• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2017 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkInsetConvexPolygon.h"
9 
10 #include "SkPointPriv.h"
11 #include "SkTemplates.h"
12 
13 struct InsetSegment {
14     SkPoint fP0;
15     SkPoint fP1;
16 };
17 
18 // Computes perpDot for point compared to segment.
19 // A positive value means the point is to the left of the segment,
20 // negative is to the right, 0 is collinear.
compute_side(const SkPoint & s0,const SkPoint & s1,const SkPoint & p)21 static int compute_side(const SkPoint& s0, const SkPoint& s1, const SkPoint& p) {
22     SkVector v0 = s1 - s0;
23     SkVector v1 = p - s0;
24     SkScalar perpDot = v0.cross(v1);
25     if (!SkScalarNearlyZero(perpDot)) {
26         return ((perpDot > 0) ? 1 : -1);
27     }
28 
29     return 0;
30 }
31 
32 // returns 1 for ccw, -1 for cw and 0 if degenerate
get_winding(const SkPoint * polygonVerts,int polygonSize)33 static int get_winding(const SkPoint* polygonVerts, int polygonSize) {
34     SkPoint p0 = polygonVerts[0];
35     SkPoint p1 = polygonVerts[1];
36 
37     for (int i = 2; i < polygonSize; ++i) {
38         SkPoint p2 = polygonVerts[i];
39 
40         // determine if cw or ccw
41         int side = compute_side(p0, p1, p2);
42         if (0 != side) {
43             return ((side > 0) ? 1 : -1);
44         }
45 
46         // if nearly collinear, treat as straight line and continue
47         p1 = p2;
48     }
49 
50     return 0;
51 }
52 
53 // Offset line segment p0-p1 'd0' and 'd1' units in the direction specified by 'side'
SkOffsetSegment(const SkPoint & p0,const SkPoint & p1,SkScalar d0,SkScalar d1,int side,SkPoint * offset0,SkPoint * offset1)54 bool SkOffsetSegment(const SkPoint& p0, const SkPoint& p1, SkScalar d0, SkScalar d1,
55                      int side, SkPoint* offset0, SkPoint* offset1) {
56     SkASSERT(side == -1 || side == 1);
57     SkVector perp = SkVector::Make(p0.fY - p1.fY, p1.fX - p0.fX);
58     if (SkScalarNearlyEqual(d0, d1)) {
59         // if distances are equal, can just outset by the perpendicular
60         perp.setLength(d0*side);
61         *offset0 = p0 + perp;
62         *offset1 = p1 + perp;
63     } else {
64         // Otherwise we need to compute the outer tangent.
65         // See: http://www.ambrsoft.com/TrigoCalc/Circles2/Circles2Tangent_.htm
66         if (d0 < d1) {
67             side = -side;
68         }
69         SkScalar dD = d0 - d1;
70         // if one circle is inside another, we can't compute an offset
71         if (dD*dD >= SkPointPriv::DistanceToSqd(p0, p1)) {
72             return false;
73         }
74         SkPoint outerTangentIntersect = SkPoint::Make((p1.fX*d0 - p0.fX*d1) / dD,
75                                                       (p1.fY*d0 - p0.fY*d1) / dD);
76 
77         SkScalar d0sq = d0*d0;
78         SkVector dP = outerTangentIntersect - p0;
79         SkScalar dPlenSq = SkPointPriv::LengthSqd(dP);
80         SkScalar discrim = SkScalarSqrt(dPlenSq - d0sq);
81         offset0->fX = p0.fX + (d0sq*dP.fX - side*d0*dP.fY*discrim) / dPlenSq;
82         offset0->fY = p0.fY + (d0sq*dP.fY + side*d0*dP.fX*discrim) / dPlenSq;
83 
84         SkScalar d1sq = d1*d1;
85         dP = outerTangentIntersect - p1;
86         dPlenSq = SkPointPriv::LengthSqd(dP);
87         discrim = SkScalarSqrt(dPlenSq - d1sq);
88         offset1->fX = p1.fX + (d1sq*dP.fX - side*d1*dP.fY*discrim) / dPlenSq;
89         offset1->fY = p1.fY + (d1sq*dP.fY + side*d1*dP.fX*discrim) / dPlenSq;
90     }
91 
92     return true;
93 }
94 
95 // Compute the intersection 'p' between segments s0 and s1, if any.
