• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 
8 #include "SkShadowUtils.h"
9 #include "SkBlurMaskFilter.h"
10 #include "SkCanvas.h"
11 #include "SkColorFilter.h"
12 #include "SkColorData.h"
13 #include "SkDevice.h"
14 #include "SkDrawShadowInfo.h"
15 #include "SkPath.h"
16 #include "SkPM4f.h"
17 #include "SkRandom.h"
18 #include "SkRasterPipeline.h"
19 #include "SkResourceCache.h"
20 #include "SkShadowTessellator.h"
21 #include "SkString.h"
22 #include "SkTLazy.h"
23 #include "SkVertices.h"
24 #if SK_SUPPORT_GPU
25 #include "GrShape.h"
26 #include "effects/GrBlurredEdgeFragmentProcessor.h"
27 #endif
28 
29 /**
30 *  Gaussian color filter -- produces a Gaussian ramp based on the color's B value,
31 *                           then blends with the color's G value.
32 *                           Final result is black with alpha of Gaussian(B)*G.
33 *                           The assumption is that the original color's alpha is 1.
34 */
35 class SkGaussianColorFilter : public SkColorFilter {
36 public:
Make()37     static sk_sp<SkColorFilter> Make() {
38         return sk_sp<SkColorFilter>(new SkGaussianColorFilter);
39     }
40 
41 #if SK_SUPPORT_GPU
42     std::unique_ptr<GrFragmentProcessor> asFragmentProcessor(
43             GrContext*, const GrColorSpaceInfo&) const override;
44 #endif
45 
46     SK_TO_STRING_OVERRIDE()
47     SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkGaussianColorFilter)
48 
49 protected:
flatten(SkWriteBuffer &) const50     void flatten(SkWriteBuffer&) const override {}
onAppendStages(SkRasterPipeline * pipeline,SkColorSpace * dstCS,SkArenaAlloc * alloc,bool shaderIsOpaque) const51     void onAppendStages(SkRasterPipeline* pipeline, SkColorSpace* dstCS, SkArenaAlloc* alloc,
52                         bool shaderIsOpaque) const override {
53         pipeline->append(SkRasterPipeline::gauss_a_to_rgba);
54     }
55 private:
SkGaussianColorFilter()56     SkGaussianColorFilter() : INHERITED() {}
57 
58     typedef SkColorFilter INHERITED;
59 };
60 
CreateProc(SkReadBuffer &)61 sk_sp<SkFlattenable> SkGaussianColorFilter::CreateProc(SkReadBuffer&) {
62     return Make();
63 }
64 
65 #ifndef SK_IGNORE_TO_STRING
toString(SkString * str) const66 void SkGaussianColorFilter::toString(SkString* str) const {
67     str->append("SkGaussianColorFilter ");
68 }
69 #endif
70 
71 #if SK_SUPPORT_GPU
72 
asFragmentProcessor(GrContext *,const GrColorSpaceInfo &) const73 std::unique_ptr<GrFragmentProcessor> SkGaussianColorFilter::asFragmentProcessor(
74         GrContext*, const GrColorSpaceInfo&) const {
75     return GrBlurredEdgeFragmentProcessor::Make(GrBlurredEdgeFragmentProcessor::Mode::kGaussian);
76 }
77 #endif
78 
79 ///////////////////////////////////////////////////////////////////////////////////////////////////
80 
81 namespace {
82 
resource_cache_shared_id()83 uint64_t resource_cache_shared_id() {
84     return 0x2020776f64616873llu;  // 'shadow  '
85 }
86 
87 /** Factory for an ambient shadow mesh with particular shadow properties. */
88 struct AmbientVerticesFactory {
89     SkScalar fOccluderHeight = SK_ScalarNaN;  // NaN so that isCompatible will fail until init'ed.
90     bool fTransparent;
91     SkVector fOffset;
92 
isCompatible__anon565577e20111::AmbientVerticesFactory93     bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const {
94         if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) {
95             return false;
96         }
97         *translate = that.fOffset;
98         return true;
99     }
100 
makeVertices__anon565577e20111::AmbientVerticesFactory101     sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
102                                    SkVector* translate) const {
103         SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
104         // pick a canonical place to generate shadow
105         SkMatrix noTrans(ctm);
106         if (!ctm.hasPerspective()) {
107             noTrans[SkMatrix::kMTransX] = 0;
108             noTrans[SkMatrix::kMTransY] = 0;
109         }
110         *translate = fOffset;
111         return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent);
112     }
113 };
114 
115 /** Factory for an spot shadow mesh with particular shadow properties. */
116 struct SpotVerticesFactory {
117     enum class OccluderType {
118         // The umbra cannot be dropped out because either the occluder is not opaque,
119         // or the center of the umbra is visible.
