcRB;
323     uint8_t* d = (uint8_t*) dst;
324 
325     // Given pixels:
326     // a0 b0 c0 d0 ...
327     // a1 b1 c1 d1 ...
328     // We want:
329     // (a0 + b0 + a1 + b1) / 4
330     // (c0 + d0 + c1 + d1) / 4
331     // ...
332     while (count >= 2) {
333         Sk8h a0c0 = Sk8h(sk_linear12_from_srgb[p0[ 0]],
334                          sk_linear12_from_srgb[p0[ 1]],
335                          sk_linear12_from_srgb[p0[ 2]],
336                          p0[ 3] << 4                  ,
337                          sk_linear12_from_srgb[p0[ 8]],
338                          sk_linear12_from_srgb[p0[ 9]],
339                          sk_linear12_from_srgb[p0[10]],
340                          p0[11] << 4                 );
341         Sk8h b0d0 = Sk8h(sk_linear12_from_srgb[p0[ 4]],
342                          sk_linear12_from_srgb[p0[ 5]],
343                          sk_linear12_from_srgb[p0[ 6]],
344                          p0[ 7] << 4                  ,
345                          sk_linear12_from_srgb[p0[12]],
346                          sk_linear12_from_srgb[p0[13]],
347                          sk_linear12_from_srgb[p0[14]],
348                          p0[15] << 4                 );
349         Sk8h a1c1 = Sk8h(sk_linear12_from_srgb[p1[ 0]],
350                          sk_linear12_from_srgb[p1[ 1]],
351                          sk_linear12_from_srgb[p1[ 2]],
352                          p1[ 3] << 4                  ,
353                          sk_linear12_from_srgb[p1[ 8]],
354                          sk_linear12_from_srgb[p1[ 9]],
355                          sk_linear12_from_srgb[p1[10]],
356                          p1[11] << 4                 );
357         Sk8h b1d1 = Sk8h(sk_linear12_from_srgb[p1[ 4]],
358                          sk_linear12_from_srgb[p1[ 5]],
359                          sk_linear12_from_srgb[p1[ 6]],
360                          p1[ 7] << 4                  ,
361                          sk_linear12_from_srgb[p1[12]],
362                          sk_linear12_from_srgb[p1[13]],
363                          sk_linear12_from_srgb[p1[14]],
364                          p1[15] << 4                 );
365 
366         Sk8h avg = (a0c0 + b0d0 + a1c1 + b1d1) >> 2;
367         d[0] = sk_linear12_to_srgb[avg[0]];
368         d[1] = sk_linear12_to_srgb[avg[1]];
369         d[2] = sk_linear12_to_srgb[avg[2]];
370         d[3] = avg[3] >> 4;
371         d[4] = sk_linear12_to_srgb[avg[4]];
372         d[5] = sk_linear12_to_srgb[avg[5]];
373         d[6] = sk_linear12_to_srgb[avg[6]];
374         d[7] = avg[7] >> 4;
375 
376         p0 += 16;
377         p1 += 16;
378         d += 8;
379         count -= 2;
380     }
381 
382     if (count) {
383         downsample_2_2<ColorTypeFilter_S32>(d, p0, srcRB, count);
384     }
385 }
386 
downsample_2_3_srgb(void * dst,const void * src,size_t srcRB,int count)387 void downsample_2_3_srgb(void* dst, const void* src, size_t srcRB, int count) {
388     const uint8_t* p0 = ((const uint8_t*) src);
389     const uint8_t* p1 = p0 + srcRB;
390     const uint8_t* p2 = p1 + srcRB;
391     uint8_t* d = (uint8_t*) dst;
392 
393     // Given pixels:
394     // a0 b0 c0 d0 ...
395     // a1 b1 c1 d1 ...
396     // a2 b2 c2 d2 ...
397     // We want:
398     // (a0 + b0 + 2*a1 + 2*b1 + a2 + b2) / 8
399     // (c0 + d0 + 2*c1 + 2*d1 + c2 + d2) / 8
400     // ...
