• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkGeometry.h"
8 #include "SkOpEdgeBuilder.h"
9 #include "SkReduceOrder.h"
10 
init()11 void SkOpEdgeBuilder::init() {
12     fOperand = false;
13     fXorMask[0] = fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_PathOpsMask
14             : kWinding_PathOpsMask;
15     fUnparseable = false;
16     fSecondHalf = preFetch();
17 }
18 
19 // very tiny points cause numerical instability : don't allow them
force_small_to_zero(SkPoint * pt)20 static void force_small_to_zero(SkPoint* pt) {
21     if (SkScalarAbs(pt->fX) < FLT_EPSILON_ORDERABLE_ERR) {
22         pt->fX = 0;
23     }
24     if (SkScalarAbs(pt->fY) < FLT_EPSILON_ORDERABLE_ERR) {
25         pt->fY = 0;
26     }
27 }
28 
can_add_curve(SkPath::Verb verb,SkPoint * curve)29 static bool can_add_curve(SkPath::Verb verb, SkPoint* curve) {
30     if (SkPath::kMove_Verb == verb) {
31         return false;
32     }
33     for (int index = 0; index <= SkPathOpsVerbToPoints(verb); ++index) {
34         force_small_to_zero(&curve[index]);
35     }
36     return SkPath::kLine_Verb != verb || !SkDPoint::ApproximatelyEqual(curve[0], curve[1]);
37 }
38 
addOperand(const SkPath & path)39 void SkOpEdgeBuilder::addOperand(const SkPath& path) {
40     SkASSERT(fPathVerbs.count() > 0 && fPathVerbs.end()[-1] == SkPath::kDone_Verb);
41     fPathVerbs.pop();
42     fPath = &path;
43     fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_PathOpsMask
44             : kWinding_PathOpsMask;
45     preFetch();
46 }
47 
finish()48 bool SkOpEdgeBuilder::finish() {
49     fOperand = false;
50     if (fUnparseable || !walk()) {
51         return false;
52     }
53     complete();
54     SkOpContour* contour = fContourBuilder.contour();
55     if (contour && !contour->count()) {
56         fContoursHead->remove(contour);
57     }
58     return true;
59 }
60 
closeContour(const SkPoint & curveEnd,const SkPoint & curveStart)61 void SkOpEdgeBuilder::closeContour(const SkPoint& curveEnd, const SkPoint& curveStart) {
62     if (!SkDPoint::ApproximatelyEqual(curveEnd, curveStart)) {
63         *fPathVerbs.append() = SkPath::kLine_Verb;
64         *fPathPts.append() = curveStart;
65     } else {
66         int verbCount = fPathVerbs.count();
67         int ptsCount = fPathPts.count();
68         if (SkPath::kLine_Verb == fPathVerbs[verbCount - 1]
69                 && fPathPts[ptsCount - 2] == curveStart) {
70             fPathVerbs.pop();
71             fPathPts.pop();
72         } else {
73             fPathPts[ptsCount - 1] = curveStart;
74         }
75     }
76     *fPathVerbs.append() = SkPath::kClose_Verb;
77 }
78 
preFetch()79 int SkOpEdgeBuilder::preFetch() {
80     if (!fPath->isFinite()) {
81         fUnparseable = true;
82         return 0;
83     }
84     SkPath::RawIter iter(*fPath);
85     SkPoint curveStart;
86     SkPoint curve[4];
87     SkPoint pts[4];
88     SkPath::Verb verb;
89     bool lastCurve = false;
90     do {
91         verb = iter.next(pts);
92         switch (verb) {
93             case SkPath::kMove_Verb:
94                 if (!fAllowOpenContours && lastCurve) {
95                     closeContour(curve[0], curveStart);
96                 }
97                 *fPathVerbs.append() = verb;
98                 force_small_to_zero(&pts[0]);
99                 *fPathPts.append() = pts[0];
100                 curveStart = curve[0] = pts[0];
101                 lastCurve = false;
102                 continue;
103             case SkPath::kLine_Verb:
104                 force_small_to_zero(&pts[1]);
105                 if (SkDPoint::ApproximatelyEqual(curve[0], pts[1])) {
106                     uint8_t lastVerb = fPathVerbs.top();
107                     if (lastVerb != SkPath::kLine_Verb && lastVerb != SkPath::kMove_Verb) {
108                         fPathPts.top() = curve[0] = pts[1];
109                     }
110                     continue;  // skip degenerate points
111                 }
112                 break;
113             case SkPath::kQuad_Verb:
114                 force_small_to_zero(&pts[1]);
115                 force_small_to_zero(&pts[2]);
116                 curve[1] = pts[1];
117                 curve[2] = pts[2];
118                 verb = SkReduceOrder::Quad(curve, pts);
119                 if (verb == SkPath::kMove_Verb) {
120                     continue;  // skip degenerate points
121                 }
122                 break;
123             case SkPath::kConic_Verb:
124                 force_small_to_zero(&pts[1]);
125                 force_small_to_zero(&pts[2]);
126                 curve[1] = pts[1];
127                 curve[2] = pts[2];
128                 verb = SkReduceOrder::Quad(curve, pts);
129                 if (SkPath::kQuad_Verb == verb && 1 != iter.conicWeight()) {
130                   verb = SkPath::kConic_Verb;
131                 } else if (verb == SkPath::kMove_Verb) {
132                     continue;  // skip degenerate points
133                 }
134                 break;
135             case SkPath::kCubic_Verb:
136                 force_small_to_zero(&pts[1]);
137                 force_small_to_zero(&pts[2]);
138                 force_small_to_zero(&pts[3]);
139                 curve[1] = pts[1];