120         kTransparent,
121         // The umbra can be dropped where it is occluded.
122         kOpaquePartialUmbra,
123         // It is known that the entire umbra is occluded.
124         kOpaqueNoUmbra
125     };
126 
127     SkVector fOffset;
128     SkPoint  fLocalCenter;
129     SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed.
130     SkPoint3 fDevLightPos;
131     SkScalar fLightRadius;
132     OccluderType fOccluderType;
133 
isCompatible__anon565577e20111::SpotVerticesFactory134     bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const {
135         if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ ||
136             fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) {
137             return false;
138         }
139         switch (fOccluderType) {
140             case OccluderType::kTransparent:
141             case OccluderType::kOpaqueNoUmbra:
142                 // 'this' and 'that' will either both have no umbra removed or both have all the
143                 // umbra removed.
144                 *translate = that.fOffset;
145                 return true;
146             case OccluderType::kOpaquePartialUmbra:
147                 // In this case we partially remove the umbra differently for 'this' and 'that'
148                 // if the offsets don't match.
149                 if (fOffset == that.fOffset) {
150                     translate->set(0, 0);
151                     return true;
152                 }
153                 return false;
154         }
155         SK_ABORT("Uninitialized occluder type?");
156         return false;
157     }
158 
makeVertices__anon565577e20111::SpotVerticesFactory159     sk_sp<SkVertices> makeVertices(const SkPath& path, const SkMatrix& ctm,
160                                    SkVector* translate) const {
161         bool transparent = OccluderType::kTransparent == fOccluderType;
162         SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight);
163         if (ctm.hasPerspective() || OccluderType::kOpaquePartialUmbra == fOccluderType) {
164             translate->set(0, 0);
165             return SkShadowTessellator::MakeSpot(path, ctm, zParams,
166                                                  fDevLightPos, fLightRadius, transparent);
167         } else {
168             // pick a canonical place to generate shadow, with light centered over path
169             SkMatrix noTrans(ctm);
170             noTrans[SkMatrix::kMTransX] = 0;
171             noTrans[SkMatrix::kMTransY] = 0;
172             SkPoint devCenter(fLocalCenter);
173             noTrans.mapPoints(&devCenter, 1);
174             SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ);
175             *translate = fOffset;
176             return SkShadowTessellator::MakeSpot(path, noTrans, zParams,
177                                                  centerLightPos, fLightRadius, transparent);
178         }
179     }
180 };
181 
182 /**
183  * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache
184  * records are immutable this is not itself a Rec. When we need to update it we return this on
185  * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add
186  * a new Rec with an adjusted size for any deletions/additions.
