1/* 2 * Copyright 2018 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8in half4 circleRect; 9in half textureRadius; 10in half solidRadius; 11in uniform sampler2D blurProfileSampler; 12 13// The data is formatted as: 14// x, y - the center of the circle 15// z - inner radius that should map to 0th entry in the texture. 16// w - the inverse of the distance over which the texture is stretched. 17uniform half4 circleData; 18 19@optimizationFlags { 20 kCompatibleWithCoverageAsAlpha_OptimizationFlag 21} 22 23@make { 24 static std::unique_ptr<GrFragmentProcessor> Make(GrProxyProvider*, 25 const SkRect& circle, float sigma); 26} 27 28@setData(data) { 29 data.set4f(circleData, circleRect.centerX(), circleRect.centerY(), solidRadius, 30 1.f / textureRadius); 31} 32 33@cpp { 34 #include "GrProxyProvider.h" 35 36 // Computes an unnormalized half kernel (right side). Returns the summation of all the half 37 // kernel values. 38 static float make_unnormalized_half_kernel(float* halfKernel, int halfKernelSize, float sigma) { 39 const float invSigma = 1.f / sigma; 40 const float b = -0.5f * invSigma * invSigma; 41 float tot = 0.0f; 42 // Compute half kernel values at half pixel steps out from the center. 43 float t = 0.5f; 44 for (int i = 0; i < halfKernelSize; ++i) { 45 float value = expf(t * t * b); 46 tot += value; 47 halfKernel[i] = value; 48 t += 1.f; 49 } 50 return tot; 51 } 52 53 // Create a Gaussian half-kernel (right side) and a summed area table given a sigma and number 54 // of discrete steps. The half kernel is normalized to sum to 0.5. 55 static void make_half_kernel_and_summed_table(float* halfKernel, float* summedHalfKernel, 56 int halfKernelSize, float sigma) { 57 // The half kernel should sum to 0.5 not 1.0. 58 const float tot = 2.f * make_unnormalized_half_kernel(halfKernel, halfKernelSize, sigma); 59 float sum = 0.f; 60 for (int i = 0; i < halfKernelSize; ++i) { 61 halfKernel[i] /= tot; 62 sum += halfKernel[i]; 63 summedHalfKernel[i] = sum; 64 } 65 } 66 67 // Applies the 1D half kernel vertically at points along the x axis to a circle centered at the 68 // origin with radius circleR. 69 void apply_kernel_in_y(float* results, int numSteps, float firstX, float circleR, 70 int halfKernelSize, const float* summedHalfKernelTable) { 71 float x = firstX; 72 for (int i = 0; i < numSteps; ++i, x += 1.f) { 73 if (x < -circleR || x > circleR) { 74 results[i] = 0; 75 continue; 76 } 77 float y = sqrtf(circleR * circleR - x * x); 78 // In the column at x we exit the circle at +y and -y 79 // The summed table entry j is actually reflects an offset of j + 0.5. 80 y -= 0.5f; 81 int yInt = SkScalarFloorToInt(y); 82 SkASSERT(yInt >= -1); 83 if (y < 0) { 84 results[i] = (y + 0.5f) * summedHalfKernelTable[0]; 85 } else if (yInt >= halfKernelSize - 1) { 86 results[i] = 0.5f; 87 } else { 88 float yFrac = y - yInt; 89 results[i] = (1.f - yFrac) * summedHalfKernelTable[yInt] + 90 yFrac * summedHalfKernelTable[yInt + 1]; 91 } 92 } 93 } 94 95 // Apply a Gaussian at point (evalX, 0) to a circle centered at the origin with radius circleR. 96 // This relies on having a half kernel computed for the Gaussian and a table of applications of 97 // the half kernel in y to columns at (evalX - halfKernel, evalX - halfKernel + 1, ..., evalX + 98 // halfKernel) passed in as yKernelEvaluations. 99 static uint8_t eval_at(float evalX, float circleR, const float* halfKernel, int halfKernelSize, 100 const float* yKernelEvaluations) { 101 float acc = 0; 102 103 float x = evalX - halfKernelSize; 104 for (int i = 0; i < halfKernelSize; ++i, x += 1.f) { 105 if (x < -circleR || x > circleR) { 106 continue; 107 } 108 float verticalEval = yKernelEvaluations[i]; 109 acc += verticalEval * halfKernel[halfKernelSize - i - 1]; 110 } 111 for (int i = 0; i < halfKernelSize; ++i, x += 1.f) { 112 if (x < -circleR || x > circleR) { 113 continue; 114 } 115 float verticalEval = yKernelEvaluations[i + halfKernelSize]; 116 acc += verticalEval * halfKernel[i]; 117 } 118 // Since we applied a half kernel in y we multiply acc by 2 (the circle is symmetric about 119 // the x axis). 