401     while (count >= 2) {
402         Sk8h a0c0 = Sk8h(sk_linear12_from_srgb[p0[ 0]],
403                          sk_linear12_from_srgb[p0[ 1]],
404                          sk_linear12_from_srgb[p0[ 2]],
405                          p0[ 3] << 4                  ,
406                          sk_linear12_from_srgb[p0[ 8]],
407                          sk_linear12_from_srgb[p0[ 9]],
408                          sk_linear12_from_srgb[p0[10]],
409                          p0[11] << 4                 );
410         Sk8h b0d0 = Sk8h(sk_linear12_from_srgb[p0[ 4]],
411                          sk_linear12_from_srgb[p0[ 5]],
412                          sk_linear12_from_srgb[p0[ 6]],
413                          p0[ 7] << 4                  ,
414                          sk_linear12_from_srgb[p0[12]],
415                          sk_linear12_from_srgb[p0[13]],
416                          sk_linear12_from_srgb[p0[14]],
417                          p0[15] << 4                 );
418         Sk8h a1c1 = Sk8h(sk_linear12_from_srgb[p1[ 0]],
419                          sk_linear12_from_srgb[p1[ 1]],
420                          sk_linear12_from_srgb[p1[ 2]],
421                          p1[ 3] << 4                  ,
422                          sk_linear12_from_srgb[p1[ 8]],
423                          sk_linear12_from_srgb[p1[ 9]],
424                          sk_linear12_from_srgb[p1[10]],
425                          p1[11] << 4                 );
426         Sk8h b1d1 = Sk8h(sk_linear12_from_srgb[p1[ 4]],
427                          sk_linear12_from_srgb[p1[ 5]],
428                          sk_linear12_from_srgb[p1[ 6]],
429                          p1[ 7] << 4                  ,
430                          sk_linear12_from_srgb[p1[12]],
431                          sk_linear12_from_srgb[p1[13]],
432                          sk_linear12_from_srgb[p1[14]],
433                          p1[15] << 4                 );
434         Sk8h a2c2 = Sk8h(sk_linear12_from_srgb[p2[ 0]],
435                          sk_linear12_from_srgb[p2[ 1]],
436                          sk_linear12_from_srgb[p2[ 2]],
437                          p2[ 3] << 4                  ,
438                          sk_linear12_from_srgb[p2[ 8]],
439                          sk_linear12_from_srgb[p2[ 9]],
440                          sk_linear12_from_srgb[p2[10]],
441                          p2[11] << 4                 );
442         Sk8h b2d2 = Sk8h(sk_linear12_from_srgb[p2[ 4]],
443                          sk_linear12_from_srgb[p2[ 5]],
444                          sk_linear12_from_srgb[p2[ 6]],
445                          p2[ 7] << 4                  ,
446                          sk_linear12_from_srgb[p2[12]],
447                          sk_linear12_from_srgb[p2[13]],
448                          sk_linear12_from_srgb[p2[14]],
449                          p2[15] << 4                 );
450 
451         Sk8h avg = (a0c0 + b0d0 + a1c1 + a1c1 + b1d1 + b1d1 + a2c2 + b2d2) >> 3;
452         d[0] = sk_linear12_to_srgb[avg[0]];
453         d[1] = sk_linear12_to_srgb[avg[1]];
454         d[2] = sk_linear12_to_srgb[avg[2]];
455         d[3] = avg[3] >> 4;
456         d[4] = sk_linear12_to_srgb[avg[4]];
457         d[5] = sk_linear12_to_srgb[avg[5]];
458         d[6] = sk_linear12_to_srgb[avg[6]];
459         d[7] = avg[7] >> 4;
460 
461         p0 += 16;
462         p1 += 16;
463         p2 += 16;
464         d += 8;
465         count -= 2;
466     }
467 
468     if (count) {
469         downsample_2_3<ColorTypeFilter_S32>(d, p0, srcRB, count);
470     }
471 }
472 