187  */
188 class CachedTessellations : public SkRefCnt {
189 public:
size() const190     size_t size() const { return fAmbientSet.size() + fSpotSet.size(); }
191 
find(const AmbientVerticesFactory & ambient,const SkMatrix & matrix,SkVector * translate) const192     sk_sp<SkVertices> find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix,
193                            SkVector* translate) const {
194         return fAmbientSet.find(ambient, matrix, translate);
195     }
196 
add(const SkPath & devPath,const AmbientVerticesFactory & ambient,const SkMatrix & matrix,SkVector * translate)197     sk_sp<SkVertices> add(const SkPath& devPath, const AmbientVerticesFactory& ambient,
198                           const SkMatrix& matrix, SkVector* translate) {
199         return fAmbientSet.add(devPath, ambient, matrix, translate);
200     }
201 
find(const SpotVerticesFactory & spot,const SkMatrix & matrix,SkVector * translate) const202     sk_sp<SkVertices> find(const SpotVerticesFactory& spot, const SkMatrix& matrix,
203                            SkVector* translate) const {
204         return fSpotSet.find(spot, matrix, translate);
205     }
206 
add(const SkPath & devPath,const SpotVerticesFactory & spot,const SkMatrix & matrix,SkVector * translate)207     sk_sp<SkVertices> add(const SkPath& devPath, const SpotVerticesFactory& spot,
208                           const SkMatrix& matrix, SkVector* translate) {
209         return fSpotSet.add(devPath, spot, matrix, translate);
210     }
211 
212 private:
213     template <typename FACTORY, int MAX_ENTRIES>
214     class Set {
215     public:
size() const216         size_t size() const { return fSize; }
217 
find(const FACTORY & factory,const SkMatrix & matrix,SkVector * translate) const218         sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
219                                SkVector* translate) const {
220             for (int i = 0; i < MAX_ENTRIES; ++i) {
221                 if (fEntries[i].fFactory.isCompatible(factory, translate)) {
222                     const SkMatrix& m = fEntries[i].fMatrix;
223                     if (matrix.hasPerspective() || m.hasPerspective()) {
224                         if (matrix != fEntries[i].fMatrix) {
225                             continue;
226                         }
227                     } else if (matrix.getScaleX() != m.getScaleX() ||
228                                matrix.getSkewX() != m.getSkewX() ||
229                                matrix.getScaleY() != m.getScaleY() ||
230                                matrix.getSkewY() != m.getSkewY()) {
231                         continue;
232                     }
233                     return fEntries[i].fVertices;
234                 }
235             }
236             return nullptr;
237         }
238 
add(const SkPath & path,const FACTORY & factory,const SkMatrix & matrix,SkVector * translate)239         sk_sp<SkVertices> add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix,
240                               SkVector* translate) {
241             sk_sp<SkVertices> vertices = factory.makeVertices(path, matrix, translate);
242             if (!vertices) {
243                 return nullptr;
244             }
245             int i;
246             if (fCount < MAX_ENTRIES) {
247                 i = fCount++;
248             } else {
249                 i = fRandom.nextULessThan(MAX_ENTRIES);
250                 fSize -= fEntries[i].fVertices->approximateSize();
251             }
252             fEntries[i].fFactory = factory;
253             fEntries[i].fVertices = vertices;
254             fEntries[i].fMatrix = matrix;
255             fSize += vertices->approximateSize();
256             return vertices;
257         }
258 
259     private:
260         struct Entry {
261             FACTORY fFactory;
262             sk_sp<SkVertices> fVertices;
263             SkMatrix fMatrix;
264         };
265         Entry fEntries[MAX_ENTRIES];
266         int fCount = 0;
267         size_t fSize = 0;
268         SkRandom fRandom;
269     };
270 
271     Set<AmbientVerticesFactory, 4> fAmbientSet;
272     Set<SpotVerticesFactory, 4> fSpotSet;
273 };
274 
275 /**
276  * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular
277  * path. The key represents the path's geometry and not any shadow params.
278  */
279 class CachedTessellationsRec : public SkResourceCache::Rec {
280 public:
CachedTessellationsRec(const SkResourceCache::Key & key,sk_sp<CachedTessellations> tessellations)281     CachedTessellationsRec(const SkResourceCache::Key& key,
282                            sk_sp<CachedTessellations> tessellations)
283             : fTessellations(std::move(tessellations)) {
284         fKey.reset(new uint8_t[key.size()]);
285         memcpy(fKey.get(), &key, key.size());
286     }
287 
getKey() const288     const Key& getKey() const override {
289         return *reinterpret_cast<SkResourceCache::Key*>(fKey.get());
290     }
291 
bytesUsed() const292     size_t bytesUsed() const override { return fTessellations->size(); }
293 
getCategory() const294     const char* getCategory() const override { return "tessellated shadow masks"; }
295 
refTessellations() const296     sk_sp<CachedTessellations> refTessellations() const { return fTessellations; }
297 
298     template <typename FACTORY>
find(const FACTORY & factory,const SkMatrix & matrix,SkVector * translate) const299     sk_sp<SkVertices> find(const FACTORY& factory, const SkMatrix& matrix,
300                            SkVector* translate) const {
301         return fTessellations->find(factory, matrix, translate);
302     }
303 
304 private:
305     std::unique_ptr<uint8_t[]> fKey;
306     sk_sp<CachedTessellations> fTessellations;
307 };
308 
309 /**
310  * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the
311  * vertices and a translation vector. If the CachedTessellations does not contain a suitable
312  * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations
313  * to the caller. The caller will update it and reinsert it back into the cache.