96 // 's' is the parametric value for the intersection along 's0' & 't' is the same for 's1'.
97 // Returns false if there is no intersection.
compute_intersection(const InsetSegment & s0,const InsetSegment & s1,SkPoint * p,SkScalar * s,SkScalar * t)98 static bool compute_intersection(const InsetSegment& s0, const InsetSegment& s1,
99                                  SkPoint* p, SkScalar* s, SkScalar* t) {
100     SkVector v0 = s0.fP1 - s0.fP0;
101     SkVector v1 = s1.fP1 - s1.fP0;
102 
103     SkScalar perpDot = v0.cross(v1);
104     if (SkScalarNearlyZero(perpDot)) {
105         // segments are parallel
106         // check if endpoints are touching
107         if (SkPointPriv::EqualsWithinTolerance(s0.fP1, s1.fP0)) {
108             *p = s0.fP1;
109             *s = SK_Scalar1;
110             *t = 0;
111             return true;
112         }
113         if (SkPointPriv::EqualsWithinTolerance(s1.fP1, s0.fP0)) {
114             *p = s1.fP1;
115             *s = 0;
116             *t = SK_Scalar1;
117             return true;
118         }
119 
120         return false;
121     }
122 
123     SkVector d = s1.fP0 - s0.fP0;
124     SkScalar localS = d.cross(v1) / perpDot;
125     if (localS < 0 || localS > SK_Scalar1) {
126         return false;
127     }
128     SkScalar localT = d.cross(v0) / perpDot;
129     if (localT < 0 || localT > SK_Scalar1) {
130         return false;
131     }
132 
133     v0 *= localS;
134     *p = s0.fP0 + v0;
135     *s = localS;
136     *t = localT;
137 
138     return true;
139 }
140 
is_convex(const SkTDArray<SkPoint> & poly)141 static bool is_convex(const SkTDArray<SkPoint>& poly) {
142     if (poly.count() <= 3) {
143         return true;
144     }
145 
146     SkVector v0 = poly[0] - poly[poly.count() - 1];
147     SkVector v1 = poly[1] - poly[poly.count() - 1];
148     SkScalar winding = v0.cross(v1);
149 
150     for (int i = 0; i < poly.count() - 1; ++i) {
151         int j = i + 1;
152         int k = (i + 2) % poly.count();
153 
154         SkVector v0 = poly[j] - poly[i];
155         SkVector v1 = poly[k] - poly[i];
156         SkScalar perpDot = v0.cross(v1);
157         if (winding*perpDot < 0) {
158             return false;
159         }
160     }
161 
162     return true;
163 }
164 
165 // The objective here is to inset all of the edges by the given distance, and then
166 // remove any invalid inset edges by detecting right-hand turns. In a ccw polygon,
167 // we should only be making left-hand turns (for cw polygons, we use the winding
168 // parameter to reverse this). We detect this by checking whether the second intersection
169 // on an edge is closer to its tail than the first one.
170 //
171 // We might also have the case that there is no intersection between two neighboring inset edges.
172 // In this case, one edge will lie to the right of the other and should be discarded along with
173 // its previous intersection (if any).
174 //
175 // Note: the assumption is that inputPolygon is convex and has no coincident points.