140                 curve[2] = pts[2];
141                 curve[3] = pts[3];
142                 verb = SkReduceOrder::Cubic(curve, pts);
143                 if (verb == SkPath::kMove_Verb) {
144                     continue;  // skip degenerate points
145                 }
146                 break;
147             case SkPath::kClose_Verb:
148                 closeContour(curve[0], curveStart);
149                 lastCurve = false;
150                 continue;
151             case SkPath::kDone_Verb:
152                 continue;
153         }
154         *fPathVerbs.append() = verb;
155         int ptCount = SkPathOpsVerbToPoints(verb);
156         fPathPts.append(ptCount, &pts[1]);
157         if (verb == SkPath::kConic_Verb) {
158             *fWeights.append() = iter.conicWeight();
159         }
160         curve[0] = pts[ptCount];
161         lastCurve = true;
162     } while (verb != SkPath::kDone_Verb);
163     if (!fAllowOpenContours && lastCurve) {
164         closeContour(curve[0], curveStart);
165     }
166     *fPathVerbs.append() = SkPath::kDone_Verb;
167     return fPathVerbs.count() - 1;
168 }
169 
close()170 bool SkOpEdgeBuilder::close() {
171     complete();
172     return true;
173 }
174 
walk()175 bool SkOpEdgeBuilder::walk() {
176     uint8_t* verbPtr = fPathVerbs.begin();
177     uint8_t* endOfFirstHalf = &verbPtr[fSecondHalf];
178     SkPoint* pointsPtr = fPathPts.begin() - 1;
179     SkScalar* weightPtr = fWeights.begin();
180     SkPath::Verb verb;
181     SkOpContour* contour = fContourBuilder.contour();
182     while ((verb = (SkPath::Verb) *verbPtr) != SkPath::kDone_Verb) {
183         if (verbPtr == endOfFirstHalf) {
184             fOperand = true;
185         }
186         verbPtr++;
187         switch (verb) {
188             case SkPath::kMove_Verb:
189                 if (contour && contour->count()) {
190                     if (fAllowOpenContours) {
191                         complete();
192                     } else if (!close()) {
193                         return false;
194                     }
195                 }
196                 if (!contour) {
197                     fContourBuilder.setContour(contour = fContoursHead->appendContour());
198                 }
199                 contour->init(fGlobalState, fOperand,
200                     fXorMask[fOperand] == kEvenOdd_PathOpsMask);
201                 pointsPtr += 1;
202                 continue;
203             case SkPath::kLine_Verb:
204                 fContourBuilder.addLine(pointsPtr);
205                 break;
206             case SkPath::kQuad_Verb:
207                 {
208                     SkVector v1 = pointsPtr[1] - pointsPtr[0];
209                     SkVector v2 = pointsPtr[2] - pointsPtr[1];
210                     if (v1.dot(v2) < 0) {
211                         SkPoint pair[5];
212                         if (SkChopQuadAtMaxCurvature(pointsPtr, pair) == 1) {
213                             goto addOneQuad;
214                         }
215                         if (!SkScalarsAreFinite(&pair[0].fX, SK_ARRAY_COUNT(pair) * 2)) {
216                             return false;
217                         }
218                         for (unsigned index = 0; index < SK_ARRAY_COUNT(pair); ++index) {
219                             force_small_to_zero(&pair[index]);
220                         }
221                         SkPoint cStorage[2][2];
222                         SkPath::Verb v1 = SkReduceOrder::Quad(&pair[0], cStorage[0]);
223                         SkPath::Verb v2 = SkReduceOrder::Quad(&pair[2], cStorage[1]);
224                         SkPoint* curve1 = v1 != SkPath::kLine_Verb ? &pair[0] : cStorage[0];
225                         SkPoint* curve2 = v2 != SkPath::kLine_Verb ? &pair[2] : cStorage[1];
226                         if (can_add_curve(v1, curve1) && can_add_curve(v2, curve2)) {
227                             fContourBuilder.addCurve(v1, curve1);
228                             fContourBuilder.addCurve(v2, curve2);
229                             break;
230                         }
231                     }
232                 }
233             addOneQuad:
234                 fContourBuilder.addQuad(pointsPtr);
235                 break;
236             case SkPath::kConic_Verb: {
237                 SkVector v1 = pointsPtr[1] - pointsPtr[0];
238                 SkVector v2 = pointsPtr[2] - pointsPtr[1];
239                 SkScalar weight = *weightPtr++;
240                 if (v1.dot(v2) < 0) {
241                     // FIXME: max curvature for conics hasn't been implemented; use placeholder
242                     SkScalar maxCurvature = SkFindQuadMaxCurvature(pointsPtr);
243                     if (maxCurvature > 0) {
244                         SkConic conic(pointsPtr, weight);
245                         SkConic pair[2];
246                         if (!conic.chopAt(maxCurvature, pair)) {
247                             // if result can't be computed, use original
248                             fContourBuilder.addConic(pointsPtr, weight);
249                             break;
250                         }
251                         SkPoint cStorage[2][3];
252                         SkPath::Verb v1 = SkReduceOrder::Conic(pair[0], cStorage[0]);