314  */
315 template <typename FACTORY>
316 struct FindContext {
FindContext__anon565577e20111::FindContext317     FindContext(const SkMatrix* viewMatrix, const FACTORY* factory)
318             : fViewMatrix(viewMatrix), fFactory(factory) {}
319     const SkMatrix* const fViewMatrix;
320     // If this is valid after Find is called then we found the vertices and they should be drawn
321     // with fTranslate applied.
322     sk_sp<SkVertices> fVertices;
323     SkVector fTranslate = {0, 0};
324 
325     // If this is valid after Find then the caller should add the vertices to the tessellation set
326     // and create a new CachedTessellationsRec and insert it into SkResourceCache.
327     sk_sp<CachedTessellations> fTessellationsOnFailure;
328 
329     const FACTORY* fFactory;
330 };
331 
332 /**
333  * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of
334  * the FindContext are used to determine if the vertices are reusable. If so the vertices and
335  * necessary translation vector are set on the FindContext.
336  */
337 template <typename FACTORY>
FindVisitor(const SkResourceCache::Rec & baseRec,void * ctx)338 bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) {
339     FindContext<FACTORY>* findContext = (FindContext<FACTORY>*)ctx;
340     const CachedTessellationsRec& rec = static_cast<const CachedTessellationsRec&>(baseRec);
341     findContext->fVertices =
342             rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate);
343     if (findContext->fVertices) {
344         return true;
345     }
346     // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been
347     // manipulated we will add a new Rec.
348     findContext->fTessellationsOnFailure = rec.refTessellations();
349     return false;
350 }
351 
352 class ShadowedPath {
353 public:
ShadowedPath(const SkPath * path,const SkMatrix * viewMatrix)354     ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix)
355             : fPath(path)
356             , fViewMatrix(viewMatrix)
357 #if SK_SUPPORT_GPU
358             , fShapeForKey(*path, GrStyle::SimpleFill())
359 #endif
360     {}
361 
path() const362     const SkPath& path() const { return *fPath; }
viewMatrix() const363     const SkMatrix& viewMatrix() const { return *fViewMatrix; }
364 #if SK_SUPPORT_GPU
365     /** Negative means the vertices should not be cached for this path. */
keyBytes() const366     int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); }
writeKey(void * key) const367     void writeKey(void* key) const {
368         fShapeForKey.writeUnstyledKey(reinterpret_cast<uint32_t*>(key));
369     }
isRRect(SkRRect * rrect)370     bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); }
371 #else
keyBytes() const372     int keyBytes() const { return -1; }
writeKey(void * key) const373     void writeKey(void* key) const { SK_ABORT("Should never be called"); }
isRRect(SkRRect * rrect)374     bool isRRect(SkRRect* rrect) { return false; }
375 #endif
376 
377 private:
378     const SkPath* fPath;
379     const SkMatrix* fViewMatrix;
380 #if SK_SUPPORT_GPU
381     GrShape fShapeForKey;
382 #endif
383 };
384 
385 // This creates a domain of keys in SkResourceCache used by this file.
386 static void* kNamespace;
387 
388 /**
389  * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless
390  * they are first found in SkResourceCache.
