• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2008 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 
9 #include "SkMathPriv.h"
10 #include "SkPointPriv.h"
11 
12 #if 0
13 void SkIPoint::rotateCW(SkIPoint* dst) const {
14     SkASSERT(dst);
15 
16     // use a tmp in case this == dst
17     int32_t tmp = fX;
18     dst->fX = -fY;
19     dst->fY = tmp;
20 }
21 
22 void SkIPoint::rotateCCW(SkIPoint* dst) const {
23     SkASSERT(dst);
24 
25     // use a tmp in case this == dst
26     int32_t tmp = fX;
27     dst->fX = fY;
28     dst->fY = -tmp;
29 }
30 #endif
31 
32 ///////////////////////////////////////////////////////////////////////////////
33 
scale(SkScalar scale,SkPoint * dst) const34 void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
35     SkASSERT(dst);
36     dst->set(fX * scale, fY * scale);
37 }
38 
normalize()39 bool SkPoint::normalize() {
40     return this->setLength(fX, fY, SK_Scalar1);
41 }
42 
setNormalize(SkScalar x,SkScalar y)43 bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
44     return this->setLength(x, y, SK_Scalar1);
45 }
46 
setLength(SkScalar length)47 bool SkPoint::setLength(SkScalar length) {
48     return this->setLength(fX, fY, length);
49 }
50 
51 // Returns the square of the Euclidian distance to (dx,dy).
getLengthSquared(float dx,float dy)52 static inline float getLengthSquared(float dx, float dy) {
53     return dx * dx + dy * dy;
54 }
55 
56 // Calculates the square of the Euclidian distance to (dx,dy) and stores it in
57 // *lengthSquared.  Returns true if the distance is judged to be "nearly zero".
58 //
59 // This logic is encapsulated in a helper method to make it explicit that we
60 // always perform this check in the same manner, to avoid inconsistencies
61 // (see http://code.google.com/p/skia/issues/detail?id=560 ).
is_length_nearly_zero(float dx,float dy,float * lengthSquared)62 static inline bool is_length_nearly_zero(float dx, float dy,
63                                          float *lengthSquared) {
64     *lengthSquared = getLengthSquared(dx, dy);
65     return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
66 }
67 
Normalize(SkPoint * pt)68 SkScalar SkPoint::Normalize(SkPoint* pt) {
69     float x = pt->fX;
70     float y = pt->fY;
71     float mag2;
72     if (is_length_nearly_zero(x, y, &mag2)) {
73         pt->set(0, 0);
74         return 0;
75     }
76 
77     float mag, scale;
78     if (SkScalarIsFinite(mag2)) {
79         mag = sk_float_sqrt(mag2);
80         scale = 1 / mag;
81     } else {
82         // our mag2 step overflowed to infinity, so use doubles instead.
83         // much slower, but needed when x or y are very large, other wise we
84         // divide by inf. and return (0,0) vector.
85         double xx = x;
86         double yy = y;
87         double magmag = sqrt(xx * xx + yy * yy);
88         mag = (float)magmag;
89         // we perform the divide with the double magmag, to stay exactly the
90         // same as setLength. It would be faster to perform the divide with
91         // mag, but it is possible that mag has overflowed to inf. but still
92         // have a non-zero value for scale (thanks to denormalized numbers).
93         scale = (float)(1 / magmag);
94     }
95     pt->set(x * scale, y * scale);
96     return mag;
97 }
98 
Length(SkScalar dx,SkScalar dy)99 SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
100     float mag2 = dx * dx + dy * dy;
101     if (SkScalarIsFinite(mag2)) {
102         return sk_float_sqrt(mag2);
103     } else {
104         double xx = dx;
105         double yy = dy;
106         return sk_double_to_float(sqrt(xx * xx + yy * yy));
107     }
108 }
109 
110 /*
111  *  We have to worry about 2 tricky conditions:
112  *  1. underflow of mag2 (compared against nearlyzero^2)
113  *  2. overflow of mag2 (compared w/ isfinite)
114  *
115  *  If we underflow, we return false. If we overflow, we compute again using
116  *  doubles, which is much slower (3x in a desktop test) but will not overflow.