120 return SkUnitScalarClampToByte(2.f * acc); 121 } 122 123 // This function creates a profile of a blurred circle. It does this by computing a kernel for 124 // half the Gaussian and a matching summed area table. The summed area table is used to compute 125 // an array of vertical applications of the half kernel to the circle along the x axis. The 126 // table of y evaluations has 2 * k + n entries where k is the size of the half kernel and n is 127 // the size of the profile being computed. Then for each of the n profile entries we walk out k 128 // steps in each horizontal direction multiplying the corresponding y evaluation by the half 129 // kernel entry and sum these values to compute the profile entry. 130 static uint8_t* create_circle_profile(float sigma, float circleR, int profileTextureWidth) { 131 const int numSteps = profileTextureWidth; 132 uint8_t* weights = new uint8_t[numSteps]; 133 134 // The full kernel is 6 sigmas wide. 135 int halfKernelSize = SkScalarCeilToInt(6.0f*sigma); 136 // round up to next multiple of 2 and then divide by 2 137 halfKernelSize = ((halfKernelSize + 1) & ~1) >> 1; 138 139 // Number of x steps at which to apply kernel in y to cover all the profile samples in x. 140 int numYSteps = numSteps + 2 * halfKernelSize; 141 142 SkAutoTArray<float> bulkAlloc(halfKernelSize + halfKernelSize + numYSteps); 143 float* halfKernel = bulkAlloc.get(); 144 float* summedKernel = bulkAlloc.get() + halfKernelSize; 145 float* yEvals = bulkAlloc.get() + 2 * halfKernelSize; 146 make_half_kernel_and_summed_table(halfKernel, summedKernel, halfKernelSize, sigma); 147 148 float firstX = -halfKernelSize + 0.5f; 149 apply_kernel_in_y(yEvals, numYSteps, firstX, circleR, halfKernelSize, summedKernel); 150 151 for (int i = 0; i < numSteps - 1; ++i) { 152 float evalX = i + 0.5f; 153 weights[i] = eval_at(evalX, circleR, halfKernel, halfKernelSize, yEvals + i); 154 } 155 // Ensure the tail of the Gaussian goes to zero. 156 weights[numSteps - 1] = 0; 157 return weights; 158 } 159 160 static uint8_t* create_half_plane_profile(int profileWidth) { 161 SkASSERT(!(profileWidth & 0x1)); 162 // The full kernel is 6 sigmas wide. 163 float sigma = profileWidth / 6.f; 164 int halfKernelSize = profileWidth / 2; 165 166 SkAutoTArray<float> halfKernel(halfKernelSize); 167 uint8_t* profile = new uint8_t[profileWidth]; 168 169 // The half kernel should sum to 0.5. 170 const float tot = 2.f * make_unnormalized_half_kernel(halfKernel.get(), halfKernelSize, 171 sigma); 172 float sum = 0.f; 173 // Populate the profile from the right edge to the middle. 174 for (int i = 0; i < halfKernelSize; ++i) { 175 halfKernel[halfKernelSize - i - 1] /= tot; 176 sum += halfKernel[halfKernelSize - i - 1]; 177 profile[profileWidth - i - 1] = SkUnitScalarClampToByte(sum); 178 } 179 // Populate the profile from the middle to the left edge (by flipping the half kernel and 180 // continuing the summation). 181 for (int i = 0; i < halfKernelSize; ++i) { 182 sum += halfKernel[i]; 183 profile[halfKernelSize - i - 1] = SkUnitScalarClampToByte(sum); 184 } 185 // Ensure tail goes to 0. 186 profile[profileWidth - 1] = 0; 187 return profile; 188 } 189 190 static sk_sp<GrTextureProxy> create_profile_texture(GrProxyProvider* proxyProvider, 191 const SkRect& circle, 192 float sigma, 193 float* solidRadius, float* textureRadius) { 194 float circleR = circle.width() / 2.0f; 195 if (circleR < SK_ScalarNearlyZero) { 196 return nullptr; 197 } 198 // Profile textures are cached by the ratio of sigma to circle radius and by the size of the 199 // profile texture (binned by powers of 2). 