176 //
SkInsetConvexPolygon(const SkPoint * inputPolygonVerts,int inputPolygonSize,std::function<SkScalar (int index)> insetDistanceFunc,SkTDArray<SkPoint> * insetPolygon)177 bool SkInsetConvexPolygon(const SkPoint* inputPolygonVerts, int inputPolygonSize,
178                           std::function<SkScalar(int index)> insetDistanceFunc,
179                           SkTDArray<SkPoint>* insetPolygon) {
180     if (inputPolygonSize < 3) {
181         return false;
182     }
183 
184     int winding = get_winding(inputPolygonVerts, inputPolygonSize);
185     if (0 == winding) {
186         return false;
187     }
188 
189     // set up
190     struct EdgeData {
191         InsetSegment fInset;
192         SkPoint      fIntersection;
193         SkScalar     fTValue;
194         bool         fValid;
195     };
196 
197     SkAutoSTMalloc<64, EdgeData> edgeData(inputPolygonSize);
198     for (int i = 0; i < inputPolygonSize; ++i) {
199         int j = (i + 1) % inputPolygonSize;
200         int k = (i + 2) % inputPolygonSize;
201         // check for convexity just to be sure
202         if (compute_side(inputPolygonVerts[i], inputPolygonVerts[j],
203                          inputPolygonVerts[k])*winding < 0) {
204             return false;
205         }
206         SkOffsetSegment(inputPolygonVerts[i], inputPolygonVerts[j],
207                         insetDistanceFunc(i), insetDistanceFunc(j),
208                         winding,
209                         &edgeData[i].fInset.fP0, &edgeData[i].fInset.fP1);
210         edgeData[i].fIntersection = edgeData[i].fInset.fP0;
211         edgeData[i].fTValue = SK_ScalarMin;
212         edgeData[i].fValid = true;
213     }
214 
215     int prevIndex = inputPolygonSize - 1;
216     int currIndex = 0;
217     int insetVertexCount = inputPolygonSize;
218     while (prevIndex != currIndex) {
219         if (!edgeData[prevIndex].fValid) {
220             prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
221             continue;
222         }
223 
224         SkScalar s, t;
225         SkPoint intersection;
226         if (compute_intersection(edgeData[prevIndex].fInset, edgeData[currIndex].fInset,
227                                  &intersection, &s, &t)) {
228             // if new intersection is further back on previous inset from the prior intersection
229             if (s < edgeData[prevIndex].fTValue) {
230                 // no point in considering this one again
231                 edgeData[prevIndex].fValid = false;
232                 --insetVertexCount;
233                 // go back one segment
234                 prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
235             // we've already considered this intersection, we're done
236             } else if (edgeData[currIndex].fTValue > SK_ScalarMin &&
237                        SkPointPriv::EqualsWithinTolerance(intersection,
238                                                           edgeData[currIndex].fIntersection,
239                                                           1.0e-6f)) {
240                 break;
241             } else {
242                 // add intersection
243                 edgeData[currIndex].fIntersection = intersection;
244                 edgeData[currIndex].fTValue = t;
245 
246                 // go to next segment
247                 prevIndex = currIndex;
248                 currIndex = (currIndex + 1) % inputPolygonSize;
249             }
250         } else {
251             // if prev to right side of curr
252             int side = winding*compute_side(edgeData[currIndex].fInset.fP0,
253                                             edgeData[currIndex].fInset.fP1,
254                                             edgeData[prevIndex].fInset.fP1);
255             if (side < 0 && side == winding*compute_side(edgeData[currIndex].fInset.fP0,
256                                                          edgeData[currIndex].fInset.fP1,
257                                                          edgeData[prevIndex].fInset.fP0)) {
258                 // no point in considering this one again
259                 edgeData[prevIndex].fValid = false;
260                 --insetVertexCount;
261                 // go back one segment
262                 prevIndex = (prevIndex + inputPolygonSize - 1) % inputPolygonSize;
263             } else {
264                 // move to next segment
265                 edgeData[currIndex].fValid = false;
266                 --insetVertexCount;
267                 currIndex = (currIndex + 1) % inputPolygonSize;
268             }
269         }
270     }
271 
272     // store all the valid intersections that aren't nearly coincident
273     // TODO: look at the main algorithm and see if we can detect these better
274     static constexpr SkScalar kCleanupTolerance = 0.01f;
275 
276     insetPolygon->reset();
277     insetPolygon->setReserve(insetVertexCount);
278     currIndex = -1;
279     for (int i = 0; i < inputPolygonSize; ++i) {
280         if (edgeData[i].fValid && (currIndex == -1 ||
281             !SkPointPriv::EqualsWithinTolerance(edgeData[i].fIntersection,
282                                                 (*insetPolygon)[currIndex],
283                                                 kCleanupTolerance))) {
284             *insetPolygon->push() = edgeData[i].fIntersection;
285             currIndex++;
286         }
287     }
288     // make sure the first and last points aren't coincident
289     if (currIndex >= 1 &&
290        SkPointPriv::EqualsWithinTolerance((*insetPolygon)[0], (*insetPolygon)[currIndex],
291                                           kCleanupTolerance)) {
292         insetPolygon->pop();
293     }
294 
295     return (insetPolygon->count() >= 3 && is_convex(*insetPolygon));
296 }
297