253                         SkPath::Verb v2 = SkReduceOrder::Conic(pair[1], cStorage[1]);
254                         SkPoint* curve1 = v1 != SkPath::kLine_Verb ? pair[0].fPts : cStorage[0];
255                         SkPoint* curve2 = v2 != SkPath::kLine_Verb ? pair[1].fPts : cStorage[1];
256                         if (can_add_curve(v1, curve1) && can_add_curve(v2, curve2)) {
257                             fContourBuilder.addCurve(v1, curve1, pair[0].fW);
258                             fContourBuilder.addCurve(v2, curve2, pair[1].fW);
259                             break;
260                         }
261                     }
262                 }
263                 fContourBuilder.addConic(pointsPtr, weight);
264                 } break;
265             case SkPath::kCubic_Verb:
266                 {
267                     // Split complex cubics (such as self-intersecting curves or
268                     // ones with difficult curvature) in two before proceeding.
269                     // This can be required for intersection to succeed.
270                     SkScalar splitT[3];
271                     int breaks = SkDCubic::ComplexBreak(pointsPtr, splitT);
272                     if (!breaks) {
273                         fContourBuilder.addCubic(pointsPtr);
274                         break;
275                     }
276                     SkASSERT(breaks <= (int) SK_ARRAY_COUNT(splitT));
277                     struct Splitsville {
278                         double fT[2];
279                         SkPoint fPts[4];
280                         SkPoint fReduced[4];
281                         SkPath::Verb fVerb;
282                         bool fCanAdd;
283                     } splits[4];
284                     SkASSERT(SK_ARRAY_COUNT(splits) == SK_ARRAY_COUNT(splitT) + 1);
285                     SkTQSort(splitT, &splitT[breaks - 1]);
286                     for (int index = 0; index <= breaks; ++index) {
287                         Splitsville* split = &splits[index];
288                         split->fT[0] = index ? splitT[index - 1] : 0;
289                         split->fT[1] = index < breaks ? splitT[index] : 1;
290                         SkDCubic part = SkDCubic::SubDivide(pointsPtr, split->fT[0], split->fT[1]);
291                         if (!part.toFloatPoints(split->fPts)) {
292                             return false;
293                         }
294                         split->fVerb = SkReduceOrder::Cubic(split->fPts, split->fReduced);
295                         SkPoint* curve = SkPath::kCubic_Verb == verb
296                                 ? split->fPts : split->fReduced;
297                         split->fCanAdd = can_add_curve(split->fVerb, curve);
298                     }
299                     for (int index = 0; index <= breaks; ++index) {
300                         Splitsville* split = &splits[index];
301                         if (!split->fCanAdd) {
302                             continue;
303                         }
304                         int prior = index;
305                         while (prior > 0 && !splits[prior - 1].fCanAdd) {
306                             --prior;
307                         }
308                         if (prior < index) {
309                             split->fT[0] = splits[prior].fT[0];
310                             split->fPts[0] = splits[prior].fPts[0];
311                         }
312                         int next = index;
313                         int breakLimit = SkTMin(breaks, (int) SK_ARRAY_COUNT(splits) - 1);
314                         while (next < breakLimit && !splits[next + 1].fCanAdd) {
315                             ++next;
316                         }
317                         if (next > index) {
318                             split->fT[1] = splits[next].fT[1];
319                             split->fPts[3] = splits[next].fPts[3];
320                         }
321                         if (prior < index || next > index) {
322                             split->fVerb = SkReduceOrder::Cubic(split->fPts, split->fReduced);
323                         }
324                         SkPoint* curve = SkPath::kCubic_Verb == split->fVerb
325                                 ? split->fPts : split->fReduced;
326                         SkAssertResult(can_add_curve(split->fVerb, curve));
327                         fContourBuilder.addCurve(split->fVerb, curve);
328                     }
329                 }
330                 break;
331             case SkPath::kClose_Verb:
332                 SkASSERT(contour);
333                 if (!close()) {
334                     return false;
335                 }
336                 contour = nullptr;
337                 continue;
338             default:
339                 SkDEBUGFAIL("bad verb");
340                 return false;
341         }
342         SkASSERT(contour);
343         if (contour->count()) {
344             contour->debugValidate();
345         }
346         pointsPtr += SkPathOpsVerbToPoints(verb);
347     }
348     fContourBuilder.flush();
349     if (contour && contour->count() &&!fAllowOpenContours && !close()) {
350         return false;
351     }
352     return true;
353 }
354