200 SkScalar sigmaToCircleRRatio = sigma / circleR; 201 // When sigma is really small this becomes a equivalent to convolving a Gaussian with a 202 // half-plane. Similarly, in the extreme high ratio cases circle becomes a point WRT to the 203 // Guassian and the profile texture is a just a Gaussian evaluation. However, we haven't yet 204 // implemented this latter optimization. 205 sigmaToCircleRRatio = SkTMin(sigmaToCircleRRatio, 8.f); 206 SkFixed sigmaToCircleRRatioFixed; 207 static const SkScalar kHalfPlaneThreshold = 0.1f; 208 bool useHalfPlaneApprox = false; 209 if (sigmaToCircleRRatio <= kHalfPlaneThreshold) { 210 useHalfPlaneApprox = true; 211 sigmaToCircleRRatioFixed = 0; 212 *solidRadius = circleR - 3 * sigma; 213 *textureRadius = 6 * sigma; 214 } else { 215 // Convert to fixed point for the key. 216 sigmaToCircleRRatioFixed = SkScalarToFixed(sigmaToCircleRRatio); 217 // We shave off some bits to reduce the number of unique entries. We could probably 218 // shave off more than we do. 219 sigmaToCircleRRatioFixed &= ~0xff; 220 sigmaToCircleRRatio = SkFixedToScalar(sigmaToCircleRRatioFixed); 221 sigma = circleR * sigmaToCircleRRatio; 222 *solidRadius = 0; 223 *textureRadius = circleR + 3 * sigma; 224 } 225 226 static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain(); 227 GrUniqueKey key; 228 GrUniqueKey::Builder builder(&key, kDomain, 1, "1-D Circular Blur"); 229 builder[0] = sigmaToCircleRRatioFixed; 230 builder.finish(); 231 232 sk_sp<GrTextureProxy> blurProfile = 233 proxyProvider->findOrCreateProxyByUniqueKey(key, kTopLeft_GrSurfaceOrigin); 234 if (!blurProfile) { 235 static constexpr int kProfileTextureWidth = 512; 236 GrSurfaceDesc texDesc; 237 texDesc.fOrigin = kTopLeft_GrSurfaceOrigin; 238 texDesc.fWidth = kProfileTextureWidth; 239 texDesc.fHeight = 1; 240 texDesc.fConfig = kAlpha_8_GrPixelConfig; 241 242 std::unique_ptr<uint8_t[]> profile(nullptr); 243 if (useHalfPlaneApprox) { 244 profile.reset(create_half_plane_profile(kProfileTextureWidth)); 245 } else { 246 // Rescale params to the size of the texture we're creating. 247 SkScalar scale = kProfileTextureWidth / *textureRadius; 248 profile.reset(create_circle_profile(sigma * scale, circleR * scale, 249 kProfileTextureWidth)); 250 } 251 252 blurProfile = proxyProvider->createTextureProxy(texDesc, SkBudgeted::kYes, 253 profile.get(), 0); 254 if (!blurProfile) { 255 return nullptr; 256 } 257 258 SkASSERT(blurProfile->origin() == kTopLeft_GrSurfaceOrigin); 259 proxyProvider->assignUniqueKeyToProxy(key, blurProfile.get()); 260 } 261 262 return blurProfile; 263 } 264 265 std::unique_ptr<GrFragmentProcessor> GrCircleBlurFragmentProcessor::Make( 266 GrProxyProvider* proxyProvider, const SkRect& circle, float sigma) { 267 float solidRadius; 268 float textureRadius; 269 sk_sp<GrTextureProxy> profile(create_profile_texture(proxyProvider, circle, sigma, 270 &solidRadius, &textureRadius)); 271 if (!profile) { 272 return nullptr; 273 } 274 return std::unique_ptr<GrFragmentProcessor>(new GrCircleBlurFragmentProcessor( 275 circle, textureRadius, solidRadius, std::move(profile))); 276 } 277} 278 279void main() { 280 // We just want to compute "(length(vec) - circleData.z + 0.5) * circleData.w" but need to 281 // rearrange for precision. 282 half2 vec = half2((sk_FragCoord.x - circleData.x) * circleData.w, 283 (sk_FragCoord.y - circleData.y) * circleData.w); 284 half dist = length(vec) + (0.5 - circleData.z) * circleData.w; 285 sk_OutColor = sk_InColor * texture(blurProfileSampler, half2(dist, 0.5)).a; 286} 287 288@test(testData) { 289 SkScalar wh = testData->fRandom->nextRangeScalar(100.f, 1000.f); 290 SkScalar sigma = testData->fRandom->nextRangeF(1.f,10.f); 291 SkRect circle = SkRect::MakeWH(wh, wh); 292 return GrCircleBlurFragmentProcessor::Make(testData->proxyProvider(), circle, sigma); 293} 294