• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2011 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef GrPathUtils_DEFINED
9 #define GrPathUtils_DEFINED
10 
11 #include "SkGeometry.h"
12 #include "SkRect.h"
13 #include "SkPathPriv.h"
14 #include "SkTArray.h"
15 
16 class SkMatrix;
17 
18 /**
19  *  Utilities for evaluating paths.
20  */
21 namespace GrPathUtils {
22     // Very small tolerances will be increased to a minimum threshold value, to avoid division
23     // problems in subsequent math.
24     SkScalar scaleToleranceToSrc(SkScalar devTol,
25                                  const SkMatrix& viewM,
26                                  const SkRect& pathBounds);
27 
28     int worstCasePointCount(const SkPath&,
29                             int* subpaths,
30                             SkScalar tol);
31 
32     uint32_t quadraticPointCount(const SkPoint points[], SkScalar tol);
33 
34     uint32_t generateQuadraticPoints(const SkPoint& p0,
35                                      const SkPoint& p1,
36                                      const SkPoint& p2,
37                                      SkScalar tolSqd,
38                                      SkPoint** points,
39                                      uint32_t pointsLeft);
40 
41     uint32_t cubicPointCount(const SkPoint points[], SkScalar tol);
42 
43     uint32_t generateCubicPoints(const SkPoint& p0,
44                                  const SkPoint& p1,
45                                  const SkPoint& p2,
46                                  const SkPoint& p3,
47                                  SkScalar tolSqd,
48                                  SkPoint** points,
49                                  uint32_t pointsLeft);
50 
51     // A 2x3 matrix that goes from the 2d space coordinates to UV space where
52     // u^2-v = 0 specifies the quad. The matrix is determined by the control
53     // points of the quadratic.
54     class QuadUVMatrix {
55     public:
QuadUVMatrix()56         QuadUVMatrix() {}
57         // Initialize the matrix from the control pts
QuadUVMatrix(const SkPoint controlPts[3])58         QuadUVMatrix(const SkPoint controlPts[3]) { this->set(controlPts); }
59         void set(const SkPoint controlPts[3]);
60 
61         /**
62          * Applies the matrix to vertex positions to compute UV coords. This
63          * has been templated so that the compiler can easliy unroll the loop
64          * and reorder to avoid stalling for loads. The assumption is that a
65          * path renderer will have a small fixed number of vertices that it
66          * uploads for each quad.
67          *
68          * N is the number of vertices.
69          * STRIDE is the size of each vertex.
70          * UV_OFFSET is the offset of the UV values within each vertex.
71          * vertices is a pointer to the first vertex.
72          */
73         template <int N, size_t STRIDE, size_t UV_OFFSET>
apply(const void * vertices)74         void apply(const void* vertices) const {
75             intptr_t xyPtr = reinterpret_cast<intptr_t>(vertices);
76             intptr_t uvPtr = reinterpret_cast<intptr_t>(vertices) + UV_OFFSET;
77             float sx = fM[0];
78             float kx = fM[1];
79             float tx = fM[2];
80             float ky = fM[3];
81             float sy = fM[4];
82             float ty = fM[5];
83             for (int i = 0; i < N; ++i) {
84                 const SkPoint* xy = reinterpret_cast<const SkPoint*>(xyPtr);
85                 SkPoint* uv = reinterpret_cast<SkPoint*>(uvPtr);
86                 uv->fX = sx * xy->fX + kx * xy->fY + tx;
87                 uv->fY = ky * xy->fX + sy * xy->fY + ty;
88                 xyPtr += STRIDE;
89                 uvPtr += STRIDE;
90             }
91         }
92     private:
93         float fM[6];
94     };
95 
96     // Input is 3 control points and a weight for a bezier conic. Calculates the
97     // three linear functionals (K,L,M) that represent the implicit equation of the
98     // conic, k^2 - lm.
99     //
100     // Output: klm holds the linear functionals K,L,M as row vectors:
101     //
102     //     | ..K.. |   | x |      | k |
103     //     | ..L.. | * | y |  ==  | l |
104     //     | ..M.. |   | 1 |      | m |
105     //
106     void getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* klm);
107 
108     // Converts a cubic into a sequence of quads. If working in device space
109     // use tolScale = 1, otherwise set based on stretchiness of the matrix. The
110     // result is sets of 3 points in quads.
111     void convertCubicToQuads(const SkPoint p[4],
112                              SkScalar tolScale,
113                              SkTArray<SkPoint, true>* quads);
114 
115     // When we approximate a cubic {a,b,c,d} with a quadratic we may have to
116     // ensure that the new control point lies between the lines ab and cd. The
117     // convex path renderer requires this. It starts with a path where all the
118     // control points taken together form a convex polygon. It relies on this
119     // property and the quadratic approximation of cubics step cannot alter it.