473 ///////////////////////////////////////////////////////////////////////////////////////////////////
474 
AllocLevelsSize(int levelCount,size_t pixelSize)475 size_t SkMipMap::AllocLevelsSize(int levelCount, size_t pixelSize) {
476     if (levelCount < 0) {
477         return 0;
478     }
479     int64_t size = sk_64_mul(levelCount + 1, sizeof(Level)) + pixelSize;
480     if (!sk_64_isS32(size)) {
481         return 0;
482     }
483     return sk_64_asS32(size);
484 }
485 
Build(const SkPixmap & src,SkDestinationSurfaceColorMode colorMode,SkDiscardableFactoryProc fact)486 SkMipMap* SkMipMap::Build(const SkPixmap& src, SkDestinationSurfaceColorMode colorMode,
487                           SkDiscardableFactoryProc fact) {
488     typedef void FilterProc(void*, const void* srcPtr, size_t srcRB, int count);
489 
490     FilterProc* proc_1_2 = nullptr;
491     FilterProc* proc_1_3 = nullptr;
492     FilterProc* proc_2_1 = nullptr;
493     FilterProc* proc_2_2 = nullptr;
494     FilterProc* proc_2_3 = nullptr;
495     FilterProc* proc_3_1 = nullptr;
496     FilterProc* proc_3_2 = nullptr;
497     FilterProc* proc_3_3 = nullptr;
498 
499     const SkColorType ct = src.colorType();
500     const SkAlphaType at = src.alphaType();
501     const bool srgbGamma = (SkDestinationSurfaceColorMode::kGammaAndColorSpaceAware == colorMode)
502                             && src.info().gammaCloseToSRGB();
503 
504     switch (ct) {
505         case kRGBA_8888_SkColorType:
506         case kBGRA_8888_SkColorType:
507             if (srgbGamma) {
508                 proc_1_2 = downsample_1_2<ColorTypeFilter_S32>;
509                 proc_1_3 = downsample_1_3<ColorTypeFilter_S32>;
510                 proc_2_1 = downsample_2_1<ColorTypeFilter_S32>;
511                 proc_2_2 = downsample_2_2_srgb;
512                 proc_2_3 = downsample_2_3_srgb;
513                 proc_3_1 = downsample_3_1<ColorTypeFilter_S32>;
514                 proc_3_2 = downsample_3_2<ColorTypeFilter_S32>;
515                 proc_3_3 = downsample_3_3<ColorTypeFilter_S32>;
516             } else {
517                 proc_1_2 = downsample_1_2<ColorTypeFilter_8888>;
518                 proc_1_3 = downsample_1_3<ColorTypeFilter_8888>;
519                 proc_2_1 = downsample_2_1<ColorTypeFilter_8888>;
520                 proc_2_2 = downsample_2_2<ColorTypeFilter_8888>;
521                 proc_2_3 = downsample_2_3<ColorTypeFilter_8888>;
522                 proc_3_1 = downsample_3_1<ColorTypeFilter_8888>;
523                 proc_3_2 = downsample_3_2<ColorTypeFilter_8888>;
524                 proc_3_3 = downsample_3_3<ColorTypeFilter_8888>;
525             }
526             break;
527         case kRGB_565_SkColorType:
528             proc_1_2 = downsample_1_2<ColorTypeFilter_565>;
529             proc_1_3 = downsample_1_3<ColorTypeFilter_565>;
530             proc_2_1 = downsample_2_1<ColorTypeFilter_565>;
531             proc_2_2 = downsample_2_2<ColorTypeFilter_565>;
532             proc_2_3 = downsample_2_3<ColorTypeFilter_565>;
533             proc_3_1 = downsample_3_1<ColorTypeFilter_565>;
534             proc_3_2 = downsample_3_2<ColorTypeFilter_565>;
535             proc_3_3 = downsample_3_3<ColorTypeFilter_565>;
536             break;
537         case kARGB_4444_SkColorType:
538             proc_1_2 = downsample_1_2<ColorTypeFilter_4444>;
539             proc_1_3 = downsample_1_3<ColorTypeFilter_4444>;
540             proc_2_1 = downsample_2_1<ColorTypeFilter_4444>;
541             proc_2_2 = downsample_2_2<ColorTypeFilter_4444>;
542             proc_2_3 = downsample_2_3<ColorTypeFilter_4444>;