391  */
392 template <typename FACTORY>
draw_shadow(const FACTORY & factory,std::function<void (const SkVertices *,SkBlendMode,const SkPaint &,SkScalar tx,SkScalar ty)> drawProc,ShadowedPath & path,SkColor color)393 bool draw_shadow(const FACTORY& factory,
394                  std::function<void(const SkVertices*, SkBlendMode, const SkPaint&,
395                  SkScalar tx, SkScalar ty)> drawProc, ShadowedPath& path, SkColor color) {
396     FindContext<FACTORY> context(&path.viewMatrix(), &factory);
397 
398     SkResourceCache::Key* key = nullptr;
399     SkAutoSTArray<32 * 4, uint8_t> keyStorage;
400     int keyDataBytes = path.keyBytes();
401     if (keyDataBytes >= 0) {
402         keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key));
403         key = new (keyStorage.begin()) SkResourceCache::Key();
404         path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key)));
405         key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes);
406         SkResourceCache::Find(*key, FindVisitor<FACTORY>, &context);
407     }
408 
409     sk_sp<SkVertices> vertices;
410     bool foundInCache = SkToBool(context.fVertices);
411     if (foundInCache) {
412         vertices = std::move(context.fVertices);
413     } else {
414         // TODO: handle transforming the path as part of the tessellator
415         if (key) {
416             // Update or initialize a tessellation set and add it to the cache.
417             sk_sp<CachedTessellations> tessellations;
418             if (context.fTessellationsOnFailure) {
419                 tessellations = std::move(context.fTessellationsOnFailure);
420             } else {
421                 tessellations.reset(new CachedTessellations());
422             }
423             vertices = tessellations->add(path.path(), factory, path.viewMatrix(),
424                                           &context.fTranslate);
425             if (!vertices) {
426                 return false;
427             }
428             auto rec = new CachedTessellationsRec(*key, std::move(tessellations));
429             SkResourceCache::Add(rec);
430         } else {
431             vertices = factory.makeVertices(path.path(), path.viewMatrix(),
432                                             &context.fTranslate);
433             if (!vertices) {
434                 return false;
435             }
436         }
437     }
438 
439     SkPaint paint;
440     // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of
441     // that against our 'color' param.
442     paint.setColorFilter(
443          SkColorFilter::MakeModeFilter(color, SkBlendMode::kModulate)->makeComposed(
444                                                                     SkGaussianColorFilter::Make()));
445 
446     drawProc(vertices.get(), SkBlendMode::kModulate, paint,
447              context.fTranslate.fX, context.fTranslate.fY);
448 
449     return true;
450 }
451 }
452 
tilted(const SkPoint3 & zPlaneParams)453 static bool tilted(const SkPoint3& zPlaneParams) {
454     return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY);
455 }
456 
map(const SkMatrix & m,const SkPoint3 & pt)457 static SkPoint3 map(const SkMatrix& m, const SkPoint3& pt) {
458     SkPoint3 result;
459     m.mapXY(pt.fX, pt.fY, (SkPoint*)&result.fX);
460     result.fZ = pt.fZ;
461     return result;
462 }
463 
ComputeTonalColors(SkColor inAmbientColor,SkColor inSpotColor,SkColor * outAmbientColor,SkColor * outSpotColor)464 void SkShadowUtils::ComputeTonalColors(SkColor inAmbientColor, SkColor inSpotColor,
465                                        SkColor* outAmbientColor, SkColor* outSpotColor) {
466     // For tonal color we only compute color values for the spot shadow.
467     // The ambient shadow is greyscale only.
468 
469     // Ambient
470     *outAmbientColor = SkColorSetARGB(SkColorGetA(inAmbientColor), 0, 0, 0);
471 
472     // Spot
473     int spotR = SkColorGetR(inSpotColor);
474     int spotG = SkColorGetG(inSpotColor);
475     int spotB = SkColorGetB(inSpotColor);
476     int max = SkTMax(SkTMax(spotR, spotG), spotB);
477     int min = SkTMin(SkTMin(spotR, spotG), spotB);
478     SkScalar luminance = 0.5f*(max + min)/255.f;
479     SkScalar origA = SkColorGetA(inSpotColor)/255.f;
480 
481     // We compute a color alpha value based on the luminance of the color, scaled by an
482     // adjusted alpha value. We want the following properties to match the UX examples
483     // (assuming a = 0.25) and to ensure that we have reasonable results when the color
484     // is black and/or the alpha is 0:
485     //     f(0, a) = 0
486     //     f(luminance, 0) = 0
487     //     f(1, 0.25) = .5
488     //     f(0.5, 0.25) = .4
489     //     f(1, 1) = 1
490     // The following functions match this as closely as possible.