117  */
setLength(float x,float y,float length)118 bool SkPoint::setLength(float x, float y, float length) {
119     float mag2;
120     if (is_length_nearly_zero(x, y, &mag2)) {
121         this->set(0, 0);
122         return false;
123     }
124 
125     float scale;
126     if (SkScalarIsFinite(mag2)) {
127         scale = length / sk_float_sqrt(mag2);
128     } else {
129         // our mag2 step overflowed to infinity, so use doubles instead.
130         // much slower, but needed when x or y are very large, other wise we
131         // divide by inf. and return (0,0) vector.
132         double xx = x;
133         double yy = y;
134     #ifdef SK_CPU_FLUSH_TO_ZERO
135         // The iOS ARM processor discards small denormalized numbers to go faster.
136         // Casting this to a float would cause the scale to go to zero. Keeping it
137         // as a double for the multiply keeps the scale non-zero.
138         double dscale = length / sqrt(xx * xx + yy * yy);
139         fX = x * dscale;
140         fY = y * dscale;
141         return true;
142     #else
143         scale = (float)(length / sqrt(xx * xx + yy * yy));
144     #endif
145     }
146     fX = x * scale;
147     fY = y * scale;
148     return true;
149 }
150 
SetLengthFast(SkPoint * pt,float length)151 bool SkPointPriv::SetLengthFast(SkPoint* pt, float length) {
152     float mag2;
153     if (is_length_nearly_zero(pt->fX, pt->fY, &mag2)) {
154         pt->set(0, 0);
155         return false;
156     }
157 
158     float scale;
159     if (SkScalarIsFinite(mag2)) {
160         scale = length * sk_float_rsqrt(mag2);  // <--- this is the difference
161     } else {
162         // our mag2 step overflowed to infinity, so use doubles instead.
163         // much slower, but needed when x or y are very large, other wise we
164         // divide by inf. and return (0,0) vector.
165         double xx = pt->fX;
166         double yy = pt->fY;
167         scale = (float)(length / sqrt(xx * xx + yy * yy));
168     }
169     pt->fX *= scale;
170     pt->fY *= scale;
171     return true;
172 }
173 
174 
175 ///////////////////////////////////////////////////////////////////////////////
176 
DistanceToLineBetweenSqd(const SkPoint & pt,const SkPoint & a,const SkPoint & b,Side * side)177 SkScalar SkPointPriv::DistanceToLineBetweenSqd(const SkPoint& pt, const SkPoint& a,
178                                            const SkPoint& b,
179                                            Side* side) {
180 
181     SkVector u = b - a;
182     SkVector v = pt - a;
183 
184     SkScalar uLengthSqd = LengthSqd(u);
185     SkScalar det = u.cross(v);
186     if (side) {
187         SkASSERT(-1 == kLeft_Side &&
188                   0 == kOn_Side &&
189                   1 == kRight_Side);
190         *side = (Side) SkScalarSignAsInt(det);
191     }
192     SkScalar temp = det / uLengthSqd;
193     temp *= det;
194     return temp;
195 }
196 
DistanceToLineSegmentBetweenSqd(const SkPoint & pt,const SkPoint & a,const SkPoint & b)197 SkScalar SkPointPriv::DistanceToLineSegmentBetweenSqd(const SkPoint& pt, const SkPoint& a,
198                                                   const SkPoint& b) {
199     // See comments to distanceToLineBetweenSqd. If the projection of c onto
200     // u is between a and b then this returns the same result as that
201     // function. Otherwise, it returns the distance to the closer of a and
202     // b. Let the projection of v onto u be v'.  There are three cases:
203     //    1. v' points opposite to u. c is not between a and b and is closer
204     //       to a than b.
205     //    2. v' points along u and has magnitude less than y. c is between
206     //       a and b and the distance to the segment is the same as distance
207     //       to the line ab.
208     //    3. v' points along u and has greater magnitude than u. c is not
209     //       not between a and b and is closer to b than a.
210     // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
211     // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
212     // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
213     // avoid a sqrt to compute |u|.
214 
215     SkVector u = b - a;
216     SkVector v = pt - a;
217 
218     SkScalar uLengthSqd = LengthSqd(u);
219     SkScalar uDotV = SkPoint::DotProduct(u, v);
220 
221     if (uDotV <= 0) {
222         return LengthSqd(v);
223     } else if (uDotV > uLengthSqd) {
224         return DistanceToSqd(b, pt);
225     } else {
226         SkScalar det = u.cross(v);
227         SkScalar temp = det / uLengthSqd;
228         temp *= det;
229         return temp;
230     }
231 }
232