543             proc_3_1 = downsample_3_1<ColorTypeFilter_4444>;
544             proc_3_2 = downsample_3_2<ColorTypeFilter_4444>;
545             proc_3_3 = downsample_3_3<ColorTypeFilter_4444>;
546             break;
547         case kAlpha_8_SkColorType:
548         case kGray_8_SkColorType:
549             proc_1_2 = downsample_1_2<ColorTypeFilter_8>;
550             proc_1_3 = downsample_1_3<ColorTypeFilter_8>;
551             proc_2_1 = downsample_2_1<ColorTypeFilter_8>;
552             proc_2_2 = downsample_2_2<ColorTypeFilter_8>;
553             proc_2_3 = downsample_2_3<ColorTypeFilter_8>;
554             proc_3_1 = downsample_3_1<ColorTypeFilter_8>;
555             proc_3_2 = downsample_3_2<ColorTypeFilter_8>;
556             proc_3_3 = downsample_3_3<ColorTypeFilter_8>;
557             break;
558         case kRGBA_F16_SkColorType:
559             proc_1_2 = downsample_1_2<ColorTypeFilter_F16>;
560             proc_1_3 = downsample_1_3<ColorTypeFilter_F16>;
561             proc_2_1 = downsample_2_1<ColorTypeFilter_F16>;
562             proc_2_2 = downsample_2_2<ColorTypeFilter_F16>;
563             proc_2_3 = downsample_2_3<ColorTypeFilter_F16>;
564             proc_3_1 = downsample_3_1<ColorTypeFilter_F16>;
565             proc_3_2 = downsample_3_2<ColorTypeFilter_F16>;
566             proc_3_3 = downsample_3_3<ColorTypeFilter_F16>;
567             break;
568         default:
569             // TODO: We could build miplevels for kIndex8 if the levels were in 8888.
570             //       Means using more ram, but the quality would be fine.
571             return nullptr;
572     }
573 
574     if (src.width() <= 1 && src.height() <= 1) {
575         return nullptr;
576     }
577     // whip through our loop to compute the exact size needed
578     size_t size = 0;
579     int countLevels = ComputeLevelCount(src.width(), src.height());
580     for (int currentMipLevel = countLevels; currentMipLevel >= 0; currentMipLevel--) {
581         SkISize mipSize = ComputeLevelSize(src.width(), src.height(), currentMipLevel);
582         size += SkColorTypeMinRowBytes(ct, mipSize.fWidth) * mipSize.fHeight;
583     }
584 
585     size_t storageSize = SkMipMap::AllocLevelsSize(countLevels, size);
586     if (0 == storageSize) {
587         return nullptr;
588     }
589 
590     SkMipMap* mipmap;
591     if (fact) {
592         SkDiscardableMemory* dm = fact(storageSize);
593         if (nullptr == dm) {
594             return nullptr;
595         }
596         mipmap = new SkMipMap(storageSize, dm);
597     } else {
598         mipmap = new SkMipMap(sk_malloc_throw(storageSize), storageSize);
599     }
600 
601     // init
602     mipmap->fCS = sk_ref_sp(src.info().colorSpace());
603     mipmap->fCount = countLevels;
604     mipmap->fLevels = (Level*)mipmap->writable_data();
605     SkASSERT(mipmap->fLevels);
606 
607     Level* levels = mipmap->fLevels;
608     uint8_t*    baseAddr = (uint8_t*)&levels[countLevels];
609     uint8_t*    addr = baseAddr;
610     int         width = src.width();
611     int         height = src.height();
612     uint32_t    rowBytes;
613     SkPixmap    srcPM(src);
614 
615     for (int i = 0; i < countLevels; ++i) {
616         FilterProc* proc;
617         if (height & 1) {
618             if (height == 1) {        // src-height is 1
619                 if (width & 1) {      // src-width is 3
620                     proc = proc_3_1;
621                 } else {              // src-width is 2
622                     proc = proc_2_1;
623                 }
624             } else {                  // src-height is 3
625                 if (width & 1) {