491     SkScalar alphaAdjust = (2.6f + (-2.66667f + 1.06667f*origA)*origA)*origA;
492     SkScalar colorAlpha = (3.544762f + (-4.891428f + 2.3466f*luminance)*luminance)*luminance;
493     colorAlpha = SkTPin(alphaAdjust*colorAlpha, 0.0f, 1.0f);
494 
495     // Similarly, we set the greyscale alpha based on luminance and alpha so that
496     //     f(0, a) = a
497     //     f(luminance, 0) = 0
498     //     f(1, 0.25) = 0.15
499     SkScalar greyscaleAlpha = SkTPin(origA*(1 - 0.4f*luminance), 0.0f, 1.0f);
500 
501     // The final color we want to emulate is generated by rendering a color shadow (C_rgb) using an
502     // alpha computed from the color's luminance (C_a), and then a black shadow with alpha (S_a)
503     // which is an adjusted value of 'a'.  Assuming SrcOver, a background color of B_rgb, and
504     // ignoring edge falloff, this becomes
505     //
506     //      (C_a - S_a*C_a)*C_rgb + (1 - (S_a + C_a - S_a*C_a))*B_rgb
507     //
508     // Assuming premultiplied alpha, this means we scale the color by (C_a - S_a*C_a) and
509     // set the alpha to (S_a + C_a - S_a*C_a).
510     SkScalar colorScale = colorAlpha*(SK_Scalar1 - greyscaleAlpha);
511     SkScalar tonalAlpha = colorScale + greyscaleAlpha;
512     SkScalar unPremulScale = colorScale / tonalAlpha;
513     *outSpotColor = SkColorSetARGB(tonalAlpha*255.999f,
514                                    unPremulScale*spotR,
515                                    unPremulScale*spotG,
516                                    unPremulScale*spotB);
517 }
518 
519 // Draw an offset spot shadow and outlining ambient shadow for the given path.
DrawShadow(SkCanvas * canvas,const SkPath & path,const SkPoint3 & zPlaneParams,const SkPoint3 & devLightPos,SkScalar lightRadius,SkColor ambientColor,SkColor spotColor,uint32_t flags)520 void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams,
521                                const SkPoint3& devLightPos, SkScalar lightRadius,
522                                SkColor ambientColor, SkColor spotColor,
523                                uint32_t flags) {
524     SkMatrix inverse;
525     if (!canvas->getTotalMatrix().invert(&inverse)) {
526         return;
527     }
528     SkPoint pt = inverse.mapXY(devLightPos.fX, devLightPos.fY);
529 
530     SkDrawShadowRec rec;
531     rec.fZPlaneParams   = zPlaneParams;
532     rec.fLightPos       = { pt.fX, pt.fY, devLightPos.fZ };
533     rec.fLightRadius    = lightRadius;
534     rec.fAmbientColor   = ambientColor;
535     rec.fSpotColor      = spotColor;
536     rec.fFlags          = flags;
537 
538     canvas->private_draw_shadow_rec(path, rec);
539 }
540 
validate_rec(const SkDrawShadowRec & rec)541 static bool validate_rec(const SkDrawShadowRec& rec) {
542     return rec.fLightPos.isFinite() && rec.fZPlaneParams.isFinite() &&
543            SkScalarIsFinite(rec.fLightRadius);
544 }
545 
drawShadow(const SkPath & path,const SkDrawShadowRec & rec)546 void SkBaseDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) {
547     auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint,
548                                 SkScalar tx, SkScalar ty) {
549         SkAutoDeviceCTMRestore adr(this, SkMatrix::Concat(this->ctm(),
550                                                           SkMatrix::MakeTrans(tx, ty)));
551         this->drawVertices(vertices, mode, paint);
552     };
553 
554     if (!validate_rec(rec)) {
555         return;
556     }
557 
558     SkMatrix viewMatrix = this->ctm();
559     SkAutoDeviceCTMRestore adr(this, SkMatrix::I());
560 
561     ShadowedPath shadowedPath(&path, &viewMatrix);
562 
563     bool tiltZPlane = tilted(rec.fZPlaneParams);
564     bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag);
565     bool uncached = tiltZPlane || path.isVolatile();
566 
567     SkPoint3 zPlaneParams = rec.fZPlaneParams;
568     SkPoint3 devLightPos = map(viewMatrix, rec.fLightPos);
569     float lightRadius = rec.fLightRadius;
570 
571     if (SkColorGetA(rec.fAmbientColor) > 0) {
572         bool success = false;
573         if (uncached) {
574             sk_sp<SkVertices> vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix,
575                                                                           zPlaneParams,
576                                                                           transparent);
577             if (vertices) {
578                 SkPaint paint;
579                 // Run the vertex color through a GaussianColorFilter and then modulate the
580                 // grayscale result of that against our 'color' param.
