1 /*
2 * Copyright 2008 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8
9 #include "SkMathPriv.h"
10 #include "SkPointPriv.h"
11
12 #if 0
13 void SkIPoint::rotateCW(SkIPoint* dst) const {
14 SkASSERT(dst);
15
16 // use a tmp in case this == dst
17 int32_t tmp = fX;
18 dst->fX = -fY;
19 dst->fY = tmp;
20 }
21
22 void SkIPoint::rotateCCW(SkIPoint* dst) const {
23 SkASSERT(dst);
24
25 // use a tmp in case this == dst
26 int32_t tmp = fX;
27 dst->fX = fY;
28 dst->fY = -tmp;
29 }
30 #endif
31
32 ///////////////////////////////////////////////////////////////////////////////
33
scale(SkScalar scale,SkPoint * dst) const34 void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
35 SkASSERT(dst);
36 dst->set(fX * scale, fY * scale);
37 }
38
normalize()39 bool SkPoint::normalize() {
40 return this->setLength(fX, fY, SK_Scalar1);
41 }
42
setNormalize(SkScalar x,SkScalar y)43 bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
44 return this->setLength(x, y, SK_Scalar1);
45 }
46
setLength(SkScalar length)47 bool SkPoint::setLength(SkScalar length) {
48 return this->setLength(fX, fY, length);
49 }
50
51 // Returns the square of the Euclidian distance to (dx,dy).
getLengthSquared(float dx,float dy)52 static inline float getLengthSquared(float dx, float dy) {
53 return dx * dx + dy * dy;
54 }
55
56 // Calculates the square of the Euclidian distance to (dx,dy) and stores it in
57 // *lengthSquared. Returns true if the distance is judged to be "nearly zero".
58 //
59 // This logic is encapsulated in a helper method to make it explicit that we
60 // always perform this check in the same manner, to avoid inconsistencies
61 // (see http://code.google.com/p/skia/issues/detail?id=560 ).
is_length_nearly_zero(float dx,float dy,float * lengthSquared)62 static inline bool is_length_nearly_zero(float dx, float dy,
63 float *lengthSquared) {
64 *lengthSquared = getLengthSquared(dx, dy);
65 return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
66 }
67
Normalize(SkPoint * pt)68 SkScalar SkPoint::Normalize(SkPoint* pt) {
69 float x = pt->fX;
70 float y = pt->fY;
71 float mag2;
72 if (is_length_nearly_zero(x, y, &mag2)) {
73 pt->set(0, 0);
74 return 0;
75 }
76
77 float mag, scale;
78 if (SkScalarIsFinite(mag2)) {
79 mag = sk_float_sqrt(mag2);
80 scale = 1 / mag;
81 } else {
82 // our mag2 step overflowed to infinity, so use doubles instead.
83 // much slower, but needed when x or y are very large, other wise we
84 // divide by inf. and return (0,0) vector.
85 double xx = x;
86 double yy = y;
87 double magmag = sqrt(xx * xx + yy * yy);
88 mag = (float)magmag;
89 // we perform the divide with the double magmag, to stay exactly the
90 // same as setLength. It would be faster to perform the divide with
91 // mag, but it is possible that mag has overflowed to inf. but still
92 // have a non-zero value for scale (thanks to denormalized numbers).
93 scale = (float)(1 / magmag);
94 }
95 pt->set(x * scale, y * scale);
96 return mag;
97 }
98
Length(SkScalar dx,SkScalar dy)99 SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
100 float mag2 = dx * dx + dy * dy;
101 if (SkScalarIsFinite(mag2)) {
102 return sk_float_sqrt(mag2);
103 } else {
104 double xx = dx;
105 double yy = dy;
106 return sk_double_to_float(sqrt(xx * xx + yy * yy));
107 }
108 }
109
110 /*
111 * We have to worry about 2 tricky conditions:
112 * 1. underflow of mag2 (compared against nearlyzero^2)
113 * 2. overflow of mag2 (compared w/ isfinite)
114 *
115 * If we underflow, we return false. If we overflow, we compute again using
116 * doubles, which is much slower (3x in a desktop test) but will not overflow.