626                     if (width == 1) { // src-width is 1
627                         proc = proc_1_3;
628                     } else {          // src-width is 3
629                         proc = proc_3_3;
630                     }
631                 } else {              // src-width is 2
632                     proc = proc_2_3;
633                 }
634             }
635         } else {                      // src-height is 2
636             if (width & 1) {
637                 if (width == 1) {     // src-width is 1
638                     proc = proc_1_2;
639                 } else {              // src-width is 3
640                     proc = proc_3_2;
641                 }
642             } else {                  // src-width is 2
643                 proc = proc_2_2;
644             }
645         }
646         width = SkTMax(1, width >> 1);
647         height = SkTMax(1, height >> 1);
648         rowBytes = SkToU32(SkColorTypeMinRowBytes(ct, width));
649 
650         // We make the Info w/o any colorspace, since that storage is not under our control, and
651         // will not be deleted in a controlled fashion. When the caller is given the pixmap for
652         // a given level, we augment this pixmap with fCS (which we do manage).
653         new (&levels[i].fPixmap) SkPixmap(SkImageInfo::Make(width, height, ct, at), addr, rowBytes);
654         levels[i].fScale  = SkSize::Make(SkIntToScalar(width)  / src.width(),
655                                          SkIntToScalar(height) / src.height());
656 
657         const SkPixmap& dstPM = levels[i].fPixmap;
658         const void* srcBasePtr = srcPM.addr();
659         void* dstBasePtr = dstPM.writable_addr();
660 
661         const size_t srcRB = srcPM.rowBytes();
662         for (int y = 0; y < height; y++) {
663             proc(dstBasePtr, srcBasePtr, srcRB, width);
664             srcBasePtr = (char*)srcBasePtr + srcRB * 2; // jump two rows
665             dstBasePtr = (char*)dstBasePtr + dstPM.rowBytes();
666         }
667         srcPM = dstPM;
668         addr += height * rowBytes;
669     }
670     SkASSERT(addr == baseAddr + size);
671 
672     SkASSERT(mipmap->fLevels);
673     return mipmap;
674 }
675 
ComputeLevelCount(int baseWidth,int baseHeight)676 int SkMipMap::ComputeLevelCount(int baseWidth, int baseHeight) {
677     if (baseWidth < 1 || baseHeight < 1) {
678         return 0;
679     }
680 
681     // OpenGL's spec requires that each mipmap level have height/width equal to
682     // max(1, floor(original_height / 2^i)
683     // (or original_width) where i is the mipmap level.
684     // Continue scaling down until both axes are size 1.
685 
686     const int largestAxis = SkTMax(baseWidth, baseHeight);
687     if (largestAxis < 2) {
688         // SkMipMap::Build requires a minimum size of 2.
689         return 0;
690     }
691     const int leadingZeros = SkCLZ(static_cast<uint32_t>(largestAxis));
692     // If the value 00011010 has 3 leading 0s then it has 5 significant bits
693     // (the bits which are not leading zeros)
694     const int significantBits = (sizeof(uint32_t) * 8) - leadingZeros;
695     // This is making the assumption that the size of a byte is 8 bits
696     // and that sizeof(uint32_t)'s implementation-defined behavior is 4.
697     int mipLevelCount = significantBits;
698 
699     // SkMipMap does not include the base mip level.
700     // For example, it contains levels 1-x instead of 0-x.
701     // This is because the image used to create SkMipMap is the base level.
702     // So subtract 1 from the mip level count.