581                 paint.setColorFilter(
582                     SkColorFilter::MakeModeFilter(rec.fAmbientColor,
583                                                   SkBlendMode::kModulate)->makeComposed(
584                                                                    SkGaussianColorFilter::Make()));
585                 this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint);
586                 success = true;
587             }
588         }
589 
590         if (!success) {
591             AmbientVerticesFactory factory;
592             factory.fOccluderHeight = zPlaneParams.fZ;
593             factory.fTransparent = transparent;
594             if (viewMatrix.hasPerspective()) {
595                 factory.fOffset.set(0, 0);
596             } else {
597                 factory.fOffset.fX = viewMatrix.getTranslateX();
598                 factory.fOffset.fY = viewMatrix.getTranslateY();
599             }
600 
601             if (!draw_shadow(factory, drawVertsProc, shadowedPath, rec.fAmbientColor)) {
602                 // Pretransform the path to avoid transforming the stroke, below.
603                 SkPath devSpacePath;
604                 path.transform(viewMatrix, &devSpacePath);
605 
606                 // The tesselator outsets by AmbientBlurRadius (or 'r') to get the outer ring of
607                 // the tesselation, uses the original path as the inner ring, and sets the alpha
608                 // of the inner ring to 1/AmbientRecipAlpha (or 'a').
609                 //
610                 // We want to emulate this with a blur. The full blur width (2*blurRadius or 'f')
611                 // can be calculated by interpolating:
612                 //
613                 //            original edge        outer edge
614                 //         |       |<---------- r ------>|
615                 //         |<------|--- f -------------->|
616                 //         |       |                     |
617                 //    alpha = 1  alpha = a          alpha = 0
618                 //
619                 // Taking ratios, f/1 = r/a, so f = r/a and blurRadius = f/2.
620                 //
621                 // We now need to outset the path to place the new edge in the center of the
622                 // blur region:
623                 //
624                 //             original   new
625                 //         |       |<------|--- r ------>|
626                 //         |<------|--- f -|------------>|
627                 //         |       |<- o ->|<--- f/2 --->|
628                 //
629                 //     r = o + f/2, so o = r - f/2
630                 //
631                 // We outset by using the stroker, so the strokeWidth is o/2.
632                 //
633                 SkScalar devSpaceOutset = SkDrawShadowMetrics::AmbientBlurRadius(zPlaneParams.fZ);
634                 SkScalar oneOverA = SkDrawShadowMetrics::AmbientRecipAlpha(zPlaneParams.fZ);
635                 SkScalar blurRadius = 0.5f*devSpaceOutset*oneOverA;
636                 SkScalar strokeWidth = 0.5f*(devSpaceOutset - blurRadius);
637 
638                 // Now draw with blur
639                 SkPaint paint;
640                 paint.setColor(rec.fAmbientColor);
641                 paint.setStrokeWidth(strokeWidth);
642                 paint.setStyle(SkPaint::kStrokeAndFill_Style);
643                 SkScalar sigma = SkBlurMaskFilter::ConvertRadiusToSigma(blurRadius);
644                 uint32_t flags = SkBlurMaskFilter::kIgnoreTransform_BlurFlag;
645                 paint.setMaskFilter(SkBlurMaskFilter::Make(kNormal_SkBlurStyle, sigma, flags));
646                 this->drawPath(devSpacePath, paint);
647             }
648         }
649     }
650 
651     if (SkColorGetA(rec.fSpotColor) > 0) {
652         bool success = false;
653         if (uncached) {
654             sk_sp<SkVertices> vertices = SkShadowTessellator::MakeSpot(path, viewMatrix,
655                                                                        zPlaneParams,
656                                                                        devLightPos, lightRadius,
657                                                                        transparent);
658             if (vertices) {
659                 SkPaint paint;
660                 // Run the vertex color through a GaussianColorFilter and then modulate the
661                 // grayscale result of that against our 'color' param.