117 */
setLength(float x,float y,float length)118 bool SkPoint::setLength(float x, float y, float length) {
119 float mag2;
120 if (is_length_nearly_zero(x, y, &mag2)) {
121 this->set(0, 0);
122 return false;
123 }
124
125 float scale;
126 if (SkScalarIsFinite(mag2)) {
127 scale = length / sk_float_sqrt(mag2);
128 } else {
129 // our mag2 step overflowed to infinity, so use doubles instead.
130 // much slower, but needed when x or y are very large, other wise we
131 // divide by inf. and return (0,0) vector.
132 double xx = x;
133 double yy = y;
134 #ifdef SK_CPU_FLUSH_TO_ZERO
135 // The iOS ARM processor discards small denormalized numbers to go faster.
136 // Casting this to a float would cause the scale to go to zero. Keeping it
137 // as a double for the multiply keeps the scale non-zero.
138 double dscale = length / sqrt(xx * xx + yy * yy);
139 fX = x * dscale;
140 fY = y * dscale;
141 return true;
142 #else
143 scale = (float)(length / sqrt(xx * xx + yy * yy));
144 #endif
145 }
146 fX = x * scale;
147 fY = y * scale;
148 return true;
149 }
150
SetLengthFast(SkPoint * pt,float length)151 bool SkPointPriv::SetLengthFast(SkPoint* pt, float length) {
152 float mag2;
153 if (is_length_nearly_zero(pt->fX, pt->fY, &mag2)) {
154 pt->set(0, 0);
155 return false;
156 }
157
158 float scale;
159 if (SkScalarIsFinite(mag2)) {
160 scale = length * sk_float_rsqrt(mag2); // <--- this is the difference
161 } else {
162 // our mag2 step overflowed to infinity, so use doubles instead.
163 // much slower, but needed when x or y are very large, other wise we
164 // divide by inf. and return (0,0) vector.
165 double xx = pt->fX;
166 double yy = pt->fY;
167 scale = (float)(length / sqrt(xx * xx + yy * yy));
168 }
169 pt->fX *= scale;
170 pt->fY *= scale;
171 return true;
172 }
173
174
175 ///////////////////////////////////////////////////////////////////////////////
176
DistanceToLineBetweenSqd(const SkPoint & pt,const SkPoint & a,const SkPoint & b,Side * side)177 SkScalar SkPointPriv::DistanceToLineBetweenSqd(const SkPoint& pt, const SkPoint& a,
178 const SkPoint& b,
179 Side* side) {
180
181 SkVector u = b - a;
182 SkVector v = pt - a;
183
184 SkScalar uLengthSqd = LengthSqd(u);
185 SkScalar det = u.cross(v);
186 if (side) {
187 SkASSERT(-1 == kLeft_Side &&
188 0 == kOn_Side &&
189 1 == kRight_Side);
190 *side = (Side) SkScalarSignAsInt(det);
191 }
192 SkScalar temp = det / uLengthSqd;
193 temp *= det;
194 return temp;
195 }
196
DistanceToLineSegmentBetweenSqd(const SkPoint & pt,const SkPoint & a,const SkPoint & b)197 SkScalar SkPointPriv::DistanceToLineSegmentBetweenSqd(const SkPoint& pt, const SkPoint& a,
198 const SkPoint& b) {
199 // See comments to distanceToLineBetweenSqd. If the projection of c onto
200 // u is between a and b then this returns the same result as that
201 // function. Otherwise, it returns the distance to the closer of a and
202 // b. Let the projection of v onto u be v'. There are three cases:
203 // 1. v' points opposite to u. c is not between a and b and is closer
204 // to a than b.
205 // 2. v' points along u and has magnitude less than y. c is between
206 // a and b and the distance to the segment is the same as distance
207 // to the line ab.
208 // 3. v' points along u and has greater magnitude than u. c is not
209 // not between a and b and is closer to b than a.
210 // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
211 // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
212 // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
213 // avoid a sqrt to compute |u|.
214
215 SkVector u = b - a;
216 SkVector v = pt - a;
217
218 SkScalar uLengthSqd = LengthSqd(u);
219 SkScalar uDotV = SkPoint::DotProduct(u, v);
220
221 if (uDotV <= 0) {
222 return LengthSqd(v);
223 } else if (uDotV > uLengthSqd) {
224 return DistanceToSqd(b, pt);
225 } else {
226 SkScalar det = u.cross(v);
227 SkScalar temp = det / uLengthSqd;
228 temp *= det;
229 return temp;
230 }
231 }
232