120     // This variation enforces this constraint. The cubic must be simple and dir
121     // must specify the orientation of the contour containing the cubic.
122     void convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
123                                                 SkScalar tolScale,
124                                                 SkPathPriv::FirstDirection dir,
125                                                 SkTArray<SkPoint, true>* quads);
126 
127     enum class ExcludedTerm {
128         kNonInvertible,
129         kQuadraticTerm,
130         kLinearTerm
131     };
132 
133     // Computes the inverse-transpose of the cubic's power basis matrix, after removing a specific
134     // row of coefficients.
135     //
136     // E.g. if the cubic is defined in power basis form as follows:
137     //
138     //                                         | x3   y3   0 |
139     //     C(t,s) = [t^3  t^2*s  t*s^2  s^3] * | x2   y2   0 |
140     //                                         | x1   y1   0 |
141     //                                         | x0   y0   1 |
142     //
143     // And the excluded term is "kQuadraticTerm", then the resulting inverse-transpose will be:
144     //
145     //     | x3   y3   0 | -1 T
146     //     | x1   y1   0 |
147     //     | x0   y0   1 |
148     //
149     // (The term to exclude is chosen based on maximizing the resulting matrix determinant.)
150     //
151     // This can be used to find the KLM linear functionals:
152     //
153     //     | ..K.. |   | ..kcoeffs.. |
154     //     | ..L.. | = | ..lcoeffs.. | * inverse_transpose_power_basis_matrix
155     //     | ..M.. |   | ..mcoeffs.. |
156     //
157     // NOTE: the same term that was excluded here must also be removed from the corresponding column
158     // of the klmcoeffs matrix.
159     //
160     // Returns which row of coefficients was removed, or kNonInvertible if the cubic was degenerate.
161     ExcludedTerm calcCubicInverseTransposePowerBasisMatrix(const SkPoint p[4], SkMatrix* out);
162 
163     // Computes the KLM linear functionals for the cubic implicit form. The "right" side of the
164     // curve (when facing in the direction of increasing parameter values) will be the area that
165     // satisfies:
166     //
167     //     k^3 < l*m
168     //
169     // Output:
170     //
171     // klm: Holds the linear functionals K,L,M as row vectors:
172     //
173     //          | ..K.. |   | x |      | k |
174     //          | ..L.. | * | y |  ==  | l |
175     //          | ..M.. |   | 1 |      | m |
176     //
177     // NOTE: the KLM lines are calculated in the same space as the input control points. If you
178     // transform the points the lines will also need to be transformed. This can be done by mapping
179     // the lines with the inverse-transpose of the matrix used to map the points.
180     //
181     // t[],s[]: These are set to the two homogeneous parameter values at which points the lines L&M
182     // intersect with K (See SkClassifyCubic).
183     //
184     // Returns the cubic's classification.
185     SkCubicType getCubicKLM(const SkPoint src[4], SkMatrix* klm, double t[2], double s[2]);
186 
187     // Chops the cubic bezier passed in by src, at the double point (intersection point)
188     // if the curve is a cubic loop. If it is a loop, there will be two parametric values for
189     // the double point: t1 and t2. We chop the cubic at these values if they are between 0 and 1.
190     // Return value:
191     // Value of 3: t1 and t2 are both between (0,1), and dst will contain the three cubics,
192     //             dst[0..3], dst[3..6], and dst[6..9] if dst is not nullptr
193     // Value of 2: Only one of t1 and t2 are between (0,1), and dst will contain the two cubics,
194     //             dst[0..3] and dst[3..6] if dst is not nullptr
195     // Value of 1: Neither t1 nor t2 are between (0,1), and dst will contain the one original cubic,
196     //             src[0..3]
197     //
198     // Output:
199     //
200     // klm: Holds the linear functionals K,L,M as row vectors. (See getCubicKLM().)
201     //
202     // loopIndex: This value will tell the caller which of the chopped sections (if any) are the
203     //            actual loop. A value of -1 means there is no loop section. The caller can then use
204     //            this value to decide how/if they want to flip the orientation of this section.
205     //            The flip should be done by negating the k and l values as follows:
206     //
207     //            KLM.postScale(-1, -1)
208     int chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkMatrix* klm,
209                                     int* loopIndex);
210 
211     // When tessellating curved paths into linear segments, this defines the maximum distance
212     // in screen space which a segment may deviate from the mathmatically correct value.
213     // Above this value, the segment will be subdivided.
214     // This value was chosen to approximate the supersampling accuracy of the raster path (16
215     // samples, or one quarter pixel).
216     static const SkScalar kDefaultTolerance = SkDoubleToScalar(0.25);
217 
218     // We guarantee that no quad or cubic will ever produce more than this many points
219     static const int kMaxPointsPerCurve = 1 << 10;
220 };
221 #endif
222