662                 paint.setColorFilter(
663                     SkColorFilter::MakeModeFilter(rec.fSpotColor,
664                                                   SkBlendMode::kModulate)->makeComposed(
665                                                       SkGaussianColorFilter::Make()));
666                 this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint);
667                 success = true;
668             }
669         }
670 
671         if (!success) {
672             SpotVerticesFactory factory;
673             factory.fOccluderHeight = zPlaneParams.fZ;
674             factory.fDevLightPos = devLightPos;
675             factory.fLightRadius = lightRadius;
676 
677             SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY());
678             factory.fLocalCenter = center;
679             viewMatrix.mapPoints(&center, 1);
680             SkScalar radius, scale;
681             SkDrawShadowMetrics::GetSpotParams(zPlaneParams.fZ, devLightPos.fX - center.fX,
682                                                devLightPos.fY - center.fY, devLightPos.fZ,
683                                                lightRadius, &radius, &scale, &factory.fOffset);
684             SkRect devBounds;
685             viewMatrix.mapRect(&devBounds, path.getBounds());
686             if (transparent ||
687                 SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() ||
688                 SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) {
689                 // if the translation of the shadow is big enough we're going to end up
690                 // filling the entire umbra, so we can treat these as all the same
691                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent;
692             } else if (factory.fOffset.length()*scale + scale < radius) {
693                 // if we don't translate more than the blur distance, can assume umbra is covered
694                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaqueNoUmbra;
695             } else {
696                 factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaquePartialUmbra;
697             }
698             // need to add this after we classify the shadow
699             factory.fOffset.fX += viewMatrix.getTranslateX();
700             factory.fOffset.fY += viewMatrix.getTranslateY();
701 
702             SkColor color = rec.fSpotColor;
703 #ifdef DEBUG_SHADOW_CHECKS
704             switch (factory.fOccluderType) {
705                 case SpotVerticesFactory::OccluderType::kTransparent:
706                     color = 0xFFD2B48C;  // tan for transparent
707                     break;
708                 case SpotVerticesFactory::OccluderType::kOpaquePartialUmbra:
709                     color = 0xFFFFA500;   // orange for opaque
710                     break;
711                 case SpotVerticesFactory::OccluderType::kOpaqueNoUmbra:
712                     color = 0xFFE5E500;  // corn yellow for covered
713                     break;
714             }
715 #endif
716             if (!draw_shadow(factory, drawVertsProc, shadowedPath, color)) {
717                 // draw with blur
718                 SkVector translate;
719                 SkDrawShadowMetrics::GetSpotParams(zPlaneParams.fZ, devLightPos.fX,
720                                                    devLightPos.fY, devLightPos.fZ,
721                                                    lightRadius, &radius, &scale, &translate);
722                 SkMatrix shadowMatrix;
723                 shadowMatrix.setScaleTranslate(scale, scale, translate.fX, translate.fY);
724                 SkAutoDeviceCTMRestore adr(this, SkMatrix::Concat(shadowMatrix, viewMatrix));
725 
726                 SkPaint paint;
727                 paint.setColor(rec.fSpotColor);
728                 SkScalar sigma = SkBlurMaskFilter::ConvertRadiusToSigma(radius);
729                 uint32_t flags = SkBlurMaskFilter::kIgnoreTransform_BlurFlag;
730                 paint.setMaskFilter(SkBlurMaskFilter::Make(kNormal_SkBlurStyle, sigma, flags));
731                 this->drawPath(path, paint);
732             }
733         }
734     }
735 }
736