703     if (mipLevelCount > 0) {
704         --mipLevelCount;
705     }
706 
707     return mipLevelCount;
708 }
709 
ComputeLevelSize(int baseWidth,int baseHeight,int level)710 SkISize SkMipMap::ComputeLevelSize(int baseWidth, int baseHeight, int level) {
711     if (baseWidth < 1 || baseHeight < 1) {
712         return SkISize::Make(0, 0);
713     }
714 
715     int maxLevelCount = ComputeLevelCount(baseWidth, baseHeight);
716     if (level >= maxLevelCount || level < 0) {
717         return SkISize::Make(0, 0);
718     }
719     // OpenGL's spec requires that each mipmap level have height/width equal to
720     // max(1, floor(original_height / 2^i)
721     // (or original_width) where i is the mipmap level.
722 
723     // SkMipMap does not include the base mip level.
724     // For example, it contains levels 1-x instead of 0-x.
725     // This is because the image used to create SkMipMap is the base level.
726     // So subtract 1 from the mip level to get the index stored by SkMipMap.
727     int width = SkTMax(1, baseWidth >> (level + 1));
728     int height = SkTMax(1, baseHeight >> (level + 1));
729 
730     return SkISize::Make(width, height);
731 }
732 
733 ///////////////////////////////////////////////////////////////////////////////
734 
extractLevel(const SkSize & scaleSize,Level * levelPtr) const735 bool SkMipMap::extractLevel(const SkSize& scaleSize, Level* levelPtr) const {
736     if (nullptr == fLevels) {
737         return false;
738     }
739 
740     SkASSERT(scaleSize.width() >= 0 && scaleSize.height() >= 0);
741 
742 #ifndef SK_SUPPORT_LEGACY_ANISOTROPIC_MIPMAP_SCALE
743     // Use the smallest scale to match the GPU impl.
744     const SkScalar scale = SkTMin(scaleSize.width(), scaleSize.height());
745 #else
746     // Ideally we'd pick the smaller scale, to match Ganesh.  But ignoring one of the
747     // scales can produce some atrocious results, so for now we use the geometric mean.
748     // (https://bugs.chromium.org/p/skia/issues/detail?id=4863)
749     const SkScalar scale = SkScalarSqrt(scaleSize.width() * scaleSize.height());
750 #endif
751 
752     if (scale >= SK_Scalar1 || scale <= 0 || !SkScalarIsFinite(scale)) {
753         return false;
754     }
755 
756     SkScalar L = -SkScalarLog2(scale);
757     if (!SkScalarIsFinite(L)) {
758         return false;
759     }
760     SkASSERT(L >= 0);
761     int level = SkScalarFloorToInt(L);
762 
763     SkASSERT(level >= 0);
764     if (level <= 0) {
765         return false;
766     }
767 
768     if (level > fCount) {
769         level = fCount;
770     }
771     if (levelPtr) {
772         *levelPtr = fLevels[level - 1];
773         // need to augment with our colorspace
774         levelPtr->fPixmap.setColorSpace(fCS);
775     }
776     return true;
777 }
778 
779 // Helper which extracts a pixmap from the src bitmap
780 //
Build(const SkBitmap & src,SkDestinationSurfaceColorMode colorMode,SkDiscardableFactoryProc fact)781 SkMipMap* SkMipMap::Build(const SkBitmap& src, SkDestinationSurfaceColorMode colorMode,
782                           SkDiscardableFactoryProc fact) {
783     SkPixmap srcPixmap;
784     if (!src.peekPixels(&srcPixmap)) {
785         return nullptr;
786     }
787     return Build(srcPixmap, colorMode, fact);
788 }
789 
countLevels() const790 int SkMipMap::countLevels() const {
791     return fCount;
792 }
793 
getLevel(int index,Level * levelPtr) const794 bool SkMipMap::getLevel(int index, Level* levelPtr) const {
795     if (nullptr == fLevels) {
796         return false;
797     }
798     if (index < 0) {
799         return false;
800     }
801     if (index > fCount - 1) {
802         return false;
803     }
804     if (levelPtr) {
805         *levelPtr = fLevels[index];
806     }
807     return true;
808 }
809